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Abstract

Most recently, Answer Set Programming (ASP) has been attracting interest as a new paradigm

for problem solving. An important aspect, for which several approaches have been presented,

is the handling of preferences between rules. In this paper, we consider the problem of

implementing preference handling approaches by means of meta-interpreters in Answer Set

Programming. In particular, we consider the preferred answer set approaches by Brewka

and Eiter, by Delgrande, Schaub and Tompits, and by Wang, Zhou and Lin. We present

suitable meta-interpreters for these semantics using DLV, which is an efficient engine for

ASP. Moreover, we also present a meta-interpreter for the weakly preferred answer set

approach by Brewka and Eiter, which uses the weak constraint feature of DLV as a tool

for expressing and solving an underlying optimization problem. We also consider advanced

meta-interpreters, which make use of graph-based characterizations and often allow for more

efficient computations. Our approach shows the suitability of ASP in general and of DLV in

particular for fast prototyping. This can be fruitfully exploited for experimenting with new

languages and knowledge-representation formalisms.

KEYWORDS: Answer Set Programming, meta-interpretation, preference semantics

1 Introduction

Handling preference information plays an important role in applications of know-

ledge representation and reasoning. In the context of logic programs and related

� This paper is a revised and extended version of a preliminary paper in: Alessandro Provetti and Tran
Cao Son, editors, Proceedings AAAI 2001 Spring Symposium on Answer Set Programming: Towards
Efficient and Scalable Knowledge Representation and Reasoning, Stanford CA, March 2001, AAAI
Press.
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formalisms, numerous approaches for adding preference information have been

proposed, including (Baader and Hollunder 1995; Brewka 1994; Brewka 1996;

Buccafurri et al. 1999; Delgrande and Schaub 2000; Gelfond and Son 1997; Marek

and Truszczyński 1993; Rintanen 1998; Sakama and Inoue 2000; Zhang and Foo

1997). They have been designed for purposes such as capturing specificity or

normative preference, e.g. see elsewhere (Brewka and Eiter 1999; Delgrande and

Schaub 2000; Sakama and Inoue 2000) for reviews and comparisons.

Answer Set Programming (ASP) is gaining importance as a new paradigm

for (declarative) problem solving. Basically, ASP is function-free disjunctive logic

programming with negation as failure and strong negation under the Answer Set

Semantics (Gelfond and Lifschitz 1991). Several attempts have been made to combine

ASP and preferential information, resulting in a number of different semantics for

preferential ASP, such as those in Brewka and Eiter (1999), Wang et al. (2000) and

Delgrande et al. (2000a), on which we focus in this paper; Schaub and Wang (2001)

provide a unifying framework for them.

The following example is a classical situation for the use of preference information

in non-monotonic reasoning.

Example 1 (bird & penguin)

Consider the following logic program:

(1) penguin.

(2) bird.

(3) ¬flies :- not flies, penguin.

(4) flies :- not ¬flies, bird.

This program has two answers sets – A1 = {penguin, bird, ¬flies} and A2 =

{penguin, bird, flies} – where we conclude ¬flies and flies, respectively. Assume

that rule (i) has higher priority than (j) iff i < j (i.e. rule (1) has the highest priority

and rule (4) the lowest). Then, A2 is no longer intuitive, as flies is concluded from

(4), which has lower priority than (3) where we conclude ¬flies.

Interestingly, even if this example is very simple, various preference semantics

arrive at different results. Furthermore, semantics which coincide on this example

may well yield different results on other examples. Since evaluating a semantics on

a number of benchmark examples, each of which possibly involving several rules,

quickly becomes a tedious task, one would like to have a (quick) implementation of

a semantics at hand, such that experimentation can be done using computer support.

Exploring a (large) number of examples, which helps in assessing the behavior of

a semantics, then can be performed significantly faster, easier, and less error prone

than by manual evaluation.

In this paper, we address this issue and explore the implementation of preference

semantics for logic programs by means of a powerful technique based on Answer

Set Programming (ASP), which can be seen as a sort of meta-programming in ASP.

There, a given logic program P with preferences is encoded by a suitable set of facts

F(P), which are added to a fixed “meta-program” PI , such that the intended answer

sets of P are determined by the answer sets of the logic program PI ∪ F(P). The

salient feature is that this PI is universal, i.e. it is the same for all input programs P.
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Pursuing such a meta-programming approach has several advantages: On the

one hand, leveraging the underlying “programming” language as much as possible

facilitates quick prototype implementations for the preference semantics at hand.

On the other hand, this novel application of answer set programming improves the

understanding of how the declarative nature of answer set semantics works, in that

we see which methods are needed in order to express elements such as iterative and

recursive definitions, respectively.

We recall that meta-interpretation is well established in Prolog-style logic pro-

gramming, but due to the differences in semantics, Prolog-style meta-interpreters

noticeably differ from those presented in this paper. More specifically, Prolog-style

meta-interpreters usually formalize resolution and its control, thereby exhibiting

a rather procedural reading. Our ASP meta-interpreters, on the other hand, are

formulated in a truly declarative way. This is more amenable to realizing interpreters

for KR languages which have a purely declarative reading, and where syntactic

elements such as the order of rules, or the order of literals in the body of a rule are

not important.

However, the fundamental concept of ASP and Prolog-style meta-interpreters is

the same: Representing programs using a formalism very close to the one they are

written in, and providing a modular “interpreter” which evaluates the represented

program by means of the common semantics, such that the results of the original and

the interpreted programs are in correspondence. We will not go into further detail

concerning the differences between Prolog-style and ASP-style meta-interpretation

in this paper, but focus on presenting ASP-style meta-interpreters. It is worthwhile

noting that meta-interpretation is not completely new in ASP; a similar technique

was used previously in (Gelfond and Son 1997) for defining the semantics of logic

programming with defeasible rules (cf. section 6).

In this paper we focus on three similar, yet different semantics for prioritized

logic programs, namely the preference semantics by Brewka and Eiter (1999), Wang,

Zhou and Lin (2000), and Delgrande, Schaub and Tompits (2000a), which we refer

to as B-preferred, W-preferred and D-preferred answer set semantics, respectively.

We present ASP meta-programs PIB , PIW , and PID such that the answer sets of

PIB ∪ F(P), PIW ∪ F(P), and PID ∪ F(P) correspond (modulo a simple projection

function) precisely to the B-, W-, and D-preferred answer sets of P. This way, by

running F(P) together with the corresponding meta-program on the DLV system

(Faber et al. 1999; Faber and Pfeifer 1996), we compute the preferred answer sets

of P in a simple and elegant way. For B-preferred answer sets we also provide

an alternate meta-program PIg , which implements a graph-based algorithm that

deterministically checks preferredness of an answer set and, in general, is more

efficient than PIB . Note that by suitable adaption of the meta-programs, other ASP

engines such as Smodels (Niemelä et al. 2000) can be used as well.

The B-preferred answer set semantics refines previous approaches for adding

preferences to default rules by Brewka (1994, 1996). It is defined for answer sets

of extended logic programs (Gelfond and Lifschitz 1991) and is generalized to

Reiter’s default logic in Brewka and Eiter (2000). An important aspect of this

semantics is that the definition was guided by two general principles which, as
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argued, a preference semantics should satisfy. As shown in Brewka and Eiter (1999),

B-preferred answer sets satisfy these principles, while almost all other semantics

do not. The W- and D-preferred answer set semantics increasingly strengthen the

B-preferred answer set semantics (Schaub and Wang 2001).

Since, in general, programs having an answer set may lack a preferred answer set,

in (Brewka and Eiter 1999) a relaxed notion, called weakly preferred answer sets,

is defined. We implement this semantics by means of a meta-program PIweak
, which

takes advantage of the weak constraints feature (Buccafurri et al. 1997) of DLV.

Overall, the work reported in this paper is important in several respects:

• We put forward the use of ASP for experimenting new semantics by means

of a meta-interpretation technique. The declarativity of logic programs (LPs)

provides a new and elegant way of writing meta-interpreters, which is very

different from Prolog-style meta-interpretation. Thanks to the high expressive-

ness of (disjunctive) LPs and DLV’s weak constraints, meta-interpreters can be

written in a simple and declarative fashion.

• The description of the meta-programs implementing the various preference

semantics also has a didactic value: it is a good example how meta-interpreters

can be built using ASP. In particular, we also present a core meta-program

for plain extended logic programs under answer set semantics, which may be

used as a basic building block for the construction of other meta-programs.

• Furthermore, the meta-interpreters provide an actual implementation of pre-

ferred and weakly preferred answer sets and allow for easy experimentation of

these semantics in practice. To our knowledge, this is the first implementation

of weakly preferred answer sets. An implementation of preferred answer sets

(also on top of DLV) has been reported in Delgrande et al. (2000b), where

programs are mapped into the framework of compiled preferences (Delgrande

and Schaub 1997). Our implementation, as will be seen, is an immediate

translation of the definition of preferred answer sets into DLV code. Weak

constraints make the encoding of weakly preferred answer sets extremely

simple and elegant, while that task would have been much more cumbersome

otherwise. The meta-interpreters and a suite of example are available at

http://www.dlvsystem.com/preferred/.

The experience reported in this paper confirms the benefits of ASP. It suggests

the use of the DLV system as a high-level abstract machine to be employed also as a

powerful tool for experimenting with new semantics and novel KR languages.

It is worthwhile noting that the meta-interpretation approach presented here does

not aim at efficiency; rather, it fosters simple and very fast prototyping, which is

useful, for instance, in the process of designing and experimenting new languages.

The structure of the remainder of this paper is as follows: In the next section,

we provide preliminaries of extended logic programming and answer set semantics.

We then develop in section 3 a basic meta-interpreter program for extended logic

programs under the answer set semantics. After that, we consider in section 4 meta-

interpreter programs for B-preferred, W-preferred, and D-preferred answer answer

sets. Section 5 is devoted to the refinement of preferred answer sets to weakly
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preferred answer sets. A discussion of related work is provided in section 6. Finally,

in section 7 we summarize our results and draw some conclusions.

2 Preliminaries: logic programs

Syntax. Logic Programs (LPs) use a function-free first-order language. As for terms,

strings starting with uppercase (resp., lowercase) letters denote variables (resp.,

constants). A (positive resp. negative) classical literal l is either an atom a or a

negated atom ¬a, respectively; its complementary literal, denoted ¬l, is ¬a and a,

respectively. A (positive, resp. negative) negation as failure (NAF) literal � is of the

form l or not l, where l is a classical literal. Unless stated otherwise, by literal we

mean a classical literal.

A rule r is a formula

a1 v · · · v an :- b1, . . . , bk, not bk+1, . . . , not bm. (1)

where all ai and bj are classical literals and n � 0, m � k � 0. The part to the left

of “:-” is the head, the part to the right is the body of r; we omit “:-” if m = 0.

We let H(r) = {a1, . . . , an} be the set of head literals and B(r) = B+(r) ∪ B−(r) the

set of body literals, where B+(r) = {b1, . . . , bk} and B−(r) = {bk+1, . . . , bm} are the

sets of positive and negative body literals, respectively. An integrity constraint is a

rule where n = 0.

A datalog program (LP) P is a finite set of rules. We call P positive, if P is not

-free (i.e. ∀r ∈ P : B−(r) = ∅); and normal, if P is v -free (i.e. ∀r ∈ P : |H(r)| � 1).

A weak constraint r is an expression of the form

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w : l]

where every bi is a literal, l � 1 is the priority level and w � 1 is the weight among

the level. The intuition underlying levels and weights is that weak constraints of

lower levels are more important than those of higher levels, and among the same

level weak constraints with greater weights are more important. Both l and w are

integers and set to 1 if omitted. The sets B(r), B+(r), and B−(r) are defined by

viewing r as an integrity constraint. WC(P ) denotes the set of weak constraints

in P . Weak constraints are motivated by having a convenient means to deal with

optimization problems such as the Traveling Salesperson problem, or express actions

wit costs (Eiter et al. 2002).

As usual, a term (atom, rule, . . .) is ground, if no variables appear in it.

Semantics. Answer sets for LPs with weak constraints are defined by extending

consistent answer sets for LPs as introduced in (Gelfond and Lifschitz 1991; Lifschitz

1996). We proceed in three steps: we first define answer sets (1) of ground positive

programs, then (2) of arbitrary ground programs, and (3) finally (optimal) answer

sets of ground programs with weak constraints. As usual, the (optimal) answer sets

of a non-ground program P are those of its ground instantiation Ground(P ), defined

below.
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For any program P , let UP be its Herbrand universe and BP be the set of all

classical ground literals from predicate symbols in P over the constants of UP ; if no

constant appears in P , an arbitrary constant is added to UP . For any clause r, let

Ground(r) denote the set of its ground instances. Then, Ground(P ) =
⋃

r∈P Ground(r).

Note that P is ground iff P = Ground(P ). An interpretation is any set I ⊆ BP of

ground literals. It is consistent, if I ∩ {¬l | l ∈ I} = ∅.

In what follows, let P be a ground program.

(1) A consistent1 interpretation I ⊆ BP is called closed under a positive program

P , if B(r) ⊆ I implies H(r) ∩ I 	= ∅ for every r ∈ P . An interpretation X is an answer

set for P if it is a minimal set (wrt. set inclusion) which is closed under P .

(2) Let P I be the Gelfond–Lifschitz reduct of a program P w.r.t. I ⊆ BP , i.e. the

program obtained from P by deleting

• all rules r ∈ P such that B−(r) ∩ I 	= ∅, and

• all negative body literals from the remaining rules.

Then, I ⊆ BP is an answer set of P iff I is an answer set of P I . By AS(P ) we

denote the set of all answer sets of P .

Example 2

The program

a v b. b v c. d v ¬d :- a, c.

has three answer sets: {a, c, d}, {a, c,¬d}, and {b}.

(3) Given a program P with weak constraints, we are interested in the answer

sets of the part without weak constraints which minimize the sum of weights of

the violated constraints in the highest priority level, and among them those which

minimize the sum of weights of the violated constraints in the next lower level, etc.

This is expressed by an objective function for P and an answer set A:

fP (1) = 1

fP (n) = fP (n − 1) · |WC(P )| · wP
max + 1, n > 1

HP
A =

∑lPmax
i=1

(
fP (i) ·

∑
N∈NA,P

i
wN

)

where wP
max and lPmax denote the maximum weight and maximum level of a weak

constraint in P , respectively; N
A,P
i denotes the set of weak constraints in level i

which are violated by A, and wN denotes the weight of the weak constraint N.

Intuitively, fP (i) is a factor which guarantees that the impact of violated weak

constraints of level i is less than the impact of violated weak constraints of lower

levels. More technically, note that |WC(P )| · wP
max + 1 is greater than the sum of all

weights in the program, and is therefore guaranteed to be greater than any sum of

weights of a single level.

Then, A is an (optimal) answer set of P , if A ∈ AS(P\WC(P )) and HP
A is minimal

over AS(P\WC(P )). Let OAS(P ) denote the set of all optimal answer sets.

1 We only consider consistent answer sets, while in Lifschitz (1996) also the (inconsistent) set BP may be
an answer set.
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Example 3

Let us extend the program from Example 2 by the following three weak constraints:

:∼ a , c. [2 : 1] :∼ ¬d . [1 : 1] :∼ b. [3 : 1]

The resulting program P3 has the single optimal answer set A3 = {a, c, d} with weight

2 in level 1.

ASP systems like DLV (and virtually all others) provide a built-in binary predicate

which defines a total order on the constants. In DLV, this predicate is denoted <;

in this paper, we denote it by lt, to avoid confusion with the rule ordering < in

programs which will be introduced in section 4.

3 Meta-interpreting answer set programs

In this section we show how a normal propositional answer set program can be en-

coded for and interpreted by a generic meta-interpreter based on the following idea:

We provide a representation F(P ) of an arbitrary normal propositional program

P 2 as a set of facts and combine these facts with a generic answer set program PIa

such that AS(P ) = {π(A) | A ∈ AS(F(P ) ∪ PIa)}, where π is a simple projection

function.

3.1 Representing an ASP

First we translate the propositional answer set program P into a set of facts F(P )

as follows:

1. For each rule c :- a1 , . . . , am , not b1 , . . . , not bn . of the program P , F(P )

contains the following facts:

rule(r). head(c, r). pbl(a1, r). . . . pbl(am, r). nbl(b1, r). . . . nbl(bn, r).

where r is a unique rule identifier.

2. For each pair of complementary literals � and ¬� occurring in the program P

we explicitly add a fact compl(�,¬�). We denote ¬� by neg � in programs.

Example 4

The program of the bird & penguin example is represented by the following facts

representing the rules and complementary literals:

rule(r1). head(penguin, r1).

rule(r2). head(bird, r2).

rule(r3). head(neg flies, r3). pbl(penguin, r3). nbl(flies, r3).

rule(r4). head(flies, r4). pbl(bird, r4). nbl(neg flies, r4).

compl(flies, neg flies).

2 We assume that integrity constraints :- C. are written as equivalent rules bad:-C, not bad. where bad
is a predicate not occurring in P .
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3.2 Basic meta-interpreter program

Several meta-interpreters that we present in the following sections consist of two

parts: a meta-interpreter program PIa for representing an answer set, and another

one for checking preferredness. In this section, we provide the first part which is

common to many meta-interpreters shown in this paper.

Representing an answer set. We define a predicate in AS(.) which is true for the

literals in an answer set of P . A literal is in an answer set if it occurs in the head of

a rule whose positive body is definitely true and whose negative body is not false:

in AS(X) :- head(X,R), pos body true(R), not neg body false(R).

The positive part of a body is true, if all of its literals are in the answer set.

Unfortunately we cannot encode such a universal quantification in one rule. We can

identify a simple case: If there are no positive body literals, the body is trivially

true:

pos body exists(R) :- pbl(X,R).

pos body true(R) :- rule(R), not pos body exists(R).

However, if positive body literals exist, we will proceed iteratively. To this end, we

use the built-in constant ordering lt for defining a successor relation on the positive

body literals of each rule, and to identify the first and last literal, respectively, of a

positive rule body in this total order. Technically, it is sufficient to define auxiliary

relations as follows:

pbl inbetween(X,Y , R) :- pbl(X,R), pbl(Y , R), pbl(Z,R), lt(X,Z), lt(Z, Y ).

pbl notmax(X,R) :- pbl(X,R), pbl(Y , R), lt(X,Y ).

pbl notmin(X,R) :- pbl(X,R), pbl(Y , R), lt(Y ,X).

This information can be used to define the notion of the positive body being true

up to (w.r.t. the built-in order) some positive body literal. If the positive body is

true up to the last literal, the whole positive body is true:

pos body true upto(R,X) :- pbl(X,R), not pbl notmin(X,R), in AS(X).

pos body true upto(R,X) :- pos body true upto(R, Y ), pbl(X,R), in AS(X),

lt(Y ,X), not pbl inbetween(Y ,X, R).

pos body true(R) :- pos body true upto(R,X), not pbl notmax(X,R).

The negative part of a body is false, if one of its literals is in the answer set:

neg body false(R) :- nbl(X,R), in AS(X).

Each answer set has to be consistent; we thus add an integrity constraint which

rejects answer sets containing complementary literals:

:- compl(X,Y ), in AS(X), in AS(Y ).

The rules described above (referred to as PIa in the sequel) are all we need for

representing answer sets. Each answer set of PIa ∪ F(P ) represents an answer set of

P . Let π be defined by π(A) = {� | in AS(�) ∈ A}. Then we can state the following:
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Theorem 1

Let P be a normal propositional program. Then, (i) if A ∈ AS(PIa ∪ F(P)) then

π(A) ∈ AS(P ), and (ii) for each A ∈ AS(P ), there exists a single A′ ∈ AS(PIa ∪
F(P )) such that π(A′) = A.

Proof

(i) π(A) must be a consistent set of literals from P , since for each � s.t. in AS(�) ∈ A,

head(�, r) must hold for some rule r, which, by construction of F(P ), only holds for

� ∈ BP , and since the constraint :- compl(�,¬�), in AS(�), in AS(¬�). must be be

satisfied by A (again by construction of F(P )) {in AS(�), in AS(¬�)} 	⊆ A and hence

{�,¬�} 	⊆ π(A) for all � ∈ BP .

Thus, to show that π(A) ∈ AS(P ), it suffices to show that (α) π(A) is closed

under Pπ(A), and that (β) π(A) ⊆ T∞
Pπ(A) must hold, where TPπ(A) is the standard TP

operator for P = Pπ(A). Let, for convenience, denote Q = Ground(PIa ∪ F(P )).

As for (α), we show that if r ∈ Pπ(A) such that B(r) ⊆ π(A), then there is a rule

hr ∈ Q such that H(hr) = {in AS(h)} where H(r) = {h} and hr is applied in A, i.e.

A |= B(hr) and in AS(h) ∈ A. Let r stem from a rule r′ ∈ P . Then, let hr be the

(unique) rule in Q such that H(hr) = {in AS(h)} (note that H(r) = H(r′) = {h})
and head(h, r′) ∈ B(hr). Since B(r) = B+(r′) ⊆ π(A), we have for each � ∈ B(r)

that in AS(�) ∈ A and, by construction of F(P ), that pbl(�, r′) ∈ A. Since lt induces

a linear ordering of B+(r′), it follows by an inductive argument along it that

pos body true upto(r′, �) ∈ A holds for each � ∈ B+(r′) and that pos body true(r′) ∈
A. Furthermore, since B−(r′) ∩ π(A) = ∅, it holds that A 	|= B(nr) for each rule

nr ∈ Q such that H(nr) = neg body false(r′). Therefore, neg body false(r′) /∈ A.

Since head(h, r′) ∈ A by construction of F(P ), it follows that A |= B(hr). Thus, hr is

applied in A, and hence H(hr) = in AS(h) ∈ A. This proves (α).

As for (β), it suffices to show that if in AS(�) ∈ T i
QA\T i−1

QA , i.e. in AS(�) is added

to A in the i-th step of the least fixpoint iteration for TQA , i � 1, then � ∈ T∞
Pπ(A)

holds. Addition of in AS(�) implies that � = H(r) for some r ∈ P such that

neg body false(r) /∈ A and pos body true(r) ∈ A. This implies in AS(�′) ∈ T i−1
QA for

each �′ ∈ B+(r) and in AS(�′) /∈ A for each �′ ∈ B−(r). By an inductive argument,

we obtain B+(r) ⊆ T∞
Pπ(A) ; therefore, � ∈ T∞

Pπ(A) holds. This proves (β).

(ii) For any A ∈ AS(P ), let A′ be defined as follows (lt is the total order on

constants defined in DLV):

A′ = F(P ) ∪ {in AS(x) | x ∈ A} ∪ {pos body true(r) | ∀x ∈ B+(r) : x ∈ A} ∪
{pos body true upto(r, x) | x∈B+(r) ∧ x∈A ∧ ∀y∈B+(r) : lt(y, x) → y∈A} ∪
{neg body false(r) | B−(r) ∩ A 	= ∅} ∪ {pos body exists(r) | B+(r) 	= ∅} ∪
{pbl notmin(x, r) | x ∈ B+(r) ∧ ∃y ∈ B+(r) : lt(y, x)} ∪
{pbl notmax(x, r) | x ∈ B+(r) ∧ ∃y ∈ B+(r) : lt(x, y)} ∪
{pbl inbetween(x, y, r) | x, y ∈ B+(r) ∧ (∃z ∈ B+(r) : lt(x, z) ∧ lt(z, y))}

Observe that the set of literals defined by the five last sets (call it Astat) do not

depend on A since they have to occur in all answer sets of PIa ∪F(P ). The definitions

of Astat directly reflect the corresponding rule structure in PIa and F(P ). Since the

inclusion of literals in AS(x) into A′ is determined by the condition π(A′) = A, it
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is easy to see that all rules defining neg body false are satisfied; in the case of

pos body true upto and pos body true, rule satisfaction can be seen by a constructive

argument along the order lt.

To see that A′ is minimal and the only answer set of PIa ∪ F(P ) s.t. π(A′) = A, an

argument similar to the one in (β) of the proof for (i) can be applied: If another

answer set A′′ exists s.t. π(A′′) = A, each in AS(x) s.t. x ∈ A must be added in some

stage of T i
QA′ , and in some stage T

j

QA′′ of the standard least fixpoint operator. But

then, by an inductive argument, T∞
QA′ = T∞

QA′′ must hold. �

The meta-interpreter program PIa has the benign property that a standard class

of programs, namely the class of stratified programs, which are easy to evaluate, is

also interpreted efficiently through it. Recall that a normal propositional program

P is stratified, if there is a function λ which associates with each atom a in P an

integer λ(a) � 0, such that each rule r ∈ P with H(r) = {h} satisfies λ(h) � λ(�) for

each � ∈ B+(r) and λ(h) > λ(�) for each � ∈ B−(r). Denote for any program P by

Pir the set of rules in Ground(PIa ∪ F(P )) whose representation literals (i.e. literals

over rule, head, pbl, nbl) are satisfied by F(P ). Then we have:

Proposition 1

Let P be a stratified normal propositional program. Then, Pir is locally stratified

(i.e. stratified if viewed as a propositional program).

This can be seen by constructing from a stratification mapping λ for P a suitable

stratification mapping λ′ for Pir . Locally stratified programs are handled efficiently

by competitive ASP systems.

4 Preferred answer sets

In this section, we first introduce the underpinnings common to all three semantics

for preferred answer sets we are considering in this paper and then provide the

individual definitions.

4.1 Prioritized programs

We recall and adapt the definitions of Brewka and Eiter (1999) as needed in the

current paper. Throughout the rest of this section, programs are tacitly assumed to

be propositional.

Definition 1 (prioritized program)

A prioritized (propositional) program is a pair P = (P ,<) where P is a normal logic

program without constraints, and < is a strict partial order on P , i.e. an irreflexive

(a 	< a, for all a) and transitive relation.

Informally, r1 < r2 means “r1 has higher priority than r2”. For any P = (P ,<), the

answer sets of P are those of P ; their collection is denoted by AS(P) = AS(P ).
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Definition 2 ( full prioritization)

A full prioritization of a prioritized program P = (P ,<) is any (P ,<′) where <′ is

a total order of P refining <, i.e. r1 < r2 implies r1 <′ r2, for all r1, r2 ∈ P . The set

of all full prioritizations of P is denoted by FP(P). We call P fully prioritized, if

FP(P) = {P}.

4.2 B-preferred answer sets

B-preferred answer sets have been introduced in Brewka and Eiter (1999) as a

refinement of previous approaches in Brewka (1994, 1996). We first define B-

preferred answer sets for a particular class of fully prioritized programs. A program

P is prerequisite-free, if B+(r) = ∅ for every rule r ∈ P holds. Furthermore, a literal

� (resp., a set X of literals) defeats a rule r of the form (1), if � ∈ B−(r) (resp.,

X ∩ B−(r) 	= ∅). A rule r′ defeats a rule r if H(r′) defeats r.

Definition 3

Let P = {r1, . . . , rn} be a fully prioritized and prerequisite-free program. For any set

S ⊆ BP of literals, the sequence Si ⊆ BP (0 � i � n) is defined as follows:

S0 = ∅

Si =



Si−1, if (α) Si−1 defeats ri, or

(β) H(ri) ⊆ S and S defeats ri,

Si−1 ∪ H(ri), otherwise.

for all i = 1, . . . , n. The set CB
P(S) is defined by

CB
P(S) =

{
Sn, if Sn is consistent,

BP otherwise.

An answer set A (= S) divides the rules of P in Definition 3 into three groups:

generating rules, which are applied and contribute in constructing A; dead rules,

which are not applicable in A but whose consequences would not add anything new

if they were applied, since they appear in A; and zombies, which are the rules not

applicable in A whose consequences do not belong to A. Only zombies have the

potential to render an answer set non-preferred. This is the case if some zombie is

not “killed” by a generating rule of higher priority. If A is a fixpoint of CB
P, then the

inductive construction guarantees that indeed all zombies are defeated by generating

rules with higher preference.

Definition 4 (B-preferred answer set)

Let P = (P ,<) be a fully prioritized and prerequisite-free program, and let A ∈
AS(P). Then A is a B-preferred answer set of P if and only if CB

P(A) = A.

In the case where P is not prerequisite-free, a kind of dual Gelfond–Lifschitz

reduct is computed as follows.
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Definition 5

Let P = (P ,<) be a fully prioritized program, and let X ⊆ BP . Then XP = (XP ,X<)

is the fully prioritized program such that:

• XP is the set of rules obtained from P by deleting

1. every r ∈ P such that B+(r) 	⊆ X, and

2. all positive body literals from the remaining rules.

• X< is inherited from < by the map f : XP −→ P (i.e. r′
1

X< r′
2 iff f(r′

1) < f(r′
2)),

where f(r′) is the first rule in P w.r.t. < such that r′ results from r by Step 2.

The definition of X< must respect possible clashes of rule priorities, as Step 2 may

produce duplicate rules in general.

Definition 6 (B-preferred answer set (ctd.), BPAS)

Let P = (P ,<) be a prioritized program and A ∈ AS(P ). If P is fully prioritized,

then A is a B-preferred answer set of P iff A is a B-preferred answer set of AP;

otherwise, A is a B-preferred answer set of P iff A is a B-preferred answer set for

some P′ ∈ FP(P). By BPAS(P) we denote the set of all B-preferred answer sets

of P.

Example 5

Reconsider the bird & penguin example. Let us first check whether A1 = {penguin,
bird, ¬flies} is a B-preferred answer set. We determine the dual reduct A1P which

consists of the following rules:

(1) penguin.

(2) bird.

(3) ¬flies :- not flies.

(4) flies :- not ¬flies.

The order A1< coincides with < as in Definition 5. Now, let us determine A1,4

(= S4), by constructing the sequence A1,i, for 0 � i � 4: A1,0 = ∅, A1,1 = {penguin},
A1,2 = {penguin, bird}, A1,3 = {penguin, bird,¬flies}, and A1,4 = A1,3. Thus, A1,4 =

{penguin, bird, ¬flies} = A1 and CB
A1P(A1) = A1; hence, the answer set A1 is preferred.

Next consider the answer set A2 = {penguin, bird, flies}. The dual reducts A2P
and A1P coincide, and thus A2,4 = A1, which means CB

A2P(A2) 	= A2. Hence, A2 is not

preferred, and A1 is the single B-preferred answer set of P.

The following example shows that not every prioritized program which has an

answer set has also a B-preferred one.

Example 6

Consider the following program:

(1) c :- not b .

(2) b :- not a .

where (1) < (2). Its single answer set is A = {b}. However, CB
AP(A) = {c, b} and thus

A is not B-preferred. Indeed, no B-preferred answer set exists.
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4.2.1 Adapting the meta-interpreter

Now we can extend the meta-interpreter for answer set programs from section 3 to

cover prioritized answer set programs.

Representing a prioritized program. A prioritized program P = (P ,<) is represented

by a set of facts F(P) which contains F(P ) plus, for each rule preference r < r′ that

belongs to the transitive reduction of <, a fact pr(r, r′).

Example 7

In the case of our bird & penguin example, we add the following three facts:

pr(r1, r2). pr(r2, r3). pr(r3, r4).

Checking preferredness. According to Definition 6, we have to create all fully

prioritized programs FP(P) of P to determine its preferred answer sets. To this

end, we add code to guess a total order on the rules, refining <:

pr(X,Y ) v pr(Y ,X) :- rule(X), rule(Y ), X != Y .

pr(X,Z) :- pr(X,Y ), pr(Y ,Z).

:- pr(X,X).

The rules state the axioms of totality, transitivity, and irreflexivity of a total order.

Note that it would be possible to replace the disjunctive guessing rule by two rules

involving unstratified negation. However, the disjunctive version is more readable.

Next we build the set CB
P′ from Definition 3 where P′ = XP. To this end, we do

not compute the sets Si as in Definition 3 – clearly one rule can contribute at most

one element to CB
P′ and we represent this fact using the predicate lit(., .). We first

observe that duplicate rules arising in the dual reduct P need no special care, since

only the first occurrence of a rule from P′ is relevant for the value of CB
P′ ; for later

occurrences of duplicates Si = Si−1 will always hold.

In Definition 3, a condition is stated, which holds whenever H(ri) is not added,

while lit(., .) represents the opposite, so we negate the condition: (β) is actually itself

a conjunction γ ∧ δ, so the condition we are interested in is

¬(α ∨ (γ ∧ δ)) ≡ (¬α ∧ ¬γ) ∨ (¬α ∧ ¬δ).

We call condition α local defeat (by rules of higher priority) and δ global defeat (by

the answer set).

Definition 3 applies only to prerequisite-free programs, so for the general case

we also have to include the definition of the dual Gelfond–Lifschitz reduct, which

amounts to stating that only rules with a true positive body w.r.t. the answer set

have to be considered. The encoding is then straightforward:

lit(X,Y ) :- head(X,Y ), pos body true(Y ),

not defeat local(Y ), not in AS(X).

lit(X,Y ) :- head(X,Y ), pos body true(Y ),

not defeat local(Y ), not defeat global(Y ).

defeat local(Y ) :- nbl(X,Y ), lit(X,Y 1), pr(Y 1, Y ).

defeat global(Y ) :- nbl(X,Y ), in AS(X).
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% For full prioritization: refine pr to a total ordering.

pr(X,Y) v pr(Y,X) :- rule(X), rule(Y), X != Y.

pr(X,Z) :- pr(X,Y), pr(Y,Z).

:- pr(X,X).

% Check dual reduct: Build sets S_i, use rule ids as indices i.

% lit(X,r) means that the literal x occurs in the set S_r.

lit(X,Y) :- head(X,Y), pos_body_true(Y),

not defeat_local(Y), not in_AS(X).

lit(X,Y) :- head(X,Y), pos_body_true(Y),

not defeat_local(Y), not defeat_global(Y).

defeat_local(Y) :- nbl(X,Y), lit(X,Y1), pr(Y1,Y).

defeat_global(Y) :- nbl(X,Y), in_AS(X).

% Include literal into CP(.).

in_CP(X) :- lit(X,Y).

:- in_CP(X), not in_AS(X).

:- in_AS(X), not in_CP(X). % this constraint is redundant

Fig. 1. Meta-Interpreter PIB for B-preferred answer sets (without PIa ).

The set CB
P′ is the union of all literals in lit(., .):

in CP (X) :- lit(X,Y ).

Finally, according to Definition 4, a preferred answer set A must satisfy A =

CB
P′(A), so we formulate integrity constraints which discard answer sets violating

this condition:

:- in CP (X), not in AS(X).

:- in AS(X), not in CP (X).

This completes the meta-interpreter program PIB . A compact listing of it (without

showing PIa explicitly) is given in figure 1. The following result states that it works

correctly.

Theorem 2

Let P = (P ,<) be a propositional prioritized program. Then, (i) if A ∈ AS(PIB ∪
F(P)) then π(A) ∈ BPAS(P), and (ii) for each A ∈ BPAS(P), there exists some

A′ ∈ AS(PIB ∪ F(P)) such that π(A′) = A.

Proof

Let Q = PIB ∪ F(P) and Qa = PIa ∪ F(P). By well-known results about splitting a

logic program (Lifschitz and Turner 1994), we obtain that for each answer set A of

Q, its restriction Aa to the predicates of Qa is an answer set of Qa, and that A is an

answer set of (PIB\Qa) ∪ Aa.

(i) Suppose that A ∈ AS(Q). Then, Aa is an answer set of Qa, and thus, by

Theorem 1, S = π(Aa) (= π(A)) is an answer set of P . Furthermore, by the three

clauses that define and constrain the predicate pr in PIB , A defines a total ordering

<′ on P such that r <′ r′ is equivalent to pr(r, r′). Consider the dual reduct
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SP = (SP ,S<′). Since S is an answer set of P , it remains to show that CB
SP(S) = S

holds. Define the sets Si, 0 � i � n, along the ordering S<′ as follows. Denote by

r
SP
i ∈ P the least rule r under <′ such that its dual reduct Sr (i.e. H(Sr) = H(r) and

B(Sr) = B−(r)) is the i-th rule in SP under S<′, where 1 � i � n. Then, let S0 = ∅ and

let Si = {� | lit(�, r) ∈ A, where r = r
SP
j for some j � i}, for all i = 1, . . . , n.

By an inductive argument on i = 0, . . . , n, we obtain that the sequence S0, . . . , Sn
satisfies the condition of Definition 3. Indeed, this is true for i = 0. Suppose it is

true for i− 1 and consider i. Let r = r
SP
i where H(r) = {h}. Then, pos body true(r) ∈

A holds. If h ∈ Si−1 holds, then the condition in Definition 3 anyway holds. Thus,

suppose h /∈ Si−1 and first that Si = Si−1. Then, both rules with head lit(h, r) in Q

are not applied in A. This means that either (α) defeat local(r) ∈ A or (β) {in AS(h),

defeat global(r)} ⊆ A must hold. Case (α) implies that, by the induction hypothesis,

there is some literal � ∈ B−(r) such that � ∈ Si−1; that is, Si−1 defeats r. Case (β)

means that H(r) ⊆ S and that S defeats r. Thus, Si satisfies Definition 3 in this case.

Otherwise, suppose we have h ∈ Si\Si−1. Thus, lit(h, r) ∈ A, which means that

one of the two rules with head lit(h, r) in Q is applied in A. Thus, we have (α)

defeat local(r) /∈ A, which, by the induction hypothesis, means that r is not defeated

by Si−1, and that (β) either in AS(h) /∈ A, hence H(r) 	⊆ S , or defeat global(r) /∈ A,

which, by the definition of defeat global, means that S does not defeat r. Thus, the

condition of Definition 3 is satisfied. This proves the claim on the sequence S0, . . . , Sn.

As easily seen, Sn = {� | ∃r : lit(�, r) ∈ A}. Therefore, from the rule defining in CP

in PIB , we obtain that in CP (�) ∈ A holds iff � ∈ Sn, for any constant �. Thus, from

the last two constraints of PIB , we infer that CB
SP(S) = S must hold; in other words,

S = π(A) is a B-preferred answer set of P.

(ii) Suppose that A ∈ BPAS(P), and let P′ = (P ,<′) be a full prioritization of P,

such that A ∈ BPAS(P′). Then, we obtain an answer set A′ of Q as follows:

• On the predicates defined in PIa ∪ F(P), A′ coincides with the answer set of

PIa ∪ F(P ) corresponding to A as in item (ii) of Theorem 1;

• pr is defined according to <′, i.e. pr(r, r′) iff r <′ r′;

• lit(h, r) is true iff r is a rule from P such that r is applied in A;

• defeat local(r) is true iff some rule r′ <′ r exists such that H(r′) ∩ B−(r) 	= ∅
and r′ is applied in A;

• defeat global(r) is true iff A ∩ B−(r) 	= ∅;

• in CP (�) is true iff � ∈ A.

Note that A′ satisfies the last two constraints in PIB by virtue of Theorem 1, since A

is an answer set of P.

By the splitting result of Lifschitz and Turner (1994), for showing that A′ is an

answer set of Q, we only need to show the following. Let A′′ be the restriction of

A′ to the predicates in PIa ∪ F(P) and pr; then, A′ is an answer set of the program

Q1, which contains A′′ plus all clauses c in Q which involve the predicates lit,

defeat local, defeat global, in CP and such that A′′ satisfies all literals in B(c) on

the predicates in PIa and pr.

As easily seen, Q1 is locally stratified, and a stratification λ exists on the atoms

occurring in Q1 such that
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• λ(lit(�′, r′)) < λ(lit(�, r)) and λ(defeat local(r′)) < λ(defeat local(r)), for all

constants �, �′ and rules r, r′ ∈ P such that r′ <′ r;

• λ(defeat local(r)) < λ(lit(�, r)), for all literals � and rules r ∈ P ;

• λ(in CP (�)) = 1 + max{λ(lit(�, r)) | head(�, r) ∈ A′′}; and

• λ(a) = 0, for all other atoms a in Q1.

Then, along λ, we can verify that Q1 has a stratified model S which coincides with

A′, i.e. for i � 0, we have for all atoms a with λ(a) � i that a ∈ A′ iff a ∈ S .

For i = 0, this is immediate from the definition of A′. Suppose the statement is

true for i, and consider i + 1. Let a be an atom such that λ(a) = i + 1. Suppose first

that a ∈ A′, and consider the possible cases:

• If a = defeat local(r), then some r′ <′ r exists such that H(r′) ∩ B−(r) 	= ∅
and r′ is applied in A. By definition, lit(�, r′) ∈ A′ holds, and by the induction

hypothesis, lit(�, r′) ∈ S . Thus, defeat local(r) ∈ S .

• Next, if a = in CP (�), then by definition of A′, � ∈ A. Since A is a B-preferred

answer set of P′, it follows that lit(�, r) ∈ A′ for some r such that λ(lit(�, r)) � i.

Thus, by the induction hypothesis, lit(�, r) ∈ S , which implies in CP (�) ∈ S .

• Finally, if a = lit(�, r), then by definition of A′, r is applied in A. Thus, we have

by construction head(�, r) ∈ S , pos body true(r) ∈ S , defeat global(r) /∈ S , and

all these atoms rank lower than lit(�, r). Furthermore, defeat local(r) /∈ S must

hold; otherwise, as λ(defeat local(r)) < λ(lit(�, r)), by the induction hypothesis,

some rule r′ <′ r would exist which is applied in A such that H(r′)∩B−(r) 	= ∅,

which would contradict that r is applied in A. This means, however, that the

second rule with head lit(�, r) in Q1 is applied, and thus lit(�, r) ∈ S .

Thus, a ∈ A′ implies a ∈ S . Conversely, suppose that a ∈ S , and again consider

the possible cases:

• If a = defeat local(r), then it follows that lit(�, r′) ∈ S for some r′ <′ r such

that H(r′) ∩ B−(r) 	= ∅. By the induction hypothesis, lit(�, r′) ∈ A′, which by

definition of A′ means that r′ is applied in A; since H(r′) ∩ B−(r) 	= ∅, by

definition of A′ we have defeat local(r) ∈ A′.

• Next, if a = in CP (�), then lit(�, r) ∈ S exists such that λ(lit(�, r)) � i. By the

induction hypothesis and the definition of A′, we have that r is applied in A.

Therefore, � ∈ A, which by definition means in CP (�) ∈ A′.

• Finally, if a = lit(�, r), then head(�, r) ∈ A′, pos body true(r) ∈ A′,

defeat local(r) /∈ A′, and either (α) in AS(�) /∈ A′, or (β) defeat global(r)

/∈ A′. In case (α), by definition of A′ we have � /∈ A. This implies, however,

that A is not a B-preferred answer set of P, which is a contradiction. Thus,

(β) must apply. By the induction hypothesis, we obtain defeat global(r) /∈ S .

Hence, B−(r) ∩ A = ∅, which means that r is applied in A; hence, lit(�, r) ∈ A′

by definition.

This shows that a ∈ S implies a ∈ A′, which concludes the induction. We thus

have shown that S = A′. Since A′ satisfies the last two constraints of PIB , it follows

that S is the stratified model of Q1 and A′ is an answer set Q1. Hence, A′ is an

answer set of Q. This proves the result. �
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Example 8

For the bird & penguin example, PIB ∪ F(P) has one answer set, containing

in AS(bird), in AS(penguin), and in AS(¬flies).

We note that the last constraint in PIB is in fact redundant and can be dropped;

this is possible since the fixpoint condition CB
P(A) = A in the Definition 4 can be

equivalently replaced by a weaker condition as follows.

Proposition 2

Let P = (P ,<) be a fully prioritized and prerequisite-free program, and let A ∈
AS(P). Then, A ∈ BPAS(P) iff CB

P(A) ⊆ A.

Proof

It suffices to show that CB
P(A) ⊆ A ∧ CB

P(A) 	= A raises a contradiction. Assume

that the condition holds. Then, some � ∈ A\CB
P(A) must exist, which means that a

generating rule r w.r.t. A must exist such that H(r) = {�} and A |= B(r). According

to Definition 3, (α) ∨ (β) must hold for Ar , otherwise � ∈ CB
P(A) would hold. Now

(β) cannot hold, since A cannot defeat r because A |= B(r). Thus (α) must hold.

This implies that some �′ ∈ Ar−1 defeats r such that �′ 	∈ A. Since Ar−1 ⊆ CB
P(A),

CB
P(A) 	⊆ A follows. This is a contradiction. �

4.2.2 Deterministic preferredness checking

The method we provided above non-deterministically generates, given a prioritized

program P = (P ,<) and an answer set of P, all full prioritizations of P and tests

them.

In Brewka and Eiter (1999), a graph-based algorithm has been described which

checks preferredness of an answer set A deterministically without refining < to a

total order. In general, this method is much more efficient.

This approach works as follows: A labeled directed graph G(P, A) is constructed,

whose vertices are the rules in P , and an edge leads from r to r′ if r < r′. Each

vertex r is labeled “g” if r is generating w.r.t A, “z” if it is a zombie, and “i” (for

irrelevant) otherwise. The following algorithm then performs a kind of topological

sorting for deciding whether an answer set A is preferred, and outputs a suitable

full prioritization of P:

Algorithm FULL-ORDER

Input: A propositional prioritized program P = (P ,<), and an answer set A ∈
AS(P ).

Output: A full prioritization P′ ∈ FP(P) such that A ∈ BPAS(P′) if A ∈
BPAS(P); “no”, otherwise.

Method:

Step 1. Construct the graph G = G(P, A), and initialize S := ∅, <′:= ∅.

Step 2. If G is empty, then output P′ = (P ,<′) and halt.

Step 3. Pick any source of G, i.e. a vertex r with no incoming edge, such that

either r is not labeled “z” or r is defeated by S . If no such r exists, then output

“no” and halt.
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Step 4. If r is labeled “g”, then set S := S ∪ H(r).

Step 5. Remove r from G, and continue at Step 2.

A discussion of this algorithm is given in Brewka and Eiter (1999). Note that it

is non-deterministic in Step 3. A deterministic variant of it can be used for merely

deciding preferredness of A: rather than some arbitrary source r, all sources r

satisfying the condition are selected in Step 3 and then removed in parallel in Step 5.

As easily seen, this is feasible since removability of a source r is monotone, i.e. can

not be invalidated by removing any other source r′ before. A is a preferred answer

set iff the algorithm stops with the empty graph, i.e. all vertices are removed.

This deterministic algorithm can be readily encoded in DLV. The idea is to use

stages for modeling the iterations through Steps 2–5. Since the number of steps

is bounded by the number of rules in P, it is possible to avoid introducing new

symbols for these stages and reuse the rule-IDs for this purpose instead:

stage(T ) :- rule(T ).

Similar as in section 3.2, we employ the built-in total order lt on constants for

ordering the stages. For example, if we have rule(r1) and rule(s1), then we have

stage(r1) and stage(s1), and r1 is “earlier” than s1 since lt(r1, s1) holds in DLV’s

built-in order lt. It is worthwhile noting that any total order on the stage symbols

would work, and that this ordering is different from the ordering of the rules given

in the input (which is partial in general). The first (least) stage is used for the stage

after the first run through Steps 2–5.

We use predicates g and z for rule labels “g” and “z”, respectively, which are

defined as follows (label “i” is not of interest and thus omitted):

g(R) :- rule(R), pos body true(R), not neg body false(R).

z(R) :- rule(R), pos body true(R), head(X,R), not in AS(X).

Initially, only sources which are not zombies can be removed from the graph. We

use a predicate nosource0(R), which informally means that R is not a source node

in G, and a predicate remove(R, S) which means that at stage S , the vertex R is no

longer in G:

nosource0(R) :- pr(R1, R).

remove(R, S) :- rule(R), not nosource0(R), not z(R), stage(S).

At other stages of the iteration, we can remove all rules satisfying the condition

of Step 3. We use a predicate nosource(R, S) which expresses that R is not a source

at stage S .

nosource(R, S) :- pr(R1, R), stage(S), not remove(R1, S)

remove(R, S1) :- rule(R), not nosource(R, S), stage(S), stage(S1), lt(S, S1)

not z(R), not remove(R, S).

remove(R, S1) :- rule(R), not nosource(R, S), stage(S), stage(S1), lt(S, S1)

z(R), nbl(X,R), s(X, S).

https://doi.org/10.1017/S1471068403001753 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001753


Computing preferred answer sets by meta-interpretation in ASP 481

% Label ‘g’ nodes and ‘z’ nodes (other labels are uninteresting):

g(R) :- rule(R), not neg_body_false(R), pos_body_true(R).

z(R) :- rule(R), pos_body_true(R), head(X,R), not in_AS(X).

% Use rules ids as stages.

stage(S) :- rule(S).

% Initial step of the algorithm: Consider global source nodes.

% Only non-z nodes can be removed.

nosource0(R) :- pr(R1,R).

remove(R,S) :- rule(R), not nosource0(R), not z(R), stage(S).

% Other steps in the algorithm: Remove non-z nodes and, under some

% conditions, also z-nodes.

nosource(R,S) :- pr(R1,R), stage(S), not remove(R1,S).

remove(R,S1) :- rule(R), not nosource(R,S), stage(S), stage(S1),

lt(S,S1), not z(R), not remove(R,S).

remove(R,S1) :- rule(R), not nosource(R,S), stage(S), stage(S1),

lt(S,S1), z(R), nbl(X,R), s(X,S).

% Add the head of a removed generating rule to the set S.

s(X,St) :- remove(R,St), g(R), head(X,R).

% Check whether all rules are removed.

removed(R) :- remove(R,S).

:- rule(R), not removed(R).

Fig. 2. Meta-interpreter PIg for B-preferred answer sets using deterministic preferredness

checking (without PIa ).

According to Step 4, we must add the head H(r) of a generating rule which is to

be removed in Step 5, to the set S there. We represent this using a predicate s(X, St),

which informally means that X belongs to set S at stage St, and add the rule:

s(X, St) :- remove(R, St), g(R), head(X,R).

Finally, according to Step 2 we have to check whether all rules have been removed

in the processing of the graph G. This is done by using a predicate removed for the

projection of remove to rules and the following rule plus a constraint:

removed(R) :- remove(R, S).

:- rule(R), not removed(R).

The resulting meta-interpreter program PIg (without PIa) is shown in figure 2. Note

that PIg is in general also more efficient than PIB , since unnecessary totalizations

of the partial order can be avoided with PIg . By virtue of the results in Brewka

and Eiter (1999) (in particular, Lemma 7.2 there), we can state the following

result:

Theorem 3

Let P = (P ,<) be a propositional prioritized program. Then, (i) if A ∈ AS(PIg ∪
F(P)) then π(A) ∈ BPAS(P), and (ii) for each A ∈ BPAS(P), there exists some

A′ ∈ AS(PIg ∪ F(P)) such that π(A′) = A.
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Proof (sketch)

(i) As in the proof for Theorem 2 we employ the notion of splitting a program

(Lifschitz and Turner 1994). Let Q = PIg ∪F(P) and Qa = PIa ∪F(P). Then for each

answer set A of Q, its restriction Aa to the predicates of Qa is an answer set of Qa and

A ∈ AS((PIB \Qa) ∪ Aa). By Theorem 1, T = π(Aa) = π(A) is an answer set of P .

We can now loosely argue that the deterministic variant of FULL-ORDER

with input T creates at most n (where n = |P |) intermediate values for the set S

(not counting the initialization to ∅), referred to as S1, . . . , Sn, and implicitly creates

(cumulative) sets R1, . . . , Rn of removed rules. It can be seen that there is a one-to-one

mapping of rule labels r1, . . . , rn, ordered by the built-in total order lt, to S1, . . . , Sn and

R1, . . . , Rn via stage. Now, R1 = {r | remove(r, r1) ∈ A} and S1 = {h | s(h, r1) ∈ A} by

the definition of nosource0, remove and s. We can proceed by induction and assume

that Ri = {r | remove(r, ri) ∈ A} and Si = {h | s(h, ri) ∈ A} for 1 � i < n. Then,

it can be seen that Ri+1 = {r | remove(r, ri+1) ∈ A} and Si+1 = {h | s(h, ri+1) ∈ A}
hold by definition of the predicates nosource0, remove and s. Observe further that

Rn = {r | removed(r) ∈ A}, and that the graph G is empty iff Rn = P . Since A satisfies

the final constraint in PIg , Rn = P is guaranteed to hold. Therefore the algorithm

outputs “yes” and so π(A) ∈ BPAS(P) holds.

(ii) For A ∈ BPAS(P) we can construct an answer set A′ of Q, such that (again

by notion of splitting) A′′ is the restriction of A′ to the predicates defined by

Qa = PIa ∪ F(P) and A′ is an answer set of the program Q1, which contains A′′ plus

all clauses c in Ground(Q) which involve the predicates g, z, nosource0, remove, s,

removed such that A′′ satisfies all literals in B(c) involving predicates defined in Qa.

Q1 is locally stratified by a stratification defined as follows (where r1, . . . , rn are the

rule identifiers ordered by the built-in total order lt):

• λ(removed(r)) = 2 × n + 1

• λ(nosource(r, ri)) = 2 × i + 1

• λ(remove(r, ri)) = λ(s(h, ri)) = 2 × i

• λ(g(r)) = λ(z(r)) = 1

• λ(a) = 0 for all other atoms a in Q1

Since π(A′′) = π(A′) = A, it is easy to see that A′ is an extension to A′′ (which is

an answer set of PIa ∪ F(P)) that is fully determined by λ. A′ must furthermore

satisfy the final constraint in PIg . Due to these facts, such an A′ can be effectively

constructed. �

Example 9

Consider the program in Example 12 and assume priorities (1) < (3), (2) < (4),

and (4) < (3). Suppose preferredness of A2 = {c,¬d} is checked. Then, the atoms

z(r1), g(r2), and g(r3) representing labels are derived, as well as nosource0(r4) and

nosource0(r3). Both r1 and r2 are sources, but r1 is labeled “z”, so only remove(r2, ri)

and s(c, ri) are derived for i = 1, . . . , 4. Thus, nosource(ri, r1) is derived only for

i = 3. Since s(c, r1) holds, too, we can derive remove(r1, ri) and remove(r4, ri) for

i = 2, 3, 4. Neither s(a, ri) nor s(b, ri) are derived since g(r1) and g(r4) do not hold.

Finally, remove(r3, ri) and s(¬d, ri) for i = 3, 4 are derived and removed(ri) holds for
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i = 1, . . . , 4, satisfying the final constraint introduced above. Thus, A2 is a preferred

answer set.

An alternate definition of B-preferred answer sets is provided by (Schaub and

Wang 2001); a meta-interpreter program following that definition can be developed

using techniques similar to the ones employed in PIB , PIg , and the interpreters in the

following sections.

4.3 W-preferred answer sets

The semantics we have seen in section 4 is but one way to assign a meaning to

prioritized logic programs. In this section we introduce a related approach due to

Wang, Zhou and Lin (2000) following the presentation in Schaub and Wang (2001).

Definition 7 (W-preferred answer set, WPAS)

Let P = ({r1, . . . , rn}, <) be a prioritized program. For any set S ⊆ BP of literals, the

sequence Si ⊆ BP (0 � i � n) is defined as follows:

S0 = ∅

Si = Si−1 ∪



H(r)

∣∣∣∣∣∣∣∣

I. r ∈ P is active wrt. (Si−1, S), and

II. there is no rule r′ ∈ P with r′ < r such that

(a) r′ is active wrt. (S, Si−1), and

(b) H(r′) 	∈ Si−1.




for all i = 1, . . . , n, where a rule r is active wrt. the pair (X,Y ) if B+(r) ⊆ X and

B−(r) ∩ Y = ∅.

The set CW
P (S) is defined by

CW
P (S) =

{
Sn if Sn is consistent,

BP otherwise.

and S of P is W-preferred if CW
P (S) = S . The set of all W-preferred answer sets of

P is denoted by WPAS(P). In this paper, we only consider consistent W-preferred

answer sets.

4.3.1 Adapting the meta-interpreter

In figure 3 we provide a meta-interpreter for W-preferred answer sets which closely

follows Definition 7 and consists of three parts: The first guesses a consistent literal

set A (Part 1 below), the second proceeds in stages of rule application according to

the definition (Parts 2–8 below), and the final one verifies the “stability” condition

CW
P (A) = A (Part 9).

Part 1 [Guess a consistent set S] By means of the first three rules we extract all

literals occurring in the input program P into a new predicate lit. Then we guess all

possible subsets S of lit by means of the disjunctive rule such that in S(X) is true iff

X ∈ S . The constraint, finally, ensures that the set S is consistent.
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% Part 1: Guess a consistent set S.

lit(L) :- head(L,_). lit(L) :- pbl(L,_). lit(L) :- nbl(L,_).

in_S(L) v notin_S(L) :- lit(L).
:- compl(X,Y), in_S(X), in_S(Y).

% Part 2: Handle preferences.

pr(X,Z) :- pr(X,Y), pr(Y,Z).
:- pr(X,X).

% Part 3: Stage IDs.

stage(S) :- rule(S).

% Part 4: Evaluate positive bodies.

pos_body_false_S(R) :- rule(R), pbl(X,R), not in_S(X).
pos_body_false_Si(R,Si) :- pbl(L,R), stage(Si), not in_Si(L,Si).
pos_body_false_S0(R) :- pbl(L,R).

% Part 5: Evaluate negative bodies.

neg_body_false_S(R) :- rule(R), nbl(X,R), in_S(X).
neg_body_false_Si(R,Si) :- nbl(L,R), in_Si(L,Si).

% Part 6: Determine active rules.

active(R,Si) :- rule(R), stage(Si),
not pos_body_false_Si(R,Si), not neg_body_false_S(R).

active_Si(R,Si) :- rule(R), stage(Si), not pos_body_false_S(R),
not neg_body_false_Si(R,Si).

active_S0(R) :- rule(R), not pos_body_false_S0(R), not neg_body_false_S(R).

% Part 7: Check for preferred generating rules.

head_not_in_Si(R,Si) :- stage(Si), head(H,R), not in_Si(H,Si).

preferred_generating_rule_exists(R,Si) :- pr(R1,R), active_Si(R1,Si),
head_not_in_Si(R1,Si).

preferred_generating_rule_exists_S0(R) :- pr(R1,R), not pos_body_false_S(R1).

% Part 8: Compute Si.

in_Si(H,Si) :- head(H,R), active(R,Sj), stage(Sj), stage(Si), lt(Sj,Si),
not preferred_generating_rule_exists(R,Sj).

in_Si(H,Si) :- head(H,R), active_S0(R), stage(Si),
not preferred_generating_rule_exists_S0(R).

% Part 9: Verify "stability".

in_PAS(L) :- in_Si(L,_).
:- in_PAS(L), not in_S(L).
:- in_S(L), not in_PAS(L).

Fig. 3. Meta-interpreter PIW for W-preferred answer sets.

Part 2 [Handle Preferences] To complete the preference relation we transitively

close the pr predicate and we also verify that it is irreflexive. The constraint is

violated (in that case PIW ∪ F(P) admits no answer set) only if a rule is preferred to

itself – pr(X,X).
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Part 3 [Stage IDs] Similar to Definition 7, in which we have used the indices

1, . . . , n of the rules r1, . . . , rn, we reuse the IDs of the rules in P and the arbitrary

built-in total order lt over these IDs as IDs of the consecutive stages S1, . . . , Sn of

Definition 7. In this way, the rule IDs and the order lt effectively represent the

sequence S1, . . . , Sn without introducing new symbols.

Part 4 [Evaluate positive bodies] According to Definition 7 we need to evaluate the

positive and negative bodies of the rules in P in two ways to verify whether a rule

is active wrt. (Si, S) and (S, Si), respectively.

The predicates pos body false S(R) and pos body false Si(R, Si) represent the sets

of all rules R whose bodies are false according to the set S we have guessed in Part 1

and the set Si, respectively, where Si is represented by the predicate in Si (with

Si = {L | in Si(L, Si)}). pos body false S0(R) covers the base case for S0 = ∅ where

the positive body is false w.r.t. S0 if some positive body literal exists.

Part 5 [Evaluate negative bodies] Analogously to the case of positives bodies in

Part 4, we define predicates which determine the falsity of negative rule bodies w.r.t.

S and Si. Note that no negative body can be false w.r.t. S0 = ∅, so there is no special

predicate for S0.

Part 6 [Determine active rules] Now we need to define those rules that are active

wrt. (Si, S) and (S, Si). The former is handled by the first rule, the latter by the

second and third rules. Again, the third rule covers the special case for the initial

stage S0 = ∅.

Part 7 [Check for preferred generating rules] The rule defining the predicate

preferred generating rule exists(R, Si) checks whether a rule, which is preferred to R,

exists such that it is active wrt. (S, Si) and its head does not occur in Si. Here we use

head not in Si(R, Si) as an auxiliary predicate that checks whether the head of the

rule R is in the set Si. The third rule once more covers the base case (S, S0) = (S, ∅),

where the body of the rule can be simplified.

Part 8 [Compute Si] To compute Si, we have to include the head of all rules which

are active wrt. (Si−1, S) and where no preferred rule exists which is active wrt. (S, Si−1)

and whose head does not already occur in Si−1. Also here we need a specialized rule

for the base-case where Si−1 = S0.

Part 9 [Verify “stability”] Finally, we define a predicate in PAS as the union of

Si, for 1 � i � n, and check the “stability” condition of Definition 7, i.e. we check

whether the relations in S and in PAS are equal. Any difference between these two

will lead to a violation of one of the two constraints and thus a corresponding

answer set for PIW ∪ F(P) cannot exist.

We provide the following theorem that states the correctness of the meta-

interpreter program PIW , where π′(S) = {� | in PAS(�) ∈ S}.

Theorem 4

Let P = (P ,<) be a propositional prioritized program. Then, (i) if A ∈ AS(PIW ∪
F(P)) then π′(A) ∈ WPAS(P), and (ii) for each A ∈ WPAS(P), there exists some

A′ ∈ AS(PIW ∪ F(P)) such that π′(A′) = A.
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Proof

For the proof of the result, the same techniques as in the proofs of Theorems 2

and 3 can be used. A major difference is that PIW does not start from answer sets

generated by PIa . Rather, the answer sets of the rules in Part 1 of PIW and F(P),

denoted by P1 ∪ F(P), correspond one to one to the consistent sets S of literals

occurring in P . Therefore, the splitting is done on the literals head, pbl, nbl, compl,

lit, in S , notin S .

As for (i), let AP
1 be an answer set of P1 ∪F(P) which corresponds to a consistent

set of literals S of P . We show by induction on j = 1, . . . , n that the sets Sj of

Definition 7 correspond to the sets {h | in Si(h, rj) ∈ AP
1′ } where AP

1′ is the (single)

answer set of the rules in Parts 2–8 of PIW and AP
1 , denoted by P2 ∪ AP

1 . Recall

that the ri are the rule labels which identify the sets Si: therefore, the Si are totally

ordered via the built-in total order lt (“less than”) on the rule labels ri by lt(Si, Sj)

iff lt(ri, rj). In what follows, we may assume that lt(ri, rj) (equivalently, lt(Si, Sj)) iff

i < j, i.e., the ordering is given by indices.

To see the correspondence, it can be verified from inspection of the rules in Parts 4

and 5 that active S0(r) holds, by the third rule of Part 6, exactly for all rules r which

are active w.r.t. (∅, S) = (S0, S) and that preferred generating rule exists S0(r) holds,

by the third rule of Part 7, iff a rule r′ exists such that r′ < r and r′ is active

w.r.t. (S, ∅) = (S, S0). Given that S1 is the first element in the sequence S1, . . . , Sn, the

first rule in Part 8 cannot contribute to generate in Si(h, r1) ∈ AP
1′ . Thus, each such

literal must be generated by application of the second rule in Part 8; since H(r′) 	∈ ∅
trivially holds for any rule r′, this means that the conditions I and II in Definition 7

must be satisfied; therefore h ∈ S1 is equivalent to in Si(h, r1) ∈ A
p
1′ , which shows the

correspondence in the induction base.

Assume now that Sj corresponds to {h | in Si(h, rj) ∈ A
p
1′ }. where j < n. Then, we

verify that also Sj+1 corresponds to {h | in Si(h, rj+1) ∈ A
p
1′ }. First, we observe that

for any in Si(h, rj ′ ) ∈ A
p
1′ , where j ′ � j, also in Si(h, rj+1) ∈ A

p
1′ holds because of the

construction of the rules in Part 8. For literals which do not occur in Sj but in Sj+1,

observe that by the induction hypothesis, active Si(r, sj) holds, via the first rule in

Part 4 and the second rule in Part 5, exactly for rules r which are active w.r.t. (S, Sj),

and thus preferred generating rule exists(r, sj) holds, via the first and second rule of

Part 7, iff a rule r′ exists such that r′ < r and r′ is active w.r.t. (S, Sj) and H(r′) 	∈ Sj .

Furthermore, active(r, sj) holds, via the second rule in Part 4 and the first rule in

Part 5, exactly for rules r which are active w.r.t. (Sj , S). Since in Si(h, rj+1) ∈ A
p
1′ such

that in Si(h, rj) /∈ A
p
1′ must be derived by the first rule of Part 8, we thus have that

in Si(h, rj+1) ∈ AP
1′ and in Si(h, rj) /∈ AP

1′ iff h ∈ Sj+1\Sj . Therefore, Sj+1 corresponds

to {h | in Si(h, rj+1) ∈ A
p
1′ }, which completes the inductive argument.

Finally, concerning Part 9, in PAS encodes Sn, i.e. {l | in PAS(l) ∈ AP
1′ } = Sn. The

constraints guarantee that in any answer set the criterion CW
P (S) = Sn = S is met

(recall that inconsistent preferred answer sets are not considered in this paper). In

total, we have shown that A ∈ AS(PIW ∪ F(P)) implies π′(A) ∈ WPAS(P), which

proves item (i).

As for (ii), let Q1 be the split program obtained from the ground program by

dropping rules from Part 1 and F(P) and adding an answer set A′′ of the dropped
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rules, while keeping only those rules of which the bodies agree with A′′. Then, Q1 is

(analogous to the program in the proof of Theorem 2) locally stratified. A possible

stratification for Q1 would be as follows, where r1, r2, . . . , rn are the rule IDs ordered

by lt:

• λ(in PAS(l)) = 3 × n + 2

• λ(preferred generating rule exists(r, ri)) = 3 × i + 2

• λ(active(r, ri)) = 3 × i + 2

• λ(head not in Si(r, ri)) = 3 × i + 1

• λ(active Si(r, ri)) = 3 × i + 1

• λ(pos body false Si(r, ri)) = 3 × i + 1

• λ(neg body false Si(r, ri)) = 3 × i

• λ(in Si(h, ri)) = 3 × i

• λ(preferred generating rule exists S0(r)) = 2

• λ(pos body false S(r)) = 1

• λ(active S0(r)) = 1

• λ(a) = 0 for all other atoms a in Q1

Based on this information, we can readily apply the rules of Q1 level by level

and effectively construct A′ ∈ AS(PIW ∪ F(P)) such that π′(A′) = A. Specifically,

we can verify that Q1 has the answer set A′ such that, for each j ∈ {1, . . . , n},
in Si(h, Sj) ∈ A′ holds iff h ∈ Sj holds and thus in PAS(h) ∈ A′ iff h ∈ A holds, so

π′(A′) = A. �

4.4 D-preferred answer sets

Another way to assign a meaning to prioritized logic programs has been introduced

by Delgrande, Schaub and Tompits (2000a). For our presentation we again follow

Schaub and Wang (2001).

Definition 8 (D-preferred answer set, DPAS)

Let P = ({r1, . . . , rn}, <) be a prioritized program. For any set S ⊆ BP of literals, the

sequence Si ⊆ BP (0 � i � n) is defined as follows:

S0 = ∅

Si = Si−1 ∪



H(r)

∣∣∣∣∣∣∣∣

I. r ∈ P is active wrt. (Si−1, S), and

II. there is no rule r′ ∈ P with r′ < r such that

(a) r′ is active wrt. (S, Si−1), and

(b) r′ 	∈ rule(Si−1).




for all i = 1, . . . , n, where again a rule r is active wrt. the pair (X,Y ) if B+(r) ⊆ X

and B−(r) ∩ Y = ∅, and rule(X) denotes those rules in P that have been effectively

used to derive literals in X.

The set CD
P(S) is defined by

CD
P(S) =

{
Sn, if Sn is consistent,

BP otherwise.

and an answer set A of P is D-preferred if CD
P(A) = A. The set of all D-preferred

answer sets of P is denoted by DPAS(P).
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The basic difference between D-preferred and W-preferred answer sets is that the

former requires that a higher-ranked rule has been used to actually derive some

literal, while for the latter it is sufficient that the literal appears in the head of such

a rule.

In fact one can show that the three approaches we have shown get increasingly

restrictive in that each approach admits only a subset of the (preferred) answer sets

of the previous approach. The following theorem is due to Schaub and Wang (2001):

Theorem 5 (Schaub and Wang, 2001 )

Let P = (P ,<) be a propositional prioritized program. Then, we have:

DPAS(P) ⊆ WPAS(P) ⊆ BPAS(P) ⊆ AS(P)

4.4.1 Adapting the meta-interpreter

The changes from PIW to PID are relatively small, and we have marked those lines

where PID differs by a vertical bar in figure 4.

Instead of tracking literals by means of in Si we need to track which rule has

been used to derive a particular literal, which is done by means of a predicate

in rule Si(H,R, Si) specifying that in the state denoted by Si the literal H has been

derived by means of the rule R.

Similarly, we replace head not in Si by a new predicate rule not generating in Si

that tells whether a specific rule has been actually applied, not just whether the head

of this rule has been derived (possibly from a different rule).

in Si, finally, is a simple projection of in rule Si to obtain the union of all Sis

for use in the stability check. We have the following result (recall π′(S) = {� |
in PAS(�) ∈ S}).

Theorem 6

Let P = (P ,<) be a propositional prioritized program. Then, (i) if A ∈ AS(PID ∪
F(P)) then π′(A) ∈ DPAS(P), and (ii) for each A ∈ DPAS(P), there exists some

A′ ∈ AS(PID ∪ F(P)) such that π′(A′) = A.

Proof

Given that both Definition 8 is very similar to Definition 7 (they differ only in II.b,

where H(r′) /∈ Si−1 is replaced by r′ /∈ rule(Si−1), i.e. r′ has not been used to derive

some literal in Si−1) and that also PIW is very similar to PID , most of the arguments

in the proof of Theorem 4 are also valid here.

We just highlight the essential difference: According to the difference between

Definition 8 and Definition 7, a predicate rule not generating in Si is used in PID to

store the rules which have not been applied to derive some literal in Si, rather than

head not in Si as in PIW , which is defined in the first rule and used in the second

rule of Part 7.

For defining rule not generating in Si, an auxiliary predicate in rule Si is used

(defined in Part 8), which is like in Si but stores in addition the rule ID r which is

used to derive a literal h in a set Si. The predicate in Si is then defined by a simple
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% Part 1: Guess a consistent set S.

lit(L) :- head(L,_). lit(L) :- pbl(L,_). lit(L) :- nbl(L,_).

in_S(L) v notin_S(L) :- lit(L).
:- compl(X,Y), in_S(X), in_S(Y).

% Part 2: Handle preferences.

pr(X,Z) :- pr(X,Y), pr(Y,Z).
:- pr(X,X).

% Part 3: Stage IDs.

stage(S) :- rule(S).

% Part 4: Evaluate positive bodies.

pos_body_false_S(R) :- rule(R), pbl(X,R), not in_S(X).
pos_body_false_Si(R,Si) :- pbl(L,R), stage(Si), not in_Si(L,Si).
pos_body_false_S0(R) :- pbl(L,R).

% Part 5: Evaluate negative bodies.

neg_body_false_S(R) :- rule(R), nbl(X,R), in_S(X).
neg_body_false_Si(R,Si) :- nbl(L,R), in_Si(L,Si).

% Part 6: Determine active rules.

active(R,Si) :- rule(R), stage(Si),
not pos_body_false_Si(R,Si), not neg_body_false_S(R).

active_Si(R,Si) :- rule(R), stage(Si), not pos_body_false_S(R),
not neg_body_false_Si(R,Si).

active_S0(R) :- rule(R), not pos_body_false_S0(R), not neg_body_false_S(R).

% Part 7: Check for preferred generating rules.

| rule_not_generating_in_Si(R,Si) :- stage(Si), head(H,R),
| not in_rule_Si(H,R,Si).

| preferred_generating_rule_exists(R,Si) :- pr(R1,R), active_Si(R1,Si),
| rule_not_generating_in_Si(R1,Si).

preferred_generating_rule_exists_S0(R) :- pr(R1,R), not pos_body_false_S(R1).

% Part 8: Compute Si.

| in_rule_Si(H,R,Si) :- head(H,R), active(R,Sj), stage(Sj), stage(Si),
| lt(Sj,Si), not preferred_generating_rule_exists(R,Sj).
| in_rule_Si(H,R,Si) :- head(H,R), active_S0(R), stage(Si),
| not preferred_generating_rule_exists_S0(R).

| in_Si(H,Si) :- in_rule_Si(H,_,Si).

% Part 9: Verify "stability".

in_PAS(L) :- in_Si(L,_).
:- in_PAS(L), not in_S(L).
:- in_S(L), not in_PAS(L).

Fig. 4. Meta-interpreter PID for D-preferred answer sets.
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projection (third rule of Part 8). Note that the only point where head not in Si is

used is in the definition of rule not generating in Si.

In the inductive step, the argument (in the proof of Theorem 4) that the predicate

preferred generating rule exists(r, ri) holds iff a rule r′ exists such that r′ < r and r′

is active w.r.t. (S, Si) and H(r′) 	∈ Si, must accordingly be updated such that it reads

“preferred generating rule exists(r, ri) holds iff a rule r′ exists such that r′ < r and

r′ is active w.r.t. (S, Si) and r′ 	∈ rule(Si).”

Apart from these details, the proof remains the same. �

5 Weakly preferred answer sets

The concept of a weakly preferred answer set relaxes the priority ordering as little

as necessary to obtain a preferred answer set, if no answer set is preferred. It

can be seen as a conservative approximation of a preferred answer set. So far,

this approximation has only been defined for B-preferred answer sets (Brewka and

Eiter 1999), though similar extensions to the two other approaches we have seen in

sections 4.3 and 4.4 should be feasible.

Definition 9 (distance)

Let <1 and <2 be total orderings of the same finite set M. The distance from <1

to <2, denoted d(<1, <2), is the number of pairs m,m′ ∈ M such that m <1 m′ and

m′ <2 m.3

Clearly, d(<2, <1) defines a metric on the set of all total orderings of M. For

example, the distance between a <1 b <1 c and c <2 a <2 b is d(<1, <2) =

d(<2, <1) = 2. Note that d(<1, <2) amounts to the smallest number of successive

switches of neighbored elements which are needed to transform <1 into <2. This is

precisely the number of switches executed by the well-known bubble-sort algorithm.

Definition 10 (preference violation degree, pvd )

Let P = (P ,<) be a prioritized program and let A ∈ AS(P). The preference

violation degree of A in P, denoted pvdP(A), is the minimum distance from any full

prioritization of P to any fully prioritized program P′ = (P ,<′) such that A is a

preferred answer set of P′, i.e.

pvdP(A) = min{d(<1, <2) | (P ,<1) ∈ FP(P), A ∈ BPAS(P ,<2)}.

The preference violation degree of P, pvd(P), is defined by pvd(P) = min{pvdP(A) |
A ∈ AS(P )}.

Now the weakly preferred answer sets are those answer sets which minimize

preference violation.

3 The definition in Brewka and Eiter (1999) uses ordinals and deals with possibly infinite M. Ours is
equivalent on finite M.
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Definition 11 (weakly preferred answer set, wPAS)

Let P = (P ,<) be a prioritized program. Then, A ∈ AS(P ) is a weakly preferred

answer set of P iff pvdP(A) = pvd(P). By wPAS(P) we denote the collection of all

such weakly preferred answer sets of P.

Example 10

In the bird & penguin example, A1 is the unique preferred answer set of P. Clearly,

every preferred answer set A of any prioritized program P has pvdP(A) = 0, and

thus A is a weakly preferred answer set of P. Thus, A1 is the single weakly preferred

answer set of the program.

Example 11

Reconsider the program in Example 6. Its answer set A = {b} is not preferred.

Switching the priorities of the two rules, the resulting prioritized program P′ has

CB
AP′(A) = {b}, thus A is preferred for P′. Hence pvdP(A) = pvd(P) = 1 and A is a

weakly preferred answer set of P.

Example 12

Consider the following program P:

(1) a :- not c.

(2) c :- not b.

(3) ¬d :- not b.

(4) b :- not ¬b, a.

P has the answer sets A1 = {a, b} and A2 = {c,¬d}. Imposing (i) < (j) iff i < j,

none is preferred. We have pvdP(A1) = 2: (2) and (3) are zombies in the dual reduct

which are only defeasible by (4), which must be moved in front of them; this takes

two switches. On the other hand, pvdP(A2) = 1: the single zombie (1) in the dual

reduct is defeated if (2) is moved in front of it (here, (4) is a dead rule). Hence,

pvd(P) = 1, and A2 is the single weakly preferred answer set of P.

5.1 Adapting the meta-interpreter for weakly preferred answer sets

The transition from an interpreter for preferred answer sets to one for weakly

preferred answer sets is simple – just a few clauses have to be added and one has to

be slightly altered.

For weakly preferred answer sets, we have to generate a second total ordering

(called pr1), which does not need to be compatible with the input partial order, and

corresponds to <2 in Definition 10.

pr1(X,Y ) v pr1(Y ,X) :- rule(X), rule(Y ), X != Y .

pr1(X,Z) :- pr1(X,Y ), pr1(Y ,Z).

:- pr1(X,X).

This ordering should be used to determine the preferred answer sets. Since the given

totalization of the input ordering occurs just in one rule of the original program, we

just have to update this rule:

defeat local(Y ) :- nbl(X,Y ), lit(X,Y 1), pr1(Y 1, Y ).
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% For full prioritization: Refine pr to a total ordering.

pr(X,Y) v pr(Y,X) :- rule(X),rule(Y), X != Y.

pr(X,Z) :- pr(X,Y), pr(Y,Z).

:- pr(X,X).

% Weakly preferred answer sets: Create a total ordering pr1,

% as close to pr as possible.

pr1(X,Y) v pr1(Y,X) :- rule(X),rule(Y), X != Y.

pr1(X,Z) :- pr1(X,Y), pr1(Y,Z).

:- pr1(X,X).

% Weak constraint: Minimize violations.

:~ rule(X), rule(Y), pr(X,Y), pr1(Y,X). [1:1]

% Check dual reduct: Build sets S_i, use rule ids as indices i.

% lit(X,r) means that the literal x occurs in the set S_r.

lit(X,Y) :- head(X,Y), pos_body_true(Y),

not defeat_local(Y), not in_AS(X).

lit(X,Y) :- head(X,Y), pos_body_true(Y),

not defeat_local(Y), not defeat_global(Y).

defeat_local(Y) :- nbl(X,Y), lit(X,Y1), pr1(Y1,Y).

defeat_global(Y) :- nbl(X,Y), in_AS(X).

% Include literal into CP(.).

in_CP(X) :- lit(X,Y).

:- in_CP(X), not in_AS(X).

Fig. 5. Meta-interpreter PIweak
for weakly preferred answer sets (without PIa ).

Finally, we want to keep only those orderings which minimize the differences to

some totalization of an input ordering. To this end, we state a weak constraint,

where each difference in the orderings gets a penalty of one (we don’t need the

leveling concept here).

:∼ pr(X,Y ), pr1(Y ,X). [1:1]

In this way, each answer set A will be weighted with pvdP(A), and the optimal

answer sets minimize this number, which corresponds exactly to Definitions 9, 10

and 11.

Let us call the resulting interpreter PIweak
; a compact listing (without showing PIa)

is given in figure 5. We have the following result:

Theorem 7

Let P = (P ,<) be a propositional prioritized program. Then, (i) if A ∈ OAS(PIweak
∪

F(P)), then π(A) ∈ wPAS(P), and (ii) for each A ∈ wPAS(P), there exists some

A′ ∈ OAS(PIweak
∪ F(P)) such that π(A′) = A.

Proof

Let Q0 be the set of all clauses in PIweak
except the two rules defining pr, the

constraint :-pr(X,X)., and the weak constraint for minimization of violations.

After renaming pr1 to pr, Q0 is identical to the meta-interpreter program PIB minus
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the redundant constraint :-in AS(X), not in CP (X). Thus, we infer from Theorem 2

that AS(Q0 ∪ F((P , ∅))) is in correspondence (i), (ii) as there to BPAS((P , ∅)). Let

Q1 result from Q0 by adding the rules defining pr and the constraint :-pr(X,X). Then,

AS(Q1 ∪F(P)) is in a similar correspondence to the set of tuples T = {(A,<1, <2) |
(P ,<1) ∈ FP(P), A ∈ BPAS(P ,<2), (P ,<2) ∈ FP((P , ∅))}. Adding the weak

constraint to Q1 (which results in PIweak
), we thus have that OAS(PIweak

∪ F(P)) is

in similar correspondence to the set T ′ = {(A,<1, <2) ∈ T | ∀ (A′, <′
1, <

′
2) ∈ T :

d(<′
1, <

′
2) � d(<1, <2) }, which in turn naturally corresponds to wPAS(P). More

precisely, we can conclude that for each A ∈ OAS(PIweak
∪ F(P)), there exists some

tuple (π(A), <1, <2) in T ′, which corresponds to π(A) ∈ wPAS(P); conversely, for

each A ∈ wPAS(P), there exists some tuple (A,<1, <2) ∈ T ′, which corresponds to

some A′ ∈ OAS(PIweak
∪ F(P)) such that π(A′) = A. This proves items (i) and (ii) of

the theorem. �

Example 13

Reconsider Example 6, which has no preferred answer set. PIweak
∪ F(P) has one

optimal answer set (with weight 1 in level 1) containing in AS(b), pr(r1, r2), and

pr1(r2, r1), which is consistent with Example 11.

Example 14

Reconsider Example 12, which does not have any preferred answer set either.

PIweak
∪ F(P) has one optimal answer set (having weight 1 in level 1) containing

in AS(c), in AS(¬d), pr(r1, r2), and pr1(r2, r1), where the pair (r1, r2) is the only

difference between pr and pr1, consistent with Example 12.

While PIweak
is a straightforward encoding of the definition of weakly preferred

answer set, and gives us an executable specification, it is quite inefficient on larger

problem instances because of the large search space generated by the possible total

orderings pr and pr1. To improve efficiency, we can use a variant of the graph

algorithm FULL-ORDER from section 4.2.2, based on the following observation.

We may arrange the vertices which are removed from G, in this order, as a common

prefix for orderings <1 and <2 in the definition of pvd(A). We thus need to guess

only optimal completions of <1 and <2 for those rules that remain in G on

termination of FULL-ORDER. In particular, if G is empty, then <1 and <2

coincide and A is a preferred answer set, hence also weakly preferred. The meta-

interpreter programs PIg and PIweak
can be combined to another meta-interpreter

program for computing weakly preferred answer sets, which conservatively extends

the computation of preferred answer sets in the sense that guessing comes only into

play if no preferred answer sets exist. However, we do not further discuss this issue

here.

6 Related work

Meta-interpretation of answer sets or answer set-like semantics has been considered

by other authors as well, in different contexts. We briefly discuss the work of several

authors (Gelfond and Son 1997; Marek and Remmel 2001; Delgrande et al. 2000a;

Delgrande et al. 2001) which is related to our work.
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Gelfond and Son. In Gelfond and Son (1997), the idea of meta-interpretation was

used to define the semantics of a language L0 for rules with preferences. L0 is a

multi-sorted logical language which has constants for individuals, definite rules, and

default rules of the form “If l1, . . . , lm are true, then normally l0 is true,” functions

and relations for the domain as well as special predicates for defining rules and

expressing preference. For example, the formula

default(d, l0, [l1, . . . , lm])

represents a default rule, where d is its name and [l1, . . . , lm] is Prolog-like list

notation. Informally, it amounts to the rule l0:-l1, . . . , lm, not ¬l0 in extended

logic programming. Moreover, the language allows to express conflicts between two

default rules; both preferences and conflicts can be declared dynamically by means

of rules.

The semantics of L0 is then defined in terms of a transformation of any program

P in L0 into an extended logic program t(P ) whose answer sets are, roughly

speaking, cast into answer sets of the program P .

However, there are some salient differences w.r.t. the approach of Gelfond and

Son (1997) and that presented here.

• First and foremost, the semantics of L0 is defined exclusively by means of a

meta-interpreter, while our approach implements semantics which have been

defined previously without meta-interpretation techniques.

• Secondly, the interpretation program in Gelfond and Son (1997) uses lists for

representing aggregations of literals and conditions on them, in particular

“for all” conditions. Such lists cannot be used in datalog programs, as

arbitrarily deep function nesting is required for the list concept. We avoid these

aggregations by using rule identifiers, a traversal mechanism that exploits an

implicit ordering, and default negation.

• Thirdly, in our approach we extend a general answer set meta-interpreter, thus

clearly separating the representation of answer sets and prioritization. In the

meta-interpreter presented in Gelfond and Son (1997), this distinction is not

obvious.

Marek and Remmel. In a recent paper Marek and Remmel (2001) discussed the issue

of a meta-interpreter for propositional normal logic programs in the context of the

expressiveness of stable logic programming. They describe a function-free normal

logic program Meta1 , such that on input of a factual representation edbQ of a 0-2

normal logic program Q (i.e. each clause in Q has 0 or 2 positive body literals), a

projection of the answer sets of Meta1 ∪ edbQ is in one-to-one correspondence to the

answer sets of Q. The representation edbQ is similar to our representation F(Q), but

explicitly records the position of positive body literals. The meta-interpreter Meta1

is similar to ours, but differs from ours in the following respects:

• First, Meta1 encodes a simple guess and check strategy for the computation

of a stable model S . It contains a pair of unstratified rules which guess for

each atom a, whether a is in the stable model S or not. The remaining clauses

https://doi.org/10.1017/S1471068403001753 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001753


Computing preferred answer sets by meta-interpretation in ASP 495

mimic the computation of the minimal model of QS , using a special predicate

computed, and constraints check whether S is reconstructed by it. On the other

hand, our meta-interpreter PIa has no separate guessing and checking parts.

Instead, stability of a model is effected by the stable semantics underlying

the interpreter. Furthermore, PIa uses negation sensible to the structure of the

program Q, and in essence preserves stratification (cf. Proposition 1).

• Secondly, because of its naive guess and check strategy, Meta1 is highly

inefficient for programs Q which can be evaluated easily. In particular, even

for positive programs Q, Meta1 explores an exponential search space, and

computation of the unique stable model of Q may take considerable time.

On the other hand, for stratified Q our meta-interpreter program PIa is, after

propagation of the input facts, a locally stratified program and can be evaluated

efficiently. Loosely speaking, PIa interprets a significant class of computational

“easy” logic programs efficiently.

• Thirdly, Meta1 is only applicable for 0-2 normal logic programs. An extension

to arbitrary normal logic programs is possible using similar techniques as in

this paper, though.

All these considerations suggest the conclusion that the meta-interpreter Meta1

defined in Marek and Remmel (2001) is more of theoretical interest, which is fully

compliant with the goals of that paper.

Delgrande, Schaub, and Tompits. Based on a seminal approach for adding priorities

to default logic (Delgrande and Schaub 1997), Delgrande et al. (2000; 2001) have

developed the PLP framework for expressing priorities on logic programs. In this

framework, extended logic programs with preference information r ≺ r′ between

rules attached at the object level, are “compiled” into another extended logic

program, such that the answer sets of the latter program amount to the preferred

answer sets of the original program. The transformation uses a number of control

predicates for the application of rules such that rule preferences are respected as

intended in the application of the rules for constructing an answer set of a given

program. More specifically, control atoms ap(r) and bl(r) state whether a rule r is

applied or blocked, respectively, and atoms ok(r) and rdy(r) control the applicability

of rules based on antecedent conditions reflecting the given order information. The

framework provides the flexibility to modify the standard transformation, such that

transformations for different preference semantics can be designed.

The PLP framework significantly differs from our work in the following respects:

• First, PLP does not use a fixed meta-interpreter for evaluating varying

programs, given in a format which can be “processed” by a meta-interpreter.

Rather, PLP performs a schematic program construction ad-hoc.

• Secondly, PLP aims at a tool for realizing preferences semantics by providing

a suite of special predicates and a particular representation formalism. In

contrast, our interest is in casting definitions from first principles to extended

logic programs, in a way such that we obtain executable specifications. This

way, variations of definitions can be experimented with more flexibly.
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• Thirdly, similar to Gelfond and Son (1997), PLP has no obvious separation of

answer sets and prioritization.

7 Conclusion

In this paper, we have considered the issue of building experimental prototypes for

semantics of extended logic programs equipped with rule preferences, by using the

technique of meta-interpretation. In the course of this, we have presented a suite of

meta-interpreters for various such semantics, including a simple meta-interpreter for

answer set semantics of plain extended logic programs itself. This meta-interpreter

has benign computational properties, and can be used as a building block for

meta-interpreters of other semantics.

While the focus of this paper has been on a propositional setting, it is possible

to extend the techniques that we have presented for handling non-ground programs

as well. However, unless function symbols are allowed at the code level (which is

currently not the case in DLV), a technical realization is not completely straightfor-

ward. Extending our work to deal with such cases, for which the work reported

in Bonatti (2001b; 2001a) might prove useful, and creating a DLV front-end for

prioritized program evaluation are issues for further work.

We believe that the work that we have presented in this paper provides supportive

evidence to the following items.

• Meta-interpretation can be a useful technique for building experimental proto-

type implementations of knowledge representation formalisms. In particular,

we have shown this for some preferences formalisms extending the seminal

answer set semantics.

• By the use of answer set programming, it is possible to cast definitions of

the semantics of KR-formalisms quite naturally and appealingly into extended

logic programs, which then, by usage of answer set programming engines,

provide executable specifications. Note that, in this line, You et al. (1999) have

shown how inheritance networks can be compiled to logic programs, and that,

on the other hand, semantics of logic programs may be used for refining the

semantics of inheritance networks.

• Adding optimization constructs to the basic language of extended logic

programming, such as weak constraints in DLV and the constructs provided in

Smodels (Niemelä et al. 2000), is valuable for elegantly expressing semantics

which are defined in terms of optimal values of cost functions. The semantics of

weakly preferred answer sets provides a striking example; other examples can

be found e.g. in the domain of diagnostic reasoning. Enhancing ASP engines by

further constructs and their efficient realization is thus important for increasing

the usability of the ASP compilation and meta-interpreter approach.

Furthermore, the techniques and methods, which we have used in the design of

the meta-interpreters, in particular the use of ordering relations, may prove useful

for other researchers when designing ASP implementations of applications.
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In conclusion, it appears that meta-interpretation, which is well-established in

Prolog-style logic programming, is also a topic of interest in ASP, whose exploration

also provides useful results for core ASP itself. We are confident that future work

will provide further evidence for this view.
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