
Adv. Appl. Prob. 51, 633–666 (2019)
doi:10.1017/apr.2019.32

© Applied Probability Trust 2019

OPTIMALITY OF REFRACTION STRATEGIES
FOR A CONSTRAINED DIVIDEND PROBLEM

MAURICIO JUNCA,∗ Universidad de los Andes

HAROLD A. MORENO-FRANCO,∗∗ Universidad del Norte and
HSE University

JOSÉ LUIS PÉREZ,∗∗∗ Centro de Investigación en Matemáticas

KAZUTOSHI YAMAZAKI,∗∗∗∗ Kansai University

Abstract

We consider de Finetti’s problem for spectrally one-sided Lévy risk models with
control strategies that are absolutely continuous with respect to the Lebesgue measure.
Furthermore, we consider the version with a constraint on the time of ruin. To charac-
terize the solution to the aforementioned models, we first solve the optimal dividend
problem with a terminal value at ruin and show the optimality of threshold strategies.
Next, we introduce the dual Lagrangian problem and show that the complementary
slackness conditions are satisfied, characterizing the optimal Lagrange multiplier.
Finally, we illustrate our findings with a series of numerical examples.
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1. Introduction

In de Finetti’s optimal dividend problem, the aim is to maximize the total expected
discounted dividends accumulated until ruin. Intuitively, as the risk of ruin must be considered,
dividends should be paid only when there is a sufficient amount of surplus available. With
this conjecture and under the assumption of stationary increments of the underlying process
(in the Lévy cases), the optimality of a barrier strategy that pays out any amount above a certain
barrier has been pursued in various papers. Because the resulting controlled process becomes
a classical reflected process, existing fluctuation theoretical results have been efficiently
applied to solve explicitly the problem, at least under suitable conditions. See, among others,
Avram et al. [2] for the spectrally negative case and Bayraktar et al. [4] for the spectrally
positive (dual) case.
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Despite these important works, there are several disputes about the classical model in the
sense that the set of admissible strategies is too large and contains those that are in reality
impossible to implement. For example, under the barrier strategy that is shown to be optimal,
ruin must occur almost surely, and this is rather an undesirable conclusion. In addition,
companies in reality cannot focus on dividend maximization and instead need to take into
account the impacts of bankruptcy to themselves and also to the market. For these reasons, in
the past decade, several extensions have been considered so as to obtain a more realistic model,
by considering more restricted sets of admissible strategies.

Motivated by these, in this paper we focus on the model with the absolutely continuous
condition on the dividend strategy and additional condition on the time of ruin. We consider
both cases driven by spectrally negative and positive Lévy processes.

Regarding the absolutely continuous condition, it is assumed that the rate at which dividends
are paid is bounded. More specifically, the dividend strategy must be absolutely continuous
with respect to the Lebesgue measure with its density bounded by a given constant. Under some
assumptions on the jump measure (e.g. the completely monotone Lévy density assumption as
in the current paper), analogously to the barrier strategy that is optimal in the classical case, the
threshold strategy—that pays dividends at the maximal rate as long as the surplus is above a
certain fixed level—is optimal in this case. For a spectrally negative Lévy surplus process,
Kyprianou et al. [12] showed the optimality of the threshold strategy under a completely
monotone assumption on the Lévy measure. The spectrally positive Lévy model has been
solved by Yin et al. [22]. In both cases, the optimally controlled process becomes the refracted
Lévy process of Kyprianou and Loeffen [11], and the fluctuation identities for this process can
be used efficiently to solve de Finetti’s problem under the absolutely continuous condition.

Following the recent work of Hernández et al. [8], we study the case in which the longevity
feature is added to the problem by considering a constraint on the time of ruin. The longevity
aspect of the firm remained as a separate problem; see [20] for a survey on this matter. Despite
efforts to integrate both features [6], [17], [21], it was not until very recently a successful
solution to a model that actually accounts for the trade-off between performance and longevity
was presented. Hernández and Junca [7] considered de Finetti’s problem in the setting of
Cramér–Lundberg reserves with i.i.d. exponentially distributed jumps adding a constraint to
the expected time of ruin of the firm.

The contribution of this paper is twofold.

1. We first solve the optimal dividend problem with a terminal value at ruin under the
absolutely continuous assumption. We solve this problem for the spectrally negative
Lévy case under the assumption that the Lévy measure has a completely monotone
density and also for the general spectrally positive Lévy case. In both models we show
that a threshold strategy is optimal (see Theorems 4.1 and 6.1). The optimal refraction
level as well as the value function are concisely expressed in terms of the scale function.
Its optimality is confirmed by a verification lemma.

2. We then use these results to solve the constrained dividend maximization problem
over the set of strategies that satisfy a particular constraint on the ruin time. This is
an extension of [8] under the absolutely continuous assumption. Theorem 5.1 shows
the result when the reserves are modeled by a spectrally negative Lévy process with a
completely monotone Lévy density and Theorem 6.2 for the general dual model.

The rest of the paper is organized as follows. In Section 2, we formulate the problem. In
Section 3, we present an overview of scale functions and some fluctuation identities related
to spectrally negative Lévy processes and their respective refracted processes. In Section 4,
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Optimality of refraction strategies for a constrained dividend problem 635

we solve the optimal dividend problem with a terminal cost and the absolutely continuous
assumption for the case of a spectrally negative Lévy process with a completely monotone
Lévy density. In Section 5, we extend the results to solve the constrained dividends problem.
In Section 6, we solve the same problems for the spectrally positive case. Finally, in Section 7,
we give some numerical results.

2. Formulation of the problem

In this section, we formulate the constrained de Finetti problem driven by a spectrally
negative Lévy process. The spectrally positive Lévy process is its dual and a slight modification
is only needed to formulate the spectrally positive case (see Section 6).

2.1. Spectrally negative Lévy processes

Recall that a spectrally negative Lévy process is a stochastic process, which has càdlàg
paths and stationary and independent increments such that there are no positive discontinuities.
To avoid degenerate cases in the forthcoming discussion, we shall additionally exclude from
this definition the case of monotone paths. This means that we are not interested in the case
of a deterministic increasing linear drift or the negative of a subordinator. Henceforth, we
assume that X = {Xt : t≥ 0} is a spectrally negative Lévy process defined on a probability
space (�,F , P) with Lévy triplet given by (γ, σ, �), where γ ∈R, σ ≥ 0, and� is a measure
concentrated on (0,∞) satisfying∫

(0,∞)
(1∧ z2)�(dz)<∞.

The Laplace exponent of X is given by

ψ(λ)= log E[eλX1 ]= γ λ+ 1

2
σ 2λ2 −

∫
(0,∞)

(1− e−λz − λz1{0<z≤1})�(dz), (2.1)

which is well defined for λ≥ 0. Here E denotes the expectation with respect to P. In addition,
the reader should note that, for convenience, we have arranged the representation of the Laplace
exponent in such a way that the support of the Lévy measure is positive even though the
process experiences only negative jumps. As a strong Markov process, we shall endow X with
probabilities {Px : x ∈R} such that, under Px, we have X0 = x with probability 1. Note that
P0 = P and E0 =E.

The spectrally negative Lévy process X has paths of bounded variation if and only if σ = 0
and

∫
(0,1] z�(dz)<∞, in which case, X can be written as

Xt = ct− St, t≥ 0,

where c := γ + ∫(0,1] z�(dz) and {St : t≥ 0} is a drift-less subordinator. Note that we must have
c> 0, since it is assumed that X does not have monotone paths.

In the classical model of the wealth of an insurance company, premium is received at a
constant rate c whereas F-distributed claims arrive at the jump times of a Poisson process with
rate μ. The corresponding surplus process is called the Cramér–Lundberg risk process and is
a special case of the spectrally negative Lévy process with γ = c−μ ∫(0,1] zF(dz), σ = 0, and
�=μF.

2.2. Admissible strategies

Let D= {Dt : t≥ 0} be a dividend strategy, meaning that it is a nonnegative and nonde-
creasing process adapted to the completed and right continuous filtration F := {Ft : t≥ 0}
of X. Here, for each fixed t≥ 0, the quantity Dt represents the cumulative dividends paid
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out up to time t by the insurance company whose risk process is modeled by X. The controlled
Lévy process becomes UD = {UD

t = Xt −Dt : t≥ 0} and we write

τD := inf{t> 0: UD
t < 0}

for the time at which ruin occurs when the dividend payments are taken into account.
In this work, we are interested in adding a constraint to the dividend processes. Specifically,

we will only work with absolutely continuous strategies of bounded rate, i.e.

Dt =
∫ t

0
d(s) ds, t≥ 0,

such that the dividend rate d satisfies 0≤ d(t)≤ δ for t≥ 0, where δ > 0 is a ceiling rate. We
will denote by
 the family of admissible strategies satisfying the conditions mentioned above.

2.3. Constrained de Finetti’s problem and its dual

The expected net present value under the dividend policy D ∈
 with discounting at rate
q> 0 and initial capital x≥ 0 is given by

vD(x)=Ex

[ ∫ τD

0
e−qtdDt

]
.

The dividend problem, originally considered by de Finetti, asks to maximize the expected net
present value of dividend payments over the set of strategies 
.

Now, as studied in [8], we are interested in addressing a modification of this problem by
adding a restriction to the dividend process D, which is given by the constraint

Ex[e−qτD
]≤K, 0≤K ≤ 1 fixed.

Strategies in
 satisfying this constraint are called feasible, and are called infeasible otherwise.

Remark 2.1. By this constraint, we consider only strategies that avoid early ruin of the
company. The classical problem corresponds to the case with K = 1. By selecting the constraint
written in terms of the expectation of e−qτD

, the Lagrangian subproblem (considered in
Section 5) can be solved explicitly using the scale function and hence the constrained case
as well. It is also of interest to consider other constraints, e.g. Ex[e−pτD

]≤K for p �= q and
Ex[τD]≤K. However, in these cases, the techniques in this paper cannot be directly applied,
and the optimality of a threshold strategy may not hold.

We want to maximize the expected net present value of dividend payments over the set of
feasible strategies. That is, we aim to solve the optimization problem, for x≥ 0 and 0≤K ≤ 1,

V(x; K) := sup
D∈


vD(x) such that Ex[e−qτD
]≤K, (2.2)

where, in the case Ex[e−qτD
]>K for all D ∈
, we set V(x; K)=−∞ and call problem (2.2)

infeasible.
Proceeding as in [8], we use Lagrange multipliers to reformulate the problem. For �≥ 0,

we define the function

vD
�(x; K) := vD(x)+�(K −Ex[e−qτD

]). (2.3)
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Note that we can write problem (2.2) as V(x; K)= supD∈
 inf�≥0 vD
�(x; K) since any

infeasible strategy D will make inf�≥0 vD
�(x; K)=−∞, and any feasible strategy D will make

inf�≥0 vD
�(x; K)= vD

0 (x; K)= vD(x).
The dual problem of (2.2) is obtained by interchanging the sup with the inf in the expression

above, yielding an upper bound,

V(x; K)= sup
D∈


inf
�≥0

vD
�(x; K)≤ inf

�≥0
V�(x; K), (2.4)

where

V�(x; K) := sup
D∈


vD
�(x; K). (2.5)

Therefore, the main goal is to prove that V(x; K)= inf�≥0 V�(x; K) and to find, if it exists,
an optimal � (Lagrange multiplier) with which the infimum is attained. In order to do this, we
will first solve (2.5).

We remark that if we set

V�(x) := V�(x; 0) and vD
�(x):= vD

�(x; 0), D ∈
, (2.6)

then vD
�(x; K)= vD

�(x)+�K and hence, V�(x; K)= V�(x)+�K. Therefore, solving (2.5) is
equivalent to solving

V�(x) := sup
D∈


vD
�(x). (2.7)

3. Review of scale functions

In this section, we review the scale function of spectrally negative Lévy processes. First, we
define the process Y = {Yt = Xt − δt : t≥ 0} with its Laplace exponent

ψY (θ ) :=ψ(θ )− δθ, θ ≥ 0. (3.1)

We assume here that Y is a spectral negative Lévy process and not the negative of a subordinator
(see Assumption 4.3).

Fix q> 0. Following the same notation as in [11], we use W(q) and W
(q) for the scale

functions of X and Y, respectively. These are the mappings from R to [0,∞) that are 0 on the
negative half-line, while on the positive half-line they are strictly increasing functions that are
defined by their Laplace transforms,∫ ∞

0
e−θxW(q)(x) dx= 1

ψ(θ )− q
, θ >(q),∫ ∞

0
e−θx

W
(q)(x) dx= 1

ψY (θ )− q
, θ > ϕ(q),

(3.2)

where

(q) := sup{λ≥ 0: ψ(λ)= q} and ϕ(q): = sup{λ≥ 0: ψY (λ)= q}. (3.3)

By the strict convexity of ψ on [0,∞), we derive the strict inequality ϕ(q)>(q)> 0.
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We also define, for x ∈R,

W
(q)

(x) :=
∫ x

0
W(q)(y) dy,

Z(q)(x) := 1+ qW
(q)

(x),

Z
(q)

(x) :=
∫ x

0
Z(q)(z) dz= x+ q

∫ x

0

∫ z

0
W(q)(w) dw dz.

Noting that W(q)(x)= 0 for −∞< x< 0, we have

W
(q)

(x)= 0, Z(q)(x)= 1, and Z
(q)

(x)= x, x≤ 0.

In addition, we define W
(q)
,Z(q), and Z

(q)
analogously for Y . The scale functions of X and Y

are related for x ∈R by the equality

δ

∫ x

0
W

(q)(x− y)W(q)(y) dy=W
(q)

(x)−W
(q)

(x). (3.4)

This can be confirmed by showing that the Laplace transforms on both sides are equal.
Regarding their asymptotic behaviors, we have, as in Lemmas 3.1 and 3.2 of [9],

W(q)(0)=
{

0 if X is of unbounded variation,

c−1 if X is of bounded variation,

W
(q)(0)=

{
0 if Y is of unbounded variation,

(c− δ)−1 if Y is of bounded variation,

(3.5)

and

W(q)′(0+ ) := lim
x↓0

W(q)′(x)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

σ 2
if σ > 0,

∞ if σ = 0 and�(0,∞)=∞,
q+�(0,∞)

c2
if σ = 0 and�(0,∞)<∞,

W
(q)′(0+ ) := lim

x↓0
W

(q)′(x)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

σ 2
if σ > 0,

∞ if σ = 0 and�(0,∞)=∞,
q+�(0,∞)

(c− δ)2
if σ = 0 and�(0,∞)<∞.

(3.6)

On the other hand, as in Lemma 3.3 of [13], as x→∞,

e−(q)xW(q)(x)↗ψ ′((q))−1 and e−ϕ(q)x
W

(q)(x)↗ψ ′Y (ϕ(q))−1. (3.7)

4. Optimal dividend problem with a terminal value

In this section, we solve problem (2.7). The obtained results will be applied to the
constrained case in the next section. In this and next sections where we deal with the spectrally
negative case, we assume the following.
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Assumption 4.1. The Lévy measure � of the process X has a completely monotone density.
That is, � admits a density π whose nth derivative π (n) exists for all n≥ 1 and satisfies

(− 1)nπ (n)(x)≥ 0, x> 0.

Remark 4.1. Under Assumption 4.1, the scale functions W(q) and W
(q) defined in Section 3

are infinitely continuously differentiable on (0,∞). For more details, see Lemma A.1.

This assumption is known to be a sufficient optimality condition for threshold strategies in
the classical spectrally negative case by Loeffen [15], for the absolutely continuous case (with
�= 0) by Kyprianou et al. [12], and for the periodic case by Noba et al. [16] (with �= 0).

In this section, we allow � to be negative (in which case a positive payoff is collected at
ruin time), but need to assume the following in order to avoid the trivial case (see Remark 4.2).

Assumption 4.2. We assume that q�+ δ > 0.

Remark 4.2. Suppose that Assumption 4.2 does not hold (i.e. q�+ δ ≤ 0). Because the
dividend rate is bounded by δ, for any dividend policy D ∈
 and x≥ 0,

vD
�(x)≤ δEx

[ ∫ τD

0
e−qtdt

]
−�Ex[e−qτD

]

≤ δ
q
− q�+ δ

q
Ex[e−qτD

]

≤ δ
q
− q�+ δ

q
sup

D′∈

Ex[e−qτD′

].

This implies that vD
� is maximized by taking the strategy that pays dividends at the ceiling rate

δ for all t≥ 0 because it maximizes Ex[e−qτD′
] over 
.

Finally, we make the following assumption.

Assumption 4.3. If X has paths of bounded variation then δ < c.

This assumption is commonly used in the literature (see, for instance, [12] and [18])—
without this assumption, the techniques used in this paper are not capable of giving a complete
solution.

For the case when Assumption 4.3 is not satisfied, as long as the starting value is below
the barrier, a reflection strategy—which is optimal when the absolutely continuous condition
is relaxed—is feasible in the considered problem and is therefore optimal as well. On the
other hand, when the starting value is above the barrier, the optimal (reflection) strategy in the
classical case pushes the process instantaneously to the barrier, whereas this is not feasible
in our problem setting. The optimal strategy in this case cannot be directly obtained by the
methods used in this paper, and it is out of scope of this paper. The reader is referred to Azcue
and Muler [3] for complete results for the Cramér–Lundberg case when Assumption 4.3 is
violated in a related problem.

4.1. Threshold strategies

The objective of this section is to show that the optimal strategies for (2.7) are of the
threshold type. Under the threshold strategy Db for b≥ 0, the resulting controlled process Ub

is known as a refracted Lévy process of [11], which is the unique strong solution to

Ub
t = Xt −Db

t , where Db
t := δ

∫ t

0
1{Ub

s>b} ds, t≥ 0.
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Let its ruin time be

τb := inf{t> 0: Ub
t < 0}.

The next identities are lifted from Theorems 5(ii) and 6(ii) of [11]. For x ∈R and b≥ 0, we
have

Ex

[ ∫ τb

0
e−qtdDb

t

]
=−δW(q)

(x− b)+ 1

h(b)

(
W(q)(x)+ δ

∫ x

b
W

(q)(x− y)W(q)′(y) dy

)
(4.1)

and

�x(b) :=Ex[e−qτb ]

= Z(q)(x)+ δq
∫ x

b
W

(q)(x− y)W(q)(y) dy

− qϕ(q)eϕ(q)b
∫∞

b e−ϕ(q)yW(q)(y) dy

h(b)

(
W(q)(x)+ δ

∫ x

b
W

(q)(x− y)W(q)′(y) dy

)
,

(4.2)

where

h(b) := ϕ(q)eϕ(q)b
∫ ∞

b
e−ϕ(q)yW(q)′(y) dy. (4.3)

Under the threshold strategy Db, the expected net present value is denoted by

vb
�(x) :=Ex

[ ∫ τb

0
e−qtdDb

t

]
−��x(b) for x≥ 0. (4.4)

Using (4.1) and (4.2), we have the following result.

Proposition 4.1. The function vb
�, with b≥ 0, is given by

vb
�(x)= ξ�(b)

(
W(q)(x)+ δ

∫ x

b
W

(q)(x− y)W(q)′(y) dy

)
−�

(
Z(q)(x)+ δq

∫ x

b
W

(q)(x− y)W(q)(y) dy

)
− δW(q)

(x− b) for x≥ 0, (4.5)

where

ξ�(b) := 1

h(b)

(
1+ ϕ(q)q�eϕ(q)b

∫ ∞
b

e−ϕ(q)yW(q)(y) dy

)
. (4.6)

In particular, for x≤ b, we have

vb
�(x)= ξ�(b)W(q)(x)−�Z(q)(x). (4.7)

Remark 4.3. From (4.3) and integration by parts,

ϕ(q)eϕ(q)b
∫ ∞

b
e−ϕ(q)yW(q)(y) dy=W(q)(b)+ h(b)

ϕ(q)
, b≥ 0. (4.8)
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Hence, the function ξ�, given in (4.6), can be rewritten as

ξ�(b)= 1

h(b)

(
1+ q�

(
W(q)(b)+ h(b)

ϕ(q)

))
, b≥ 0. (4.9)

In particular, for the case b= 0, these expressions can be simplified as follows; the proof is
deferred to Appendix A.1.

Lemma 4.1. We have

h(0)= ϕ(q)
∫ ∞

0
e−ϕ(q)yW(q)′(y) dy= ϕ(q)(−W(q)(0)+ δ−1),

ξ�(0)= 1

h(0)

(
1+ q�

δ

)
= δ + q�

ϕ(q)(1− δW(q)(0))
,

(4.10)

and, for x≥ 0,

v0
�(x)= ξ�(0)W(q)(x)(1− δW(q)(0))−�Z(q)(x)− δW(q)

(x). (4.11)

4.2. Selection of the optimal threshold b�
Focusing on the set of threshold strategies, we now select our candidate optimal threshold,

which we call b�. In view of (4.7), such b� must maximize ξ�. Motivated by this fact, we
pursue b� such that ξ ′�(b�) vanishes if such a value exists.

First, we rewrite the form of ξ ′�(b) as follows. Fix b> 0. Taking a derivative in (4.9) and
using the fact that h′(b)= ϕ(q)(h(b)−W(q)′(b)) (by (4.3)),

ξ ′�(b)= q�− h′(b)

h(b)
ξ�(b)

= q�− ϕ(q)

h(b)

(
1+ q�

(
W(q)(b)+ h(b)

ϕ(q)

))
+ϕ(q)W(q)′(b)

h(b)
ξ�(b)

= ϕ(q)W(q)′(b)

h(b)
(ξ�(b)− g�(b)), (4.12)

where

g�(b): = 1+ q�W(q)(b)

W(q)′(b)
. (4.13)

In view of (4.12), we now define the (candidate) optimal threshold level for (2.7) by

b� := inf{b> 0: ξ ′�(b)≤ 0} = inf{b> 0: ξ�(b)− g(b)≤ 0}. (4.14)

Here, we set inf ∅=∞ for convenience, but we will see in Proposition 4.2 that b� is
necessarily finite.

Remark 4.4. Following the proof of Lemma 3 of [12], the function h as in (4.3) has the
following properties.

(i) As a special case with�= 0, b0 is the point where b → h(b) attains its global minimum.
Hence, h′(b)< 0 for b< b0 and h′(b)> 0 for b> b0.

(ii) We have limb→∞ h(b)=∞.
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Remark 4.5. Note that the function g� plays a key role in [14] and satisfies the following
assertions.

(i) g�(0+ )= (1+ q�W(q)(0))/W(q)′(0+ ) and g�(b)→ q�/(q) as b→∞ by (3.7).

(ii) If we define

a� := sup{b≥ 0: g�(b)≥ g�(x) for all x≥ 0},
we know that a� is finite (see [14, Proposition 3]) and is the unique point where g� has
a global maximum; see [14, proof of Theorem 1]. Moreover if a� = 0 then g′�(b)< 0
for b ∈ (0,∞), and if a� > 0 then g′�(a�)= 0, g′�(b)> 0 for b< a� and g′�(b)< 0 for
b> a�.

We will now prove an auxiliary result which describes the asymptotic behavior of the
function ξ�.

Lemma 4.2. We have

lim
b→∞ ξ�(b)= lim

b→∞ g�(b)= q�

(q)
. (4.15)

Proof. Recall from Remark 4.5 the convergence of g�. Now, letting b→∞ in (4.9), we
observe that

lim
b→∞ ξ�(b)= q�

(
1

ϕ(q)
+ lim

b→∞
W(q)(b)

h(b)

)
, (4.16)

since h(b)→∞ as b→∞. On the other hand, by the dominated convergence theorem and
using (3.7), it follows that

W(q)(b)

h(b)
=
(
ϕ(q)

∫ ∞
0

e−(ϕ(q)−(q))y W(q)′(y+ b)

W(q)(y+ b)

e−(q)[y+b]W(q)(y+ b)

e−(q)bW(q)(b)
dy

)−1

b↑∞−−→
(
ϕ(q)(q)

∫ ∞
0

e−(ϕ(q)−(q))ydy

)−1

= ϕ(q)−(q)

ϕ(q)(q)
, (4.17)

where we recall that ϕ(q)>(q). Now, applying (4.17) in (4.16), we get (4.15). �

Proposition 4.2. (i) Under Assumption 4.1, we have b� ∈ [0, a�].

(ii) Moreover, b� = 0 if and only if one of the following two cases holds:

(1) σ = 0, �(0,∞)<∞, and ϕ(q)≥ (δ+ q�)(q+�(0,∞))/(c+ q�)(c− δ)= :φ1(�),
or

(2) σ > 0 and ϕ(q)≥ 2(δ + q�)/σ 2 = :φ2(�).

Proof. (i) By the definition of b� as in (4.14) and the continuity of ξ� and g�, in order to
show that b� ≤ a�, it is sufficient to show that ξ ′�(b)≤ 0 (or, equivalently, ξ�(b)− g�(b)≤ 0)
on [a�,∞). To show this, suppose that there exists b̄> a� such that ξ�(b̄)− g�(b̄)> 0. Then,
since g� is decreasing on (a�,∞) as in Remark 4.5(ii), it follows by (4.12) that ξ�(b)− g�(b)
is increasing on (b̄,∞). However, this contradicts (4.15). Hence, ξ ′�(b)≤ 0 on [a�,∞).
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(ii) Using (4.12) and the definition of b� given in (4.14), we obtain b� = 0 if and only if
g�(0+ )≥ ξ�(0+ ). This is equivalent, by Lemma 4.1 and Remark 4.5(i), to

ϕ(q)≥ (δ+ q�)W(q)′(0+ )

(1+ q�W(q)(0))(1− δW(q)(0))
.

From here, using (3.5) and (3.6), we obtain the two cases announced in the proposition. �
Remark 4.6. For the case σ = 0 and �(0,∞)<∞ and the case σ > 0, the functions φ1 and
φ2, respectively, are both strictly increasing (since c> δ in the bounded variation case by
Assumption 4.3), with φ1(− δ/q)= φ2(− δ/q)= 0. Hence, there exists �̄ ∈ (− δ/q,∞] such
that b� = 0 for all −δ/q<�≤ �̄ and b� > 0 for all �> �̄.

(i) Suppose that σ = 0 and �(0,∞)<∞. Define

φ1(∞) := lim
�→∞ φ1(�)= q+�(0,∞)

c− δ .

If ϕ(q)≥ φ1(∞) then, by Proposition 4.2(ii), �̄=∞. Otherwise, we must have �̄ <∞
and φ1(�̄)= ϕ(q).

(ii) Suppose that σ > 0. Because lim�→∞ φ2(�)=∞, we must have �̄ <∞. This also
implies that φ2(�̄)= ϕ(q).

(iii) Suppose that σ = 0 and �(0,∞)=∞. Then, we can set �̄=−δ/q.

4.3. Verification

For the case b� > 0, by how b� is selected as in (4.14), together with (4.5) and (4.12), we
can write

vb�
� (x)= g�(b�)

(
W(q)(x)+ δ

∫ x

b�
W

(q)(x− y)W(q)′(y) dy

)
−�

(
Z(q)(x)+ δq

∫ x

b�
W

(q)(x− y)W(q)(y) dy

)
− δW(q)

(x− b�) for x≥ 0.

(4.18)

For the case b� = 0, the function vb�
� ≡ v0

� is given in (4.11).
Given the spectrally negative Lévy process X, we call a function F : R→R sufficiently

smooth if F is continuously differentiable on (0,∞) when X has paths of bounded variation
and is twice continuously differentiable on (0,∞) when X has paths of unbounded variation.
We let � be the operator acting on a sufficiently smooth function F, defined by

�F(x) := γF′(x)+ σ
2

2
F′′(x)+

∫
(0,∞)

(F(x− z)− F(x)+ F′(x)z1{0<z≤1})�(dz), x> 0.

The following lemma constitutes standard technology as far as optimal control is concerned.
For its proof we refer the reader to that of Lemma 1 in [14].

Lemma 4.3. Suppose that D̂ ∈
 is an admissible dividend strategy such that vD̂
� is sufficiently

smooth on (0,∞), vD̂
�(0)≥−�, and, for all x> 0,

(� − q)vD̂
�(x)+ sup

0≤r≤δ
(r− rvD̂′

� (x))≤ 0. (4.19)

Then vD̂
�(x)= V�(x) for all x≥ 0 and hence, D̂ is an optimal strategy.
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We first show that our candidate value function vb�
� is indeed sufficiently smooth on (0,∞).

The proof is given in Appendix A.2.

Lemma 4.4. Consider b� ≥ 0 given by (4.14). Then vb�
� is sufficiently smooth on (0,∞).

In order to prove the HJB inequality (4.19), we use a more friendly sufficient condition. For
the proof of the following result, we refer the reader to the proof of Lemma 7 in [12].

Lemma 4.5. The value function vb�
� satisfies (4.19) if and only if

vb�′
� (x)≥ 1 if 0< x≤ b�, vb�′

� (x)≤ 1 if x> b�. (4.20)

We now state the main theorem of this section. Its proof is provided in Appendix A.3.1.

Theorem 4.1. The optimal strategy for (2.7) consists of a refraction strategy at level b�, given
by (4.14), and the corresponding value function is given by (4.18).

5. Solution of the constrained de Finetti problem

In this section, we study the constrained de Finetti problem given in (2.2) under
Assumptions 4.1 and 4.3. In order to solve this problem, we use the results in Section 4, noting
that the optimal strategy for (2.5) for any K ∈ [0, 1] is the same as the case K = 0, i.e. Db� , with
b� as in (4.14), is the optimal strategy for (2.5). See the discussion at the end of Section 2.3.

Throughout this section, we assume the following (see Remark 5.2 for the case it does not
hold).

Assumption 5.1. We assume that �̄ <∞, which, by Remark 4.6, is equivalent to

ϕ(q)<φ1(∞)= q+�(0,∞)

c− δ if σ = 0 and �(0,∞)<∞. (5.1)

First we need to study the relationship between � and its corresponding optimal threshold
level b�, which will give us enough tools to see if problem (2.2) is feasible or not.

Recall Remark 4.6 and fix �> �̄ (then necessarily b� > 0). Since ξ ′�(b�)= 0 and by the
first equality of (4.12), we observe that � and b� satisfy the relation �= λ(b�), where

λ(b) := (qH(b))−1 (5.2)

with

H(b) := [h(b)]2

h′(b)
−
(

W(q)(b)+ h(b)

ϕ(q)

)
. (5.3)

The following results proved in Appendices A.4 and A.5 give properties of the functions
defined above.

Lemma 5.1. The function H(b) given in (5.3) is positive and strictly decreasing for b ∈
(b0,∞), where we recall that b0 is as in (4.14) when �= 0.

Note that Lemma 5.1 implies that λ(b) is finite, positive, and strictly increasing for b ∈
(b0,∞).

Proposition 5.1. Assume that (5.1) holds. Then, the function λ(b), given in (5.2), satisfies

(i) limb↓b0 λ(b)= �̄∨ 0,
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(ii) limb→∞ λ(b)=∞, and

(iii) bλ(b) = b for all b> b0.

Now, by (4.2) and (4.8), we see that

�x(b)= Z(q)(x)+ δq
∫ x

b
W

(q)(x− y)W(q)(y) dy

− q(W(q)(b)+ h(b)/ϕ(q))

h(b)

(
W(q)(x)+ δ

∫ x

b
W

(q)(x− y)W(q)′(y) dy

)
, (5.4)

for all b ∈ [0,∞).

Remark 5.1. Note that if x= 0 and X is of unbounded variation, we immediately obtain
�0(b)= 1 for all b≥ 0. Hence, we obtain V(0; K)= 0 if K = 1, and the problem is infeasible
otherwise.

The proof of the following result is deferred to Appendix A.6.

Lemma 5.2. Assume that x≥ 0 and in the case X is of unbounded variation that x> 0. Then
the function b →�x(b) defined in (5.4) is strictly decreasing on [0,∞) and

Kx := lim
b→∞�x(b)= Z(q)(x)− q

(q)
W(q)(x). (5.5)

By Remark 4.4(ii), the limit of (4.1) becomes

lim
b→∞Ex

[ ∫ τb

0
e−qtdDb

t

]
= 0, x≥ 0. (5.6)

We will define, for K ≥ 0,

vb
�(x; K) := vb

�(x)+�K.

Using (5.6) and Lemma 5.2 in (4.4), we obtain

lim
b→∞ vb

�(x; K)=�(K −Kx) for all x> 0. (5.7)

We are now ready to characterize the solution of (2.2). We define the do-nothing strategy as
D∞ = 0 uniformly in time and hence, UD∞

t = X. By Equation (8.9) of [10], (5.7), and Lemma
5.2, we confirm the convergence results

Ex[e−qτD∞
]=Kx = lim

b→∞�x(b) and vD∞
� (x; K)=�(K −Kx)= lim

b→∞ vDb

� (x; K), (5.8)

where τD∞ := inf{t> 0: Xt < 0}. From (2.4) and (5.8), we observe that if K ≥Kx then D∞ is
feasible for problem (2.2) and hence,

V(x; K)= sup
D∈


inf
�≥0

vD
�(x; K)≥ inf

�≥0
vD∞
� (x; K)= 0 if K ∈ [Kx, 1], (5.9)

with vD
� as in (2.3).
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Theorem 5.1. Let x≥ 0 be fixed. Assume that (5.1) and one of the following cases hold:

(i) x> 0 and X is of unbounded variation;

(ii) x≥ 0 and X is of bounded variation.

Then

V(x; K)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
vb0

0 (x; K) if K ∈ [�x(b0), 1] ,

inf�≥0 V�(x; K) if K ∈ (Kx, �x(b0)),

0 if K =Kx,

−∞ if K ∈ [0,Kx).

Proof. We will only prove (i) since the other case is similar. Recall inequality (2.4) and that
V�(x; K) is defined as in (2.5).

(a) If K ∈ [�x(b0), 1] then the threshold strategy at level b0 is feasible for problem (2.2) (see
Section 2), and therefore,

vb0
0 (x; K)≤ V(x; K)≤ inf

�≥0
V�(x; K)≤ V0(x; K)= vb0

0 (x; K).

Here the second inequality holds by (2.4) and the last equality holds because the case �= 0 is
solved by the threshold strategy with b0 in problem (2.5) (which is equivalent to (2.7)).

(b) If K ∈ (Kx, �x(b0)), since b →�x(b) is continuous and strictly decreasing, by Lemma
5.2, there exists a unique b∗ > b0 such that K −�x(b∗)= 0. Therefore,

V(x; K)≤ inf
�≥0

V�(x; K)≤ Vλ(b∗)(x; K)=Ex

[ ∫ τb∗

0
e−qtdDb∗

t

]
≤ V(x; K).

Here the first inequality holds by (2.4). The equality follows from Proposition 5.1(iii) since
Db∗ is the optimal strategy for (2.5) when �= λ(b∗). The last inequality follows since the
threshold strategy at level b∗ is feasible for problem (2.2).

(c) If K =Kx, by Lemma 5.2, we have λ(b)(K −�x(b))≤ 0 for all b> b0. Hence,

0≤ V(x; K)≤ inf
�≥0

V�(x; K)≤ inf
b>b0

(
Ex

[ ∫ τb

0
e−qtdDb

t

]
+ λ(b)(K −�x(b))

)
≤ 0.

Here the first inequality follows from (5.9), the second by (2.4), and the last by (5.6).
(d) Finally, if K ∈ [0,Kx) then Lemma 5.2 gives limb→∞ [K −�x(b)]=K −Kx < 0.

Hence, we obtain

V(x; K)≤ inf
�≥0

V�(x; K)≤ inf
b>b0

(
Ex

[ ∫ τb

0
e−qtdDb

t

]
+ λ(b)(K −�x(b))

)
=−∞,

where the second inequality holds by equation (2.4) and the last equality follows from
Proposition 5.1. �
Remark 5.2. Consider the case when Assumption 5.1 is violated. By Remark 4.6, for all
�≥ 0, we must have b� = 0 and hence, V�(x; K)=Ex[

∫ τ0
0 e−qtdD0

t ]+�(K −�x(0)). If K ∈
[�x(b0), 1] then the threshold strategy at level 0 is feasible for problem (2.2) (see Section 2),
and therefore,

v0
0(x; K)≤ V(x; K)≤ inf

�≥0
V�(x; K)≤ V0(x; K)= v0

0(x; K).
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On the other hand, if K ∈ [0, �x(0)), we obtain

V(x; K)≤ inf
�≥0

V�(x; K)= inf
�≥0

(
Ex

[ ∫ τ0

0
e−qtdD0

t

]
+�(K −�x(0))

)
=−∞.

In sum, we have

V(x; K)=
{

v0
0(x,K) if K ∈ [�x(0), 1],

−∞ if K ∈ [0, �x(0)).

6. Spectrally positive case

In this section, we solve analogous problems driven by a spectrally positive Lévy process
Y . We assume that its dual process Y =−Y has its Laplace exponent ψY as in (3.1) so that
its right inverse and scale function are given by ϕ(q) and W

(q), respectively. We also define
the drift-changed process X = {Xt = Yt − δt; t≥ 0} whose dual X =−X has its Laplace
exponent ψ as in (2.1), right inverse (q), and scale function W(q) described in Section 3.
We denote by Ex the expectation with respect to the law of the process Y when it starts at x.

In addition, for x≥ 0 and 0<K ≤ 1, we define v̄(x; K), v̄D
�(x; K), v̄�(x; K) and v̄�(x)

analogously to (2.2), (2.3), (2.5), and (2.6), respectively.
We first solve the optimal dividend problem with terminal payoff/penalty (2.7) with X

replaced with Y . Similarly to the spectrally negative Lévy case, we define for b≥ 0 the
threshold strategy D

b
and the resulting controlled surplus process, which is a refracted

spectrally positive Lévy process defined as the unique strong solution to the stochastic
differential equation

U
b
t := Yt −D

b
t := Yt − δ

∫ t

0
1{Ub

s>b} ds, t≥ 0.

Let its ruin time be denoted by

τ̄b := inf{t> 0: U
b
t < 0}.

6.1. Scale functions under a change of measure

For each β ≥ 0, we define the change of measure

dP̃βx

dP̃x

∣∣∣∣
Ft

= eβ(Yt−x)−ψY (β)t, x ∈R, t≥ 0,

where P̃x is the law of the process Y when it starts at x. It is known that Y is still a spectrally
negative Lévy process on (�,F , P̃β ) and the scale function of Y on this probability space can
be written

W
(u−ψY (β))
β (x)= e−βx

W
(u)(x),

Z
(u−ψY (β))
β (x)= 1+ (u−ψY (β))

∫ x

0
e−βz

W
(u)(z) dz,

with u−ψY (β)≥ 0; see [2, Remark 4]. In particular, (3.1) and (3.3) give q−ψY ((q))=
δ(q) and hence,

W
(δ(q))
(q) (x)= e−(q)x

W
(q)(x) and Z

(δ(q))
(q) (x)= 1+ δ(q)

∫ x

0
e−(q)z

W
(q)(z) dz. (6.1)
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6.2. Optimal dividend problem with terminal value

As in the case of the spectrally negative Lévy process, we are first interested in solving
problem (2.4) for the spectrally positive case. For this purpose, first we need to study the
optimal dividend problem with a terminal value for the process Y . Using Theorems 5(i) and
6(iii) of [11] we have the following result, whose proof is deferred to Appendix A.7.

Proposition 6.1. For x, b, q≥ 0, we have

�x(b) :=Ex[e−qτ̄b ;τ̄b <∞]= e−(q)x
Z

(δ(q))
(q) (b− x)

Z
(δ(q))
(q) (b)

, (6.2)

where Z
(δ(q))
(q) (x) is given in (6.1), τ̄b := inf{t> 0: U

b
t = 0}, and

Ex

[ ∫ τ̄b

0
e−qtdD

b
t

]
= δ

q
(Z(q)(b− x)−Z

(q)(b)�x(b)). (6.3)

Using (6.2) and (6.3), we have the following result.

Proposition 6.2. For b≥ 0, we have

v̄b
�(x) :=Ex

[ ∫ τ̄b

0
e−qtdD

b
t

]
−��x(b)=

⎧⎪⎪⎨⎪⎪⎩
δ

q
Z

(q)(b− x)− k̄x(b, �) if 0≤ x≤ b,

δ

q
− k̄b(b, �)e−(q)(x−b) if x> b,

(6.4)

where, for x≥ 0,

k̄x(b, �) :=�x(b)

(
δ

q
Z

(q)(b)+�
)

.

In order to select the optimal threshold, we apply smooth fit. Note that, by (6.4), v̄b
� is

continuous on [0,∞) for any choice of b. Here, we will study the smoothness of v̄b
� at x= b

to propose a candidate threshold level b̄� such that v̄b̄�
� is C1 (0,∞) and C2 (0,∞) when Y is

of bounded and unbounded variation, respectively. By differentiating (6.4), we see that

v̄b′
�(x)=

{
−δW(q)(b− x)+(q)(k̄x(b, �)+ δk̄b(b, �)W(q)(b− x)) if 0< x< b,

(q)k̄b(b, �)e−(q)(x−b) if x> b,
(6.5)

and, in particular, for the unbounded variation case

v̄b′′
� (x)=

⎧⎪⎨⎪⎩
δW(q)′(b− x)− [(q)]2k̄x(b, �)

−δ(q)k̄b(b, �)[(q)W(q)(b− x)+W
(q)′(b− x)] if 0< x< b,

−[(q)]2k̄b(b, �)e−(q)(x−b) if x> b,

(6.6)

where we recall that, if Y is of unbounded variation, W(q) is C1 on (0,∞). From (6.5) and
(6.6), together with (3.5) and (3.6), we have the following result.
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Lemma 6.1. Suppose that b> 0 is such that

k̄b(b, �)= 1

(q)
, or, equivalently, �e−(q)b = s(b), (6.7)

where

s(b) := 1

(q)
Z

(δ(q))
(q) (b)− δe

−(q)b

q
Z

(q)(b), b> 0. (6.8)

Then, the function v̄b
� is C1(0,∞) and C2(0,∞) for the case of bounded and unbounded

variation, respectively.

Lemma 6.2. If �> 1/(q)− δ/q, then there exists a unique b> 0 that satisfies (6.7).

Proof. In order to prove the lemma, we will show that s(b) as in (6.8) is strictly increasing
and satisfies

lim
b→0

s(b)= 1

(q)
− δ

q
and lim

b→∞ s(b)=∞. (6.9)

(i) Since s′(b)= δ(q)e−(q)b
Z

(q)(b)/q> 0 for all b> 0, then s( · ) is strictly increasing on
(0,∞).

(ii) Letting b→ 0 in (6.8), it is easy to see that the first limit of (6.9) holds.
(iii) Note that

s(b)= δZ(q)(b)

q(q)e(q)b

(qe(q)b
Z

(δ(q))
(q) (b)

δZ(q)(b)
−(q)

)
. (6.10)

Using l’Hôpital’s rule, (3.7), and the fact that ϕ(q)>(q), the following limits can be
verified:

lim
b→∞

Z
(q)(b)

e(q)b
= lim

b→∞ q[(q)]−1e(ϕ(q)−(q))be−ϕ(q)b
W

(q)(b)=∞,

lim
b→∞

Z
(δ(q))
(q) (b)

e(ϕ(q)−(q))b
= lim

b→∞ δ(q)
e−ϕ(q)b

W
(q)(b)

ϕ(q)−(q)
= δ(q)

ψ ′Y (ϕ(q))−1

ϕ(q)−(q)
,

lim
b→∞

qe(q)b
Z

(δ(q))
(q) (b)

δZ(q)(b)
= lim

b→∞
(q)(Z(δ(q))

(q) (b)/δe(ϕ(q)−(q))b + e−ϕ(q)b
W

(q)(b))

e−ϕ(q)bW(q)(b)

=(q)

(
1+ (q)

ϕ(q)−(q)

)
.

Hence, it follows that limb→∞ s(b)=∞. �
Now, we let b̄� be as in Lemma 6.2 for the case�> 1/(q)− δ/q and set it to 0 otherwise.
(i) When �> 1/(q)− δ/q, applying (6.7) in (6.4), with b= b̄�, we see that v̄b̄�

� is given
by

v̄b̄�
� (x)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ

q
Z

(q)(b̄� − x)− e−(q)(x−b̄�)

(q)
Z

(δ(q))
(q) (b̄� − x) if x≤ b̄�,

δ

q
− e−(q)(x−b̄�)

(q)
if x> b̄�.

(6.11)
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(ii) When �≤ 1/(q)− δ/q, using (6.4) and because k̄0(0, �)= δ/q+�, we have

v̄0
�(x)= δ

q
− e−(q)x

(
δ

q
+�

)
, x≥ 0. (6.12)

Theorem 6.1. The optimal strategy for (2.7) consists of a threshold strategy at level b̄�.

Proof. In view of (6.11) and (6.12), we confirm that v̄b̄�
� is sufficiently smooth. Hence, as

in the spectrally negative case, in order to verify that D
b̄� is the optimal strategy over

all admissible strategies, it is sufficient to show that the cost function v̄b̄�
� , given by (6.11)

and (6.12), satisfies (4.20) and that v̄b̄�
� (0)≥−�.

(i) Suppose that b̄� > 0, and so the threshold level b̄� satisfies (6.7). From (6.11) we have

v̄b̄�′
� (x)=

{
e−(q)(x−b̄�)

Z
(δ(q))
(q) (b̄� − x) if x≤ b̄�,

e−(q)(x−b̄�) if x> b̄�.

Clearly, v̄b̄�′
� (x)< 1 if x> b̄�. On the other hand, v̄b̄�′

� (x) is strictly decreasing on [0, b̄�]
since x → e−(q)(x−b̄�) is strictly decreasing and x →Z

(δ(q))
(q) (b̄� − x) is nonincreasing in

the interval. This together with v̄b̄�′
� (b̄�)= 1 shows that v̄b̄�′

� (x)≥ 1 if x≤ b̄�.
Finally, we note that, using (6.7), (6.8), and (6.11),

v̄b̄�
� (0)= δ

q
Z

(q)(b̄�)− e(q)b̄�

(q)
Z

(δ(q))
(q) (b̄�)=−e(q)b̄�s(b̄�)=−�.

(ii) Suppose that b̄� = 0. Since �≤ 1/(q)− δ/q, it follows that, for x≥ 0,

v̄0 ′
� (x)=(q)e−(q)x

(
δ

q
+�

)
≤ e−(q)x ≤ 1.

Finally, by (6.12) we obtain v̄0
�(0)=−�. �

6.3. Constrained de Finetti’s problem for spectrally positive Lévy processes

Now we consider problem (2.2) driven by the spectrally positive Lévy process Y . Note that

D
b̄� is the optimal strategy for (2.5) for any K ∈ [0, 1].
Let us define �̃ := 1/(q)− δ/q. Following Lemma 6.2, if �̃≥ 0, we have b̄� = 0 for

� ∈ [0, �̃]; on the other hand, if �̃ < 0 then b̄� > 0 for all �> 0.
Similarly to Section 5, we need to establish the relationship between � and its correspond-

ing threshold level b̄� given by Lemma 6.2. From (6.7) we obtain �= λ̃(b̄�) for �> �̃,
where

λ̃(b)= e(q)bs(b),

with s defined in (6.10). Since s is strictly increasing (see the proof of Lemma 6.2) and satisfies
(6.9), it immediately follows that λ̃ is also strictly increasing, limb→∞ λ̃(b)=∞, and

lim
b→b̄0

λ̃(b)=
⎧⎨⎩

1

(q)
− δ

q
if b̄0 = 0,

0 if b̄0 > 0.
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Here, the convergence for the case b̄0 > 0 holds by the fact that

lim
b→b̄0

λ̃(b)= lim
b→b̄0

e(q)bs(b)= e(q)b̄0 s(b̄0)= 0,

where the last equality follows because (6.7) and Lemma 6.2 imply that s(b̄0)= 0. Note that
b̄λ̃(b) = b for all b> b̄0.

Next, we need to show that the function b →�x(b), given in (6.2), is strictly decreasing with
x> 0 fixed. In the case that x= 0, we see that �0(b)= 1 by (6.2). The proof of the following
lemma is given in Appendix A.8.

Lemma 6.3. Let x> 0 be fixed. Then the function b →�x(b) defined in (6.2) is strictly
decreasing and satisfies

lim
b→0

�x(b)= e−(q)x and lim
b→∞�x(b)= e−ϕ(q)x.

Finally, using similar arguments as in Theorem 5.1 (noting that we have results analogous
to Lemmas 5.1(iv) and 5.2), we obtain the following theorem.

Theorem 6.2. Let x> 0 be fixed. Then

v̄(x; K)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v̄b̄0

0 (x; K) if K ∈ [�x(b̄0), 1],

inf�≥0 v̄�(x; K) if K ∈ (e−ϕ(q)x, �x(b̄0)),

0 if K = e−ϕ(q)x,

−∞ if K ∈ [0, e−ϕ(q)x).

7. Numerical examples

In this section, we confirm the obtained results through a sequence of numerical examples
for both spectrally negative and positive cases. Throughout this section, we set q= 0.05.

7.1. Spectrally negative case

We first consider the spectrally negative case as studied in Sections 4 and 5. Here we assume
that X is of the form

Xt − X0 = ct+ 0.2Bt −
Nt∑

n=1

Zn, 0≤ t<∞, (7.1)

where B= {Bt : t≥ 0} is a standard Brownian motion, N = {Nt : t≥ 0} is a Poisson process
with arrival rate κ , and Z = {Zn; n= 1, 2, . . .} is an i.i.d. sequence of exponential variables with
parameter 1 (so that Assumption 4.1 is satisfied). Here, the processes B, N, and Z are assumed
mutually independent. We refer the reader to [5] and [9] for the forms of the corresponding
scale functions.

We consider the following two parameter sets.

Case 1: κ = 1, σ = 0.2, c= 1.5, δ = 1.

Case 2: κ = 0.01, σ = 0, c= 5, δ = 0.1.
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FIGURE 1: Plots b → ξ�(b) for case 1 (left) and case 2 (right). The points at b� are indicated by squares.
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FIGURE 2: Plots of x → V�(x) (solid lines) for case 1 (left) and case 2 (right). Suboptimal value functions
vb
� (dotted lines) are also plotted for the choice of b= 0, b̄�/2, 3b̄�/2 for case 1 and b= 2, 4, 6 for case

2. The points at b� are indicated by squares and those at b in the suboptimal cases are indicated by up-
(respectively down-) pointing triangles when b> b� (respectively b< b�).

Here, case 2 corresponds to the case �̄=∞ where we have b� = 0 for any choice of � as
in Remark 4.6.

We first show the optimal solutions for the problem considered in Section 4 focusing on the
case �= 1. In Figure 1 we plot the function b → ξ�(b) as in (4.6) and (4.9). Here, in case 1,
it attains a global maximum and the maximizer becomes b� by (4.14). In contrast, in case 2, it
is monotonically decreasing and, by (4.14), we have b� = 0. In Figure 2, we plot the optimal
value function x → V�(x)= vb�

� (x) along with the suboptimal value functions vb
� for the choice

of b= 0, b̄�/2, 3b̄�/2 for case 1 and b= 2, 4, 6 for case 2. In both cases, we confirm that V�
dominates the suboptimal ones uniformly in x.

We now move onto the constrained problem (2.2) studied in Section 5, focusing on case
1 with K = 0.1. Recall that the optimal solutions are given in Theorem 5.1. In the left-
hand panel of Figure 3, we plot the function x → V�(x; K)= V�(x)+�K for various values
of � ranging from 0 to 20 000. For x ∈ (x, x), where x and x are such that Kx =K and
�x(b0)=K, respectively, its minimum over the considered � gives (an approximation of)
V(x; K), indicated by the solid red line in the plot. On the other hand, V(x; K) equals
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For various �
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FIGURE 3: (Left) Plots of x → V�(x; K) for �= 0.1, . . ., 1, 2, . . ., 10, 20, . . ., 100, 200, . . ., 1000,
2000, . . ., 10 000, 20 000 (dotted lines) and for �= 0 (solid, boldface line) for the case K = 0.1. The
two vertical dotted lines indicate the values of x and x such that Kx =K and �x(b0)=K. On [x, x],
the minimum of V�(x; K) over � is shown by a solid boldface red line. (Right) Plots of the Lagrange

multiplier �∗ on (x, x] with the same two vertical lines as in the left plot.
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FIGURE 4: Plots of V(x; K) (left) and the Lagrange multiplier �∗ (right) as functions of x and K.

V0(x; K)= vb0
0 (x; K) for x ∈ [x,∞) and it is infeasible for x ∈ [0, x). In the right-hand panel

of Figure 3, we plot, for x ∈ (x, x), the Lagrange multiplier �∗: = arg min�≥0 V�(x; K). We
observe that �∗ goes to∞ as x ↓ x and to 0 as x ↑ x.

In Figure 4, we show the values of V(x; K) and the Lagrange multiplier �∗ as functions of
(x , K). Here, those (x , K) at which the problem is infeasible are indicated by dark shades on
the z= 0 plane. It is confirmed that V(x; K) increases as x and K increase, while �∗ increases
as (x , K) decrease.

7.2. Spectrally positive case

Similarly, we confirm the results in Section 6 focusing on the case Y is of the form

Yt − Y0 =−t+ 0.2Bt +
Nt∑

n=1

Zn for t≥ 0.
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FIGURE 5: Plots of x → v̄�(x) along with suboptimal value functions v̄b
� (dotted lines) for the choice of

b= 0, b̄�/2, 3b̄�/2. The point at b̄� is indicated by a square and the points at b in the suboptimal cases
are indicated by up- (respectively down-) pointing triangles when b> b̄� (respectively b< b̄�).
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FIGURE 6: (Left) Plots of x → v̄�(x; K) for �= 0.1, . . ., 1, 2, . . ., 10, 20, . . ., 100, 200, . . ., 1000,
2000, . . ., 10 000, 20 000 (dotted lines) and for�= 0 (solid, boldface line) for the case K = 0.1. The two
vertical dotted lines indicate the values of x and x such that exp (− ϕ(q)x)=K and�x(b̄0)=K. On [x, x],
the minimum of v̄�(x; K) over � is shown by the solid boldface red line. (Right) Plots of the Lagrange

multiplier �∗ on (x, x] with the same two vertical lines as in the left plot.

Here B and N (with κ = 1.5) are the same as in the case of (7.1), and Z is a phase-type random
variable that approximates the Weibull distribution with shape parameter 2 and scale parameter
1 (see [1] for the parameters of the phase-type distribution). Throughout, we set δ = 1.

For the (Lagrangian) problem considered in Section 6.2, the optimal threshold b̄� is such
that (6.7) holds and the value function v̄�(x)= v̄b̄�

� (x) is given in (6.11). In Figure 5 we plot
the optimal value function x → v̄�(x) along with suboptimal value functions v̄b

� for the choice
of b= 0, b̄�/2, 3b̄�/2 when �= 1. For the constrained case considered in Section 6.3, in
Figures 6 and 7, we plot analogous results to those shown in Figures 3 and 4, where we assume
that K = 0.1 for Figure 6. It is confirmed that similar behaviors of the value function and the
Lagrange multiplier can be observed as in the spectrally negative case.
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FIGURE 7: Plots of v̄(x; K) (left) and the Lagrange multiplier �∗ (right) as functions of x and K.

8. Conclusions

In this paper, we studied versions of de Finetti’s problem with a constraint on the time of
ruin over the set of absolutely continuous strategies. We solved it for a spectrally negative Lévy
process with a completely monotone Lévy density and for a general spectrally positive Lévy
process. Thanks to our analysis that the optimal solution to the Lagrangian subproblem can be
characterized by a single threshold, the strong duality can be verified and hence the constrained
problem can be solved efficiently.

A natural and interesting problem will be to consider the case of a general spectrally
negative Lévy process, without the completely monotone Lévy density assumption. In
this case, threshold strategies are in general not optimal, but as is observed in Azcue and
Muler [3] in a related de Finetti’s problem, a band strategy is expected to be optimal. Here
a big challenge is to show the strong duality to solve the constrained problem via Lagrangian
subproblems. Our methods in this paper take advantage of the explicit expressions via the scale
function as well as the relation between the (single) optimal threshold and�; these fail to hold
when bands are required to characterize the optimal strategy for the Lagrangian subproblem.
We expect that novel approaches are required to solve the problem, but the results of this paper
can potentially be generalized. These are important and challenging problems and we leave
them for future work.

Appendix A. Proofs

A.1. Proof Lemma 4.1

By (3.1)–(3.3), we have ∫ ∞
0

e−ϕ(q)yW(q)(y) dy= (δϕ(q))−1. (A.1)

Using this and integration by parts,∫ ∞
0

W(q)′(y)e−ϕ(q)ydy=−W(q)(0)+ ϕ(q)
∫ ∞

0
W(q)(y)e−ϕ(q)ydy=−W(q)(0)+ δ−1. (A.2)

From here, (4.10) is immediate.
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Now, by differentiating (3.4) and changing variables,

W
(q)(x)−W(q)(x)= δ

( ∫ x

0
W

(q)(x− y)W(q)′(y) dy+W
(q)(x)W(q)(0)

)
.

This implies that

δ

∫ x

0
W

(q)(x− y)W(q)′(y) dy=W
(q)(x)−W(q)(x)− δW(q)(x)W(q)(0). (A.3)

Substituting (3.4) and (A.3) into (4.5) and after simplification, we obtain (4.11).

A.2. Proof Lemma 4.4

(i) Let us consider the case b� > 0. For x �= b�, by differentiating (4.18),

vb�′
� (x)= g�(b�)

(
W(q)′(x)+ δ

[
W

(q)(0)W(q)′(x)

+
∫ x

b�
W

(q)′(x− y)W(q)′(y) dy

]
1{x>b�}

)
− q�

(
W(q)(x)+ δ

[
W

(q)(0)W(q)(x)+
∫ x

b�
W

(q)′(x− y)W(q)(y) dy

]
1{x>b�}

)
− δW(q)(x− b�)

= g�(b�)

(
W(q)′(x)+ δ

∫ x

b�
W

(q)(x− y)W(q)′′(y) dy

)
− q�

(
W(q)(x)+ δ

∫ x

b�
W

(q)(x− y)W(q)′(y) dy

)
+ δW(q)(x− b�)

(
g�(b�)W(q)′(b�)−�qW(q)(b�)− 1

)
, (A.4)

where the last equality holds by integration by parts. Now, by the definition of g� as in (4.13),
we have

vb�′
� (x)= g�(b�)

(
W(q)′(x)+ δ

∫ x

b�
W

(q)(x− y)W(q)′′(y) dy

)
− q�

(
W(q)(x)+ δ

∫ x

b�
W

(q)(x− y)W(q)′(y) dy

)
. (A.5)

Differentiating this further, we obtain, for x �= b�,

vb�′′
� (x)= g�(b�)

(
(1+ δW(q)(0) 1{x>b�} )W(q)′′(x)+ δ

∫ x

b�
W

(q)′(x− y)W(q)′′(y) dy

)
− q�

(
(1+ δW(q)(0) 1{x>b�} )W(q)′(x)+ δ

∫ x

b�
W

(q)′(x− y)W(q)′(y) dy

)
.

(A.6)

By Remark 4.1, (A.5), and (A.6), the functions vb�′
� and vb�′′

� are continuous on R\{b�}.
Regarding the continuity at b�, from (A.5) we have vb�′

� (b� + )= vb�′
� (b� − ). In particular,

for the case that X is of unbounded variation (where W
(q)(0)= 0 as in (3.5)), we have, using

(A.6),

vb�′′
� (b� + )− vb�′′

� (b� − )= 0.

(ii) For the case b� = 0, the result follows by a direct application of Lemma 4.1.

https://doi.org/10.1017/apr.2019.32 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.32


Optimality of refraction strategies for a constrained dividend problem 657

A.3. Proof of Theorem 4.1

In order to verify inequality (4.20), we will need the following preliminary results.

Lemma A.1. ([14, Theorem 2].) Under Assumption 4.1, the q-scale function W
(q) can be

written as

W
(q)(x)= ϕ′(q)eϕ(q)x − f̂ (x), (A.7)

where f̂ is a nonnegative, completely monotone function given by f̂ (x)= ∫∞0+ e−xtμ̂(dt), where
μ̂ is a finite measure on (0,∞). Moreover, W(q)′ is strictly log-convex (and hence convex) on
(0,∞).

Remark A.1. We note that a result analogous to Lemma A.1 holds for W(q), with f and μ
playing the role of f̂ and μ̂.

The following result will be crucial for the proof of Theorem 4.1.

Lemma A.2. For x> b�, we have

vb�′
� (x)=

∫ ∞
0+

e−txl(t)μ̂(dt), (A.8)

where

l(t) := g�(b�)

(
(1− δW(q)(0))t− δt

∫ b�

0
etyW(q)′(y) dy

)
+ q�

(
1+ δt

∫ b�

0
etyW(q)(y) dy

)
+ δetb� . (A.9)

Proof. By integration by parts applied to (A.3),

δ

∫ x

0
W

(q)′(x− y)W(q)(y) dy=W
(q)(x)− (1+ δW(q)(0))W(q)(x). (A.10)

On the other hand, by differentiating (A.3), we obtain

δ

∫ x

0
W

(q)′(x− y)W(q)′(y) dy= (1− δW(q)(0))W(q)′(x)− (1+ δW(q)(0))W(q)′(x). (A.11)

Applying (A.10) and (A.11) in the first equality in (A.4) it follows that, for x> b�,

vb�′
� (x)= g�(b�)

(
(1− δW(q)(0))W(q)′(x)− δ

∫ b�

0
W

(q)′(x− y)W(q)′(y) dy

)
− q�

(
W

(q)(x)− δ
∫ b�

0
W

(q)′(x− y)W(q)(y) dy

)
− δW(q)(x− b�).

By (A.7), we can write

vb�′
� (x)=G1(x)+G2(x),
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where

G1(x) := g�(b�)ϕ′(q)ϕ(q)eϕ(q)x
(

(1− δW(q)(0))− δ
∫ b�

0
e−ϕ(q)yW(q)′(y) dy

)
− q�ϕ′(q)eϕ(q)x

(
1− δϕ(q)

∫ b�

0
e−ϕ(q)yW(q)(y) dy

)
− ϕ′(q)δeϕ(q)(x−b�),

G2(x) :=−g�(b�)

(
(1− δW(q)(0))f̂ ′(x)− δ

∫ b�

0
f̂ ′(x− y)W(q)′(y) dy

)
+ q�

(
f̂ (x)− δ

∫ b�

0
f̂ ′(x− y)W(q)(y) dy

)
+ δf̂ (x− b�),

with f̂ as in Remark A.1. Now we note that, by (A.1) and (A.2),∫ b�

0
e−ϕ(q)yW(q)′(y) dy= 1

δ
−W(q)(0)−

∫ ∞
b�

e−ϕ(q)yW(q)′(y) dy,∫ b�

0
e−ϕ(q)yW(q)(y) dy= 1

δϕ(q)
−
∫ ∞

b�
e−ϕ(q)yW(q)(y) dy.

Combining these, we obtain

G1(x)= g�(b�)ϕ′(q)ϕ(q)eϕ(q)xδ

∫ ∞
b�

e−ϕ(q)yW(q)′(y) dy

− q�ϕ′(q)eϕ(q)xδϕ(q)
∫ ∞

b�
e−ϕ(q)yW(q)(y) dy− ϕ′(q)δeϕ(q)(x−b�)

= ϕ′(q)eϕ(q)(x−b�)δ

(
ξ�(b�)h(b�)− q�ϕ(q)eϕ(q)b�

∫ ∞
b�

e−ϕ(q)yW(q)(y) dy

)
− ϕ′(q)δeϕ(q)(x−b�)

= 0.

Now, using the fact that f̂ ′(x)=−∫∞0+ te−xtμ̂(dt) and Tonelli’s theorem, we have (A.8). �
A.3.1. Proof of Theorem 4.1. By Lemmas 4.3–4.5, it is sufficient to verify (4.20), and the
condition that vb�

� (0)≥−�.
(i) First, consider the case b� > 0. In this case, recall that ξ�(b�)= g�(b�) (implied by

ξ ′�(b�)= 0 and the expression (4.12)).
1. Suppose that x≤ b�. Since g� is increasing on (0, a�) by Remark 4.5(ii) and b� ≤ a�

by Proposition 4.2(i), we obtain

ξ�(b�)= g�(b�)≥ g�(x)= 1+ q�W(q)(x)

W(q)′(x)
for all 0< x≤ b�. (A.12)

Applying (A.12) in (A.5), it follows that vb�′
� (x)≥ 1.

2. Now suppose that x> b�. Differentiating (A.9) twice, we have

l′′(t)=−δg�(b�)

(
2
∫ b�

0
yet yW(q)′(y) dy+ t

∫ b�

0
y2et yW(q)′(y) dy

)
+ δb2

�etb�

+ δq�
(

2
∫ b�

0
yet yW(q)(y) dy+ t

∫ b�

0
y2et yW(q)(y) dy

)
.
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On the other hand, using (A.12), we have g�(b�)W(q)′(y)≥ 1+ q�W(q)(y) for all y ∈ (0, b�].
Hence,

l′′(t)≤−δ
(

2
∫ b�

0
yet y(1+ q�W(q)(y)) dy+ t

∫ b�

0
y2et y(1+ q�W(q)(y)) dy

)
+ δb2

�etb�

+ δq�
(

2
∫ b�

0
yet yW(q)(y) dy+ t

∫ b�

0
y2et yW(q)(y) dy

)
=−δ

(
2
∫ b�

0
yet ydy+ t

∫ b�

0
y2et ydy

)
+ δb2

�etb�

= 0.

Therefore, l is a concave function. In addition, since l(0)= q�+ δ, which is positive by
Assumption 4.2, and recalling that x> b�, it follows that there exists 0< p≤∞ such that
l is positive on (0, p) and negative on (p,∞). Consequently,

e−(x−b�)tl(t)≥ e−(x−b�)pl(t), t> 0. (A.13)

Now we note from (A.9) that there exists a constant C(b�) independent of t such that |l(t)| ≤
C(b�)(1+ t)etb� . Therefore, using the fact that x> b� and the dominated convergence, we can
take the derivative inside the integral in (A.8) and obtain

vb�′′
� (x)=−

∫ ∞
0+

e−(x−b�)te−b�ttl(t)μ̂(dt)

≤−e−(x−b�)p
∫ ∞

0+
e−b�ttl(t)μ̂(dt)

= e−(x−b�)pvb�′′
� (b�), (A.14)

where the inequality holds by (A.13). On the other hand, Proposition 4.2 implies that b� ≤ a�,
and hence, by Remark 4.5(ii),

0≤ g′�(b�)= q�− W(q)′′(b�)

W(q)′(b�)
g�(b�).

Therefore, (A.6) gives

vb�′′
� (b� + )= (1+ δW(q)(0))(g�(b�)W(q)′′(b�)− q�W(q)′(b�))≤ 0.

In combination with (A.14), it follows that vb�′
� is nonincreasing on (b�,∞). In addition, we

note using (4.13) and (A.5) that

vb�′
� (b�)= g�(b�)W(q)′(b�)− q�W(q)(b�)= 1.

Hence, we deduce that vb�′
� (x)≤ 1 for x> b�.

3. Finally, using (4.18), and the fact that g�(b�)≥ 0,

vb�
� (0)= g�(b�)W(q)(0)−�≥−�,

as required.
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(ii) Now, consider the case b� = 0. By taking a derivative in (4.11), and using (4.10) and
(A.7), we obtain

v0 ′′
� (x)= (δ+ q�)

(
W

(q)′(x)

ϕ(q)
−W

(q)(x)

)′
= (δ+ q�)

(
− f̂ ′(x)

ϕ(q)
+ f̂ (x)

)′
= (δ+ q�)

(
− f̂ ′′(x)

ϕ(q)
+ f̂ ′(x)

)
,

which is negative because f̂ is completely monotone. Therefore, v0 ′
� (x) is nonincreasing, and

hence, it is enough to verify that v0 ′
� (0+ )≤ 1 or, equivalently,

(δ+ q�)W(q)′(0+ )

1+ (δ+ q�)W(q)(0)
≤ ϕ(q).

This inequality is automatically satisfied in cases 1 and 2 given in Proposition 4.2(ii).
Therefore, we have (4.20) when b� = 0. To complete the proof, using (4.10), (4.11), and
Assumption 4.2, we have

v0
�(0)= (δ+ q�)

ϕ(q)
W

(q)(0)−�≥−�.

A.4. Proof of Lemma 5.1

First we note that, using (4.3),

h′(b)= ϕ(q)(h(b)−W(q)′(b)). (A.15)

Hence,

h′(b)H(b)= ϕ(q)W(q)(b)

(
W(q)′(b)

W(q)(b)

(
W(q)(b)+ h(b)

ϕ(q)

)
− h(b)

)
. (A.16)

Now, since h′ > 0 on (b0,∞) (see Remark 4.4(i)), it is enough to show that the right-hand side
of (A.16) is positive. On the other hand, we know from [8] that W(q) is log-concave on (0, a0]
and strictly log-concave on (a0,∞), where a0 is defined in Remark 4.5 for the case �= 0.
Then

W(q)′(η)

W(q)(η)
≥ W(q)′(ς )

W(q)(ς )
for any η and ς with 0<η≤ ς .

Note that the previous inequality is strict when a0 <η< ς . From here, it can be verified that

W(q)′(b)

W(q)(b)

∫ ∞
b

e−ϕ(q)yW(q)(y) dy>
∫ ∞

b
e−ϕ(q)yW(q)′(y) dy,

and using (4.3) and (4.8), it follows that

W(q)′(b)

W(q)(b)

(
W(q)(b)+ h(b)

ϕ(q)

)
> h(b) for all b> 0. (A.17)

From (A.16) and (A.17), we have h′(b)H(b)> 0 for b ∈ (b0,∞), as desired.
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Now, taking the first derivative in (5.3) and by (A.15), we have

H′(b)= h(b)− [h(b)]2h′′(b)

[h′(b)]2

= h(b)

[h′(b)]2
([h′(b)]2 − h(b)h′′(b))

= [ϕ(q)h(b)]2W(q)′(b)

[h′(b)]2

(
W(q)′(b)

h(b)
+ W(q)′′(b)

ϕ(q)W(q)′(b)
− 1

)
,

where the last equality holds because

[h′(b)]2 − h(b)h′′(b)

= ϕ2(q)(h(b)−W(q)′(b))2 − h(b)ϕ(q)[ϕ(q)(h(b)−W(q)′(b))−W(q)′′(b)]

= ϕ(q){ϕ(q)(W(q)′(b)2 − h(b)W(q)′(b))+ h(b)W(q)′′(b)}.
Since, by Remark A.1, W(q)′ is a strictly log-convex function, we have

W(q)′′(η)

W(q)′(η)
<

W(q)′′(ς )

W(q)′(ς )
for any η and ς with 0<η < ς .

From the above and integration by parts we can show that

W(q)′′(b)

W(q)′(b)
h(b)<ϕ(q)eϕ(q)b

∫ ∞
b

e−ϕ(q)yW(q)′′(y) dy=−ϕ(q)W(q)′(b)+ ϕ(q)h(b),

and hence,

W(q)′(b)

h(b)
+ W(q)′′ (b)

ϕ(q)W(q)′(b)
− 1<

W(q)′(b)

h(b)
+ h(b)−W(q)′(b)

h(b)
− 1= 0.

Hence, we conclude that the function H as in (5.3) is strictly decreasing.

A.5. Proof of Proposition 5.1

(i) For the case �̄≥ 0, Remark 4.6 gives b0 = 0. Then, from (4.10), (5.3), and (A.15),

lim
b→0

H(b)= [h(0)]2

h′(0+ )
−
(

W(q)(0)+ h(0)

ϕ(q)

)
= h(0)W(q)′(0+ )− ϕ(q)W(q)(0)(h(0)−W(q)′(0+ ))

ϕ(q)(h(0)−W(q)′(0+ ))

= δ
−1W(q)′(0+ )− ϕ(q)W(q)(0)(δ−1 −W(q)(0))

ϕ(q)(δ−1 −W(q)(0))−W(q)′(0+ )
.

Using (3.5), (3.6), and the fact that φ1(�̄)= ϕ(q) or φ2(�̄)= ϕ(q) (see Remark 4.6), it can be
verified that limb→0 H(b)= 1/q�̄ (where in the case �̄= 0 the right-hand side is understood
to be∞), and hence, limb↓b0 λ(b)= limb↓0 λ(b)= �̄.

For the case �̄ < 0, Remark 4.6 gives b0 > 0. By Lemma 3 of [12], we know that h
attains its unique minimum at b0 and, by the continuity of h′, limb→b0 h′(b)= h′(b0)= 0.
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In addition, by (A.15), limb→b0 h(b)=W(q)′(b0)> 0. Therefore, from (5.3), we obtain
limb→b0 H(b)=∞, and, hence, limb↓b0 λ(b)= 0= �̄∨ 0.

(ii) From Remark A.1, we can write

h(b)= ϕ(q)

(
(q)′(q)e(q)b

ϕ(q)−(q)
− f̃ (b)

)
,

where f̃ (b) := ∫∞0 e−ϕ(q)yf ′(y+ b) dy, and hence we get the following expressions:

[h(b)]2 = [ϕ(q)]2
(

[(q)′(q)]2

(ϕ(q)−(q))2
e2(q)b − 2(q)′(q)

ϕ(q)−(q)
e(q)bf̃ (b)+ [ f̃ (b)]2

)
,

h′(b)= ϕ(q)

(
[(q)]2′(q)

ϕ(q)−(q)
e(q)b − ϕ(q) f̃ (b)+ f ′(b)

)
,

and

W(q)(b)+ h(b)

ϕ(q)
= ′(q)ϕ(q)

ϕ(q)−(q)
e(q)b − f̃ (b)− f (b).

Applying these identities in (5.3), it follows that

H(b)= ϕ(q)(q)′(q)

ϕ(q)−(q)
H1(b)+ ϕ(q)2[ f̃ (b)]2

h′(b)
+ f̃ (b)+ f (b),

where

H1(b) := e(q)b
[
ϕ(q)

h′(b)

(
(q)′(q)

ϕ(q)−(q)
e(q)b − 2f̃ (b)

)
− 1

(q)

]
= ϕ(q)

(q)

ϕ(q) f̃ (b)− 2(q) f̃ (b)− f ′(b)

h′(b)
.

By the dominated convergence theorem we have f (b)→ 0, f̃ (b)→ 0, and f ′(b)→ 0 as b→∞.
Hence limb→∞ H(b)= 0 or, equivalently, limb→∞ λ(b)=∞.

(iii) Fix b> b0. First let us assume that b0 > 0 or that b0 = 0 and h′(0+ )= 0. Then, using
(4.12) for �= λ(b), we have

dξλ(b)(ς )

dς
= qλ(b)− h′(ς )

h(ς )
ξλ(b)(ς ) for ς > 0. (A.18)

For ς ∈ (0, b0], by the fact that h′(ς )≤ 0 for ς ∈ [0, b0] (see Remark 4.4(i)) we have that
dξλ(b)(ς )/dς > 0. On the other hand, applying (A.15) and (4.9) in (A.18),

dξλ(b)(ς )

dς
= 1

[h(ς )]2

(
qλ(b)

(
[h(ς )]2 − h′(ς )

(
W(q)(ς )+ h(ς )

ϕ(q)

))
− h′(ς )

)
= h′(ς )

[h(ς )]2

(
λ(b)

λ(ς )
− 1

)
. (A.19)

Then, using the fact that ς → λ(ς ) is strictly increasing as in (i), and that h′(ς )> 0 for ς > b0
(see Remark 4.4(i)), we have dξλ(b)(ς )/dς > 0 for b0 <ς < b and vanishes at ς = b. Now let
us assume that b0 = 0 and that h′(0+ )> 0. Then, by the proof of Lemma 3 of [12], we have
h′(ζ )> 0 for all ζ > 0. Hence, (A.19) implies that dξλ(b)(ς )/dς > 0 for 0<ς < b and vanishes
at ς = b. The above implies that b= inf{ς ≥ 0: dξλ(b)(ς )/dς ≤ 0}. Therefore, by (4.14) we
obtain bλ(b) = b for all b> b0.
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A.6. Proof of Lemma 5.2.

1. We have, by (A.15),

d

db

W(q)(b)

h(b)
= α(b)

[h(b)]2
, b> 0, (A.20)

with

α(b) :=W(q)′(b)h(b)−W(q)(b)ϕ(q)(h(b)−W(q)′(b))> 0, b> 0,

where the positivity holds by (A.17).
If x≤ b, we have, by (5.4),

�x(b)= Z(q)(x)− q(W(q)(b)+ h(b)/ϕ(q))

h(b)
W(q)(x). (A.21)

Taking the derivative with respect to b, by (A.20) and the positivity of α,

d�x(b)

db
=−qW(q)(x)

[h(b)]2
α(b)< 0.

Therefore, �x is strictly decreasing on [x,∞).
Suppose that b< x. By (A.20) and (5.4),

d�x(b)

db
=−δqW(q)(x− b)W(q)(b)

+ qδW(q)(x− b)W(q)′(b)(W(q)(b)+ h(b)/ϕ(q))

h(b)

− q

(
W(q)(x)+ δ

∫ x

b
W

(q)(x− y)W(q)′(y)dy

)
d

db

[
W(q)(b)+ h(b)/ϕ(q)

h(b)

]
= q

[h(b)]2
r(b; x)α(b), (A.22)

where, for x, b≥ 0,

r(b; x) := δW
(q)(x− b)h(b)

ϕ(q)
−W(q)(x)− δ

∫ x

b
W(x− y)W(q)′(y) dy.

To prove that d�x/db< 0 on (0 , x), by the positivity of α, we only need to verify that r(b; x)<
0 for all b ∈ (0, x).

Note that, by (4.8),

δW(q)(x− b)h(b)

ϕ(q)
= δW(q)(x− b)

(
ϕ(q)eϕ(q)b

∫ ∞
b

e−ϕ(q)yW(q)(y) dy−W(q)(b)

)
.

Using integration by parts and (A.10),

− δ
∫ x

b
W

(q)(x− y)W(q)′(y) dy

= δW(q)(x− b)W(q)(b)−W
(q)(x)+W(q)(x)+ δ

∫ b

0
W

(q)′(x− y)W(q)(y) dy.
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Substituting these,

r(b; x)=−W(q)(x)+ δ
∫ b

0
W

(q)′(x− y)W(q)(y) dy

+ δϕ(q)eϕ(q)b
W

(q)(x− b)
∫ ∞

b
e−ϕ(q)yW(q)(y) dy.

Now, we rewrite this using Lemma A.1. By observing that the terms corresponding to eϕ(q)x

all cancel out (using the fact that
∫∞

0 e−ϕ(q)yW(q)(y) dy= (δϕ(q))−1), it follows that

r(b; x)= f̂ (x)− δ
∫ b

0
f̂
′
(x− y)W(q)(y) dy− δϕ(q)eϕ(q)bf̂ (x− b)

∫ ∞
b

e−ϕ(q)yW(q)(y) dy

=
∫ ∞

0
e−xt

(
1+ δt

∫ b

0
eytW(q)(y) dy

− δϕ(q)eb(t+ϕ(q))
∫ ∞

b
e−ϕ(q)yW(q)(y) dy

)
μ̂(dt). (A.23)

Taking the derivative with respect to b in (A.23), it follows that

∂r(b; x)

∂b
=
∫ ∞

0
e−xt

(
δ(t+ ϕ(q))ebtW(q)(b)

− δϕ(q)(t+ ϕ(q))eb(t+ϕ(q))
∫ ∞

b
e−ϕ(q)yW(q)(y) dy

)
μ̂(dt)

<

∫ ∞
0

e−xt
(
δ(t+ ϕ(q))ebtW(q)(b)

− δϕ(q)(t+ ϕ(q))eb(t+ϕ(q))W(q)(b)
∫ ∞

b
e−ϕ(q)ydy

)
μ̂(dt)

= 0,

where the inequality follows since W(q) is strictly increasing on (0,∞). From here we conclude
that r(b; x) is strictly decreasing on (0, x).

On the other hand, by (A.23) we obtain limb→0 r(b; x)= 0, and hence, r(b; x)< 0 on (0, x).
Now we conclude by (A.22) that b →�x(b) is also strictly decreasing on (0, x).

2. By (4.17), we see that

lim
b→∞

W(q)(b)+ h(b)/ϕ(q)

h(b)
= 1

(q)
. (A.24)

Then, letting b→∞ in (A.21) and using (A.24), we obtain the expression in (5.5).

A.7. Proof of Proposition 6.1

Consider U−b the (spectrally negative) refracted Lévy process with refraction level −b,
driven by the process X (as in Section 2), and η−b := inf{t> 0: U−b

t > 0}. Then

�x(b)=E−x[e−qη−b ; η−b <∞],

Ex

[ ∫ τ̄b

0
e−qtdD

b
t

]
= δ

(
1

q
(1−�x(b))−E−x

[ ∫ η−b

0
e−qt 1{U−b

t >−b} dt

])
.
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Now from Theorem 5(i) of [11], we have (6.2). On the other hand, by Theorem 6(iii) of [11],
we obtain

E−x

[ ∫ η−b

0
e−qt 1{U−b

t >−b} dt

]
=�x(b)W

(q)
(b)−W

(q)
(b− x).

Hence, putting the pieces together we get (6.3).

A.8. Proof of Lemma 6.3

For b ∈ (0, x), we have �x(b)= e−(q)x/Z
(δ(q))
(q) (b), which is clearly strictly decreasing.

To see that it is strictly decreasing on [x,∞), we need to show that d�x(b)/db< 0 on
(x,∞). This is satisfied if we can show that

w(y1, y2)> 0, y1 < y2,

where we define, with y2 fixed,

w(y, y2) := Z
(δ(q))
(q) (y)

Z
(δ(q))
(q) (y2)

− W
(δ(q))
(q) (y)

W
(δ(q))
(q) (y2)

for any y ∈R.

Recall the change of measure addressed in Section 6.1. Because, for y> 0,

{e−δ(q)(t∧τ0,y)
W

(δ(q))
(q) (Yt∧τ0,y ) : t≥ 0} and {e−δ(q)(t∧τ0,y)

Z
(δ(q))
(q) (Yt∧τ0,y) : t≥ 0}

are P̃
(q)
x -martingales (see Proposition 3 of [19]), where τ0,y := inf{t> 0: Yt < 0 or Yt > y},

it follows that {e−δ(q)(t∧τ0,y2 )w(Yt∧τ0,y2
, y2) : t≥ 0} is a P̃

(q)
x -martingale. Now, taking y1 < y2

and using the optimal stopping theorem,

w(y1, y2)= Ẽ
(q)
y1

[e−q(t∧τ0,y2 )w(Yt∧τ0,y2
, y2)],

where Ẽ
(q)
y1 is the expected value with respect to the probability measure P̃

(q)
y1 . Noting that w

is bounded (recalling that Y is spectrally negative) and taking t→∞, dominated convergence
gives

w(y1, y2)= Ẽ
(q)
y1

[e−qτ0,y2 w(Yτ0,y2
, y2)].

Now we note that the following assertions hold.

(i) If Y has paths of unbounded variation then W
(δ(q))
(q) (0)= 0, and hence, w(y, y2)> 0

for y ∈ (−∞, 0]. On the other hand, P̃(q)
x (Yτ0,y2

≤ 0)> 0.

(ii) If Y has paths of bounded variation then w(y, y2)> 0 for y ∈ (−∞, 0), and

P̃
(q)
x (Yτ0,y2

≤ 0)= P̃
(q)
x (Yτ0,y2

< 0)> 0.

These facts imply that

w(y1, y2)= Ẽ
(q)
y1

[e−qτ0,y2 w(Yτ0,y2
, y2)]≥ Ẽ

(q)
y1

[e−qτ0,y2 w(Yτ0,y2
, y2) 1{Yτ0,y2

≤0} ]> 0.

From here we conclude that �x is strictly decreasing on (0,∞). Finally, letting b→ 0 in (6.2),
it is clear that limb→0 �x(b)= e−(q)x. On the other hand, using l’Hôpital’s rule and (3.7),
we have

lim
b→∞

Z
(δ(q))
(q) (b− x)

Z
(δ(q))
(q) (b)

= 1

e(ϕ(q)−(q))x
lim

b→∞
e−ϕ(q)(b−x)

W
(q)(b− x)

e−ϕ(q)bW(q)(b)
= 1

e(ϕ(q)−(q))x
.

Hence, limb→∞ �x(b)= e−ϕ(q)x.
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