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Abstract. We show that for any quasimeromorphic mapping with an essential singularity
at infinity, there exist points whose iterates tend to infinity arbitrarily slowly. This extends
a result by Nicks for quasiregular mappings, and Rippon and Stallard for transcendental
meromorphic functions on the complex plane. We further establish a new result for the
growth rate of quasiregular mappings near an essential singularity, and briefly extend some
results regarding the bounded orbit set and the bungee set to the quasimeromorphic setting.
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1. Introduction
First introduced and studied by Eremenko [11] for transcendental entire functions, and
later extended to transcendental meromorphic functions f by Domı́nguez [10], the
escaping set is defined as

I ( f )= {z ∈ C : f n(z) 6= ∞ for all n ∈ N, f n(z)→∞ as n→∞}.

It has been shown in [10, 11] that I ( f ) 6=∅ and the escaping set is strongly related to the
Julia set, via J ( f ) ∩ I ( f ) 6=∅ and J ( f )= ∂ I ( f ). Since then, properties of the escaping
set have been extensively studied; see for example [13, 29, 30, 32, 33].

The fast escaping set A( f )⊂ I ( f ) was introduced by Bergweiler and Hinkkanen [6]
for transcendental entire functions. Subsequently, it was asked whether all escaping points
could be fast escaping. Rippon and Stallard [31] proved that this is not the case even for
transcendental meromorphic mappings, showing that there always exist points in J ( f ) that
escape arbitrarily slowly under iteration. Other results in complex dynamics surrounding
slow escape and different rates of escape have been studied in [8, 28, 34, 38].
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Quasiregular mappings and quasimeromorphic mappings generalize analytic and
meromorphic functions on the plane to higher-dimensional Euclidean space Rd , d ≥ 2,
respectively. We say that a quasiregular or quasimeromorphic mapping on Rd is of
transcendental type if it has an essential singularity at infinity. In this new setting, some
analogous results for the escaping set also hold; see [4, 5]. In particular, Nicks [17] recently
extended the slow escape result to the case of quasiregular mappings of transcendental
type. We defer the definition of quasiregular and quasimeromorphic mappings until §2.

Recently, the Julia set has been investigated for quasimeromorphic mappings of
transcendental type with at least one pole in [37], as follows:

J ( f ) := {x ∈ R̂d
\O−f (∞) : card(R̂d

\O+f (Ux )) <∞ for all

neighbourhoods Ux ⊂ R̂d
\O−f (∞) of x} ∪O−f (∞). (1.1)

Here for x ∈ R̂d
:= Rd

∪ {∞}, we denote the backward orbit of x as

O−f (x)=
∞⋃

k=0

f −k(x),

while for X ⊂ Rd
\O−f (∞), we denote the forward orbit of X as

O+f (X)=
∞⋃

k=0

f k(X).

Using similar techniques to those from [17] and [5], it has been possible to extend the
slow escape result to the case of quasimeromorphic mappings of transcendental type with
at least one pole.

THEOREM 1.1. Let f : Rd
→ R̂d be a quasimeromorphic map of transcendental type with

at least one pole. Then for any positive sequence an→∞, there exists ζ ∈ J ( f ) and
N ∈ N such that | f n(ζ )| →∞ as n→∞, while also | f n(ζ )| ≤ an whenever n ≥ N.

Although Rippon and Stallard [31] proved this theorem for transcendental meromorphic
functions, their method relied on results that do not extend to the quasimeromorphic
setting. In particular, in the case when there are infinitely many poles, they used a version
of the Ahlfors five-island theorem. The proof given here offers an alternative proof in the
meromorphic case which is, in some sense, more elementary.

During Nicks’s proof of the existence of slow escaping points in [17], an important
growth result by Bergweiler was needed [1, Lemma 3.3], which was concerned with the
growth rate of quasiregular mappings of transcendental type defined on the whole of Rd .
We have been able to extend this result to the case where the mapping is quasiregular in a
neighbourhood of an essential singularity.

In what follows, we denote the region between two spheres centered at the origin of
radii 0≤ r < s ≤∞, by

A(r, s)= {x ∈ Rd
: r < |x |< s}.

Further, for a quasiregular mapping f : A(R, S)→ Rd and a given R < r < S, the
maximum modulus is defined by M(r, f )=max{| f (x)| : |x | = r}.
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THEOREM 1.2. Let R > 0, let f : A(R,∞)→ Rd be a quasiregular map with an essential
singularity at infinity, and let A > 1. Then

lim
r→∞

M(Ar, f )
M(r, f )

=∞.

As an immediate consequence of Theorem 1.2, we get the following useful corollary.

COROLLARY 1.3. Let R > 0 and f : A(R,∞)→ Rd be a quasiregular map with an
essential singularity at infinity. Then

lim
r→∞

log M(r, f )
log r

=∞.

Theorem 1.2 and Corollary 1.3 will be used in the proof of Theorem 1.1 in the case when
there are finitely many poles. Furthermore, Theorem 1.2 can be applied in the proof of [18,
Lemma 2.6] to rectify an omission there. Namely, in [18] it is claimed that the proof of a
statement like Theorem 1.2 is similar to the proof of Bergweiler’s result [1, Lemma 3.3].
However, part of the proof in [1] relies upon the function being quasiregular on the whole
of Rd . This means that it cannot be applied when the function is only quasiregular in a
neighbourhood of an essential singularity, as in both [18, Lemma 2.6] and Theorem 1.2.
Nonetheless, we will show in §3 that it is possible to significantly adapt the ideas in [1] to
obtain a proof of Theorem 1.2. These new results may be of independent interest.

Alongside the escaping set I ( f ), it is useful to consider the sets

BO( f ) := {x ∈ Rd
: { f n(x) : n ∈ N} is bounded}, and

BU( f ) := Rd
\ (I ( f ) ∪ BO( f ) ∪O−f (∞)).

These sets are known as the bounded orbit set and the bungee set, respectively; BO( f )
consists of points with a bounded forward orbit, while BU( f ) consists of points x whose
sequence of iterates ( f n(x)) contains both a bounded subsequence and a subsequence that
tends to infinity. Together with I ( f ) and O−f (∞), these sets partition Rd based on the
behaviour of the forward orbit of the points. Further, it is clear by their definitions that
BO( f ) and BU( f ) are also completely invariant under f .

For a transcendental entire function f , the sets BO( f ) and BU( f ) have been well
studied; for the former, see for example [2, 20], while for the latter we refer to [12, 21, 35].
It should be noted that BO( f ) is often denoted as K ( f ) in the literature, however this
notation is not used in the quasiregular setting because K ( f ) is reserved for the dilatation
of a quasiregular mapping.

When f is a transcendental meromorphic function, by following a similar argument to
that given in [21, Proof of Theorem 1.1] and using the fact that BU( f ) 6=∅ (which shall
follow from Theorem 1.4), we get the following relationship between these sets and the
Julia set.

J ( f )= ∂ I ( f )= ∂BO( f )= ∂BU( f ). (1.2)

Some results for BO( f ) and BU( f ) were successfully extended to the case where f is
quasiregular of transcendental type in [7] and [19], respectively. For instance, it was shown
that both BO( f ) and BU( f ) intersect J ( f ) infinitely often, and J ( f )⊂ ∂ I ( f ) ∩ ∂BO( f ).
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Further, for many quasiregular mappings of transcendental type we also have that J ( f )⊂
∂BU( f ). However, examples in [7, 19] show that equation (1.2) does not extend to entire
quasiregular mappings of transcendental type.

For quasimeromorphic mappings of transcendental type with at least one pole, we find
that analogous results hold.

THEOREM 1.4. Let f : Rd
→ R̂d be a quasimeromorphic map of transcendental type with

at least one pole. Then:
(i) BO( f ) ∩ J ( f ) and BU( f ) ∩ J ( f ) are infinite;
(ii) J ( f )⊂ ∂ I ( f ) ∩ ∂BO( f ) ∩ ∂BU( f ).

By extending the examples mentioned above, we can show that equality in Theorem
1.4(ii) need not hold for general mappings in the new setting. Examples 6.2 and 6.3 shall
show that it is possible to have (∂ I ( f ) ∩ ∂BO( f )) \ J ( f ) 6=∅ and ∂BU( f ) \ J ( f ) 6=∅,
respectively.

The majority of this paper will be dedicated to the proof of Theorem 1.1, which shall be
completed in two parts. Firstly, §2 will be dedicated to stating definitions and preliminary
results. In §3 we will prove Theorem 1.2. From here, following a similar argument by
Nicks [17], the case when the mapping f has finitely many poles in Theorem 1.1 will be
proven in §4, by considering whether f has the ‘pits effect’ (see §4.1) or not. In §5, we
treat the remaining case where f has infinitely many poles. Finally, in §6 we will prove
Theorem 1.4 and provide counterexamples to equation (1.2) in the new setting.

2. Preliminary results
2.1. Quasiregular and quasimeromorphic mappings. For notation, for d ≥ 2 and x ∈
Rd we denote the d-dimensional ball centered at x of radius r > 0 as B(x, r)= {y ∈ Rd

:

|x − y|< r}. We also denote the (d − 1)-sphere centered at the origin of radius r > 0
by S(r)= ∂B(0, r). Finally, given λ ∈ R and a set X ⊂ Rd , we define the scaled set
λX := {λx : x ∈ X}.

We shall briefly recall the definition and some main results of quasiregular and
quasimeromorphic mappings here. For a more comprehensive introduction to these
mappings, we refer to [14], [23] and [27].

Let d ≥ 2 and U ⊂ Rd be a domain. For 1≤ p <∞, the Sobolev space W 1
p,loc(U )

consists of all functions f :U → Rd for which all first-order weak partial derivatives
exist and are locally in L p(U ). A non-constant continuous map f ∈W 1

d,loc(U ) is called
quasiregular if there exists some constant K ≥ 1 such that(

sup
|h|=1
|D f (x)(h)|

)d

≤ K J f (x) almost everywhere, (2.1)

where D f (x) denotes the derivative of f (x) and J f (x) denotes the Jacobian determinant.
The smallest constant K for which equation (2.1) holds is called the outer dilatation and
denoted KO( f ).

If f is quasiregular, then there also exists some K ′ ≥ 1 such that

K ′
(

inf
|h|=1
|D f (x)(h)|

)d

≥ J f (x) almost everywhere. (2.2)

https://doi.org/10.1017/etds.2019.110 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.110


1194 L. Warren

The smallest constant K ′ for which equation (2.2) holds is called the inner dilatation and
denoted K I ( f ). Finally, the dilatation of f is defined as K ( f ) :=max{KO( f ), K I ( f )}
and if K ( f )≤ K for some K ≥ 1, then we say that f is K -quasiregular.

The definition of quasiregularity can be naturally extended to mappings into R̂d . For a
domain D ⊂ Rd , we say that a continuous map f : D→ R̂d is called quasimeromorphic if
every x ∈ D has a neighbourhood Ux such that either f or M ◦ f is quasiregular from Ux

into Rd , where M : R̂d
→ R̂d is a sense-preserving Möbius map such that M(∞) ∈ Rd .

If f and g are quasiregular mappings, with f defined in the range of g, then f ◦ g is
quasiregular, with

K ( f ◦ g)≤ K ( f )K (g). (2.3)

Similarly, if g is a quasiregular mapping and f is a quasimeromorphic mapping defined
in the range of g, then f ◦ g is quasimeromorphic and the above inequality also holds.

It was established by Reshetnyak [23, 24], that every K -quasiregular map f is discrete
and open. Moreover, many other properties of analytic and meromorphic mappings
have analogues for quasiregular and quasimeromorphic mappings, such as the following
analogue of Picard’s theorem by Rickman [25, 26].

THEOREM 2.1. Let d ≥ 2, K ≥ 1. Then there exists a positive integer q̃0 = q̃0(d, K ),
called Rickman’s constant, such that if R > 0 and f : A(R,∞)→ R̂d

\ {a1, a2, . . . , aq̃0}

is a K -quasimeromorphic mapping with a1, a2, . . . , aq̃0 ∈ R̂
d distinct, then f has a limit

at∞.
In particular, if b1, b2, . . . , bq̃0 ∈ R̂

d are distinct points and f : Rd
→ R̂d is a

K -quasimeromorphic mapping of transcendental type, then there exists some i ∈
{1, 2, . . . , q̃0} such that f −1(bi ) contains points of arbitrarily large modulus.

It should be noted that by the above theorem, the exceptional set E( f ) := {x ∈ Rd
:

O−f (x) is finite} has at most q̃0 elements.
For K -quasiregular mappings, the quantity q0 := q̃0 − 1 is also referred to as Rickman’s

constant. This is because infinity is omitted, which is not always the case for K -
quasimeromorphic mappings. Since the case with finitely many poles reduces down to
K -quasiregular mappings defined near an essential singularity, we shall mainly use q0 and
refer to it explicitly as Rickman’s quasiregular constant.

Another important theorem is a sufficient condition for when a quasiregular mapping
can be extended over isolated points. The following theorem follows from a result first
established by Callendar [9], which was later generalized by Martio, Rickman and Väisälä
[15].

THEOREM 2.2. Let D ⊂ Rd be a domain, E ⊂ D be a finite set of points and f : D \ E→
Rd be a bounded K -quasiregular mapping. Then f can be extended to a K -quasiregular
mapping on all of D.

2.2. Capacity of a condenser. Let U ⊂ Rd be an open set and C ⊂U be non-empty
and compact. We call the pair (U, C) a condenser and define the (conformal) capacity of
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(U, C), denoted cap(U, C), by

cap(U, C) := inf
φ

∫
U
|∇φ|ddm,

where the infimum is taken over all non-negative functions φ ∈ C∞0 (U ) satisfying φ(x)≥
1 for all x ∈ C .

It was shown by Reshetnyak [23] that if cap(U, C)= 0 for some bounded open set
U ⊃ C , then cap(V, C)= 0 for all bounded open sets V ⊃U . In this case, we say that C
has zero capacity and write cap(C)= 0; otherwise we say that C has positive capacity and
write cap(C) > 0. If C ⊂ Rd is an unbounded closed set, then we say that cap(C)= 0 if
cap(C ′)= 0 for every compact set C ′ ⊂ C .

It is known from [36, Theorem 4.1] that cap(C)= 0 implies C has Hausdorff dimension
zero. Also, it is known that if C is a countable set, then cap(C)= 0. Hence, we can
informally consider sets of capacity zero as ‘small’ sets.

For a quasimeromorphic mapping of transcendental type with at least one pole, a strong
relationship between points with finite backward orbits and capacity was established in
[37].

THEOREM 2.3. Let f : Rd
→ R̂d be a quasimeromorphic mapping of transcendental type

with at least one pole. Then x ∈ E( f ) if and only if cap(O−f (x))= 0.

2.3. Julia set of quasimeromorphic mappings. The following theorem due to Miniowitz
[16] is an extension of Montel’s theorem to the quasimeromorphic setting. Here, we denote
the chordal distance between two points x1, x2 ∈ R̂d by χ(x1, x2).

LEMMA 2.4. Let F be a family of K -quasimeromorphic mappings on a domain X ⊂
Rd , d ≥ 2, and let q̃0 = q̃0(d, K ) be Rickman’s constant.

Suppose that there exists some ε > 0 such that each f ∈ F omits q̃0 values
a1( f ), a2( f ), . . . , aq̃0( f ) ∈ R̂d with χ(ai ( f ), a j ( f ))≥ ε for all i 6= j . Then F is a
normal family on X.

For a general K -quasimeromorphic mapping f , the dilatation of the iterates f k can
grow exponentially large. As a result, the above theorem cannot be applied to the family
of iterates to study the Julia set in this case. Nonetheless, it can be applied to a rescaled
family of mappings { f (r x)/s : r, s ∈ R}, since all members of this family have the same
dilatation K .

By defining the Julia set directly using the expansion property in equation (1.1), it has
been possible to study analogues of the Fatou–Julia theory in the new setting. Recently, the
Julia set for quasimeromorphic mappings of transcendental type with at least one pole has
been successfully established in [37]; here, it was shown that many of the usual properties
of the Julia set analogously hold as well. These are summarized below.

THEOREM 2.5. Let f : Rd
→ R̂d be a quasimeromorphic mapping of transcendental type

with at least one pole. Then the following hold.
(i) J ( f ) 6=∅. In fact, card(J ( f ))=∞.
(ii) J ( f ) is perfect.
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(iii) x ∈ J ( f ) \ {∞} if and only if f (x) ∈ J ( f ). In particular, J ( f ) \O−f (∞) is
completely invariant.

(iv) J ( f )⊂O−f (x) for every x ∈ R̂d
\ E( f ).

(v) J ( f )=O−f (x) for every x ∈ J ( f ) \ E( f ).

(vi) Let U ⊂ R̂d be an open set such that U ∩ J ( f ) 6=∅. Then for all x ∈ R̂d
\ E( f ),

there exists some w ∈U and some k ∈ N such that f k(w)= x.
(vii) For each n ∈ N,

J ( f )= {x ∈ R̂d
\O−f (∞) : card(R̂d

\O+f n (Ux )) <∞ for all

neighbourhoods Ux ⊂ R̂d
\O−f (∞) of x} ∪O−f (∞).

We remark that the Julia set definition in equation (1.1) is different to the Julia set
definition used for quasiregular mappings of transcendental type, which were defined by
Bergweiler and Nicks in [7]. For those mappings, the cardinality condition is replaced by
a weaker condition using conformal capacity. Although these conditions are equivalent for
quasimeromorphic mappings of transcendental type with at least one pole by Theorem 2.3,
it remains an open conjecture whether this result can be extended to quasiregular mappings
of transcendental type; see [7]. For this reason, we include the extra condition that each
quasimeromorphic mapping has at least one pole in the statement of the theorems within
this paper.

2.4. Brouwer degree and covering lemmas. Let f : G→ Rd be a quasiregular
mapping, D ⊂ G be an open set with D ⊂ G compact, and let y ∈ Rd

\ f (∂D). Firstly,
for x ∈ G, we define the local (topological) index of f at x , denoted by i(x, f ), as

i(x, f ) := inf{sup{card( f −1(w) ∩Ux ) : w ∈ Rd
}},

where the infimum is taken over all the neighbourhoods Ux ⊂ G of x .
From here we define the Brouwer degree of f at y over D, denoted µ(y, f, D), as

µ(y, f, D)=
∑

x∈ f −1(y)∩D

i(x, f ), (2.4)

which informally counts the number of preimages of y in D including multiplicity.
For quasiregular mappings, the Brouwer degree has many useful properties, which will

be summarized below without proof (see [22, §II.2.3] and [27, Proposition I.4.4]).

THEOREM 2.6. Let f : G→ Rd be a quasiregular mapping and let D ⊂ Rd be an open
bounded set with D ⊂ G. Then the following hold.
(i) If x, y 6∈ f (∂D) are in the same connected component of Rd

\ f (∂D), then
µ(x, f, D)= µ(y, f, D).

(ii) If y 6∈ f (∂D), X1, X2, . . . , Xn are disjoint sets and if D ∩ f −1(y)⊂
⋃

i X i ⊂ D,
then

µ(y, f, D)=
n∑

i=1

µ(y, f, X i ) (if defined).
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(iii) If y 6∈ f (∂D) and g : H → Rd is a quasiregular mapping with D ⊂ H such
that max{| f (x)− g(x)| : x ∈ ∂D}<min{| f (x)− y| : x ∈ ∂D}, then µ(y, f, D)=
µ(y, g, D).

(iv) If α, β > 0 and αy 6∈ f (∂D), then

µ(αy, f, D)= µ(y, F, D′),

where D′ = (1/β)D and F :�→ Rd is a quasiregular mapping with �⊃ D′,
defined by F(x)= (1/α) f (βx).

The following covering lemma is an extension of [34, Lemma 3.1] to the
quasimeromorphic setting.

LEMMA 2.7. Let f : Rd
→ R̂d be a continuous function. For n ≥ 0, let (Fn) be a sequence

of non-empty bounded sets in Rd , (`n+1) be a sequence of natural numbers and Gn ⊂ Fn

be a sequence of non-empty subsets such that f `n+1 is continuous on Gn with

f `n+1(Gn)⊃ Fn+1. (2.5)

For n ∈ N, set rn =
∑n

i=1 `i . Then there exists ζ ∈ F0 such that f rn (ζ ) ∈ Fn for each
n ∈ N.

Further, suppose that f : Rd
→ R̂d is a quasimeromorphic mapping of transcendental

type with at least one pole such that for n ≥ 0, f `n+1 is quasimeromorphic on Gn and
equation (2.5) holds. If there is a subsequence (Fnk ) such that Fnk ∩ J ( f ) 6=∅ for all
k ∈ N, then ζ can be chosen to be in J ( f ) ∩ F0.

Proof. For all n ≥ 0, f `n+1 is continuous on Gn and Gn is compact, so equation (2.5)
implies that f `n+1(Gn)⊃ Fn+1 for all n ≥ 0. Now define the sets

TN = {x ∈ G0 : f rn (x) ∈ Gn for all n ≤ N }.

The sets TN are non-empty, compact and form a decreasing nested sequence. Thus
T :=

⋂
∞

N=1 TN is non-empty and any ζ ∈ T is such that f rn (ζ ) ∈ Fn for all n ∈ N.
Now suppose that f is a quasimeromorphic mapping of transcendental type with at least

one pole satisfying the hypotheses in the last part of the lemma. Since J ( f ) is backward
invariant, we get that Gn ∩ J ( f ) 6=∅ for all n ≥ 0. It follows that f `n+1(Gn ∩ J ( f ))⊃
Fn+1 ∩ J ( f ) for all n ≥ 0.

By applying the first part of the lemma to the closed sets Fn ∩ J ( f ), then ζ ∈ J ( f ) ∩ F0

as required. �

It should be noted that by setting `n = 1 for all n ∈ N, we get a modified version of
[31, Lemma 1]. This version shall be used for the proof of Theorem 1.1, while the general
version shall be reserved for the proof of Theorem 1.4.

2.5. Holding-up lemma. For a quasimeromorphic mapping with finitely many poles, it
is possible to get sufficient conditions for the existence of a slow escaping point using the
same ‘holding-up’ technique as that for quasiregular mappings of transcendental type. The
proof of the following lemma is similar to that by Nicks [17, Lemma 3.1] and is therefore
omitted.
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LEMMA 2.8. Let f : Rd
→ R̂d be a K -quasimeromorphic function of transcendental type

with at least one pole. Let p ∈ N and, for m ∈ N and i ∈ {1, 2, . . . , p}, let X (i)m ⊂ Rd be
non-empty bounded sets, with Xm =

⋃p
i=1 X (i)m , such that

inf{|x | : x ∈ Xm} →∞ as m→∞. (2.6)

Suppose further that
(X1) for all m ∈ N and i ∈ {1, 2, . . . , p}, there exists some j ∈ {1, 2, . . . , p} such that

f (X (i)m )⊃ X ( j)
m+1,

and there exists a strictly increasing sequence of integers (mt ) such that
(X2) for all t ∈ N and i ∈ {1, 2, . . . , p}, there exists some j ∈ {1, 2, . . . , p} such that

f (X (i)mt )⊃ X ( j)
mt , and

(X3) for all t ∈ N and i ∈ {1, 2, . . . , p}, X (i)mt ∩ J ( f ) 6=∅.
Then given any positive sequence an→∞, there exists ζ ∈ J ( f ) and N1 ∈ N such that

| f n(ζ )| →∞ as n→∞, while also | f n(ζ )| ≤ an whenever n ≥ N1.

3. Growth result for quasiregular mappings near an essential singularity
Before we begin the proof of Theorem 1.2, we will first note the following fact about the
maximum modulus for quasiregular mappings defined in a neighbourhood of an essential
singularity; this follows from the maximum modulus principle and an application of
Theorem 2.2.

LEMMA 3.1. Let R > 0 and let f : A(R,∞)→ Rd be a K -quasiregular mapping with
an essential singularity at infinity. Then there exists R′ ≥ R such that M(r, f ) is a strictly
increasing function for r ≥ R′.

Using the above, we now aim to prove Theorem 1.2. We will assume without loss of
generality that R > 0 is sufficiently large such that f : A(R,∞)→ Rd is a K -quasiregular
mapping with an essential singularity at infinity and M(r, f ) is a strictly increasing
function for r ≥ R.

Now let A > 1 be given and suppose for a contradiction to Theorem 1.2 that there exists
some constant L > 1 and some real sequence rn→∞ such that M(Arn, f )≤ L M(rn, f ).
By taking a subsequence and then starting from large enough n, we may assume that (rn)

is a strictly increasing sequence with r1 > R.
Define a new sequence ( fn) by

fn(x) :=
f (rn x)

M(rn, f )
. (3.1)

For each N ∈ N, let AN := A(R/rN , A). Now for all n ≥ N , fn is well defined and
K -quasiregular on AN .

LEMMA 3.2. There exists a bounded mapping h defined on B(0, A) \ {0}, which is
either constant or K -quasiregular, and a subsequence of ( fn) that converges to h locally
uniformly on B(0, A) \ {0}.

Proof. Observe that for each n ≥ N and x ∈ AN ,

| fn(x)| ≤
M(rn|x |, f )

M(rn, f )
≤

M(Arn, f )
M(rn, f )

≤ L . (3.2)
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As L is not dependent on N , then fn is uniformly bounded on AN for all n ≥ N . By
Lemma 2.4, FN := { fn : n ≥ N } is a normal family on AN for each N ∈ N. In particular,
for the sequence ( fn)⊂ F1 there exists a subsequence ( f1,k)

∞

k=1 ⊂ ( fn) such that ( f1,k)

converges locally uniformly on A1. Discarding the first term if necessary, we may assume
that ( f1,k)⊂ F2 so the subsequence is defined and uniformly bounded on A2. Thus there
exists a subsequence ( f2,k)

∞

k=1 ⊂ ( f1,k) such that ( f2,k) converges locally uniformly on
A2.

By repeating this process, we build a sequence of subsequences ( f1,k), ( f2,k), . . . ,

such that ( fi,k)⊃ ( fi+1,k) for all i ∈ N and ( fi,k) converges locally uniformly on Ai . Now
consider the sequence ( fk,k) and observe that ( fk,k)k≥i is a subsequence of each ( fi,k)

with i ∈ N by construction. This means that the pointwise limit function

h(w) := lim
k→∞

fk,k(w) (3.3)

exists on B(0, A) \ {0}.
Let D ⊂ B(0, A) \ {0} be a compact set. Then there exists some N ∈ N such that D ⊂

AN and ( fk,k)k≥N is defined on D.
Now by construction, ( fN ,k) converges uniformly on D. As ( fk,k)k≥N is a subsequence

of ( fN ,k), then from equation (3.3) we have that fk,k→ h uniformly on D. Further, since
( fk,k)k≥N is a sequence of K -quasiregular mappings on D, then h is either constant or
K -quasiregular on D. Finally, since D was arbitrary, then fk,k→ h locally uniformly on
B(0, A) \ {0}. Therefore, h is either constant or K -quasiregular on B(0, A) \ {0}.

By discarding terms and relabelling, we may assume that fn→ h locally uniformly on
B(0, A) \ {0}. Now by equation (3.2), for all x ∈ B(0, A) \ {0} we have that |h(x)| ≤ L ,
so h is bounded. �

By Theorem 2.2, we can extend h to be either constant or a K -quasiregular mapping
defined on B(0, A). By relabelling, let this extended map be h.

Before showing that h(0)= 0, we make an observation. For each n ∈ N, let xn ∈ S(1)
be such that | f (rn xn)| = M(rn, f ). As S(1) is compact, then there exists a subsequence
(xnt ) of (xn) that converges to some point x̃ ∈ S(1). Since fn→ h locally uniformly on
B(0, A) \ {0}, then it follows that fnt (xnt )→ h(x̃) as t→∞. Therefore, |h(x̃)| = 1 for
such x̃ ∈ S(1).

LEMMA 3.3. Let h be as above. Then h(0)= 0, so h is a K -quasiregular mapping.

Proof. Suppose that |h(0)| = ζ 6= 0. Let T > 4/ζ , (zm)⊂ B(0, A) \ {0} be a sequence
such that zm→ 0 as m→∞, and define Cm := S(|zm |) for each m ∈ N. As h is
a continuous function, then there exists some δ > 0 such that |h(x)− h(0)|< 1/2T
whenever |x |< δ. In particular, there exists an M ∈ N such that |zm |< δ whenever
m ≥ M . Hence for all x ∈ CM , we have |h(x)− h(0)|< 1/2T whenever m ≥ M .

Now as fn→ h locally uniformly on B(0, A) \ {0} then for all x ∈ CM , there exists
some NM ∈ N such that | fn(x)− h(x)|< 1/2T whenever n ≥ NM . Therefore, for every
x ∈ CM ,

| fn(x)− h(0)| ≤ | fn(x)− h(x)| + |h(x)− h(0)|<
1

2T
+

1
2T
=

1
T
, (3.4)

whenever n ≥ NM . Fix such an n.
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Since M(rk, f )→∞ as k→∞, then there exists some t ∈ N such that M(rn+t , f ) >
2M(rn, f ). Now consider V := A(rn|zM |, rn+t |zM |).

As n ≥ NM then from equation (3.4),

f (rnCM )= M(rn, f ) fn(CM )⊂ B
(

M(rn, f )h(0),
M(rn, f )

T

)
=: Bn, and

f (rn+t CM )= M(rn+t , f ) fn+t (CM )

⊂ B
(

M(rn+t , f )h(0),
M(rn+t , f )

T

)
=: Bn+t .

Since M(rn+t , f ) > 2M(rn, f ) and T ζ > 4, it follows that Bn ∩ Bn+t =∅.
As f is continuous and open, then f (V ) is an open path-connected set. Now there

exist x ∈ f (V ) ∩ Bn , y ∈ f (V ) ∩ Bn+t and a continuous path β : [0, 1] → f (V ) with
endpoints x and y.

Since Bn and Bn+t are disjoint, then there must exist some c ∈ (0, 1) such that β(c) ∈
f (V ) \ (Bn ∪ Bn+t ). However, as f is open, then ∂ f (V )⊂ f (∂V )⊂ Bn ∪ Bn+t , so f (V )
must be unbounded. This contradicts the fact that f is continuous on V . �

Now by Theorem 2.1, there exists some a ∈ Rd such that f takes the value a infinitely
often. Without loss of generality we may assume that a = 0, else we can consider instead
the function f (x + a)− a rather than f . We aim to get a contradiction using the Brouwer
degree of f and h.

Let t2 ∈ (0, A) be such that h(x) 6= 0 for all x ∈ S(t2). Then let F :=min{|h(x)| : x ∈
S(t2)}> 0. Since h(0)= 0 and h is continuous at 0, then we can choose some t1 ∈ (0, t2)
such that P := M(t1, h) < F/4. Now, set U := A(t1, t2), so U ⊂ B(0, A) \ {0}. Using
this spherical shell, we will show that there exists some point y such that the Brouwer
degrees of fn and h at y over U agree for large n.

LEMMA 3.4. Let fn be defined as in equation (3.1) and let h be defined as in Lemma 3.3.
Then there exists some N ∈ N such that whenever n ≥ N, then µ(y, fn,U )= µ(y, h,U )
for all y ∈ A(2P, F/2).

Proof. As fn→ h uniformly on compact subsets of B(0, A) \ {0}, then there exists N ∈ N
such that

sup{| fn(x)− h(x)| : x ∈ ∂U } ≤ sup{| fn(x)− h(x)| : x ∈U }< P, (3.5)

whenever n ≥ N . In particular, for all n ≥ N and for all x ∈ ∂U , we have || fn(x)| −
|h(x)|| ≤ P . It follows that whenever n ≥ N , then

M(t1, fn)≤ M(t1, h)+ P = 2P, (3.6)

and
min{| fn(x)| : x ∈ S(t2)}>min{|h(x)| : x ∈ S(t2)} −

F
2
=

F
2
. (3.7)

Now, for all n ≥ N we have that A(2P, F/2)⊂ fn(U ) since the fn are open and
continuous. In addition, A(2P, F/2)⊂ h(U ) by construction. Fix some y ∈ A(2P, F/2).
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For all x ∈ ∂U and n ≥ N , we have fn(x) 6= y and h(x) 6= y. Thus from equations (3.6)
and (3.7), whenever n ≥ N we have

min{|h(x)− y| : x ∈ ∂U }>min
{

2P − M(t1, h),min{|h(x)| : x ∈ S(t2)} −
F
2

}
=min

{
P,

F
2

}
= P.

Therefore, by Theorem 2.6(iii) and equation (3.5), we conclude that µ(y, fn,U )=
µ(y, h,U ) whenever n ≥ N . �

Let y0 ∈ A(2P, F/2) be fixed. As h is a discrete mapping, then h−1(y0) ∩U is a finite
set and so

d := µ(y0, h,U ) <∞. (3.8)

Using equation (3.8) and Lemma 3.4, we shall now aim for a contradiction by considering
the behaviour of µ(y0, fn,U ) as n→∞.

For n ≥ N , define dn = µ(y0, fn,U ), yn = M(rn, f )y0 and Un = A(rn t1, rn t2)=
rnU . Now observe that for each n ≥ N , we have yn 6∈ f (∂Un). It then follows by
Theorem 2.6(iv) and equation (3.1) that for each n ≥ N ,

dn = µ(y0, fn,U )= µ(M(rn, f )y0, f,Un)= µ(yn, f,Un). (3.9)

LEMMA 3.5. Let dn be as in equation (3.9). Then dn→∞ as n→∞.

Proof. Fix some n ≥ N and consider dn = µ(yn, f,Un) and dn+1 = µ(yn+1, f,Un+1).
First note that from equations (3.1) and (3.6) we have

M(t1, fn+1)=
M(rn+1t1, f )
M(rn+1, f )

≤ 2P.

Now since |yn+1|> 2P M(rn+1, f )≥ M(rn+1t1, f ), it follows that

µ(yn+1, f, A(rn t1, rn+1t1))= 0. (3.10)

Next, as |yn|, |yn+1| ∈ (2P M(rn, f ), (F/2)M(rn+1, f )), then Theorem 2.6(i) gives

µ(yn, f, A(rn t1, rn+1t2))= µ(yn+1, f, A(rn t1, rn+1t2)). (3.11)

Finally, as min{| fn(x)| : x ∈ S(t2)}> F/2, then

min{| f (x)| : x ∈ S(rn t2)}>
F
2

M(rn, f ) > |yn|> 0.

This means by Theorem 2.6(i),

µ(0, f, A(rn t2, rn+1t2))= µ(yn, f, A(rn t2, rn+1t2)). (3.12)

Therefore, using equations (3.10), (3.11), (3.12) and Theorem 2.6(ii),

dn+1 = dn+1 + µ(yn+1, f, A(rn t1, rn+1t1))

= µ(yn+1, f, A(rn t1, rn+1t2))

= µ(yn, f, A(rn t1, rn+1t2))

= µ(yn, f, A(rn t2, rn+1t2))+ dn

= µ(0, f, A(rn t2, rn+1t2))+ dn . (3.13)
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Now for all n ≥ N , by applying equation (3.13) finitely many times and using
Theorem 2.6(ii) again we get that

dn =

n−1∑
i=N

µ(0, f, A(ri t2, ri+1t2))+ dN = µ(0, f, A(rN t2, rn t2))+ dN .

It remains to note that as f has infinitely many zeros, then µ(0, f, A(rN t2, rn t2))→∞
as n→∞, completing the proof. �

A contradiction now follows from Lemma 3.4, Lemma 3.5 and equation (3.8),
completing the proof of Theorem 1.2.

4. Proof of Theorem 1.1: finitely many poles
With the growth result of Theorem 1.2 established, we are now in a position to prove
Theorem 1.1 in the case where the quasimeromorphic mapping of transcendental type has
at least one pole, but finitely many poles; this will closely follow the proof from §§3.2–3.4
in [17], which covered the case for quasiregular mappings. Within the proof of Nicks, the
covering and waiting sets can be found sufficiently close to the essential singularity.

For f : Rd
→ R̂d a quasimeromorphic mapping of transcendental type with finitely

many poles, there exists some R > 0 such that all the poles of f are contained in B(0, R).
This means that f restricted to A(R,∞) is a quasiregular mapping with an essential
singularity at infinity. It therefore suffices to verify that the results stated by Nicks in
[17] for quasiregular mappings of transcendental type on Rd remain valid for mappings
defined on a neighbourhood of the essential singularity.

4.1. Functions with the pits effect. The following definition of the pits effect we shall
use is adapted from [7].

Definition 4.1. Let R > 0 and let f : A(R,∞)→ Rd be a K -quasiregular mapping with
an essential singularity at infinity. Then f is said to have the pits effect if there exists some
N ∈ N such that, for all s > 1 and all ε > 0, there exists T0 ≥ R such that

{x ∈ A(T, sT ) : | f (x)| ≤ 1}

can be covered by N balls of radius εT whenever T > T0.

As a direct consequence of [7, Theorem 8.1], using Corollary 1.3 rather than
[1, Lemma 3.4] in the proof, we get the following analogous result.

LEMMA 4.2. Let R > 0 and let f : A(R,∞)→ Rd be a K -quasiregular mapping with an
essential singularity at infinity that has the pits effect. Then there exists some N ∈ N such
that, for all s > 1, all α > 1 and all ε > 0, there exists T0 ≥ R such that

{x ∈ A(T, sT ) : | f (x)| ≤ T α}

can be covered by N balls of radius εT whenever T > T0.
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Throughout the remainder of §4.1, we shall assume that f is as in the statement of
Theorem 1.1 and that the restriction f : A(R,∞)→ Rd is a K -quasiregular mapping that
has the pits effect. Using Lemma 3.1, we can further assume that R > 0 is sufficiently
large that M(r, f ) is a strictly increasing function for r ≥ R.

First we require some self-covering sets to achieve the ‘hold-up’ criteria from
Lemma 2.8. The following lemma is essentially that of [17, Lemma 3.3], with the proof
following similarly.

LEMMA 4.3. There exists δ ∈ (0, 1/2] and a sequence of points xt →∞ such that the
moduli Tt = |xt | are strictly increasing and the balls Bt := B(xt , δTt ) are such that

Bt ⊂ B(0, 2Tt )⊂ f (Bt ) (4.1)

for all t ∈ N.

From Corollary 1.3, for all large r we have M(r, f ) > 2r . Thus we shall now assume
that the Tt as defined in Lemma 4.3 are large enough such that the sequence (rt ), defined
by M(rt , f )= Tt with rt >max{R, M(R, f )}, satisfies M(rt , f ) > 2rt for all t ∈ N.
Consequently, note that (rt ) is a strictly increasing sequence with rt →∞ as t→∞. We
now have the following result, which is based on [17, Lemma 3.4] and whose proof also
follows similarly.

LEMMA 4.4. For each t ∈ N and λ≥ 2Tt ,

A(rt , 2λ)⊂ f (A(rt , λ)).

Using Lemma 4.3 and Lemma 4.4, we can appeal to Lemma 2.8, with p = 1, to
complete the proof of Theorem 1.1 for mappings with finitely many poles that have the
pits effect. With this in mind, we shall omit the superscripts and choose the sets Xm for
each m.

Set m1 = 1 and inductively define mt+1 = mt + Kt , where Kt > 1 is the smallest
integer such that (3/2)Tt+1 ≤ 2Kt Tt . Now for each m ∈ N, set

Xm =

{
Bt if m = mt for some t ∈ N,
A(rt , 2m−mt Tt ) if m ∈ (mt , mt+1).

Firstly note that as Tt →∞ and rt →∞ as t→∞, then equation (2.6) is satisfied. In
addition, (X2) is satisfied due to equation (4.1) from Lemma 4.3. Next as Tt are large, then
from Theorem 2.5(i) we can assume that B(0, 2Tt ) ∩ J ( f ) 6=∅. From this, equation (4.1)
and Theorem 2.5(iii) then imply that Bt ∩ J ( f ) 6=∅, so (X3) is satisfied. To show (X1)
holds, we shall consider three cases.
(1) When m = mt for some t ∈ N, then from equation (4.1),

f (Xmt )= f (Bt )⊃ B(0, 2Tt )⊃ A(rt , 2Tt )= Xmt+1.

(2) When m ∈ (mt , mt+1 − 1) for some t ∈ N, then by Lemma 4.4,

f (Xm)= f (A(rt , 2m−mt Tt ))⊃ A(rt , 2m+1−mt Tt )= Xm+1.
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(3) When m = mt+1 − 1 for some t ∈ N, then by Lemma 4.4,

f (Xm)= f (A(rt , 2mt+1−1−mt Tt ))⊃ A(rt , 2mt+1−mt Tt )

= A(rt , 2Kt Tt )⊃ A
(

rt ,
3Tt+1

2

)
.

Now since Tt+1 ≥ Tt > 2rt for all t , then

f (Xm)⊃ A
(

rt ,
3Tt+1

2

)
⊃ A

(
Tt+1

2
,

3Tt+1

2

)
⊃ Bt+1 = Xm+1.

Finally, as all the hypotheses are satisfied, then an application of Lemma 2.8 completes
the proof of Theorem 1.1 for mappings with finitely many poles that have the pits effect.

4.2. Functions without the pits effect. In this subsection, the main objective is to
prove Theorem 1.1 in the case where f : Rd

→ R̂d is a quasimeromorphic function of
transcendental type with finitely many poles, whose restriction to a domain near the
essential singularity is a quasiregular mapping that does not have the pits effect. This
will be done by adapting the methods found in [17, §3.4].

For r > 4R > 0, we shall first define domains Q`(r)⊂ A(R,∞).
Let q ∈ N and fix 2q distinct unit vectors û1, û2, . . . , ˆu2q , so each û` is such that û` ∈

Rd and |û`| = 1. Fix θ > 0 small enough so for all `= 1, 2, . . . , 2q, the truncated cones

C` =
{

x ∈ A
(

1
4
, 2q + 1

)
:

û` · x
|x |

> cos(θ)
}

are such that C` ∩ C j =∅ for all pairs ` 6= j , where û` · x is the scalar product.
Now for r > 4R and ` ∈ {1, 2, . . . , 2q}, define

Q`(r)= A(`r, (`+ 1
2 )r) ∪ rC`. (4.2)

A useful observation is that for all ` and r , Q`(r)= r Q`(1) and that each Q`(1) is
bounded away from infinity by the chordal metric.

By using a combinatorial argument, we can get a useful extension of Lemma 2.4. Here,
we shall state the result for a family of K -quasiregular mappings, however the proof is
analogous in the quasimeromorphic case.

LEMMA 4.5. Let F be a family of K -quasiregular mappings on a domain X ⊂ Rd and
let q0 be Rickman’s quasiregular constant. Let N ∈ N and, for i = 1, 2, . . . , Nq0 and
n = 1, 2, . . . , N, let Ai,n be bounded sets such that for each n, Ai,n ∩ A j,n =∅ for all
i 6= j .

Suppose that every g ∈ F omits a value from each set Ai =
⋃N

n=1 Ai,n . Then F is a
normal family on X.

Proof. Fix an N ∈ N and for each n ∈ {1, 2, . . . , N }, let εn > 0 be such that, for all i 6= j ,

dist(Ai,n, A j,n) := inf{|ai − a j | : ai ∈ Ai,n, a j ∈ A j,n} ≥ εn .

Set ε =min{εn : n = 1, 2, . . . , N } and consider any set D = {d1, d2, . . . , dNq0},
where di ∈Ai for each i . It follows that there exists some n ∈ {1, 2, . . . , N } such that
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di ∈ Ai,n for at least q0 values of i ; these values di form a subset {α1, α2, . . . , αq0} ⊂ D
such that |αk − α`| ≥ ε for k 6= `. Now by considering Lemma 2.4 and noting that each
of the Ai,n are bounded away from infinity in the chordal metric, we conclude that F is a
normal family on X . �

Note that in the above lemma, the result can be sharpened by asking that every mapping
in F omits a value in at least N (q0 − 1)+ 1 of the Ai . We shall apply this lemma later
with N = 2, Ai,1 = A(i, i + 1/2) and Ai,2 = Ci , so that Ai = Qi (1).

To find sets that satisfy the ‘hold-up’ criterion, we will first introduce some notation.
Following Rickman [27, p. 80], using the Brouwer degree in equation (2.4) we define

AV ( f, D) :=
1
ωd

∫
Rd

µ(y, f, D)
(1+ |y|2)d

dy =
1
ωd

∫
D

J f (x)
(1+ | f (x)|2)d

dx,

which is the average of µ(y, f, D) over all y ∈ R̂d . Here ωd denotes the surface area of
the unit d-sphere Sd(0, 1). It should be noted that Rickman identifies R̂d with {x ∈ Rd+1

:

|x − (1/2)ed+1| = 1/2}, where ek denotes the kth unit vector, while we use {x ∈ Rd+1
:

|x | = 1}. This accounts for the differing factor of 2d in the above definition.
By utilizing the average Brouwer degree, we can give a criterion, which states that

if we have sufficiently many bounded domains such that the image of each one covers
many of the others, then the closure of each domain must intersect the Julia set. This is
an extension of [17, Lemma 2.5] to the case of quasiregular mappings defined near an
essential singularity.

LEMMA 4.6. Let f : Rd
→ R̂d be a K -quasimeromorphic mapping of transcendental type

with at least one pole. Let p ∈ N be such that p > K I ( f )+ q0, where q0 is Rickman’s
quasiregular constant. Suppose that W1, W2, . . . , Wp ⊂ Rd are bounded domains such
that Wi ∩W j =∅ for all i 6= j , and for each i ∈ {1, 2, . . . , p},

f (Wi )⊃W j for at least p − q0 values of j ∈ {1, 2, . . . , p}.

Then Wi ∩ J ( f ) 6=∅ for all i ∈ {1, 2, . . . , p}.

Proof. Firstly, suppose that J ( f ) ∩Wi =∅ for some i ∈ {1, 2, . . . , p}. Then Wi ∩

O−f (∞)=∅, so f n is K -quasiregular on Wi for all n ∈ N. Now note that for any
n ∈ N then, counting multiplicity, f n(Wi ) covers at least (p − q0)

n of the domains
W j , j ∈ {1, 2, . . . , p}. By setting ν = (p − q0)

n , there exist pairwise disjoint subsets
V1, V2, . . . , Vν of Wi such that if m ∈ {1, 2, . . . , ν}, then f n(Vm)=W j for some j ∈
{1, 2, . . . , p}. Hence for each n ∈ N, there exists some j ∈ {1, 2, . . . , p} such that

µ(y, f n, Wi )≥
ν

p
for all y ∈W j .

This implies that there exists some constant C1 > 0 such that for all n ∈ N,

AV ( f n, Wi )≥
C1ν

p
. (4.3)

Now as J ( f ) ∩Wi =∅, then for each x ∈Wi there exists some δx > 0 such that
B(x, 2δx ) ∩ J ( f )=∅ and R̂d

\O+f (B(x, 2δx )) is infinite. This means that there exists
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a non-exceptional point y ∈ R̂d
\ (O+f (B(x, 2δx )) ∪ E( f )). Since R̂d

\O+f (B(x, 2δx )) is

closed, then O−f (y)⊂ R̂d
\O+f (B(x, 2δx )). As y 6∈ E( f ), it follows by Theorem 2.3 and

the definition of the forward orbit that cap(R̂d
\O+f (B(x, 2δx ))) > 0.

Using [3, Theorem 3.2] and equation (2.3), for each x ∈Wi there exists some constant
Cx > 0, dependent on x , such that for all n ∈ N,

AV ( f n, B(x, δx ))≤ Cx K I ( f n)≤ Cx K I ( f )n .

As Wi is compact and the union of B(x, δx ) forms an open cover, then there exists a finite
subcover of Wi . Thus we get that there exists some constant C2 > 0 such that

AV ( f n, Wi )≤ C2 K I ( f )n . (4.4)

However, as p > K I ( f )+ q0, then we get a contradiction from equations (4.3) and
(4.4) when n ∈ N is large. The conclusion now follows. �

Now by appealing to Lemma 3.1 and Corollary 1.3, throughout the remainder of §4.2 we
assume without loss of generality that R > 0 is sufficiently large such that the restriction
f : A(R,∞)→ Rd is a K -quasiregular mapping with an essential singularity at infinity
that does not have the pits effect, and M(r, f ) is a strictly increasing function with
M(r, f ) > r for all r ≥ R.

The covering result will be based on that given in [17]; the proof follows analogously
using the new growth condition of Theorem 1.2.

LEMMA 4.7. Let q0 be Rickman’s quasiregular constant and let W1, W2, . . . , Wq0 ⊂ Rd

be bounded sets such that Wi ∩W j =∅ for all pairs i 6= j . Then for all sufficiently large
r and each `= 1, 2, . . . , 2q0, the following hold.
(C1) There exists some j ∈ {1, 2, . . . , 2q0} such that f (Q`(r))⊃ Q j (M(r, f )).
(C2) There exists some k ∈ {1, 2, . . . , q0} such that f (Q`(r))⊃ M(r, f )Wk .

The ‘hold-up’ lemma we will use is also closely based on [7, §3] (see also [17,
Lemma 3.7]). We omit the proof here, noting that the adapted proof uses Lemma 4.6
and Theorem 1.2.

LEMMA 4.8. Let q0 be Rickman’s quasiregular constant. Then there exist bounded
domains W1, W2, . . . , Wq0 ⊂ Rd with Wi ⊂ {x ∈ Rd

: |x | ≥ 1/2} satisfying Wi ∩W j =∅
for all pairs i 6= j , and a real sequence Tt →∞ with T1 > 4R such that for every t ∈ N
and ` ∈ {1, 2, . . . , q0} the following hold.
(C3) There exists some j ∈ {1, 2, . . . , q0} such that f (Tt W`)⊃ Tt W j .
(C4) For each α ∈ [4R, M(Tt , f )], there exists some k ∈ {1, 2, . . . , 2q0} such that

f (Tt W`)⊃ Qk(α).
(C5) Tt W` ∩ J ( f ) 6=∅.

Now using Lemmas 4.7 and 4.8, we shall once again appeal to Lemma 2.8 to complete
the proof of Theorem 1.1 for mappings with finitely many poles that do not have the pits
effect. This closely follows the construction technique in [17, §3.4].

Recall that R > 0 is sufficiently large such that f : A(R,∞)→ Rd is a K -quasiregular
mapping with an essential singularity at infinity and M(r, f ) is a strictly increasing
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function with M(r, f ) > r for all r ≥ R. Now for p ∈ N ∪ {0}, we define the iterated
maximum modulus M p(r, f ) as follows. Set M0(r, f )= r and M1(r, f )= M(r, f ).
Then for p ≥ 2, iteratively define

M p(r, f )= M(M p−1(r, f ), f ).

We note that as M(r, f ) > r is strictly increasing on r ≥ R, then the sequence
(M p(r, f ))∞p=1 is strictly increasing for all r ≥ R. In particular, these are well defined
for f .

Now towards the proof, first take a real sequence Tt →∞ and bounded domains
W1, W2, . . . , Wq0 as in Lemma 4.8. We may assume that T1 > 4R and Tt+1 > M(Tt , f ).
Then for each t ∈ N, there exists a smallest integer pt ≥ 2 such that M pt (Tt , f )≥ Tt+1.
Now by our choice of pt , we have that M pt−1(r, f ) is continuous in r and

M pt−1(Tt , f )≤ Tt+1 ≤ M pt (Tt , f )= M pt−1(M(Tt , f ), f ).

Hence by the intermediate value theorem, for each t ∈ N there exists some ϒt ∈

[Tt , M(Tt , f )] such that M pt−1(ϒt , f )= Tt+1.
We now choose the sets X (i)m for each m ∈ N and i = 1, 2, . . . , 2q0 to satisfy Lemma 2.8

with p = 2q0. Set m1 = 1 and inductively define mt+1 = mt + pt , for t ≥ 1. Now for each
m ∈ N and for each i = 1, 2, . . . , 2q0, set

X (i)m =


Tt Wi if m = mt for some t ∈ N, i ≤ q0,

Tt W1 if m = mt for some t ∈ N, i > q0,

Qi (Mm−mt−1(ϒt , f )) if m ∈ (mt , mt+1).

Firstly note that as the Wi and Tt were chosen to be those from Lemma 4.8, then Tt > 4R
for each t ∈ N and Wi ⊂ {x ∈ Rd

: |x | ≥ 1/2} for each i ∈ {1, 2, . . . , 2q0}. This means
that

inf{|x | : x ∈ Xmt } = inf
{
|x | : x ∈

2q0⋃
i=1

Tt Wi

}
≥

Tt

2
.

Also by the definition of Qi (r), then for m ∈ (mt , mt+1) we have

inf{|x | : x ∈ Xm} =
Mm−mt−1(ϒt , f )

4
≥
ϒt

4
≥

Tt

4
.

Since Tt →∞ as t→∞, then equation (2.6) is satisfied. Further, observe that (X2)
and (X3) are satisfied due to (C3) and (C5) from Lemma 4.8, respectively. Finally, (X1)
follows from (C1) and (C2) from Lemma 4.7, and (C4) from Lemma 4.8; see [17] for
details.

As all the hypotheses are satisfied, then an application of Lemma 2.8 completes the
proof of Theorem 1.1 for mappings with finitely many poles that do not have the pits
effect.

4.3. A covering result for functions without the pits effect. Let f : Rd
→ R̂d be a

quasimeromorphic function without the pits effect as in §4.2. By continuing to adopt
the notation as in §4.2, we shall give a useful covering result regarding the sets Tt W j for
use in §6.
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LEMMA 4.9. For t ∈ N and 1≤ j ≤ q0, let Tt and W j be those from Lemma 4.8. By
moving to a subsequence of (Tt ), there exist constants i0, j0 ∈ {1, 2, . . . , q0} such that for
each t ∈ N, there is some ct ∈ N, some subset Yt ⊂ T2W j0 and some subset Z t ⊂ Tt+2Wi0

where
f ct (Yt )⊃ Tt+2Wi0 and f 2(Z t )⊃ T2W j0 .

Further, Yt and Z t can be chosen such that f ct is continuous on Y t and f 2 is continuous
on Z t for each t ∈ N.

Proof. Let j ∈ {1, 2, . . . , q0}. By the construction after Lemma 4.8, it follows that for all
t ∈ N there exists some i j,t ∈ {1, 2, . . . , q0}, some c j,t ∈ N and some subset Y j,t ⊂ T2W j

such that
f c j,t (Y j,t )⊃ Tt+2Wi j,t .

Since i j,t can only take values from a finite set, then by taking a suitable subsequence
of Tt and relabelling we can assume that i j = i j,t is independent of t ∈ N, so

f c j,t (Y j,t )⊃ Tt+2Wi j . (4.5)

Next, observe that as T2 > M(T1, f ), then there exists some α > T1 > 4R such that
M(α, f )= T2. Then by (C4) from Lemma 4.8, for all t ∈ N there exists some N j,t ∈

{1, 2, . . . , 2q0} such that
f (Tt+2Wi j )⊃ QN j,t (α).

As N j,t can only take values from a finite set, then by taking another suitable
subsequence of Tt and relabelling, we can assume that N j = N j,t is independent of t .
This means that for all t ∈ N,

f (Tt+2Wi j )⊃ QN j (α). (4.6)

Applying (C2) from Lemma 4.7, we get that there exists some ` ∈ {1, 2, . . . , q0} such
that

f (QN j (α))⊃ M(α, f )W` = T2W`. (4.7)

By repeatedly applying the whole argument above, we can build a sequence of
subscripts (`n) as follows. Set `1 = 1. Then for each n ≥ 1, let `n+1 be the value of `
from equation (4.7) after applying the argument once to T2W`n .

As `n ∈ {1, 2, . . . , q0} for all n ∈ N, then there will exist some smallest values n1, n2 ∈

N, with n1 < n2, such that `n1 = `n2 . Using this, we set j0 = `n1 and i0 = i`n2−1 . Then

for each t ∈ N, set Yt = Y j0,t and ct = 2(n2 − n1 − 1)+
∑n2−1

m=n1
c`m ,t . It follows from

equations (4.6) and (4.7) that there is some subset Z t ⊂ Tt+2Wi0 such that

f ct (Yt )⊃ Tt+2Wi0 and f 2(Z t )⊃ T2W.

Finally, the lemma follows as T1 > 4R implies f is continuous on each compact set Tt W j

as required. �

5. Proof of Theorem 1.1: infinitely many poles
In the case where f has an infinite number of poles, it makes sense to utilize the
neighbourhoods of the poles as a means of naturally approaching infinity. To this end,

https://doi.org/10.1017/etds.2019.110 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.110


On slow escaping and non-escaping points of quasimeromorphic mappings 1209

we seek a point that is able to ‘pole-hop’ between each neighbourhood and is able to
return to the same neighbourhood after a finite number of steps via bounded sets. This
idea is similar to that used by Rippon and Stallard in [31, §4], however the execution is
quite different as it does not rely on the Ahlfors five-island theorem.

The ‘pole-hop’ method creates a different situation to that found in the case of finitely
many poles, where instead we relied on finding a point that could move forward at any
time from any set. To achieve this modified ‘hold-up’ condition, we need to establish a
different version of Lemma 2.8.

For i ∈ N and some fixed p ∈ N, we shall denote the residue i (mod p) ∈
{0, 1, 2, . . . , p − 1} as [i]p. Note that [1]p + 1= 1 if p = 1, while [1]p + 1= 2
otherwise.

LEMMA 5.1. Let f : Rd
→ R̂d be a quasimeromorphic function of transcendental type

with at least one pole. Let p ∈ N and for m ∈ N and i ∈ {1, 2, . . . , p}, let X (i)m ⊂ Rd be
non-empty bounded sets, with Xm =

⋃p
i=1 X (i)m , such that

inf{|x | : x ∈ Xm} →∞ as m→∞. (5.1)

Suppose further that
(X4) for all m ∈ N, f (X (1)m )⊃ X (1)m+1,
and there exists a strictly increasing sequence of integers (mt ) such that
(X5) for all t ∈ N and i ∈ {1, 2, . . . , p}, f (X (i)mt )⊃ X

([i]p+1)
mt , and

(X6) for all t ∈ N and i ∈ {1, 2, . . . , p}, X (i)mt ∩ J ( f ) 6=∅.
Then given any positive sequence an→∞, there exists ζ ∈ J ( f ) and N1 ∈ N such that

| f n(ζ )| →∞ as n→∞, while also | f n(ζ )| ≤ an whenever n ≥ N1.

Proof. Define an increasing real sequence (γm) by

γm = sup
{
|x | : x ∈

m⋃
j=1

X j

}
. (5.2)

Since an→∞, then we can define a strictly increasing sequence of integers Nt such
that γmt ≤ an for all n ≥ Nt .

We shall now inductively define sets Fn , with n ≥ N1. Set FN1 = X (1)m1 and for each
integer n ≥ N1, define

Fn+1 =


X
([i]p+1)
m if Fn = X (i)m , i 6= 1,

X (1)m+1 if Fn = X (1)m , m 6= mt ,

X (1)mt+1 if Fn = X (1)mt , n ≥ Nt+1,

X
([1]p+1)
mt if Fn = X (1)mt , n < Nt+1.

Firstly, observe that if Fn = X (i)m with i 6= 1, then m = mt for some t ∈ N. For supposing
otherwise, then by construction there exists some natural number 1≤ k < p such that
Fn−k = X (1)m . If m 6= mt for any t ∈ N, it follows that Fn−k+1 = X (1)m+1. However, this

is a contradiction since n − k + 1≤ n and Fn = X (i)m , but m + 1> m.
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Now it follows from the construction, (X4) and (X5) that for each n ≥ N1, then f (Fn)⊃

Fn+1. From this, together with (X6), then by Lemma 2.7 there exists a point ζN1 ∈ J ( f ) \
{∞} such that f n−N1(ζN1) ∈ Fn for all n ≥ N1.

Without loss of generality, we may assume that ζN1 6∈ E( f ). By applying Theorem 2.1
finitely many times and noting Theorem 2.5(iii), it follows that there exists ζ ∈ J ( f )
such that f N1(ζ )= ζN1 . Therefore, we have that f n(ζ ) ∈ Fn for all n ≥ N1. Further,
by equation (5.1) we have that | f n(ζ )| →∞ as n→∞.

To complete the proof, it remains to show that for all n ≥ N1, then | f n(ζ )| ≤ an . Indeed,
let n ≥ N1 be such that Fn = X (i)m1 for some i ∈ {1, 2, . . . , p}. Then Fn ⊂ Xm1 and so by
equation (5.2) and the definition of N1,

sup{|x | : x ∈ Fn} ≤ γm1 ≤ an . (5.3)

We next aim to prove the following claim. Suppose that n > N1 and t ∈ N are such that
m1 ≤ mt < m ≤ mt+1 and Fn = X (i)m for some i ∈ {1, 2, . . . , p}. Then n ≥ Nt+1.

Indeed, if i 6= 1, then by a previous observation we must have m = mt+1. This means
there exists some natural number k < p such that Fn−k = X (1)m and n − k > N1. Hence for
any i ∈ {1, 2, . . . , p}, there exists some N1 < n1 ≤ n such that Fn1 = X (1)m .

It follows by construction that either Fn1−1 = X (1)m−1 or Fn1−1 = X (p)m , where the latter
case occurs only if m = mt+1. As m > m1, then by applying the above argument finitely
many times, there must exist some integer r ≥ 0 such that Fn1−r p = X (1)m and Fn1−r p−1 =

X (1)m−1. It should be noted here that n1 − r p > N1 as m > m1. Hence there exists some

N1 < n2 ≤ n1 such that Fn2 = X (1)m and Fn2−1 = X (1)m−1.

As Fn2 = X (1)m and Fn2−1 = X (1)m−1, then one of two cases may arise. If m − 1= mt ,
then this can only happen if n2 ≥ Nt+1 by construction. Hence in this case, n ≥ Nt+1.

If m − 1 6= mt , then by construction we can find some N1 ≤ n3 < n2 such that Fn3 =

X (1)mt and Fn3+1 = X (1)mt+1. However, this can only happen if n3 ≥ Nt+1, so n ≥ Nt+1 in
this case; this proves the claim.

Now let m, n and t be as in the claim, so that m1 ≤ mt < m ≤ mt+1 and Fn = X (i)m for
some i ∈ {1, 2, . . . , p}. Since m ≤ mt+1, then we have

Fn ⊂

mt+1⋃
k=1

Xk .

Hence by equation (5.2), the definition of Nt+1 and the fact that n ≥ Nt+1, it follows
that

sup{|x | : x ∈ Fn} ≤ γmt+1 ≤ an . (5.4)

Finally, since for all n ≥ N1 we have Fn = X (i)m for some m ≥ m1 and i ∈ {1, 2, . . . , p},
it follows from equations (5.3) and (5.4) that | f n(ζ )| ≤ an as required. �

To complete the proof of Theorem 1.1 for mappings with infinitely many poles, we shall
use a specific case of [37, Lemma 5.1].

LEMMA 5.2. Let f : Rd
→ R̂d be a quasimeromorphic mapping of transcendental type.

Suppose that there exists an open bounded neighbourhood U ⊂ Rd of a pole of f such
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that f −1(u) is infinite for all u ∈U. Then given any r > 0, there exists an open bounded
region EU ⊂ A(r,∞) such that f (U )⊃ EU and f (EU )⊃U.

Proof. [Proof of Theorem 1.1: Infinitely many poles] Let f have a sequence of poles (xm)

tending to ∞. Now through Lemma 5.2 and choosing a subsequence of the poles and
relabelling, we can construct the sequences (Rm), (Um) and (Em) by induction as follows.

Initialize R1 = 0 and suppose that Rm has been chosen for some m ∈ N. By removing
finitely many terms and relabelling, we may assume without loss of generality that
xm ∈ A(Rm,∞) and xm is not an exceptional point. Now set Um to be an open bounded
neighbourhood of xm , such that Um ⊂ A(Rm,∞) and f −1(u) is infinite for all u ∈Um .
By applying Lemma 5.2, choose a non-empty open bounded region Em ⊂ A(Rm,∞) such
that

f (Um)⊃ Em , and f (Em)⊃Um . (5.5)

Finally, choose Rm+1 ≥ m + 1 such that A(Rm+1,∞)⊂ f (Um).
With the Rm , Um and Em established, we shall now choose the sets X (i)m that satisfy the

hypotheses in Lemma 5.1 with p = 2. For each m ∈ N, define X (1)m =Um and X (2)m = Em .
Here, it should be noted that we are taking the subsequence mt = t for all t ∈ N. Firstly,
note that equation (5.1) is satisfied, as inf{|x | : x ∈Um ∪ Em} ≥ Rm and Rm→∞ as m→
∞.

Now since every Um is an open neighbourhood of a pole, then Um ∩ J ( f ) 6=∅. Also
by (5.5) and Theorem 2.5(iii), then Em ∩ J ( f ) 6=∅ as well, so (X6) is satisfied. Further,
(X5) is satisfied by equation (5.5) since for all m ∈ N,

f (X (1)m )⊃ X (2)m , and f (X (2)m )⊃ X (1)m .

To show (X4) is satisfied, observe that by construction,

f (X (1)m )= f (Um)⊃ A(Rm+1,∞)⊃Um+1 = X (1)m+1.

Finally, an application of Lemma 5.1 completes the proof of Theorem 1.1 for functions
with an infinite number of poles. �

6. Proof of Theorem 1.4 and counterexamples
6.1. Sufficient conditions for Theorem 1.4(i). Let f be a K -quasimeromorphic mapping
of transcendental type with at least one pole. To prove Theorem 1.4(i), we shall provide
sufficient conditions for the existence of infinitely many points in BO( f ) ∩ J ( f ) and
BU( f ) ∩ J ( f ). Sets that satisfy these conditions will then be identified from each case of
the proof of Theorem 1.1.

Firstly, suppose that there exists some non-empty bounded set U0 with U0 ∩ J ( f ) 6=∅
such that
(BO1) there exists some N ∈ N ∪ {0} and bounded sets Ut where f (UN )⊃U0 and if

N ≥ 1, then f (Ut )⊃Ut+1 for all 0≤ t ≤ N − 1.
Then by applying Lemma 2.7 with Fn =U[n]N+1 for all n ∈ N, we get that there exists

some x ∈ J ( f ) ∩ BO( f ) ∩U0. By finding infinitely many such U0 with pairwise disjoint
closures, then we can conclude that J ( f ) ∩ BO( f ) is infinite.

Next, let V be a non-empty bounded set and let (kt ) be a sequence of natural numbers
such that:
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(BU1a) for each t ∈ N, there exists a non-empty bounded set Vt and a subset Yt ⊂ V such
that f kt (Yt )⊃ Vt and f kt is continuous on Y t ;

(BU1b) for each t ∈ N, there exists some subset Z t ⊂ Vt and some mt ∈ N such that
f mt (Z t )⊃ V and f mt is continuous on Z t ; and

(BU2) inf{|x | : x ∈ Vt } →∞ as t→∞.
Then by applying Lemma 2.7 with G2n−1 = Yn , G2n = Zn , F2n−1 = V and F2n = Vn

for all n ∈ N, this gives a sufficient condition for the existence of a point x ∈ Rd in BU( f ).
Moreover, if we have that
(BU3) J ( f ) ∩ Yt 6=∅ for all t ∈ N,
then Lemma 2.7 gives us a point y ∈ J ( f ) ∩ BU( f ) ∩ V . Recalling Theorem 2.5(iii), it
is clear that f k(y) ∈ J ( f ) ∩ BU( f ) for all k ∈ N, hence it follows that J ( f ) ∩ BU( f ) is
infinite.

6.2. Proof of Theorem 1.4(i). Let f : Rd
→ R̂d be a quasimeromorphic mapping of

transcendental type with at least one pole but finitely many poles. As f has finitely
many poles then by taking R > 0 sufficiently large, we have that f : A(R,∞)→ Rd is
a quasiregular mapping with an essential singularity at infinity. We shall first show that
BO( f ) ∩ J ( f ) and BU( f ) ∩ J ( f ) are infinite when f restricted to A(R,∞) has the pits
effect. Indeed, by Lemma 4.3 and the arguments directly after Lemma 4.4, there exist
bounded open balls Bt , t ∈ N, such that:
(i) f (Bt )⊃ Bs for all s ≤ t ;
(ii) there exists some sequence of natural numbers (bt ) and some sets Yt ⊂ B1 such that

for all t ∈ N, f bt (Yt )⊃ Bt+1 and f bt is continuous on Y t ;
(iii) inf{|x | : x ∈ Bt } →∞ as t→∞;
(iv) Bt are all pairwise disjoint; and
(v) Bt ∩ J ( f ) 6=∅ for all t ∈ N.

(BO1) is clearly satisfied from (i) and (v), by setting N = 0 and U0 = B1. It then follows
from (iv) that this can be repeated for each set Bt , t ∈ N to get infinitely many points.
Therefore BO( f ) ∩ J ( f ) is infinite.

Now set V = B1 and Vt = Bt+1. Then (BU1a) and (BU1b) are satisfied by (i) and (ii),
with mt = 1 and kt = bt for all t ∈ N. In addition, (BU2) is satisfied by (iii) and (BU3) is
satisfied by (v) and the backward invariance of J ( f ). Therefore, BU( f ) ∩ J ( f ) is infinite.

For the other cases, we can follow a similar argument. Indeed, suppose that f is a
quasimeromorphic mapping of transcendental type with at least one pole but finitely many,
whose restriction to A(R,∞) for some R > 0 is a quasiregular mapping that does not
have the pits effect. Then from Lemma 4.8, the arguments immediately after Lemmas 4.8
and 4.9, there are non-empty bounded sets Tt W j with t ∈ N and j ∈ {1, 2, . . . , q0}, such
that:
(i) for each t ∈ N and j ∈ {1, 2, . . . , q0}, there exists i ∈ {1, 2, . . . , q0} such that

f (Tt W j )⊃ Tt Wi ;
(ii) there exists some constants i0, j0 ∈ {1, 2, . . . , q0} such that for each t ∈ N, there is

some ct ∈ N, some subset Yt ⊂ T2W j0 and some subset Z t ⊂ Tt+2Wi0 where

f ct (Yt )⊃ Tt+2Wi0 and f 2(Z t )⊃ T2W j0 ,

with f ct continuous on Y t and f 2 continuous on Z t ;
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(iii) inf{|x | : x ∈
⋃

j Tt W j } →∞ as t→∞;
(iv) Tt W j are all pairwise disjoint; and
(v) Tt W j ∩ J ( f ) 6=∅ for all t ∈ N and j ∈ {1, 2, . . . , q0}.

Now fix some t ∈ N. As i ∈ {1, 2, . . . , q0}, then applying (i) sufficiently many
times we have that there exists N ∈ N ∪ {0} and i0, i1, . . . , iN ∈ {1, 2, . . . , q0} such
that f (Tt Wit )⊃ Tt Wit+1 and f (Tt WiN )⊃ Tt Wi0 , This means that (BO1) is satisfied with
Ut = Tt Wit . It then follows from (iv) and (v) that BO( f ) ∩ J ( f ) is infinite.

Next, using (ii) set V = T2W j0 and for each t ∈ N set Vt = Tt+2Wi0 . Now it follows
from (ii) that (BU1a) and (BU1b) are satisfied with sets Yt , Z t , and sequences kt = ct and
mt = 2 for each t ∈ N. Further, (BU2) is given by (iii) whilst (BU3) follows from (v) and
the backward invariance of J ( f ). Hence BU( f ) ∩ J ( f ) is infinite in this case.

When f has infinitely many poles, for t, m ∈ N we can choose neighbourhoods of poles
Dt and use Lemma 5.2 to get non-empty bounded sets Et,m such that:
(i) for each fixed t ∈ N, we have f (Dt )⊃ Et,m and f (Et,m)⊃ Dt for all m ∈ N;
(ii) for each fixed t ∈ N, then inf{|x | : x ∈ Et,m} →∞ as m→∞;
(iii) Dt are all pairwise disjoint and Et,m are all pairwise disjoint; and
(iv) for each t, m ∈ N we have Dt ∩ J ( f ) 6=∅ and Et,m ∩ J ( f ) 6=∅.

For each t ∈ N, setting U0 = Dt and U1 = Et,1 satisfies (BO1) by (i). It then follows by
(iii) that BO( f ) ∩ J ( f ) is infinite.

Further, set V = D1 and Vm = E1,m . Then (BU1a)–(BU3) are all given by (i), (ii)
and (iv), respectively, hence BU( f ) ∩ J ( f ) is infinite; this completes the proof of
Theorem 1.4(i).

6.3. Proof of Theorem 1.4(ii). Theorem 1.4(ii) shall be attained as a corollary to the
following result, which is similar to [31, Lemma 10].

LEMMA 6.1. Let f : Rd
→ R̂d be a quasimeromorphic mapping of transcendental type

with at least one pole. Suppose that there is an infinite set X ⊂ Rd such that X is
completely invariant under f and Rd

\ (X ∪O−f (∞)) is infinite. Then J ( f )⊂ ∂X.

Proof. Let x ∈ J ( f ) and let Ux be an arbitrary neighbourhood of x . Since X and
Rd
\ (X ∪O−f (∞)) are infinite sets, then X \ E( f ) and Rd

\ (X ∪O−f (∞) ∪ E( f ))
are non-empty. Now X and Rd

\ (X ∪O−f (∞)) are both completely invariant, so by
Theorem 2.5(vi) it follows that X ∩Ux 6=∅ and (Rd

\ (X ∪O−f (∞))) ∩Ux 6=∅.
As X and Rd

\ (X ∪O−f (∞)) are disjoint, then we must have ∂X ∩Ux 6=∅. Finally,
since Ux was arbitrary, then x ∈ ∂X as required. �

Since I ( f ), BO( f ) and BU( f ) are all completely invariant and disjoint, then the result
follows from Theorem 1.4(i).

6.4. Counterexamples. To show that the reverse inclusion in Theorem 1.4 does not
necessarily hold, we shall first construct a mapping similar to those found in [7,
Example 7.3] and [10, Example 1]; see also [5, §6]. This will give a mapping f such
that (∂ I ( f ) ∩ ∂BO( f )) \ J ( f ) 6=∅.
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Example 6.2. Let h : C→ Ĉ be the transcendental meromorphic function defined by
h(z)= 2+ exp(−z)+ (z + 1)−1, and define g : C→ Ĉ by g(z)= z + h(z). Firstly, note
that if z is in the half plane H1 := {z : Re(z) > 1}, then h(z) ∈ {v : 1< Re(v) < 3}. Now,
we have g(H1)⊂ H1 and gn(z)→∞ as n→∞ whenever z ∈ H1.

Next, for a large constant M ∈ R define f : C→ Ĉ by

f (z)=

g(z) if Re(z)≤ M or Re(z)≥ 2M,

g(z)+ h(z) sin
(
π Re(z)

M

)
if M < Re(z) < 2M.

It is easy to see that f is a quasimeromorphic mapping of transcendental type with one
pole if M is large.

Similar to g, we have that f (H1)⊂ H1, so H1 ∩ J ( f )=∅. Also, the point w = 3M/2
is such that f (w)= w, while f (x) > x for all real x >w. This means that f n(x)→∞ as
n→∞ for all real x >w, thus (w,∞)⊂ I ( f ) andw ∈ BO( f ). Therefore,w ∈ (∂ I ( f ) ∩
∂BO( f )) \ J ( f ).

This example can be extended to a quasimeromorphic mapping of transcendental type
f̃ : C→ Ĉ with infinitely many poles, by replacing h with h̃ : C→ Ĉ defined by

h̃(z)= 2+ exp(−z)+
∞∑

k=1

(z + 2k
− 1)−1,

and replacing g with g̃ : C→ Ĉ defined by g̃(z)= z + h̃(z). Here, since |z + 2k
− 1|> 2k

for all z ∈ H1, then h̃(z) ∈ {v : 1/2< Re(v) < 7/2} on H1. This means that the behaviour
of H1 and w = 3M/2 under g̃, hence also for f̃ , remains the same as above.

The final example is a direct modification of the example constructed in [19], as we will
only require specific dynamics in the upper half plane to find a point in ∂BU( f ) \ J ( f ).

Example 6.3. Let h : C→ C be the quasiconformal mapping constructed in [19, Proof
of Theorem 4]. This map is such that BU(h) and BO(h) intersect the upper half plane
H := {z : Im(z) > 0} non-trivially, and h(H)⊂H.

Next for a small constant α > 0, let g : C→ Ĉ be defined by

g(z)=


z if Im(z)≥ 0,

z − α(Im(z))(exp(−z2)+ (z + 4i)−1) if Im(z) ∈ [−1, 0),

z + α(exp(−z2)+ (z + 4i)−1) otherwise.

It is easy to show that if α is sufficiently small, then g is a quasimeromorphic mapping
of transcendental type with one pole. Note that g is the identity mapping on the upper half
plane, so g(H)⊂H.

Now the mapping f := g ◦ h is also a quasimeromorphic mapping of transcendental
type with one pole. It follows that f (H)⊂H and so J ( f ) ∩H=∅. Further, since g
is the identity mapping on H, then f has the same dynamics on H as h. This means
that H ∩ BU( f ) 6=∅ and H ∩ BO( f ) 6=∅. As BO( f ) and BU( f ) are disjoint, then H ∩
∂BU( f ) 6=∅, hence ∂BU( f ) \ J ( f ) 6=∅ as required.
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By making a simple modification, we can also create a quasimeromorphic mapping of
transcendental type with infinitely many poles, by replacing (z + 4i)−1 in the definition of
g(z) with

∑
∞

k=1(z + 2k
+ 4i)−1; the dynamics of the new function remain unchanged in

H and hence the result follows.
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[15] O. Martio, S. Rickman and J. Väisälä. Distortion and singularities of quasiregular mappings. Ann. Acad.
Sci. Fenn. Ser. A I Math. 465 (1970), 1–13.

[16] R. Miniowitz. Normal families of quasimeromorphic mappings. Proc. Amer. Math. Soc. 84(1) (1982),
35–43.

[17] D. A. Nicks. Slow escaping points of quasiregular mappings. Math. Z. 284 (2016), 1053–1071.
[18] D. A. Nicks and D. J. Sixsmith. The dynamics of quasiregular maps of punctured space. Indiana Univ.

Math. J. 68(1) (2019), 323–352.
[19] D. A. Nicks and D. J. Sixsmith. The bungee set in quasiregular dynamics. Bull. Lond. Math. Soc. 51(1)

(2019), 120–128.
[20] J. W. Osborne. Connectedness properties of the set where the iterates of an entire function are bounded.

Math. Proc. Cambridge Philos. Soc. 155(3) (2013), 391–410.
[21] J. W. Osborne and D. J. Sixsmith. On the set where the iterates of an entire function are neither escaping

nor bounded. Ann. Acad. Sci. Fenn. Math. 41(2) (2016), 561–578.
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