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SUMMARY

Hsp90 is a widely distributed and highly conserved molecular chaperone that is ubiquitously expressed throughout
nature, being one of the most abundant proteins within non-stressed cells. This chaperone is up-regulated following
stressful events and has been involved in many cellular processes. In Toxoplasma gondii, Hsp90 could be linked with
many essential processes of the parasite such as host cell invasion, replication and tachyzoite-bradyzoite interconversion.
A Protein-Protein Interaction (PPI) network approach of TgHsp90 has allowed inferring how these processes may be
altered. In addition, data mining of T. gondii phosphoproteome and acetylome has allowed the generation of the
phosphorylation and acetylationmap ofTgHsp90. This review focuses on the potential roles of TgHsp90 in parasite biology
and the analysis of experimental data in comparison with its counterparts in yeast and humans.
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TOXOPLASMA GONDII AND TOXOPLASMOSIS

Toxoplasma gondii is an obligate intracellular pro-
tozoan parasite that belongs to the phylum
Apicomplexa (Dubey et al. 1970). This phylum
includes important protozoan parasites such as
Plasmodium spp., Cryptosporidium spp. and Eimeria
spp. among others.Toxoplasma gondii is the causative
agent of toxoplasmosis, a disease spread worldwide
with about 500 million to a billion people chronically
infected (Tenter et al. 2000). Toxoplasma gondii
is able to infect almost any nucleated cell of warm-
blooded animals, including mammals and birds
(Dubey et al. 1970).

Toxoplasma gondii may undergo both cycles of
sexual reproduction within the definitive host (any
member of the cat family) and cycles of asexual
reproduction within any warm-blooded animal,
including humans (Dubey et al. 1970). Inside inter-
mediate hosts, T. gondii presents two stages of
asexual development: the rapidly growing tachy-
zoites, responsible for the acute illness, and the slowly
dividing bradyzoites, responsible for the chronic
and asymptomatic infection (Dubey et al. 1998).
Tachyzoites invade many cell types and rapidly

multiply by repeated endodyogeny inside a para-
sitophorous vacuole (PV) until disruption of the host
cell and the subsequent invasion of nearby cells
(Dubey et al. 1998). In response to stress factors,
usually in reaction to the host immune system,
tachyzoites can convert to bradyzoites, forming tissue
cysts which may persist as latent cysts for the rest
of the host’s life (Dubey et al. 1998). Within tissue
cysts, bradyzoites replicate slowly by endodyogeny
(Dubey et al. 1970). Cysts can be ingested by a
definitive host, in which case the parasite undergoes
cycles of sexual reproduction (Dubey et al. 1970).

Toxoplasmosis is of medical importance because
T. gondii can cause opportunistic diseases in immuno-
compromised individuals, due to reactivation of a
latent infection. Toxoplasma gondii can also cause
spontaneous abortion or congenital birth defects in
newborns if the mother is primo-infected during
pregnancy (Carlier et al. 2012). The active form of
the parasite can cause encephalitis and neurological
diseases, and can also affect heart, liver, inner ears
and eyes (chorioretinitis). Recently, toxoplasmosis
has been linked with schizophrenia and other
neurological disorders and behaviour alterations
(Miman et al. 2010; Park et al. 2012; Halonen and
Weiss, 2013). Despite the existence of effective
drug regimens, in some cases, the therapy is not
well tolerated by the patients. In addition, there is
still no effective therapy against latent infection.
It is expected that specific proteins of the parasite,
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which play important or essential roles in T. gondii
pathogenesis, allow the generation of novel therapies
that can overcome some of the afore-mentioned
situations. In this regard, the chaperone heat shock
protein 90 (Hsp90) has arisen as an interesting
drug target against acute and latent toxoplasmosis
(Shonhai et al. 2011; Angel et al. 2013; Roy et al.
2012; Rochani et al. 2013).

HSP90 : STRUCTURE AND COMPLEXES

Hsp90 is a widely distributed and highly conserved
molecular chaperone that is ubiquitously expressed
throughout nature, being one of the most abundant
proteins within non-stressed cells (Picard, 2002; Pratt
and Toft, 2003; Tsutsumi et al. 2009). Rather than
binding any unfolded protein, Hsp90 binds more
than 200 client proteins which require it for the
correct activation of key cellular processes such as
control of genetic expression, cell cycle progression,
apoptosis, cancer, stress response, plant immunity,
development and even evolutionary processes
(McClellan et al. 2007; Bogumil and Dagan, 2012;
Jackson, 2013). Hsp90 is an ATP-dependent cha-
perone whose ATPase activity is regulated by the
binding of co-chaperones and substrates (Prodromou
and Pearl, 2003). This binding can be specifically
inhibited by ansamycin-benzoquinone antibiotics
(Geldanamycin–GA- and its derivatives) and
Radicicol. These antibiotics bind specifically to the
Hsp90 ATP binding pocket with higher affinity
than ATP itself (Stebbins et al. 1997). GA specifi-
cally inhibits the ATPase activity of Hsp90 as a
result of its competition with ATP for binding to
the N-terminal domain nucleotide binding pocket
(Prodromou et al. 1997). This mechanism interferes
with the maturation process of client proteins,
facilitating their ubiquitin-mediated proteasomal
degradation (Pearl et al. 2008). This can be used as
an important tool for the analysis of Hsp90 functions
and the identification of its client proteins.
The Hsp90 structure consists of three highly

conserved domains: an N-terminal domain (ATP
binding site, GA binding site, p23, Aha 1 and Cdc37
co-chaperones binding site), a middle domain
(catalytic loop required for ATPase activity, Aha1
co-chaperone binding site) and a C-terminal domain
(dimerization interface) (Retzlaff et al. 2010; Jackson,
2013). In addition, it has a charged linker region and
theMEEVDmotif (which bindsTPR-containing co-
chaperones). Several co-chaperones (e.g. p50/Cdc37,
p60Hop/Sti1, p23, Aha1) modulate Hsp90 ATPase
activity, thereby altering the cycling rate of the
chaperone machine (Li et al. 2012). The composition
of co-chaperone complexes varies according to the
client proteins and the pathway in which the
chaperone is involved (Li and Buchner, 2013). In
higher eukaryotes, it is possible to define at least
four Hsp90 cycles: (i) the Hsp70/Hsp90 cycle or

Hsp90-heterocomplex for steroid hormone recep-
tors; (ii) the Hsp70/Hsp90 cycle or Hsp90-hetero-
complex for protein kinases (which involves cdc37
protein); (iii) a cycle that involves SGT1 co-
chaperones, which in plants plays a role in immune
sensors, but it is also associated with the kinetochore
assembly pathway; and (iv) Hsp90 complexes
associated with RNA processing (Li and Buchner,
2013). Hsp90-heterocomplexes consist of sequential
complexes formed by Hsp90 and different co-
chaperones. These are assembled during protein
client maturation forming dynamic multi-chaperone
complexes. They could be defined as early, inter-
mediate and late Hsp70/Hsp90 cycles (Li and
Buchner, 2013).

TOXOPLASMA GONDII HSP90 AND ITS CYCLES

Toxoplasma gondii presents two of the above-
mentioned Hsp90 cycles (Fig. 1). In the case of
the T. gondii Hsp90 (TgHsp90)-heterocomplex,
T. gondii seems to have only one of these pathways
because the cdc37 protein has not been detected. In
our laboratory, we have identified all the chaperones
and co-chaperones associated with TgHsp90-
heterocomplex (Echeverria et al. 2010; Figueras
et al. 2012, unpublished).We have also detected an
early/intermediate and a late TgHsp90 complex
similar to those found in higher eukaryotes (Fig. 1)
(Echeverria et al. 2010). The early/intermediate
TgHsp90 complex is composed at least by HIP-
Hsp70-TgHsp90 whereas the late complex is com-
posed by p23-TgHsp90. In addition, p23 and
TgHsp90 was shown to be cytosolic during the
tachyzoite stage and both cytosolic and nuclear
during the bradyzoite stage, whereas HIP, Sis1 and
HOP was shown to be cytosolic during both stages of
asexual reproduction in vitro (Echeverria et al. 2005;
Ueno et al. 2011; Figueras et al. 2012, unpublished).
These data indicate that both p23 and TgHsp90
could be engaged to a multitude of large protein
complexes as has been observed in higher eukaryotes
(Picard et al. 2006).
The Hsp90 protein also participates in the

complex involved in the early kinetochore assembly
pathway, as observed in yeast (Fig. 1) (Makhnevych
and Houry, 2012). Mining the T. gondii database
(www.toxodb.org) it was possible to reconstruct
the kinetochore assembly pathway and two putative
SGT1 co-chaperones could be detected (Fig. 1).
SGT1 proteins belong to a group of proteins that
have different domains, including the CS (CHORD
[cysteine and histidine-rich domain]-Sgt1 domain
(sometimes called p23-like or alpha crystallin
domain) and the SGS domain (Sgt1-specific domain)
at the carboxy terminus. In addition, SGT1 proteins
have a TPR domain that links Skp1 to the core of
the Hsp90 chaperone (Catlett and Kaplan, 2006).
Toxoplasma gondii has two putative sequences

1139Toxoplasma gondii Hsp90

https://doi.org/10.1017/S0031182014000055 Published online by Cambridge University Press

http://www.toxodb.org
https://doi.org/10.1017/S0031182014000055


encoding SGT1, identified as TGME49_305820 and
TGME49_231590 (Fig. 1C). None of them has a
TPR domain but TGME49_305820 has a zinc finger
domain at its amino terminus, not observed in other
SGT1 proteins.

In addition to these Hsp90 cycles, this chaperone
has been found to be associated with RNA processing
in yeast, involving Pih1, Tah1 and Rvb1 and Rvb2
(Li and Buchner, 2013). Mining the T. gondii
database has not retrieved any orthologue of Pih1

and Tah1 (Suvorova et al. 2013). However, the data
obtained from a combined analysis of co-immuno-
precipitation and mass spectrometry assays using
anti-TgHsp90 antibody and orthologous partners of
TgHsp90 from a Plasmodium falciparum Protein-
Protein Interaction (PPI) network database (see
Table S1) allowed the retrieval of several putative
TgHsp90 interactors involved in RNA processing.
These data suggest that TgHsp90 would have an
important role in this process and thus could become
a very interesting field for future studies.

POST-TRANSLATIONAL MODIFICATIONS

Hsp90 function can be altered by different post-
translational modifications (PTMs) such as phos-
phorylation, acetylation, S-nitrosylation, oxidation
and ubiquitination (Mollapour and Neckers, 2012).
Recently, the phosphoproteome and acetylome of
T. gondii have been determined (Treeck et al. 2011;
Jeffers and Sullivan, 2012; Xue et al. 2013). These
data have been incorporated in the www.toxodb.org
database allowing us to generate a PTM map of
TgHsp90 (Fig. 2, Table 1). Nonetheless these
modifications should be further confirmed by other
methods.

Toxoplasma gondii Hsp90 would be phosphory-
lated at several sites along its sequence (Table 1);
most of them (except S464) are also modified in
human or yeast Hsp90 orthologues (Mollapour et al.
2010a; Mollapour and Neckers, 2012; Soroka et al.
2012). Interestingly, human and yeast Hsp90s have
other phosphorylated sites of which PTMs was not
detected in TgHsp90 despite the conserved residues
in the parasite chaperone (Table 1). Although the role
of Hsp90 phosphorylation in T. gondii has not yet
been studied, it is known that phosphorylation has
important implications in the regulation of the
Hsp90 structure and function in other organisms.
Mutation of S485 in yeast Hsp90 is lethal, altering
the dynamics of the conformational changes (Soroka
et al. 2012). In some cases, phosphorylation of
Hsp90 reduces the avidity for its client protein.
The lack of phosphorylation of S226/S255 and
S231 on the linker region of HuHsp90β and
HuHsp90α, respectively, increases the binding
affinity of the chaperones for the transcription factor
arylhydrocarbon receptor (Ogiso et al. 2004). The
treatment of v-src-transfected cells with okadaic
acid, a serine/threonine phosphatase inhibitor, de-
stabilizes the Hsp90-pp60v− src chaperone complex
(Mimnaugh et al. 1995). Mutation of T22 on yeast
Hsp90 (T23 in TgHsp90, Table 1) results in the
accumulation of less glucocorticoid receptor (GR)
protein than wild-type cells and reduces GR and
pp60v− src activities in a yeast model (Nathan and
Lindquist, 1995). More recently, it has been ob-
served that phosphorylation of T22 in yeast Hsp90
affects its ATPase activity and also its function on

Fig. 1. Hsp90 cycles present in T. gondii. (A) Hsp90/
Hsp70 cycle or TgHsp90-heterocomplex for transcription
factors/protein kinases. The compositions of the early/
intermediate complex and of the late complex are shown
on the left and right hand, respectively. The co-
chaperone cdc37 binds to the Hsp90/Hsp70 cycle
associated to kinases in higher eukaryotes. Since it was
not identified in the T. gondii database, it is indicated
with a dashed line. (B) The T. gondii CBF3-assembly
complex. (C) The sequence domain organization of the
two putative SGT1s identified in the T. gondii database.
90: TgHsp90; 70: Hsp70; HIP: Hsp70 interacting
protein; HOP: Hsp70/Hsp90 organizing protein; 40:
Hsp40; CP: Client Protein; Imm/PP5: Immunophilin
or PP5; P23: p23; Sgt1: suppressor of G2 allele of SKP1,
S-phase kinase-associated protein 1; Ctf13: Chromosome
transmission fidelity protein 13; Ndc10: is also named
CBF2 for centromere binding factor 2; Cep3: is also
named CBF3b for centromere binding factor 3b.
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several client proteins, either kinases or non-kinases,
affecting the interaction between the Hsp90 protein
and co-chaperones (Mollapour et al. 2011a,b). By
contrast, indirect analysis based on the inability of
PP5 phosphatase to bind the Hsp90-heme-regulated
inhibitor of protein synthesis (HRI) has shown that
chaperone phosphorylation enhances HRI activity
(Shao et al. 2002). Phosphorylation of tyrosine 197 in
human Hsp90α (Y186 in TgHsp90, Table 1) dis-
sociates cdc37 from Hsp90 (Xu et al. 2012). This
study also showed that mutation of Y627 (Y604 in
T. gondii, Table 1) favours the release of client Cdk4
and co-chaperones (AHA1 and PP5). Wang et al.
(2009) have shown that phosphorylation of T90 by
protein kinase A (PKA) stimulates the cellular
secretion of human Hsp90α.
Phosphorylation of Hsp90 is mediated by several

kinases such as DNA-dependent protein kinase
(DNA-PK), casein kinase II (CK2), PKA, c-Src
and Wee1 (Mollapour et al. 2010b; Mollapour and
Neckers 2012). The phosphorylation status is also
regulated by PP5 and Ppt1 phosphatases (Mollapour
et al. 2010b). Their T. gondii putative counterparts
are: CK2 (TGME49_272400); PKA (TGME49_
242070); DNA-PK (TGME49_266000); NEK [Wee1]
(TGME49_319700); c-Src (TGME49_272475);
Ppt1 (TGME49_312200); and PP5 (TGME49_
312200). None of these kinases and phosphatases
was detected as TgHsp90/p23 putative interactors

(Table S1). Since PP5 is an Hsp90 co-chaperone, it is
expected that TgPP5 will be pulled down with
TgHsp90 in future studies.
Thus, as observed, phosphorylation of Hsp90 is of

key importance for Hsp90 function and complex
cycle. Despite the numerous putative phosphorylated
sites found in TgHsp90, there are several phos-
phorylated sites in yeast and human Hsp90s with
important regulatory functions, which are present
in TgHsp90 but not in the phosphoproteome. It is
expected that new sites of phosphorylation will be
detected in TgHsp90 and that their importance and
biological role would be determined.
More recently, the role of a lysine acetylation in

regulating Hsp90 function has been evidenced.
Human Hsp90s present several acetylable lysines
along their sequence (Mollapour and Neckers, 2012).
The histone acetyl-transferase (HAT) and histone
deacetylase (HDAC) enzymes are involved in mod-
ulating the acetylation status of Hsp90. The acety-
lation of Hsp90 negatively affects the Hsp90
functions. Exposure of cancer cells to the HDAC
inhibitor FK228 has been shown to block the
interaction of Hsp90 with the key cell cycle regulators
p53 and Raf-1 (Yu et al. 2002). In the TgHsp90
sequence, two putative acetylated lysines (K384 and
K559) have been identified (Jeffers and Sullivan,
2012; Xue et al. 2013) (Fig. 2 and Table 1). These
lysines are conserved in human Hsp90 and one is also
acetylated (Table 1). The role of lysine K294 in
human Hsp90α, also present in TgHsp90 (K271,
Table 1), has been further studied. The replacement
of this lysine by alanine (K294A) dramatically
reduces the interaction of Hsp90 with the client
receptor tyrosine kinase ErbB2 and the kinase
p60v−Src (Scroggins et al. 2007). A similar effect
has been observed with co-chaperones AHA1,
FKBP52, HOP, Hsp70 and C-terminus of Hsp70-
interacting protein (CHIP), where the mutant has
shown a reduced or undetectable level of interaction
with the Hsp90 (K294A) mutant version (Scroggins
et al. 2007).
The enzyme responsible for the regulation Hsp90

deacetylation is HDAC6 (class II deacetylase) whose
inactivation results in Hsp90 hyper-acetylation,
leading to the dissociation of the functional GR-
Hsp90 and thus affecting the receptor maturation
(Kovacs et al. 2005; Murphy et al. 2005). HDAC1,
another class II deacetylase, has also been reported to
deacetylate Hsp90 in the nucleus of human breast
cancer cells (Zhou et al. 2008), and both HDAC1 and
HDAC10 inhibit the productive Hsp90 chaperoning
of VEGF receptor proteins (Park et al. 2008).
Although HDAC6 has not been detected, other
members of the HDAC class II family (such as
HDAC1 andHDAC5) have been detected by mining
theT. gondii database (Vanagas et al. 2012).However,
none of them have been identified as Hsp90 inter-
actors so far.

Fig. 2. Schematic representation of TgHsp90. In black:
The N-terminal domain, in grey: the central domain and
in light grey: the C-terminal domain. Highlighted are the
amino acids MEEVD and the residues that are identified
to have received post-translational modifications (PTMs).
One letter code was used to indicate the corresponding
amino acids. The panel also shows the biological
processes in which TgHsp90, more likely through the
TgHsp90-heterocomplex, is involved: modulation of
invasion, cell cycle and differentiation.
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Acetylation of Hsp90 seems to be headed by
p300/CBP (CREB-binding protein) HATs (Kovacs
et al. 2005; Mollapour and Neckers, 2012). However,
up to now, little is known about this issue. Although
it is a recent field of study, the role of these PTMs
in biological processes is gaining the interest of
researchers, as phosphorylation did in the past. The
exploration of acetylation/deacetylation modulation
in TgHsp90 will bring on interesting findings in the

future and will probably promote novel anti-Hsp90
drugs.

S-nitrosylation is a covalent attachment of
a nitrogen monoxide group to the thiol side chain
of a cysteine. This reversible PTM of Hsp90 is
mediated by nitric oxide (NO), and has been shown
to inhibit its chaperone activity (Martinez-Ruiz et al.
2005). This PTM occurs in the C-terminal domain
of Hsp90α at C597, a residue also present in

Table 1. PTMs of T. gondii, yeast and human Hsp90 members

TgHsp90 YHsp90 HuHsp90α HuHsp90β Domain

Phosphorylation – – T5 – N domain
– – T7 –
T23 T22 T36 T31
Y25 Y24 Y38 Y33
Y48 Y47 Y61 Y56
– S49 S63 S58
T52 S51 T65 T60
– – S68 S63
– T58 T72 T67
T75 – T88 T83
T77 – T90 T85
Y186 Y184 Y197 Y192
S200 S198 S211 S206
T220 – S231 S226 Linker
S222 – – –
– – S252 –
– – S263 S255
– S282 – – Middle domain
T282 T285 T305 T297
Y286 Y289 Y309 Y300
S292 S295 S315 S307
T294 S297 T317 T309
T331 S334 – –
S376 S379 S399 S391
T430 T433 S453 S445
– – S460 S452
S445 S450 S470 S462
S453 S456 S476 S468
S464 – – –
Y469 Y472 Y492 Y484
Y470 Y473 Y493 Y485
S482 S485 S505 S497
– – – S532
Y581 – Y604 Y596 C domain
S600 S602 S623
Y604 Y606 Y627 Y619
– S616 – –
– S619 – –
S654 S657 S677 S668
– S663 T683 T675
– – T725 –
– – S726 S718

Acetylationa K271 K274 K294 K286
K384 K387 K407 K399
K559 – K582 K574

S-nitrosylation C549 (ND) – C572 C564
C574 (ND) – C597 C589

a Data only include acetylated lysines identified in T. gondii and human Hsp90. Other lysines that were detected in human
Hsp90 are not included.
ND: indicates not determined; Normal font: PTMs identified; italic font: orthologue residue; –: non phosphorylated
(Y, T, S), acetylated (K) or S-nitrosylated (C) residue; Obs.: Hsp90 domains are only identified for phosphorylation section.

1142Sergio O. Angel and others

https://doi.org/10.1017/S0031182014000055 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182014000055


TgHsp90 (Table 1). The S-nitrosylation has not
been studied in TgHsp90 yet, being another
intriguing subject for future studies.

THE CELL CYCLE

The incubation of intracellular tachyzoites with GA
has a clear effect on T. gondii reducing the replication
rate of tachyzoites (Ahn et al. 2003; Echeverria et al.
2005). Toxoplasma gondii replicates with a mechan-
ism named endodyogeny, in which two daughter cells
bud inside a mother cell (Gubbels et al. 2008). The
cell cycle of highly replicative tachyzoites comprises
the Gap phase G1-S-Mitosis, whereas the G2 is not
detectable (Radke et al. 2001). Inside the host cell, the
rate of replication is about one complete cycle every
5–9 h and then starts again to complete several rounds
(Radke et al. 2001). Although the cell cycle resembles
that of higher eukaryotes, the complete round of
parasite replication has some differences: the nuclear
envelope does not disappear along the parasite
division (Striepen et al. 2007) and chromosomes
do not present a high order level of condensation.
In addition, many of the checkpoint factors that
control G1 to S phase progression in higher
eukaryotes are not detected in T. gondii (Gubbels
et al. 2008; Behnke et al. 2010). When tachyzoites
enter the bradyzoite differentiation process, the cell
cycle presents a long G2-phase during early events,
and then mature bradyzoites stay arrested in G0
(Radke et al. 2003). Therefore, replication and
differentiation seem to be linked. Up to now, the
cell signals responsible for modulating T. gondii
replication are unknown. Moreover, it is still un-
known whether there is a connection between host
cell and tachyzoites in the modulation of the parasite
replication process. The treatment of host cells with
phosphatidylinositide 3-kinases (PI3K kinases) in-
hibitors such as LY294002 and wortmannin has
been shown to reduce tachyzoite replication (Zhou
et al. 2013). TgHsp90 PPI analysis has shown several
putative kinases and phosphatases that could be
involved in cell signalling (Table S1). However, the
biological role of some of these proteins has not been
assessed yet. We could infer that in the future some
of these signalling kinases and phosphatases could be
linked to Hsp90 and the cell cycle.
A clear association between Hsp90 and the cell

cycle was observed early. This association involves
cyclin-dependent kinase 1 CDK1 (also named cdc2
or cdc28), CDK2, CDK4, Cyclins B, D and E as well
as the kinases Wee1, Myt-1, Plk1, Aurora B and
survivin (Burrows et al. 2004). The inhibition of
Hsp90 with XL888 blocks tumour cell progression
and leads to cell cycle arrest and degradation of
different client kinases such as CDK1 (cdc2/cdc28),
ChK1 and Wee1 in vitro (Haarberg et al. 2013).
Hsp90 is also linked to cyclin E degradation without
binding to it (Bedin et al. 2009). Cyclin E regulates

CDK2 and is required to initiate DNA replication
at the G1/S transition. Although most of these cell
cycle associated proteins are present in the T. gondii
database, none of them were identified as a putative
TgHsp90/p23 interactor. In addition, other proteins
associated with theT. gondii replication process could
be involved as TgHsp90 client proteins (e.g. SGT1-
Skp1 pathway). Further analysis to elucidate cell
cycle components that can be assisted by TgHsp90
should be performed.

STAGE DIFFERENTIATION

Toxoplasma gondii interconversion between rapidly
growing tachyzoites and latent encysted bradyzoites
involves coordinated, sequential, morphological and
metabolic processes accompanied by gene expression
events (Dzierszinski et al. 2004). The TgHsp90 PPI
network highlights the putative role of TgHsp90 in
assisting glycolytic/respiration metabolism to obtain
ATP, protein synthesis (which includes aminoacyl
tRNA synthases), maturation of rRNAs, initiation
and elongation factors and ribosomal proteins as
well as protein degradation or processing (Table S1).
These findings, obtained from T. gondii studies,
have been further documented in other organisms
(McClellan et al. 2007; Pavithra et al. 2007;
Echeverria et al. 2011). In addition, the PPI network
of T. gondii p23 in tachyzoites and bradyzoites has
also allowed the retrieval of these types of proteins
as putative interactors (Echeverria et al. 2010).
Noteworthy, in the bradyzoite stage, the parasite
mitochondrion is down-regulated, whereas in the
highly replicative tachyzoite, oxidative phosphory-
lation is essential for sufficient ATP generation
(Bohne et al. 1994; Tomavo and Boothroyd, 1995).
Toxoplasma gondii lactate dehydrogenase LDH1 is
present in tachyzoites while LDH2 is found in
bradyzoites, and the over-expression of LDHs in
tachyzoites has been shown to enhance the bradyzoite
conversion during stress (Liwak and Ananvoranich,
2009). For this reason, it is reasonable to find out that
several enzymes associated to ATP generation would
be regulated by TgHsp90 under differentiation
conditions, a situation that generates stress in the
tachyzoite.
Another important change during parasite differ-

entiation is the protein repertoire in which some
proteins should be replaced for another set of new
proteins. In this regard, during bradyzoite develop-
ment, the T. gondii eukaryotic initiation factor 2
alpha subunit (eIF2α) is phosphorylated, a PTM that
restrains global protein synthesis, which persists
in the bradyzoite stage (Narasimhan et al. 2008).
Moreover, the inhibition of eIF2α dephosphoryla-
tion by salubrinal and guanabenz has been shown to
reduce tachyzoite replication and induce bradyzoite
formation, blocking its reactivation (Konrad et al.
2013). The TgHsp90 PPI network includes
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elongation factors and several ribosomal proteins that
are involved in protein biosynthesis as putative
interactors, but not the eIF2α kinase and eIF2α
(Table S1). Even though these data link TgHsp90
with assisting the protein biosynthesis pathway,
it remains to be seen if TgHsp90 could be regulat-
ing this key metabolic process during parasite
differentiation.

One of the most interesting and curious aspects
concerning TgHsp90 and parasite differentiation
relies on protein translocation to the nucleus
(Echeverria et al. 2005). This could implicate a role
in modulating transcription factors, chromatin and/
or RNA processing factors. Although the Hsp90 PPI
network presents some components of chromatin
and transcriptional machinery as putative TgHsp90
interactors (Table S1), there is an important gap in
this field since only a basal transcriptional mach-
inery has been detected in apicomplexan parasites
(Meissner and Soldati, 2005). In addition, the
involvement of an epigenetic mechanism in T. gondii
gene regulation has been recently documented
(Dalmasso et al. 2011; Croken et al. 2012). On the
other hand, the role of Hsp90 in transcriptional
activities, chromatin modulation, RNA processing/
splicing proteins and DNA replication/damage-
response has been recently reviewed (Sawarkar et al.
2012). Of note, a chromatin immunoprecipitation
(ChIP) genome-wide analysis in Drosophila has
shown that Hsp90 accumulates close to the tran-
scription start sites of several protein-coding and
miRNA-coding genes which are in a paused state of
RNA polymerase II (Sawarkar et al. 2012). Further
studies should be carried out to determine the
importance of nuclear translocation of TgHsp90
during bradyzoite development. These studies
should consider not only a putative role in assisting
nuclear proteins but also a role in gene expression
and/or maintaining the paused state of RNA pol II.

HOST-CELL INVASION

Toxoplasma gondii presents a compartmental organ-
ization similar to other eukaryotes and a group of
apicomplexan specific-secretory organelles (micro-
nemes and rhoptries) located at the apical tip of the
parasite, which are involved in attachment and
invasion (Carruthers and Boothroyd, 2007; Sharma
and Chitnis, 2013). The contents of micronemes and
rhoptries are discharged at the time of invasion.
Another important organelle, the inner membrane
complex (IMC), together with the plasma membrane
(PM), forms the pellicle, a triple lipid bilayer typical
of apicomplexan parasites. The IMC is of critical
importance for the parasite’s cellular processes such
as replication, gliding motility and invasion (Lourido
et al. 2012). Ahn et al. (2003) have shown that
inhibition of TgHsp90 blocks parasite invasion
into the host cell. These authors have also shown

that TgHsp90 is secreted during invasion and
antibodies against this chaperone also block the host
cell entry of the parasite. In addition to secreted
Hsp90, the PPI network retrieved some proteins
associated with cell adhesion and parasite invasion
such as micronemes and rhoptry proteins (Table S1).
Maybe, intracellular Hsp90 also participates in
regulating the secretion and/or maturation of these
proteins.

CONCLUSIONS

As mentioned, toxoplasmosis is a disease of
medical relevance mainly due to the possibility of
reactivation of latent infections and vertical trans-
mission. Thus, the absence of efficient treatment for
chronic conditions makes this issue an interesting
field of study. Because of this, the identification and
characterization of essential or specific proteins which
may be participating in essential cellular processes
in T. gondii pathogenesis would allow the generation
of novel therapies. The parasite chaperone Hsp90 is
an interesting drug target against acute and latent
toxoplasmosis (Angel et al. 2013).

Experimental data and database mining have
allowed the identification of at least two of the
Hsp90 cycles in T. gondii: the Hsp70/Hsp90 cycle
or Hsp90-heterocomplex for transcription factors/
protein kinases and the cycle that involves SGT1
co-chaperones associated with the kinetochore as-
sembly pathway. Both confirmed the involvement of
TgHsp90 in cell cycle and development control,
making this an interesting field of future studies.
In addition, different putative Hsp90 interactors
associated with key metabolic processes associated
to differentiation, DNA replication, gene expression
at transcriptional and post-transcriptional levels,
have been detected. Hsp90 also has been found to
be associated with T. gondii invasion. It is intriguing
whether this role is fulfilled by the extracellular
parasite Hsp90 and/or if TgHsp90 participates by
assisting the function or secretion of some proteins
belonging to the invasion pathways, such as rhop-
tries, micronemes, etc. Confirming some of these
proteins as TgHsp90 interactors is one of our future
goals to dissect the role of parasite Hsp90 in these
processes.

Hsp90 is regulated by several PTMs such as
phosphorylation, acetylation and S-nitrosylation.
These PTMs are involved in modulating Hsp90
affinity for client proteins and co-chaperones. Al-
though numerous putative phosphorylated sites have
been found in TgHsp90, there are several phos-
phorylated sites in yeast and human Hsp90s with
important regulatory functions, which are present in
TgHsp90 but not in the phosphoproteome. Hsp90 is
acetylated by HDAC enzymes. This PTM is highly
interesting because it regulates the Hsp90 function
and can be addressed by drugs that inhibit HDAC
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activity. Some but not all HDAC (e.g. HDAC6) have
been identified as Hsp90 modifiers in the T. gondii
database. We could speculate that the study of Hsp
PTMs will bring up interesting findings in the future
and promote novel anti-Hsp90 drugs.
In conclusion, TgHsp90 is a chaperone thatmay be

modulating essential biological processes. Since
studies on TgHsp90 are at an early stage, it is a
promising field of study both to gain knowledge on
the basic biology of the parasite and to evaluate it as
a therapy target against toxoplasmosis.
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