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We study here experimentally, numerically and using a lubrication approach, the
shape, velocity and lubrication film thickness distribution of a droplet rising in a
vertical Hele-Shaw cell. The droplet is surrounded by a stationary immiscible fluid
and moves purely due to buoyancy. A low density difference between the two media
helps to operate in a regime with capillary number Ca lying between 0.03 and
0.35, where Ca= µoUd/γ is built with the surrounding oil viscosity µo, the droplet
velocity Ud and surface tension γ . The experimental data show that in this regime
the droplet velocity is not influenced by the thickness of the thin lubricating film
and the dynamic meniscus. For iso-viscous cases, experimental and three-dimensional
numerical results of the film thickness distribution agree well with each other. The
mean film thickness is well captured by the Aussillous & Quéré (Phys. Fluids, vol. 12
(10), 2000, pp. 2367–2371) model with fitting parameters. The droplet also exhibits
the ‘catamaran’ shape that has been identified experimentally for a pressure-driven
counterpart (Huerre et al., Phys. Rev. Lett., vol. 115 (6), 2015, 064501). This pattern
has been rationalized using a two-dimensional lubrication equation. In particular,
we show that this peculiar film thickness distribution is intrinsically related to the
anisotropy of the fluxes induced by the droplet’s motion.

Key words: drops, Hele-Shaw flows, lubrication theory

1. Introduction
Transport of droplets and bubbles in confined environments is a common process

in engineering applications, such as microscale heat transfer and cooling using a slug
flow (Kandlikar 2012; Magnini, Pulvirenti & Thome 2013), enhanced oil recovery
based on foam injections where bubbles move in porous media (Farajzadeh, Andrianov
& Zitha 2009), and microfluidic engineering using droplets as micro-reactors

† Email address for correspondence: francois.gallaire@epfl.ch
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(Song, Chen & Ismagilov 2006) and cell-encapsulating micro-compartments (He
et al. 2005), to name a few. The study of transported droplets in confined dimensions
also extends to biological science, where red blood cells traversing passages with
non-axisymmetric geometries were analysed (Halpern & Secomb 1992).

Pioneering work has been initiated for a long bubble translating inside a straight
cylindrical tube by Taylor (1961) conducting experiments and Bretherton (1961)
combining experiments and asymptotic analysis. The analysis of Bretherton showed
that the lubrication equations, at a very small capillary number Ca, were similar to
their one-dimensional (1-D) version assuming spanwise invariance. He established the
famous asymptotic relation between the uniform film thickness H∞ and the capillary
number in the Ca< 10−3 regime, namely, H∞/W =P(3Ca)2/3/2, where W is the tube
diameter and P is a coefficient. The capillary number Ca=µoUd/γ is built with the
carrier phase dynamic viscosity µo, the droplet velocity Ud and the surface tension
γ between the two fluids. Aussillous & Quéré (2000) proposed

H∞
W
= 1

2
P(3Ca)2/3

1+ PQ(3Ca)2/3
, (1.1)

as the Taylor’s law including an empirical coefficient Q= 2.5, with the coefficient P
inherited from Bretherton (1961); this law was validated against the experimental data
of Taylor (1961) for Ca< 2. The empirical relation was rationalized by incorporating
into the analysis of Bretherton the so-called ‘tube-fitting’ condition, namely, that the
bubble–film combination should fit inside the tube (Klaseboer, Gupta & Manica 2014).
Besides those works considering the steady translation, Yu et al. (2018) have recently
investigated how the lubrication film evolves between two steady states of a Bretherton
bubble by combining theory, experiments and simulations.

Contrary to the translating bubble in a capillary tube, a bubble moving in a
Hele-Shaw cell (two closely gapped parallel plates) resembles a flattened pancake.
This configuration is relevant to microfluidic applications (Baroud, Gallaire & Dangla
2010) where the thickness of the microfluidic chips is much smaller than their
horizontal dimension. Owing to the mathematical similarity between the governing
equations of the depth-averaged Hele-Shaw flow and those of the two-dimensional
(2-D) irrotational flow, as proved by Stokes (1898) and commented upon by Lamb
(1993), potential flow theory was adopted to study the motion of a Hele-Shaw
bubble theoretically (Taylor & Saffman 1959) and numerically (Tanveer 1986).
Based on the stress jump derived by Bretherton (1961) and Park & Homsy (1984),
2-D depth-averaged simulations including the leading-order effects of the dynamic
meniscus were also carried out (Meiburg 1989).

Motivated by the applications of droplet-based microfluidics, several works have
recently been conducted to investigate the dynamics of a pressure-driven Hele-Shaw
droplet. Huerre et al. (2015) and Reichert et al. (2018) performed high-precision
experiments using the reflection interference contrast microscopy technique to
study pressure-driven droplets, observing the so-called ‘catamaran’ droplet shape.
Simulations based on a finite volume method (Ling et al. 2016) and a boundary
integral method (BIM) (Zhu & Gallaire 2016) were carried out, confirming such
a peculiar interfacial feature. It has to be mentioned that the much earlier work
of Burgess & Foster (1990) performing a multi-region asymptotic analysis subtly
revealed this feature for a Hele-Shaw bubble, which went rather unnoticed.

Limited work has been conducted for the gravity-driven droplets in a Hele-Shaw
cell. Eri & Okumura (2011) and Yahashi, Kimoto & Okumura (2016) studied such
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FIGURE 1. (Colour online) (a) Schematic of the experimental set-up. (b) Sketch of the
problem: a droplet with density ρi and dynamic viscosity µi moving at velocity Ud in a
Hele-Shaw cell of height W, where the carrier phase has a dynamic viscosity µo and its
density ρo>ρi. The in-plane (x, y) projection shows the drop’s longitudinal and transverse
lengths, L and T , respectively. The out-of-plane (x, z) drop shape shows the thickness H∞
of the uniform thin film and the minimum thickness Hmin of the film along the centreline.

configurations experimentally, trying to build up the scaling laws for the viscous
drag friction of the Hele-Shaw droplets. Recently, Keiser et al. (2018) conducted
experiments to study a sedimenting Hele-Shaw droplet, focusing on its velocity as a
function of confinement, viscosity contrast and the lubrication capacity of the carrier
phase.

In this work, we combine experiments, simulations and a lubrication model solved
numerically to study the buoyancy-driven translation of a droplet inside a vertical
Hele-Shaw cell. We examine the droplet velocity, film thickness and how they vary
with the density and viscosity difference between the droplet and carrier phase.
We introduce the experimental set-up in § 2, followed by the experimental results
of the droplet mean velocity and film thickness in §§ 3.1 and 3.2, respectively.
The comparison between the three-dimensional (3-D) BIM simulations and the
experiments is shown in § 3.3. The lubrication equation employed to model the
problem is presented in § 4, where the numerical solution of the lubrication equation
is compared to the 3-D simulation results in § 4.1. The film thickness pattern is
rationalized by solving the linearized 2-D lubrication equation, which is presented in
§ 4.2. We finally summarize our results in § 5 with some discussions.

2. Experimental set-up
A vertical Hele-Shaw cell made of two parallel glass plates, separated by a gap W,

is filled with silicone oil of dynamic viscosity 560 mPa s and density 972 kg m−3,
measured at 20 ◦C. An oil drop is injected into the silicone oil medium from the
bottom using a syringe as shown in figure 1(a). The drop moves as a result of
buoyancy. The higher the density difference between the inner and outer medium,
the higher the drop velocity Ud. The spanwise and streamwise cell dimensions are
sufficiently large compared to the drop size to avoid any finite size effects from the
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Inner oil µi (mPa s) ρi (kg m−3) γ (mN m−1)

Linseed oil 49 929 2.88
Sunflower oil 69.5 921.5 2.73
Sesame oil 71 919.1 2.64
Olive oil 79.3 913.3 2.55
Peanut oil 83.8 913.3 3.11
Ricin oil (type 1) + 10 % ethanol 302 943.1 4.97
Ricin oil (type 2) + 10 % ethanol 322 943.3 4.46

TABLE 1. Dynamic viscosity µi and density ρi of the inner oils. Those of the outer oil are
µo=560 mPa s and ρo=972 kg m−3, except for the case of ricin (type 2) +10 % ethanol,
for which the outer oil has µo = 319 mPa s and ρo = 970.5 kg m−3. The interfacial
surface tension between the inner–outer oils is γ . These properties were obtained at a
room temperature of 20 ◦C.

lateral walls. On the other hand, the droplet is highly confined in the wall-normal
direction. The droplet radius a is always larger than the cell gap W. Given the
compliance of the glass walls, the thickness of which is bounded by our optical
measurement tools, the cell gap W lies in the range of [4.59–4.8] mm and is recorded
every time before the drop injection (see table 2).

The injected oils are tested beforehand to ensure non-wetting conditions for the
oil droplet on the cell plates. The outer silicone oil totally wets the glass plate and
forms a thin film of thickness H, between the drop and the glass’s interface (see
figure 1b), which is measured using a confocal chromatic imaging (CCI) optical pen
(see details in appendix A). The pen is either placed fixed such that it measures the
film thickness only along the centreline L (centreline film thickness) or mounted on a
linear translational stage to perform lateral scans while the drop moves longitudinally.
With an acquisition frequency of 200–500 Hz, scanning amplitude of 20–30 mm and
frequency of 2–3 Hz, the obtained experimental data are interpolated in MATLAB to
obtain the film thickness maps for the entire drop. Droplet size and velocity determine
the optimal acquisition frequency for the thickness sensor, and the scanning amplitude
and frequency for the linear translational stage.

We observe that for the chosen inner oil volumetric range, the droplet in-plane shape
is no longer a circle but closer to an oval; hence we refer to the drop longitudinal
length (along the direction of gravity) as L and to the transverse length as T , as shown
in figure 1(b). The drop motion is captured using a Phantom Miro M310 camera
with a Nikon 105 mm macro lens. The spatio-temporal analysis of the movie ensures
uniform drop velocity as the drop moves along a longitudinal distance of 5L or more.

The drop volume Q is expressed as a pancake of radius a and height W − 2H∞,
where H∞ is the mean film thickness. We can simplify Q as πa2W when H∞�W.
For the volumetric range used for the inner oils, we found that the longitudinal
and transverse lengths, L and T , scale as the pancake radius a. The aspect ratio
α is expressed as the ratio a/W. Keeping the cell gap W fixed, data for different
aspect ratios are obtained using three different volumes (0.5 ml, 1 ml and 1.5 ml)
for each oil.

Six oils with physical properties as mentioned in table 1 are used. The surface
tension γ between the inner and outer media is measured using a Teclis tensiometer,
and the oil viscosity and density are measured using an Anton Paar SVMTM 3000
viscometer. The experiment is performed at 20–22 ◦C.
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Gravity-driven pancake droplets rising in a Hele-Shaw cell 1025

Symbol Definition Expression Working range

W Cell gap — 4.59–4.8 mm
Ud Drop velocity — 0.4–1.6 mm s−1

Q Injected drop volume — 0.44–1.5 ml
a Pancake equivalent radius

√
Q/πW 5.8–10.3 mm

α Aspect ratio a/W 1.25–2.27
1ρ Density difference |ρi − ρo| 27.3–58.8 kg m−3

µi Dynamic viscosity – droplet — 49–322 mPa s
µo Dynamic viscosity – outer medium — 319–560 mPa s
γ Interfacial surface tension — 2.5–5.0 mN m−1

λ Dynamic viscosity ratio µi/µo 0.09–1.01
Ca Capillary number µoUd/γ 0.03–0.35
Bo Bond number 1ρga2/γ 1.8–23.3

TABLE 2. List of notation, definitions and working ranges.

The ratio λ between the dynamic viscosity of the inner and outer phase lies
in the range [0.09–0.54]. In addition to this range, another set of experiments is
performed with λ = 1.01, where the outer medium is silicone oil (µo = 319 mPa s,
ρo= 970.5 kg m−3) and the inner medium is a mixture of ricin oil and 10 % ethanol
(µi= 322 mPa s, ρi= 943.3 kg m−3) for three different drop volumes. The interfacial
surface tension between these oils is 4.46 mN m−1. The notation for the physical
parameters and their definitions is detailed in table 2.

3. Experimental acquisition of the drop characteristics and their comparison with
3-D BIM simulations

3.1. Experimental results for drop velocity
Considering the bulk dissipation only, the resulting viscous drag force acting on the
drop scales as Fd ∼ (µi + µo)Udπa2W−1. Unlike Okumura (2018), we consider both
the inner and outer viscosities since they are of the same order. Balancing the total
drag force with the buoyancy force, Fg ∼ 1ρgπa2W, we obtain a scaling for the
droplet mean velocity as

Ud ∼ 1ρgW2

(µi +µo)
, (3.1)

where 1ρ is the density difference and g= 9.81 m s−2.
Under the assumption of cylindrical penny-shaped wetting drops, a theoretical

expression for the drop velocity can be obtained from Maxworthy (1986), Bush
(1997) and Gallaire et al. (2014). Gallaire et al. (2014) deduced the drop velocity in a
Hele-Shaw cell, subjected to both buoyancy and Marangoni flow, using depth-averaged
Stokes equations, called the Brinkman equations. In the absence of the Marangoni
effect and at leading order, Bush (1997) and Gallaire et al. (2014) predicted the mean
drop velocity as

Ud = 1ρgW2

12µo(λ+ 1)
. (3.2)

Introducing the Bond number Bo (see table 2), we can rewrite (3.2) using the aspect
ratio α as

12α2(λ+ 1)Ca= Bo. (3.3)
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FIGURE 2. (Colour online) Experimental data α2(λ+ 1)Ca versus the Bond number Bo,
where Ca ∈ [0.03, 0.35]. The markers correspond to different viscosity ratios λ of the
inner–outer medium. The data closely fit (3.3) represented by the straight line.

The experimental data are plotted against the theoretical equation (3.3) in figure 2.
Following the trend predicted by (3.3), figure 2 signifies that the dominant forces in
play are buoyancy and viscous drag due to the volume of fluid displaced by the drop.
The dissipation induced in the thin film as well as that in the dynamic meniscus region
are found not to play a role in the selected parameter range. However, it has been
observed that, for low Ca ranges, the dissipation in the thin film (Keiser et al. 2018)
and in the dynamic meniscus (Reyssat 2014) have to be taken into account.

3.2. Experimental results for film thickness
Film thickness maps were measured for different droplet velocities. Since the thickness
sensor fails to capture the data in the presence of high thickness gradient, no data
are acquired along the drop edges, as shown in figure 3(d), where the black curve
represents the drop in-plane boundary. For different aspect ratios, qualitatively similar
thickness maps were obtained, with a high film thickness on the front edge, a constant
film thickness in the centre and very low film thickness along the lateral edges of
the drop, overall resembling a catamaran-like shape. The spanwise and streamwise cut
made along the film thickness are shown in figure 3(b,c). The centreline film thickness
indicated by the streamwise cut at y = 0 (figure 3b) clearly shows a monotonically
decreasing film thickness pattern, followed by a region of constant film thickness H∞,
which then reaches a minimum value of Hmin. At the rear of the droplet, the strong
thickness gradient reverses direction, to have an increasing thickness profile close to
the drop receding edge, thus posing technical issues to capture the film thickness.

A similar centreline film thickness profile was obtained for all the droplets
with a distinct value of H∞ and Hmin. These profiles are very similar to those
of Bretherton (1961) for pressure-driven droplets, and as already noted in other
works on pancakes (Huerre et al. 2015; Zhu & Gallaire 2016; Reichert et al. 2018).
Non-dimensionalizing the mean and minimum values along the centreline using the
cell gap W and plotting them as a function of Ca shows a saturating trend for higher
Ca (figure 4). The experimental data are fitted based on the Taylor’s law model
(Taylor 1961; Aussillous & Quéré 2000), according to which, apart from the static
and dynamic meniscus regions, the lubrication film has a constant thickness of H∞
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FIGURE 3. (Colour online) Drop characteristics for a droplet with λ ∼ 1 moving with
mean velocity Ud = 0.64 mm s−1, Ca = 4 × 10−2 and Bo = 6.2. (a) The blue curve
shows the in-plane drop shape fitting based on (3.5) with L/2 = 11.22 mm, T/2 =
10.21 mm and fitting coefficient c = −7.485 × 10−6 mm−1. The film thickness in the
streamwise and spanwise directions y = 0 and x = 0 of the drop are shown in (b) and
(c), respectively. (b) The typical centreline thickness profile with monotonically decreasing
thickness, followed by constant thickness H∞ and ending with the minimum film thickness
Hmin. (c) The film thickness profile along the spanwise direction highlights the two minima
along the lateral edge of the drop at y∼±7.5 mm, which are clearly seen in panel (d),
where we see the in-plane shape in black and the obtained film thickness map. The data
are missing along the drop boundaries due to the presence of high thickness gradient that
cannot be captured by the thickness sensor.

given as
H∞
W
= 1

2
P(3Ca)2/3

1+ PQ(3Ca)2/3
, (3.4)

where the coefficients P = 0.544 and Q = 2.061 are obtained from the best-fitting
curve for the experimental data. The nonlinear equation (3.4) is fitted using the
MATLAB function sseval such that the objective function, defined as the sum of
squared errors between the real data of H∞/W and those predicted by (3.4), using
any pair of parameters P and Q, is the minimum. The L2 error norm for H∞/W
between the fitted and actual data is 0.02.

The fitting coefficients compare well with those of Aussillous & Quéré (2000)
and Klaseboer et al. (2014), where the mean film thickness model for bubbles
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FIGURE 4. (Colour online) (a) Dimensionless mean (H∞/W) and (b) minimum (Hmin/W)
film thickness, as functions of Ca. The black curve represents the best-fitting curve
obtained using the Taylor’s law model with P = 0.544 and Q = 2.061 for H∞/W and
with P= 0.372 and Q= 1.247 for Hmin/W. For the mean film thickness, predictions based
on the coefficients P and Q from the Taylor’s law (Aussillous & Quéré 2000; Klaseboer
et al. 2014; Zhu & Gallaire 2016) are also shown.

(λ = 0) is based on the Taylor’s law with coefficient P = 0.643, and Q = 2.5 and
2.79, respectively. Fitting coefficients obtained from a 3-D BIM simulation of Zhu &
Gallaire (2016) for pressure-driven flows and λ= 1 show the same order of magnitude
as the experimental ones, with P= 0.6 and Q= 1.5.

In figure 4(a), we see that our experimental data for mean film thickness are
bounded by the predicted values for the two extreme viscosity ratios of λ = 0 and
λ = 1. Comparing the thickness predictions by Klaseboer et al. (2014) and Zhu
& Gallaire (2016) for Ca = 0.1, we see that the thickness variation is 20 % as λ
increases from 0 to 1. This is consistent with the 18 % (approximately) increase as
reported in Martinez & Udell (1990) for pressure-driven drops in an axisymmetric
tube. Further, this variation in thickness reduces to a merely 11 % for Ca= 0.05, as
λ changes from 0 to 1.

The same model when used for fitting the minimum film thickness profile Hmin/W
gives fitting coefficients P= 0.372 and Q= 1.247 with an L2 error norm between the
fitted and actual data as 0.025.

Motivated by the qualitative agreement for the mean film thickness value between
the experimental data and the 3-D BIM simulations for pressure-driven droplets
(figure 4a), we perform a 3-D BIM simulation using the solver developed in Zhu &
Gallaire (2016), suitably adapted for gravity-driven droplets. The reader is referred to
that paper for details of the numerical scheme.

3.3. Comparison with 3-D simulations
The current numerical simulations only address the cases where the inner and outer
viscosities are the same, namely λ = 1. To realize it experimentally, three different
drop volumes, 0.44 ml, 1 ml and 1.5 ml, were injected into the Hele-Shaw cell,
resulting in Ca= 0.032, 0.043 and 0.046, with the corresponding Bo= 1.81, 4.04 and
6.2. The error in volume injected decreased from 10 % to 3 % as we moved from the
smallest to the largest drop volume.
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FIGURE 5. (Colour online) Film thickness map whose top (respectively bottom) half
corresponds to the 3-D BIM (experimental) data for three drop volumes: (a) 1.5 ml
(Ca = 0.046, Bo = 6.2); (b) 1 ml (Ca = 0.043, Bo = 4.04); and (c) 0.44 ml (Ca =
0.032, Bo = 1.81). The viscosity ratio λ ≈ 1. The experimental and numerical in-plane
shapes are represented by black and red dashed curves, respectively. The numerical results
for H∞ along the centreline deviate from the experimental data by 2 %, 3 % and 5 %,
respectively, for the three cases.

The experimental film thickness maps for the chosen Ca range show that the precise
shape of the pancake in-plane shape is close to an oval. Hence, the experimental in-
plane drop shape is obtained by fitting the following equation

x2

(L/2)2
+ y2

(T/2)2
ecx = 0, (3.5)

on an instantaneous image of the drop, where c is a fitting parameter (figure 3a).
Experimentally, due to the large thickness gradient along the drop edges, the CCI

sensor fails to capture the thickness in these regions. Thus the map is obtained for an
area smaller than the in-plane shape of the drop (black curve in figure 5). In contrast,
the numerical simulations are capable of retrieving the complete film thickness
map; however, to make a visually effective comparison between the experiments
and numerics, only the part of the numerical result with the same area as the
experimental data is shown in figure 5. Its top (bottom) half corresponds to the
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FIGURE 6. (Colour online) Film thickness cuts made along the streamwise directions at
(a) y = 0, (b) y = 2.5 mm, (c) y = 5 mm and (d) y = 7.5 mm, where Ca = 0.046 and
Bo= 6.2. Black dashed lines represent the experimental results and red lines the numerical
predictions. The decrease in the film thickness towards the lateral edges can be observed
by comparing panels (a) and (d), where the mean film thickness decreases by around 30 %
signifying the appearance of catamarans close to (x, y)≈ (−4, 7.5) mm.

numerical (experimental) data, respectively. The red dashed curve refers to the
numerical in-plane shape of the drop.

Both the experiments and simulations capture the formation of catamarans at the
lateral transition regions, a uniform film thickness in the centre and a very high
film thickness at the front edge of the drop. The agreement is almost quantitative.
The relative error in the uniform film thickness H∞ for drop volumes 0.44 ml, 1 ml
and 1.5 ml is 5 %, 3 % and 2 %, with absolute values of 12 µm, 7 µm and 6 µm,
respectively.

The numerical solution is further validated by making several streamwise (figure 6)
and spanwise (figure 7) cuts along the largest drop of volume 1.5 ml. Along the
centreline, the 3-D BIM simulation captures precisely the lubrication film variation:
large film thickness at the front edge, followed by a constant thickness profile, ending
in a small oscillation before posing an increasing trend at the rear edge. There is
a good quantitative comparison between the experiments and numerics, with a slight
variation in the film thickness along the advancing meniscus.

4. Analysis of the film thickness pattern

In order to rationalize the film thickness pattern observed in § 3.3, hereafter we
model the problem using a lubrication approach. For simplicity, we formulate the 2-D
lubrication equation assuming the drop dynamic viscosity µi = 0.
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FIGURE 7. (Colour online) Film thickness variation along the spanwise directions at
x = 0, x = ±2.5 mm, x = ±5 mm and x = ±7.5 mm, where Ca = 0.046 and Bo = 6.2.
Black dashed lines represent the experimental results and red lines the numerical results.
Transverse cuts enclosed by the region x=−2.5 mm to x=−5 mm highlight the minima
in the lubrication film along the lateral edges.

4.1. Formulating the nonlinear 2-D lubrication equation
Applying the long-wavelength assumption (Oron, Davis & Bankoff 1997) and by
neglecting inertia, the 2-D nonlinear lubrication equation (see details in appendix B)
for the film thickness H separating the interface from the wall, in the reference frame
moving at the drop velocity Ud, can be derived. Using the pancake radius a as the
characteristic length and a/Ud as the characteristic time, the dimensionless lubrication
equation for the steady profile in the dimensionless coordinate system x̄, ȳ is written
as

∂

∂ x̄

[
H̄3

(
1

3Ca
κ̄x − Bo

3Ca

)
− H̄

]
+ ∂

∂ ȳ

(
H̄3 1

3Ca
κ̄y

)
= 0, (4.1)

where κ̄ is the mean curvature of the interface, given by κ̄ = ∇ · n, where the unit
normal vector n on the interface is given by

n= (−H̄x,−H̄y, 1)T√
1+ H̄2

x + H̄2
y

. (4.2)

Note the anisotropy of the fluxes in (4.1): both the buoyancy and the motion in the
x̄ direction do not affect the flux in the ȳ direction, breaking the isotropy induced by
the capillary pressure gradient.

The nonlinear equation (4.1) together with the equation for the interface curvature
κ̄ are solved numerically by the commercial finite element solver COMSOL
Multiphysics. The two variables for this coupled system of partial differential
equations are H̄ and κ̄ . As boundary conditions we impose the film thickness
H̄ = W/2a and the mean curvature κ̄ = κ̄f ,r at the droplet mid-height. The mean
curvature boundary condition in the static meniscus is composed by a component in
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the (r̄, θ) plane and a component in the (r̄, z̄) plane. In the spirit of Meiburg (1989)
and Nagel (2014), we consider the local capillary number defined with the normal
velocity to the static cap for the mean curvature boundary condition model:

κ̄f ,r(r̄, θ)= 2a
W

(
1+ Tf ,r(3Ca |cos θ |)2/3
1+ Zf ,r(3Ca |cos θ |)2/3

)
︸ ︷︷ ︸

(r̄,z̄) plane

+ π

4
1
r̄︸︷︷︸

(r̄,θ) plane

, (4.3)

where coefficients with subscript f have to be used for θ ∈ [−π/2, π/2] and those
with subscript r for θ ∈ [π/2, 3π/2], where θ and r̄ are defined as θ = arctan(ȳ/x̄)
and r̄ = (x̄2 + ȳ2)1/2, respectively. The values of the coefficients are Tf = 2.285, Tr =
−0.5067, Zf = 0.4075 and Zr = −0.1062. The curvature boundary condition model
in the (r̄, z̄) plane is inspired by the equivalent model of Balestra, Zhu & Gallaire
(2018), which has been developed by an extensive study for the 2-D planar Stokes
problem. The validity of this model has recently been corroborated by Atasi et al.
(2018) for pancake bubbles. The correction π/4 for the in-plane curvature 1/r̄ in the
(r̄, θ) plane, where r̄= 1 for a circular geometry, has been derived asymptotically by
Park & Homsy (1984). Note that a more involved model could be used to describe the
out-of-plane curvature ((r̄, z̄) plane) in the lateral transition regions (Burgess & Foster
1990).

In the present work we extract the pancake shape from the results of the 3-D BIM
simulations for λ= 1. As explained in § 3.3, the in-plane boundaries of the deformed
pancake in the (r̄, θ) plane can be well described by (3.5).

It has to be stressed that the used lubrication equation should not, a priori, be used
in the static meniscus region close to the boundary, where the interface slope is large.
However, we have found that such an approach gives surprisingly good results if one
uses the model for the static rim curvature (4.3) for the curvature boundary condition
(see Balestra (2018) for a discussion of the axisymmetric case), which directly sets
the film thickness profile in that region. Hence, such an approach can be used to
numerically obtain the film thickness profile over the entire domain, also behind its
validity range.

The comparison between the film thickness profile obtained by the solution of the
nonlinear lubrication equation using the model equation (4.3) for the static cap mean
curvature κ̄f ,r(r, θ), with the one obtained by the 3-D BIM simulations, is shown in
figure 8. One can observe that both methods predict the formation of catamarans at
the lateral transition regions, a uniform film thickness in the centre and oscillations
at the back. In spite of the strong assumptions made for this model, the agreement
is surprisingly good, even with an iso-viscous drop (µi = µo). The relative error in
the uniform film thickness is 10 % and its absolute value is 30 µm. The thin-film
pattern shown by both approaches, as well as by the experiments, is therefore indeed a
robust feature. Supported by this agreement, we investigate the thin-film pattern using
the linearized version of this simple 2-D lubrication model, which is computationally
much cheaper than the 3-D Stokes simulations.

4.2. Qualitative analysis of thickness pattern using the linearized 2-D lubrication
equation

The qualitative nature of the film thickness pattern can be inferred by performing a
linear analysis of the 2-D lubrication equation (4.1). With the use of the film thickness
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FIGURE 8. (Colour online) (a) Comparison between the solution of the nonlinear
lubrication equation assuming λ = 0 (top half) and that of the 3-D BIM simulations
assuming λ= 1 (bottom half), where Ca= 4.6× 10−2 and Bo= 6.2. (b) Comparison for
cuts made along the streamwise direction A–A and spanwise direction B–B.

decomposition H̄= H̄∞+ εh, where H̄∞=H∞/a, the linear equation for the first-order
film thickness correction reads:

H̄3
∞

3Ca
(hx̄x̄x̄x̄ + 2hx̄x̄ȳȳ + hȳȳȳȳ︸ ︷︷ ︸

12h

)−
(

1+ H̄2
∞Bo
Ca

)
hx̄ = 0. (4.4)

The film thickness H̄∞ is expressed using the empirical model (3.4) (Taylor 1961;
Aussillous & Quéré 2000; Balestra et al. 2018), with P= 0.643 and Q= 2.2.

Equation (4.4) for the film thickness correction around the uniform film thickness
H̄∞ can be solved as a boundary-value problem, as recently conducted by Atasi
et al. (2018). In contrast to the nonlinear solution of § 4.1, here we only solve the
lubrication equation from the thin-film region up to the beginning of the dynamic
meniscus region. This is equivalent to looking at the first-order correction of the
uniform thin-film region due to the matching of the film thickness in the dynamic
meniscus region to a larger value. In the present context, we impose a film thickness
correction h=A and a mean curvature of the order 1h= 1/A+ 1/r̄ on the perimeter,
with A as a constant value of 10−3 × H̄∞. This boundary condition does not have
to be understood as a rigorous matching approach, but rather as a way to find the
structure of the film thickness profile in the region where it is close to being uniform.
A rigorous matching for the limit Ca� 1 can be found in Park & Homsy (1984).
The maps of the film thickness correction h, together with some profiles along the
streamwise and spanwise directions, are shown in figure 9.

First, it can be clearly observed that the linear lubrication equation with a perturbed
film thickness and curvature along the domain boundary is able to reproduce the
catamaran-like pattern observed in pancake droplets as seen in §§ 4.1 and 3.3. The
film thickness is the smallest in the lateral part of the pancake (see figure 9a), so
that its 3-D shape resembles the hull of a catamaran. Therefore, we can conclude that
this pattern is the generalization of the 1-D oscillations found by Bretherton (1961)
at the rear of an axisymmetric bubble for a 2-D concave structure, like a pancake
droplet, and is intrinsically related to the anisotropy of the equation.

Second, the film thickness correction along the streamwise direction x̄ (see figure 9c)
deviates from a uniform profile as expected from Bretherton’s theory (Bretherton
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FIGURE 9. (Colour online) Linear film thickness correction h around the uniform film
thickness H̄∞ for a pancake droplet (a,c,d). The film thickness correction map is shown
in (a), the cuts along the streamwise direction at two different ȳ locations are plotted in
(c) and the normalized difference of the film thickness correction along the spanwise cut
C–C with respect to h0= h(ȳ= 0) along this cut is shown in (d), where the law (cos θ)2/3
is indicated by the black dashed line. Here A= 10−3× H̄∞, Ca= 4.6× 10−2, Bo= 6.2 and
α= 2.2. The polar coordinates (r̄, θ) are introduced and the boundaries are highlighted by
the grey area in panel (b).

1961). The film thickness oscillates at the rear meniscus and increases monotonically
at the front meniscus. Note that the film thickness correction in the uniform film
region of a pancake is not vanishing, as the base film thickness H̄∞ is given by (3.4),
which is an asymptotic estimate for Bo= 0 but not an exact solution of the lubrication
equation with Bo 6= 0. Furthermore, it can be observed that the more one moves away
from ȳ= 0, the more the thickness of the film is reduced. Therefore, the thickness of
the film left by the front meniscus is not uniform.

To better highlight this crucial point, we show in figure 9(d) the normalized
difference between the film thickness correction and its value at ȳ = 0. The film
thickness decreases as |ȳ| increases, before increasing again close to the edge to
match the boundary condition.

These qualitative observations can be rationalized by simplifying the linear
lubrication equation (4.4) for the different regions of the domain (see figure 9b).
The lubrication equation (4.4) in polar coordinates can be simplified to
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H̄3
∞

3Ca
hr̄r̄r̄r̄ −

(
1+ H̄2

∞Bo
Ca

)(
cos θ hr̄ − sin θ

r̄
hθ

)
= 0. (4.5)

For small polar angles θ , the contribution (sin θ/r̄)hθ , which corresponds to the flux
in the tangential direction, can be neglected so that the linear lubrication equation
becomes, after integration along r̄,

hr̄r̄r̄ =Kph, (4.6)

with

Kp =
(

3Ca
H̄3∞
+ 3Bo

H̄∞

)
cos θ, (4.7)

which is the linearized 1-D equation for the Landau–Levich–Derjaguin–Bretherton
problem (Landau & Levich 1942; Derjaguin 1943; Bretherton 1961) in the radial
direction r̄ projected on the streamwise direction. Therefore, we know from the
solution of Bretherton (1961) that the film thickness is oscillating at the rear meniscus
and monotonically increasing at the front one. Focusing for now on Bo= 0, we know
that the thickness deposited by a front meniscus depends on the velocity normal to
the interface. In this case, one has therefore H̄∞ ∼ Ca2/3

p with Cap = Ca cos θ as the
local capillary number at a given polar angle θ . Hence, the film thickness in the
central region of the pancake varies like (Ca cos θ)2/3. Similar results have been
reported for a pressure-driven red blood cell traversing a non-axisymmetric passage
(Halpern & Secomb 1992) and in pancake droplets by Reichert et al. (2018). Once a
given film thickness is set by the front meniscus, the same thickness will be present
over the entire thin-film region at the corresponding spanwise location ȳ. The good
agreement between the dependence on (cos θ)2/3 of the film thickness and the profile
along the spanwise direction obtained by resolving the 2-D lubrication equation is
shown in figure 9(d).

Similarly, the oscillations at the rear meniscus depend on the polar angle. For
a pancake droplet, due to the film thickness non-uniformity resulting from the
non-uniform deposition at the front, the wavelength of the oscillations at the back
scales as λosc ∼ (Ca cos θ)1/3. Given the 1/3 power-law dependence, the wavelength
is almost unchanged, before rapidly reducing to 0 when θ→±π/2 (see figure 9a).

It is important to note that a plane cut of the film thickness at a given angle θ does
not present a region of constant film thickness. A pancake droplet cannot be seen just
as the collection of different 1-D profiles obtained by the solution to (4.6) for different
polar angles θ . In fact, the film thickness at any spanwise location ȳ is set by the front
meniscus at the corresponding polar angle θ and (4.6) only indicates the scaling of
this film thickness as well as the oscillations at the back.

For θ→±π/2, which corresponds to the lateral meniscus region (see figure 9b), the
tangential flux term (sin θ/r̄)hθ in (4.5) can no longer be neglected. Burgess & Foster
(1990) performed an involved analysis of the lubrication equation in this region for a
pancake droplet at low capillary numbers and found that the local film thickness in
the so-called lateral transition regions scales as Ca4/5 rather than as Ca2/3. Therefore,
for Ca� 1, the film thickness in these lateral regions is much smaller than that in the
other regions. This explains why one observes catamaran-like structures in the lateral
regions of pancake droplets. Note that, for the Ca range considered in the present
study, the film thickness in the lateral transition regions is still sufficiently large so
that the viscous dissipation can be neglected also in these regions, as confirmed by
the results of § 3. Furthermore, Burgess & Foster (1990) have also shown that the
polar extent of these lateral regions scales as Ca1/5, whereas their radial extent scales
as Ca2/5 instead of as Ca1/3 that one has for the length of the rear and front dynamic
menisci of axisymmetric droplets (see also Hodges, Jensen & Rallison 2004).
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5. Conclusions and perspectives
We report the velocity, mean film thickness and thickness map for a droplet

moving due to buoyancy in a vertical Hele-Shaw cell. The mean drop velocity
compares well with the leading-order velocity expression of Gallaire et al. (2014).
This signifies that buoyancy and viscous drag force are the dominant forces in our
experimental parameter range, with the viscous dissipation in the film thickness and
in the dynamical meniscus having a negligible effect on the droplet velocity. On
the contrary, the dimensionless mean film thickness data were dependent on the
dimensionless droplet velocity, expressed as Ca, and were fitted with the Taylor’s law
model (Aussillous & Quéré 2000).

We also obtained the complete film thickness maps using a CCI optical pen
mounted on a linear translation stage. Based on a boundary integral method, 3-D
Stokes equations were solved. These numerical results for λ = 1 were in very
good agreement with our experimental results. The thickness pattern had a distinct
catamaran-like shape as experimentally observed for pressure-driven flows in Huerre
et al. (2015) and Reichert et al. (2018).

To understand the nature of the thickness patterns observed experimentally and
numerically, the problem was approached using a lubrication equation, which was
solved as a boundary-value problem, rather than as an initial-value problem, as
recently conducted by Atasi et al. (2018). In spite of all the crude assumptions made
in developing the model, its nonlinear solution for the film thickness profile of a
pancake bubble compared surprisingly well with the results of 3-D BIM simulations,
evidencing the robustness of the thin-film pattern.

In order to unravel the structure of the film thickness profile, we linearized the
lubrication model and solved for the linear thickness corrections around a uniformly
thick film. We have been able to show that not only the oscillations at the rear
meniscus, but also the catamaran-like pattern, can be directly retrieved by solving the
linear 2-D lubrication equation when perturbing the film thickness at the boundaries,
which mimics the presence of a meniscus of greater film thickness. In particular,
the catamaran-like structure results from the anisotropic flux induced by the motion
of the walls with respect to the pancake and the need to match the film thickness
to larger values in the dynamic meniscus region surrounding the region where the
thin film is rather uniform. This pattern is therefore independent of the force driving
the motion. In fact, in totally different contexts, the same pattern is also found in
drops levitating on a moving substrate (Hodges et al. 2004; Lhuissier et al. 2013) as
well as in oleoplaning drops (Daniel et al. 2017). In the central part of the pancake
droplet, the thickness left by the front meniscus scales as (Ca cos θ)2/3, and depends
therefore on the velocity normal to the interface. This scaling no longer holds in the
lateral transition region, where the component of the flux tangential to the interface
becomes important and the thickness of the film is much smaller, resulting in the
formation of the catamaran-like structure.

Finally, we would like to highlight a contrasting feature seen between drops
moving in a cylindrical tube and that in a Hele-Shaw cell. In cylindrical tubes the
main difference between the pressure-driven and buoyancy-driven bubble motion, as
found by Bretherton (1961), is that buoyant bubbles may remain stuck if the capillary
radius is less than 0.918lc, where the capillary length lc = √γ /1ρg. This failure
results from the impossibility to match the static gravity-corrected meniscus shape
with the flat thin-film region. A similar result was obtained recently in the planar
geometry by Lamstaes & Eggers (2017) with a prefactor of 0.847. Interestingly
enough, we suspect that there is no such bubble arrest in Hele-Shaw cells, as a
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FIGURE 10. (Colour online) As stated by Lamstaes & Eggers (2017), for a planar
geometry the drops should get stuck when W < Wc. Our experiments show that the
pancake-shaped drops continue to move beyond this limitation.

consequence of the additional direction which adds a degree of freedom in the
curvature. As shown in figure 10, our experimental results show marked drop motion
when the half cell gap is below 0.847lc.
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Appendix A. CCI working principle
We hereby describe the principle of the confocal chromatic imaging (CCI) technique.

An achromatic lens decomposes the incident white light into a continuum of
monochromatic images, which constitutes the measurement range. The light reflected
by a sample surface put inside this range is collected by a beam splitter. A pinhole
then allows one to block the defocused light that does not come from the sample
surface. Eventually, the spectral repartition of the collected light is analysed by a
spectrometer. The wavelength of maximum intensity is detected and the distance value
is deduced from a calibration curve. Several reflecting interfaces can be detected at
the same time, allowing thickness measurement of thin transparent layers.

Appendix B. Derivation of 2-D nonlinear lubrication equation for pancake
droplets

The derivation of the model equation presented in § 4.2 is briefly outlined here.
Considering the same physical properties for the droplet and the outer medium as
outlined in § 1, and under the assumption of negligible inertia (Oron et al. 1997) with
ρi� ρo and µi�µo, the 3-D momentum equations reads

0=−∂p
∂x
+µo

(
∂2u
∂x2
+ ∂

2u
∂y2
+ ∂

2u
∂z2

)
− ρog, (B 1)
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0=−∂p
∂y
+µo

(
∂2v

∂x2
+ ∂

2v

∂y2
+ ∂

2v

∂z2

)
, (B 2)

0=−∂p
∂z
+µo

(
∂2w
∂x2
+ ∂

2w
∂y2
+ ∂

2w
∂z2

)
. (B 3)

Using L as the characteristic length scale in the x and y directions and the film
thickness H as the characteristic length scale in the z direction, the film aspect ratio
ε is defined as ε = H/L. The long-wavelength approximation is employed since
ε � 1. Mass conservation indicates that the characteristic velocity in the z direction
(W) is much smaller than the other two components (U in x and V in y direction),
W ∼ εU�U and W ∼ εV� V . The Stokes equation simplifies as

0=−∂p
∂x
+µo

∂2u
∂z2
− ρog, (B 4)

0=−∂p
∂y
+µo

∂2v

∂z2
, (B 5)

0=−∂p
∂z
. (B 6)

Integrating equation (B 6) in z and applying dynamic boundary conditions yields
p = p0 − γ κ , where κ is the mean curvature of the interface. Integrating equations
(B 4) and (B 5) twice in z and considering u(z= 0)=−Ud and the zero-slip boundary
condition v(z= 0)= 0, as well as the zero-shear-stress interface ∂u(z=H)/∂z= 0 and
∂v(z=H)/∂z= 0, yields the velocity components

u= (γ κx −1ρg)
µo

(
H − z

2

)
z−Ud, (B 7)

v = γ κy

µo

(
H − z

2

)
z. (B 8)

Since the inner medium density ρi� ρo, we replace ρo by 1ρ in (B 7), where 1ρ =
ρo−ρi represents the density difference between the inner and outer fluids. Integrating
equations (B 7) and (B 8) in z from 0 to H yields the flux in x and y directions as

Qu = H3

3µo
(γ κx −1ρg)−UdH, (B 9)

Qv = H3

3µo
γ κy. (B 10)

Finally, integrating the continuity equation and applying the Leibniz integral rule
and the kinematic boundary condition at the interface yields the mass conservation
equation expressed as

∂H
∂t
+ ∂Qu

∂x
+ ∂Qv

∂y
= 0. (B 11)

Introducing equations (B 9) and (B 10) in (B 11) finally yields the lubrication equation

∂H
∂t
+ ∂

∂x

 H3

3µo
( γ κx︸︷︷︸

I

−1ρg︸︷︷︸
II

)−UdH︸︷︷︸
III

+ ∂

∂y

 H3

3µo
γ κy︸︷︷︸

I

= 0. (B 12)
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The terms I in the spatial variation of the flux correspond to the surface tension effects,
term II to the variation due to the buoyancy force, and term III accounts for the
reference frame moving with the drop. Note the anisotropy of the fluxes: both the
buoyancy and the motion in the x direction do not affect the flux in the y direction,
breaking the isotropy induced by the capillary pressure gradient.

Using the pancake radius a as the characteristic length and a/Ud as the characteristic
time, the dimensionless lubrication equation for the steady profile in the dimensionless
coordinate system x̄, ȳ is written as (4.1).
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