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Abstract

In the problem of large-scale multiple testing thep-plot is a graphically based competitor to the notoriously weak
Bonferroni method. Thep-plot is less stringent and more revealing in that it gives a gauge of how many hypotheses
are decidedly false. The method is elucidated and extended here: the bootstrap reveals bias and sampling error in the
usual point estimates, a bootstrap-based confidence interval for the gauge is given, as well as two acceptably
powerful blanket tests of significance. Guidelines for use are given, and interpretational pitfalls pointed out, in the
discussion of a case study linking premortem neuropsychological and postmortem neuropathologic data in an HIV
cohort study. (JINS, 1999,5, 510–517)
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INTRODUCTION

It is common in both observational and controlled studies
to record many variables on a set of participants, usually
split into several groups. The questions at hand may be of
any form involving correlations, group mean comparisons,
or many other sets of statistics, but a common theme is to
find the significant results among them with some control
on overall error rate.

Common to such studies is the problem inherent in mul-
tiple testing. SupposeN simultaneous independent tests of
null hypothesesHi are conducted, each test with the type I
error probability at some levela (often .05). Type I error
means rejecting the null hypothesis when it is true, in other
words getting a spurious significantp value on a test. Mul-
tiple testing is frustrated by the fact that the overall proba-
bility of type I error for the entire collection of tests is higher
thana. How much higher depends on the number of tests
run, but it can approach 100% if there are enough of them.
Assuming that all of the null hypotheses in our collection
are true, the overall type I error probability is the chance of

raising any flag when none should be raised. Computing
this probability is simple:

overall probability5 P{at least oneHi rejected}

5 12 P{no Hi rejected}

5 12 ~12 a! (number of tests)

For 100 tests at .05 this probability is almost 1:.994. There
are no simple cures for this problem.

Why Not Bonferroni?

The Bonferroni procedure is a fundamental but notoriously
weak approach to multiple testing. Simple to state and use,
the basic form of the procedure for handlingN simulta-
neous tests ofHi entails conducting each at levela0N, and
rejecting (at levela) an implicit “grand null” hypothesisH0

that all the nullsHi are true, if and only if at least one of the
Hi is rejected (at levela0N!. The idea is to limit the overall
type I error probability bya. Since there are many chances
to raise a red flag mistakenly, the (null) probability of each
gets limited toa0N. (The overall level is then demon-
strably no higher thana, but an exact determination is af-
fected by dependencies between the tests, seldom known.)
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The problem is that while there may have been decent power
to detect likely departures from manyHi at thea level, the
power to detect those departures at thea0N level can be so
poor as to render the procedure useless.

Can Bonferroni Be Improved?

Weakness is intrinsic to methods that are based on the Bon-
ferroni point of view. Minor improvements are possible:

• Bonferroni is slightly more conservative even than Bon-
ferroni needs to be if the tests ofHi are only weakly de-
pendent (seldom verifiable). In that case if eithera is small
(it almost always is), orN is large, eachHi could be tested
at the~a 1 a2/2!/N level for the same overall levela.
This is only slightly less stringent and the improvement is
negligible.

• There is a more-eggs-in-some-baskets approach: Instead
of impartially splitting the overalla into N equal parts
one can assign larger significance levels to the tests thought
(a priori ) to have the best power, smaller ones going to
the rest. They must still add up toa and (the rub), it must
be done prospectively. Arbitrariness of the division en-
ters here, and with it the appearance of having chosen it
expediently.

• Perhaps the best prospect for getting more benefit from
Bonferroni is to understand it better, and not (as people
often do) haveN count every test in sight if the grand null
hypothesis so formed makes no sense. There isn’t neces-
sarily just one grand null per paper. Depending on one’s
scientific intent one can tackle several separately inter-
esting clusters or domains of questions, each involving
multiple testing to be handled by Bonferroni with a mod-
estN, and not unduly concern oneself with the chance of
a false pronouncement somewhere (anywhere) in any one
of the clusters all taken together—for which the totalN
would be much larger. This is especially valid when the
work is exploratory and intended to motivate further data
gathering or finer analysis, rather than being the last word
on an inference problem. Valuable information in large
multivariate databases would go to waste if they were to
be rigidly analyzed with all multiple comparisons safe-
guards in place. Data mining and fishing expeditions are
dirty words, but tempered with an awareness of the fal-
lacies they can lead to, and supported by honest docu-
mentation, it is not a scientific crime to scan a profusion
of p values, regarding them roughly as indicators of false-
hood of corresponding nulls, descriptive data in their own
right, and go from there. The idea ofpvalues as data brings
us to thep-plot.

A BRIEF SURVEY

There are many approaches to the multiple comparisons
problem, including refinements on the basic Bonferroni tech-
nique, and forerunners ofp-plots. Hills (1969), suggests a

half-normal plot for assessing large correlation matrices
in particular. In this graphical approach, ranked Fisher-
transformed correlations are plotted against normal
Z-quantiles. The underlying assumption, like that for the
p-plots, is that transformed correlations not significantly dif-
ferent from zero should lie (suitably plotted) about a straight
line through the origin, while those significantly larger should
produce visible bending. Simes (1986), modified the basic
Bonferroni approach by using rankedp values. The basic
rule of rejecting the “grand null” hypothesisH0 if any one
out of p values is less thana0N, was changed to a more
lenient rule of rejectingH0 if the jth orderedp valuep( j) is
smaller thanja/N. The approach, while supported by a ra-
tionale, is not always appropriate, as striking counterexam-
ples can be constructed to illustrate. Hommel (1988) further
suggested a decision strategy for individual hypotheses in
the Simes (1986) procedure. Recent advances are due to
Hochberg and Benjamini (1995), who describe an approach
in which the false detection rate (which they argue should
be per test performed) is controlled. Zhang et al. (1997) of-
fers a very good survey of recent developments in the field.

THE IDEA OF A P-PLOT

Bonferroni wastes information. Imagine scanning thep val-
ues from a set ofN tests. Applying Bonferroni one would
find the smallest value, compare it witha0N, and if it is
smaller, reject the grand null. All the usable information in
the p values is distilled down to the smallest of them. The
p-plot and virtually all other multiple comparisons methods
put the otherp values to use as well; even the large ones can
inform in some way, as we will see.

It is a theorem (roughly stated) that ap value is uni-
formly distributed between zero and 1 if a simple null hy-
pothesis is true. This means that if one could repeat the whole
experiment over and over, basing a newp value each time
on the replicate datasets, their histogram would approxi-
mate a boxcar shape from zero to 1 if the null were true
(and the sampledp values would be less than .05, for in-
stance, 5% of the time—the false alarm or type I error rate).
If the null is false this so-called sampling distribution for
thep values is “stochastically smaller”—more bunched up
to the left, and with a narrower right tail. Then the relative
area to the left of .05 exceeds 5%. It is in fact the power of
the test at the 5% level.

It follows then, brushing a mathematical technicality aside
for the moment (see Cautionary Notes below), that if every
null from a set of tests is true, thep values should look like
a sample from the uniform distribution, whereas if “some-
thing is going on,” that is, the grand null is false, thep val-
ues should look like a mixture of samples, a blend of a
uniform component, corresponding to the true nulls, and sto-
chastically smaller components, corresponding to the false
nulls (none of which may actually have made the stringent
Bonferroni cut). There is a graphical diagnostic called the
QQ-plot (Rice, 1988) for detecting whether the so-called
empirical distribution ofp values is pure uniform or such a
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mixture. It is a testing problem in its own right, a kind of
goodness of fit test, and thep values themselves become
the data for it.

Thep-plot (of which Figure 2 will be an enhanced exam-
ple) is a close adaptation of the standardQQ-plot, and is
constructed by plotting the number ofp values in the set
exceeding the variablep, not againstp, but against 12 p,
which is a bit peculiar, but it is the convention. The curve
climbs from zero at the origin toN at 12 p 5 1, taking
jumps of 1 at every point that is~12 an observedp value).
Under the grand null it will track a straight line of slopeN
through the origin with minor random irregularities. Other-
wise thep values will follow a non-uniform distribution and
the curve will bend systematically upwards, that is, track a
convex curve. WhenN is large the irregularities will not
mask the shape of the curve, and it is easy to distinguish a
convex curve from a straight line and hence assess depar-
ture from the grand null. But there will always be some ran-
domness in the sample ofp values, and ifN is small the
spacings between the points become large, which, on “join-
ing the dots,” could create the illusion of systematic bend-
ing even if there isn’t any. The graphic may then mislead, or
at least not be striking, although the overall quantitative sig-
nificance test described later would still be valid (if weak).
Guidelines for a thresholdN are hard to give, but the pro-
cedure would not be recommended forN less than about 10
(in which case the Bonferroni method itself might be toler-
ably powerful).

The original source (Schweder & Spjotvoll, 1982) con-
tains full details on the basic construction of thep-plot, which
we will not repeat, except to point out that a key step in the
quantitative interpretation of the plot is to fit a straight line
through the origin, approximating the left part of the curve.
Precise data-driven guidelines on where the “left part” ends
are hard to give, but loosely speaking it should not extend
beyond where the bending becomes obvious. Instead of
choosing an abrupt right cutoff for the points on thep-plot
to which the regression is fitted (which inevitably involves
some arbitrariness and visual judgement), one could fit a
weighted least squares regression with weights decaying ac-
cording to a sigmoidal pattern across the plot.

The slope of the line approximating the left part of the
curve is an estimate of the number of true or approximately
true null hypotheses. To put this on a slightly firmer math-
ematical footing than it appears at first, if indeedM of theN
hypotheses is true, and is “large”, and all the false hypoth-
eses are decidedly false, so that they contribute a very thin-
tailed component to the sampling distribution mixture of the
p values, then the slope of the tangent of thep-plot through
the origin is indeed a reasonable estimate ofM.

AN EXAMPLE

A look at a real problem serves at this point to motivate our
extensions of thep-plot. The data that are used as examples
here are derived from a correlational study that has recently
been reported (Masliah et al., 1997), although the applica-

bility of the method is much wider (and includes, for instance,
the common problem of multiple testing of location shifts).

Investigators from the Neurobehavioral and Neuropathol-
ogy cores at the HIV Neurobehavioral Research Center
(HNRC) each gathered a sample of multivariate data vec-
tors corresponding to (and linked by) the participants in the
study. The Neurobehavioral Core of the HNRC studies the
processes underlying HIV-related neuropsychological im-
pairment. The objective of the core is to better characterize
the mechanisms and neuromedical outcomes of neuropsy-
chological impairment frequently seen in patients infected
with HIV-1. The Neuropathology Core of the HNRC was
established in an effort to link premortem and postmortem
information. The core performs postmortem studies and co-
ordinates the diagnosis of brain tissue in persons who have
died from AIDS. Its data provide key covariates in explor-
ing correlations of post- with premortem findings from the
various cores in the HNRC.

The combined data vectors from the investigators of both
cores are used to answer the question of what pathological
changes in the brain are associated with cognitive deficits
in persons with AIDS. Previous studies examining postmor-
tem brain tissue have been inconclusive on relationships be-
tween neuropsychological impairment and the amount of
virus in the brain, neuronal loss and other pathological
markers. For the present study the investigators sought to
determine whether the amount of neuronal branching was
significantly related to premortem neurobehavioral func-
tioning. Dendritic injury was assessed by immunohistochem-
ical staining of brain tissue using monoclonal antibodies to
microtubule associated protein 2 (MAP2) which is consid-
ered a specific dendritic marker. The investigators deter-
mined the percent area occupied by MAP2-immunolabeled
dendrites and compared it to the density of a presynaptic
(axonal) marker, synaptophysin (SYN). Twenty partici-
pants with neuropsychological evaluations within 18 months
of death were involved in this study. Presynaptic and den-
dritic staining was performed on three brain regions be-
lieved to be affected by HIV: midfrontal region, putamen
and globus pallidus (MF, PUT, and GP). The subset of neuro-
psychological tests selected by the Neurobehavioral Core is
commonly used to develop clinical ratings for eight func-
tional neuropsychological domains (Verbal, Abstraction,
Perceptual–Motor, Attention, Learning, Memory, Motor and
Sensory) as well as a rating of overall neuropsychological
functioning (Global). In this exampleT scores from tests
rather than the neuropsychological domains are used, since
the investigators are often interested in the relationship be-
tween damage present in neuroanatomical regions and cog-
nitive functioning as assessed by specific neuropsychological
tests.

The analysis could be presented as a large correlation ma-
trix, or as a large matrix of correspondingp values (shown
in Table 1, and as a histogram in Figure 1), based on the
standard approximation to Fisher’sz-transform.

This display is strikingly uninformative. The Bonferroni
overallp value for the grand null hypothesis is the smallest
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p value observed multiplied byN, in our case it is .000133
150, which gives an overallp value of .02. We can in fact
reject the grand null, but at ap value that is a poor reflection
of the obviously overwhelming evidence against it. Bonfer-
roni also gives us ap-value cutoff for significance,a0N. In
our case thep-value cutoff would be .0003. Only one out of
our 150p values survives Bonferroni. Thep-plot however
(Figure 2) shows the unmistakable convex bend. A line fit-
ted through the origin to the leftmost 80% of the points is
superimposed. Its slope is 114, and the rough conclusion is
that 114 of the null hypotheses are close to true. About 36
must then be false—but see Cautionary Notes, below.

Gauging Bias and Uncertainty From the
P-Plot: The Bootstrap Extension

The point estimate 114 is of course uncertain. How can we
gauge its sampling variation and fit a confidence interval?

On the face of it, this is a theoretical nightmare. The sam-
pled correlations are based on variable sample sizes accord-
ing to the missing value patterns across the data, there are
unknown mutual dependencies between the tests, and the
true correlation patterns are unknown. A problem made in
heaven, in other words, for the bootstrap. The rough idea of
the bootstrap is to mimic the sampling variation and bias in
an estimation procedure by repeated sampling from the orig-
inal sample of observations (multivariate in this case). Each
sample will contain some of the original points repeated,
and others not at all. There is a theoretical basis for the in-
tuitive idea, which lies at the heart of the bootstrap, that the
original dataset is to the population (of which it is a crude
reflection), as the bootstrap samples are to the original sam-
ple. From this it is possible to estimate the sampling prop-
erties of the procedure (not only dispersion, but correctable
bias as well), and fit confidence intervals with very accu-
rate coverage probabilities, even under nonstandard distri-

Table 1. P values for 150 correlations

Test
MAP2

midfront
MAP2

putamen
MAP2

glob pall
SYN

midfront
SYN

putamen
SYN

glob pall

WAIS–R Vocab .405 .803 .949 .478 .024 .121
WAIS–R Blocks .007 .454 .049 .029 .340 .585
WAIS–R Digit Sym .007 .927 .701 .296 .947 .900
WAIS–R Digit Span .151 .841 .645 .587 .678 .807
Boston Naming .288 .194 .184 .237 .550 .943
Fluency–Category .017 .181 .315 .415 .639 .707
Thurstone Word .001 .778 .445 .041 .195 .567
FAS .00013 .846 .986 .167 .879 .922
Category Test .010 .262 .491 .183 .077 .221
Trails A .262 .892 .674 .498 .882 .802
Trails B .032 .356 .322 .050 .231 .732
Story Lrn Memory .057 .196 .164 .609 .882 .827
Story %Loss .607 .105 .333 .690 .255 .763
Figure Lrn Memory .005 .222 .953 .083 .983 .794
Figure %Loss .361 .366 .427 .062 .156 .092
Sens Percep Exam .803 .609 .675 .540 .851 .855
Grip Dom .048 .418 .469 .578 .394 .384
Grip Non–Dom .083 .316 .318 .570 .522 .482
Pegs Dom .032 .057 .172 .176 .188 .239
Pegs Non–Dom .027 .083 .262 .139 .141 .184
Tapping Dom .026 .162 .074 .031 .085 .051
Tapping Non–Dom .126 .350 .159 .314 .394 .226
Digit Vigil (Err) .305 .289 .959 .822 .971 .311
Digit Vigil (Time) .049 .262 .430 .118 .229 .316
PASAT .084 .754 .463 .243 .556 .808

Note. WAIS–R Vocab5Wechsler Adult Intelligence Scale–Revised Vocabulary; WAIS–R Digit Span5WAIS–R
Digit Span; WAIS–R Blocks5 WAIS–R Block Design; WAIS–R Dig Sym5 WAIS–R Digit Symbol; Boston
Naming5 Boston Naming Test; Fluency Category5 Category Fluency Test; Thurstone Word5 Thurstone
Word Fluency; FAS5 Controlled Oral Word Association Test; Category Test5 Category Test (Errors); Trails
A 5 Trail Making Test A (Time); Trails B5 Trail Making Test B (Time); Story Lrn Memory5 Story Memory
Learning; Story %Loss5 Story Memory Retention (Loss); Figure Lrn Memory5 Figure Memory Learning;
Figure %Loss5 Figure Memory Retention (Loss); Sens Percep Exam5 Sensory-Perceptual Examination; Grip
Dom5 Hand Dynamometer (Dominant Hand); Grip Non-Dom5 Hand Dynamometer (Non-Dominant Hand);
Pegs Dom5 Grooved Pegboard Test (Dominant Hand; Time); Pegs Non-Dom5 Grooved Pegboard Test (Non-
Dominant Hand; Time); Tapping Dom5 Finger Tapping Test (Dominant Hand); Tapping Non-Dom5 Finger
Tapping Test (Non-Dominant Hand); Digit Vigil (Err)5 Digit Vigilance Test (Errors); Digit Vigil (Time)5
Digit Vigilance Test (Time); PASAT5 Paced Auditory Serial Addition Test.
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butional assumptions. There are several such refined interval
estimation techniques in use now. The one used here is called
BCA (bias correction and acceleration), and is described,
along with a full exposition of the bootstrap, in Efron and
Tibshirani (1993). In this case a histogram of the “bootstrap
distribution” that emerges for the number of true nulls is
shown in Figure 3. It is based on 1500 bootstrap replicates.
There is some bias in the estimation technique, evident from
the off-central placing of the original point estimate 114.
Since the bootstrap samples are to the original sample as
the original sample to the population, the bias is stronger in
the bootstrap. Thus the confidence interval corrected for bias
is even further away from the center of the bootstrap sam-
ples than the original estimate. Our BCA 95% confidence
interval turns out to be (100, 143). It adjusts for the bias as
well as for nonnormality of the sampling distribution. This
interval is in itself strong evidence against the “grand null”
hypothesis that all 150 nulls are true. A more quantitative
approach to this question is given in the next section.

A Blanket P-Value

The Bonferroni method furnishes an overallp value for the
grand null hypothesis—the smallestp value observed, multi-
plied byN. Thep-plot suggests strong competitors based on
the geometry of the plot. One possibility is to fit a restricted-
range linear regression to the right side of the plot, and to
do a one-sided significance test for its having a larger slope

than the line through the origin, on which the estimate of
the number of true null is based. (Under the grand null
these lines should be approximately coincident.) Any de-
pendencies induced by overlapping regression ranges (or
by dependencies among thep values themselves) should
serve to make this test err on the side of conservatism.
Another possibility, which does not require the arbitrary
choice of a fitting range, and which recognizes thatp-plots
will track a smooth curve, is to fit a quadratic equation
through the origin (i.e., without an intercept term), and per-
form a one-sided significance test on the quadratic coeffi-
cient, which is zero under the grand null, and positive if
the curve is convex. Both these approaches are illustrated
on the accompanyingp-plot, together with overallp values
that each gives.

CAUTIONARY NOTES

Having estimated the slope~M ! at the left of thep-plot, and
deduced that approximatelyN 2 M 5 K nulls among the
originalN are false, it is tempting to scan the original list of
p values and single out theK hypotheses corresponding to
theK smallest, declaring them to be the false ones. This is
misleading, and is deprecated. The claim that there are ap-
proximatelyK false nulls amongN may be well supported,
but the extraction of a particular subset of sizeK is not.
Inevitably many tests will havep values falling on the wrong
side of the threshold. Our view is that the numberK (or the

Fig. 1. Histogram ofp values from 150 correlations.
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ratio K/N! be regarded as an index of intrinsic interest, a
gauge, loosely speaking of “how much is going on.” There
is another more insidious problem with thep-plot that pre-
cludes a strict theoretical foundation for the method, partic-
ularly for the associated significance testing: There are
dependencies between the tests, and so between the corre-
spondingp values. While it is true that under the grand null
themarginaldistribution of thep values is uniform, it does
not follow that the empirical distribution of all of them to-
gether must necessarily look like a uniform random sam-
ple, even under the grand null. There may be “clumping”
phenomena, easily imagined in an extreme case where all
the tests involved are strongly dependent, with all answer-
ing essentially the same question on essentially the same
data. (Dependencies between the tests is not the same as
dependencies between the variables, which do not disturb
the validity of the method, and indeed are sometimes the
very target of the investigation.) Truly rigorous use of the
p-plot depends on there being enough independence among
the tests to span the range ofp values without too much
clumping, a condition hard to formulate precisely or verify,
but usually in force unless linear redundancy in the data is
gross.

WHY P-PLOTS?

At this point one is tempted to ask: What good is determin-
ing from thep-plot that approximatelyK nulls are signifi-
cant if we cannot reliably determine which subset ofK it is?
Bonferroni, after all, points rigorously to a subset (often
empty!) of significant nulls. Unfortunately, in dealing with
the type I error control in multiple testing there is a trade-
off between stringency and simplicity. Bonferroni is a strin-
gent method, and needlessly so for an experiment with a
large number of simultaneous hypotheses. So the subset it
yields will almost always be a small one. Both Bonferroni
and thep-plots furnish a blanketp value for the grand null
hypothesis. But where one typically dismisses all results as
insignificant after Bonferroni, the overallp value obtained
from p-plots discovers overall significance by more lenient
rules. The question of overall significance is of course a straw
man. In a first pass at the data, once we determine that we
have overall significance, it is of limited valueper se. The
compelling question is, which of our hypotheses are false.
Now that we know there areK, how do we isolate them?
The answer is—only by further data-gathering. Thep-plot
by itself is chiefly an exploratory device. Validating the re-

Fig. 2. Plot of p values. The solid line on the plot is the least squares line, fit through the leftmost 80% of the points.
The dashed line is the least squares fit through the remaining rightmost 20%. Comparison of the slopes of these two
lines yields ap value, 1026. The dotted curve is the quadratic regression, its quadratic coefficientp value, 1026

also. The estimated number of true null hypotheses is equal to the slope of the left least squares line, approxi-
mately 114.
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sults generally requires more data. An instructive tech-
nique, if there is enough data, is to split it randomly into
two halves. Run the algorithm on the first half, and test the
resultant subset of flagged hypotheses on the second. The
selection of that subset will be based on the estimatedK and
the K smallest observedp-values. What typically happens
using such a “cross-validation” technique (and there are many
variations) is that there is a reasonable overlap between the
subsets of hypotheses flagged on each of the half—replicate
data subsets, but nothing like perfect agreement—which is
sobering. No partitioning technique on the hypotheses can
reliably separate true from false, which is unachievable, even
in the one-sample, one-test situation. Even with this limita-
tion thep-plot is a valuable adjunct to the hunch method in
guiding the future of a study. It suggests hypotheses to ap-
pend to those of key interest (which may not have shown
early significance). Studies evolve, and the future focus and
choice of data to gather and ways to model them need not
be entirely rigid.
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