
Euro. Jnl of Applied Mathematics (2004), vol. 15, pp. 315–327. c© 2004 Cambridge University Press

DOI: 10.1017/S0956792504005509 Printed in the United Kingdom
315

On bubble rising in a Hele–Shaw cell filled
with a non-Newtonian fluid

A. N. ALEXANDROU 1, V. M. ENTOV 2, S. S. KOLGANOV 3

and N. V. KOLGANOVA 3

1 Department of Mechanical and Manufacturing Engineering,

University of Cyprus, Nicosia, Cyprus
2 Institute for Problems in Mechanics, Russian Academy of Science,

101-1, pr. Vernadskogo, Moscow, 119526, Russia

email: entov@ipmnet.ru
3 Russian Gubkin State Oil and Gas University, 65, Leninsky pr., Moscow, 117917, Russia

(Received 21 October 2001; revised 19 September 2003)

The problem of a bubble rising due to buoyancy in a Hele–Shaw cell filled with a viscous

fluid is a classical free-boundary problem first posed and solved by Saffman & Taylor [11].

In fact, due to linearity of the flow equations the problem is reduced to that of a bubble

transported by uniform fluid flow. Saffman and Taylor provided explicit expressions for the

bubble shape. Steady propagation of bubbles and fingers in a Hele–Shaw cell filled with a

nonlinearly-viscous fluid was studied by Alexandrou & Entov [1]. In Alexandrou & Entov [1],

it was shown that for a nonlinearly viscous fluid the problem of a rising bubble cannot be

reduced to that of a steadily transported bubble, and should be treated separately. This note

presents a solution of the problem following the general framework suggested in Alexandrou

& Entov [1]. The hodograph transform is used in combination with finite-difference and

collocation techniques to solve the problem. Results are presented for the cases of a Bingham

and power-law fluids.

1 The problem formulation

We shall consider a steady-state rising of an “air bubble” through a vertical Hele–Shaw

cell filled with a nonlinearly-viscous non-Newtonian fluid at rest at infinity. The air

viscosity, density and capillary pressure across the air-fluid interface are assumed to be

negligible. Then using the usual approximation for Hele–Shaw flow we have the following

equations for the velocity w(x, y) and pressure p(x, y) fields within the cell:

div w = 0, (1.1)

−∇(H + x) = Φ(w)
w

w
, w = |w|, H =

p

ρg
. (1.2)

Here, w is the fluid velocity averaged across the cell gap, p is the pressure, H is the

hydraulic head, ρ is the fluid density, g is the component of acceleration due to gravity

along the negative x direction. The non-dimensional function Φ(w) expresses the flow rule
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through the thin gap. In particular,

Φ(w) =
12ηw

b2ρg
(1.3)

for a Newtonian fluid of viscosity η (b is the Hele–Shaw cell gap),

Φ(w) = Gws, G =
2s+1(2s+ 1)sK

ssbs+1
, K = const (1.4)

for a power-law nonlinearly-viscous fluid, and

Φ(w) =
12η

b2ρg
(w + γ) (1.5)

for a Bingham (visco-plastic) fluid. The reasons for using the simplified expression (1.5)

instead of more precise Buckingham formula (cf. Reiner [9]) are presented in Alexandrou

& Entov [1]. Essentially, they consist in that flow rule for real viscoplastic fluids in narrow

slits can be equally well approximated by the Buckingham formula and its simplified

counterpart. More recent discussion of the proper form of the averaged flow law in a

Hele–Shaw cell can be found elsewhere [5, 7, 12]. Much more important, however, the

same equations describe flow of non-Newtonian (respectively, power-law and Bingham)

fluids through porous media (see Barenblatt et al. [2], Bernardiner & Entov [3] and

Bernardiner et al. [4]), and all the results and techniques developed here apply to porous

media flows as well; more than that, most of techniques can be extended to other forms

of relation between the average local velocity and the hydraulic head gradient Φ(w).

We assume that the fluid within the “air bubble” is both inviscid and weightless.

Therefore, the pressure is constant throughout the bubble, and hence on its boundary ∂D:

p(x, y) = 0, or H = x, (x, y) ∈ ∂D. (1.6)

On the other hand, the steady rising bubble does not change its shape, and propagates as

a solid body. We introduce the stream function ψ(x, y). Then

ψ(x, y) = Vy, (x, y) ∈ ∂D, (1.7)

V being the bubble velocity. We will confine our analysis to the case of a Hele–Shaw cell

of an infinite extent (or an infinite width). Then the last boundary condition is that the

fluid far from the bubble is at rest:

w(x, y) → 0, x2 + y2 → ∞. (1.8)

It looks plausible (from a physical “common sense” argument) that for specified properties

of the fluid, the shape and velocity of the bubble will depend only on the bubble size

characterized, say, by the bubble area S . However, it turns out that for given fluid

properties, gravity force and the bubble size (area), even in the Saffman–Taylor case there

exists one-parameter family of solutions differing in the bubble rising velocity and shape

(the aspect ratio). In fact, these bubbles have oval shapes of different elongation. The

same property applies also to the problems considered in this note.
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Figure 1. Schematic of flow in physical plane (a) and in hodograph plane (b).

In the case of a Bingham (plastic) fluid, we expect also that the flow will be confined to a

finite annular domain between the bubble and an external stagnant zone (cf. Figure 1(a)),

within which w ≡ 0. In this case, the stagnant zone boundary is another unknown free

boundary to be determined.

2 Hodograph transform

The key to effective solution of the problem stated above is using the hodograph transform,

which simultaneously transforms free boundaries into known ones and reduces nonlinear

flow equations to linear ones. This technique, originating from gas dynamics, proved to be

rather effective in the problems of flows through porous media following the seepage law

with limiting pressure gradient [2]–[4]. Below, we summarize briefly the main necessary

relations. We choose the velocity magnitude w and angle θ between the x-axis and the

velocity vector w as new independent variables, and the stream function ψ, the hydraulic

head H , and the physical coordinates x and y as new unknowns.

The functions H(w, θ) and ψ(w, θ) satisfy the following set of equations:

∂H

∂θ
= − Φ2(w)

wΦ′(w)

∂ψ

∂w
;

∂H

∂w
=
Φ(w)

w2

∂ψ

∂θ
. (2.1)

Equations (2.1) can be reduced to an elliptic equation for the stream function ψ:

∂

∂w

(
Φ2(w)

wΦ
′
(w)

∂ψ

∂w

)
+
Φ(w)

w2

∂2ψ

∂θ2
= 0. (2.2)

The coordinates in the physical plane are expressed in terms of H(w, θ) and ψ(w, θ) [1]–[3]

by integration of the relation

dz = dx+ idy = eiθ
(

− dH

Φ(w)
+ i

dψ

w

)
. (2.3)

Using relations (2.3), boundary conditions (1.6) and (1.7) at the surface of the bubble are
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reduced to

dH

ρg
= − cos θ

dH

Φ(w)
− sin θ

dψ

w
;

dψ

V
= − sin θ

dH

Φ(w)
+ cos θ

dψ

w
. (2.4)

Requiring that these linear simultaneous equations have a non-trivial solution for dψ, dH ,

one finds that the following relation should hold along the boundary:

R(w) ≡ cos θ(w) =
ρgV − wΦ(w)

ρgw − VΦ(w)
. (2.5)

This equation determines the shape of the part of the boundary in the hodograph plane

corresponding to the surface of the bubble. This shape explicitly depends on the specific

form of the “flow rule” Φ(w) expressing the dependence of the hydraulic head gradient

on the flow velocity. Now, introducing into (2.4)

dH =
∂H

∂w
dw +

∂H

∂θ
dθ; dψ =

∂ψ

∂w
dw +

∂ψ

∂θ
dθ, (2.6)

and expressing the derivatives ∂H/∂w and ∂H/∂θ in terms of ∂ψ/∂w and ∂ψ/∂θ, we have

the following boundary conditions along the bubble boundary in the hodograph plane:

along AB and BC, ψ = 0; along CD, H = 0

(
or

∂ψ

∂θ
= 0

)
; (2.7)

at the point D, ψ = λV ; along AD, A(w, θ)
∂ψ

∂w
+ B(w, θ)

∂ψ

∂θ
= 0. (2.8)

Here, λ is the maximum value of the bubble width, 0 � θ � π, 0 � w � V , and

A(w, θ) =

(
w − VR +

VΦ(w)

Φ′(w)

dR

dw

) √
1 − R2(w), (2.9)

B(w, θ) =
V (1 − R2(w))

w
+ (VR − w)

dR

dw
. (2.10)

Notice that the conditions (2.7)–(2.10) were derived in Alexandrou & Entov [1]; however,

there is a typo error in Alexandrou & Entov [1].

Finally, in the case of flow of a visco-plastic fluid (flow with a limiting pressure gradient)

the part of the boundary

w = 0, 0 � θ � π, (2.11)

corresponds to the boundary of the stagnant zone.

So in our case (2.2) should be solved in the known domain of the hodograph plane

which is shown in Figure 1 with boundary conditions (2.7)–(2.10).

3 Solution of the problem in the hodograph plane

So far, we have not specified the concrete form of the function Φ(w) describing rheological

behavior of the fluid. In this paper, two typical functions forms Φ(w) are used that
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correspond to a visco-plastic (Bingham) flow, or a flow with limiting pressure gradient,

[1]–[3]

Φ(w) =
12η

b2
(w + γ) , w > 0; Φ(0+) =

12ηγ

b2
> 0, (3.1)

γ being the liquid rheological parameter, and the power law (Ostwald-de-Waele) fluid,

[2, 3]:

Φ(w) = Cws, s > 0. (3.2)

Let us consider these two cases in more detail.

3.1 Flow with limiting pressure gradient

Using expression (3.1) for Φ(w), equation (2.2) becomes

w(w + γ)
∂2ψ

∂w2
+ (w − γ)

∂ψ

∂w
+

∂2ψ

∂θ2
= 0. (3.3)

Two techniques were used for solving (3.3), namely, a numerical finite difference technique

and a version of the collocation technique to be described in more detail later.

Equation (2.5) implies the following inequality that bounds the range of variation of

problem parameters: γ � V∗ � V ; V∗ = ρgb2/12η. A version of a stabilization technique

was used to solve the steady-state problem formulated above. We first rewrite (3.3) as:

w(w + γ)
∂2ψ

∂w2
+ (w − γ)

∂ψ

∂w
+

∂2ψ

∂θ2
=

∂ψ

∂t
. (3.4)

This non-steady-state equation was solved using the well-developed numerical technique

of alternating directions [13]. At large values of t, the solution stabilizes to that of the

steady-state equation (3.3).

The numerical grid in the domain 0 � θ � π, 0 � w � V in the hodograph plane

consists of equidistant mesh points along θ-axis. The mesh step along w is variable, so

that the boundary mesh points are located on the curvilinear part of the boundary AD

(Figure 1(b)).

When the stream function values are found in all mesh points, the flow pattern in the

physical plane is determined using (1.6), (1.7), (2.3) and (2.1), assuming xA = 0, yA = 0

(i.e. choosing the bubble tip for the origin). In particular, for the bubble boundary we

have

x(θ) =

∫ θ

0

1

w

[(
(w + γ) cos θ +

sin2 θ

Rw

)
∂ψ

∂w
+ sin θ

(
cos θ

wRw
− 1

)
∂ψ

∂θ

]
dθ, (3.5)

y(θ) =
ψ

V
. (3.6)

Here w = w(θ) are values corresponding to the bubble boundary,

ψ = ψ(w(θ), θ), Rw =
dR

dw
(w(θ)),

∂ψ

∂w
=

∂ψ

∂w
(w(θ), θ),

∂ψ

∂θ
=

∂ψ

∂θ
(w(θ), θ). (3.7)
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Figure 2. The bubble boundary for V = 1, V∗ = 0.9 predicted by the Saffman–Taylor theory (solid

line), the finite difference technique with γ = 0.005 (broken line) and the collocation technique

(crosses) in dimensionless coordinates X and Y .

Location and size of the stagnant zone is determined from (2.3) as

xB =

∫ V

0

1

w2

∂ψ

∂θ
(w, 0) dw, yB = 0 (3.8)

to find the position of the initial point B, and

x(θ) + iy(θ) = lim
w→0

∫ θ

0

eiθ
w + γ

w

∂ψ

∂w
(w, θ) dθ + xB, (3.9)

to determine the shape of the boundary of the stagnant zone.

To test the validity of the numerical technique, it was first applied to several well-studied

free boundary problems, namely the problem of the Saffman–Taylor finger propagating

steadily in a Hele–Shaw cell [1, 10] and seepage flow of a Bingham fluid [2]–[4]. Numerical

results agree rather well with the analytical solution for the bubble in the cases when the

analytical solution is available (Figure 2). We recall, that the Saffman–Taylor solution for

the steadily propagating bubble is:

x =
2

π

U − 1

U
tanh−1

(
sin2 λπU

2
− cos2 λπU

2
tg2 yπU

2

)1/2

, (3.10)

where U = 1 + V/V∗; V∗ = ρgb2/12η.

3.2 Numerical-analytical solution for the flow with limiting pressure gradient

In our case, the stream function in the hodograph plane satisfies (3.3) with Φ(w) =

(w + γ)/V∗ and vanishes at the boundaries w = 0, and θ = 0 and θ = π. Therefore, this
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solution can be represented by a Fourier series expansion involving a particular family of

hypergeometric functions (cf. Bernadiner & Entov [3]; see also Goldstein & Entov [6]).

We first introduce a new dimensionless velocity variable u:

u =
w

γ
, g0 =

ρg

γ
, V 0 =

V

γ
, A0(u, θ) =

A(w, θ)

γ
, B0(u, θ) = B(w, θ). (3.11)

Then (3.3) becomes

u(u+ 1)
∂2ψ

∂u2
+ (u− 1)

∂ψ

∂u
+

∂2ψ

∂θ2
= 0. (3.12)

Here, ψ(u, θ) should satisfy the following boundary conditions:

ψ = 0 along AB and BC, (3.13)

∂ψ

∂θ
= 0 along CD. (3.14)

The general solution of this problem is given by the series

ψ(u, θ) =

∞∑
n=1

Cnu
2F(2 − αn, 2 + αn, 3,−u) sin αnθ; (3.15)

H(u, θ) =

∞∑
n=1

2Cnα
−1
n F(−αn, αn, 2,−u) cos αnθ, (3.16)

where αn = n − 1
2
, Cn are unknown coefficients, F is a hypergeometric function [8]. To

evaluate the function F = F(a, b, c, z) a standard series development was used:

F(a, b, c, z) =

∞∑
k=0

(a)k(b)k
(c)kk!

zk, |z| < 1, (φ)k =
Γ (φ+ k)

Γ (φ)
. (3.17)

However, this diverges beyond a circle of unit radius, so that the Kummer formulas (cf.

Lebedev [8]) which provide analytic continuation of F on the complex plane with a slit

along 1 � z � ∞ were used:

F(a, b, c, z) = (1 − z)−bF

(
c− a, b; c;

z

z − 1

)
. (3.18)

Thus, the problem of determination of ψ(u, θ) is reduced to finding of the coefficients Cn.

This is done using the boundary condition along the curvilinear part of the boundary AD

that assumes the form

A0(u, θ)
∂ψ

∂u
+ B0(u, θ)

∂ψ

∂θ
= 0, ψ(g0 − 1, π) = λV , (3.19)

and a point-by-point collocation method. We select a finite number N of terms of the

series (3.15), (3.16) and (3.18). Choosing a set of points θi, i = 0..N in the interval [0, π] and

substituting values of the functions A0, B0 and derivatives ∂ψ/∂u, ∂ψ/∂θ at the boundary

points (θi, u(θi)) into (3.8), we arrive at a linear system of equation for Cn. After that using

(3.8), (3.9) we recover coordinates of the bubble boundary in the physical plane.

https://doi.org/10.1017/S0956792504005509 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792504005509


322 A. N. Alexandrou et al.

–6 –4 –2 0 2
0

1

2

3

4

5

6

x

y

1b 2b 

2s 1s 

Figure 3. The shapes of bubbles (1b, 2b) and stagnant zones (1s, 2s) for V = 1, V∗ = 0.9. Curves

1b and 1s show the results derived by the collocation technique with γ = 0.1, 2b and 2s – with

γ = 0.5; the Saffman-Taylor solution is shown as a solid line.

In our case, the location of the initial point B of the stagnant zone is given by the

expression

xB =
1

γ

∫ V

0

N∑
n=1

CnαnF(2 − αn, 2 + αn, 3,−u) du, yB = 0. (3.20)

and the boundary of the stagnant zone is described by the relations:

x(θ) = xB − 1

γ

N∑
n=1

Cn

(
cos(αn − 1)θ

αn − 1
+

cos(αn + 1)θ

αn + 1
− 2αn
α2
n − 1

)
; (3.21)

y(θ) =
1

γ

N∑
n=1

Cn

(
sin(αn − 1)θ

αn − 1
− sin(αn + 1)θ

αn + 1

)
. (3.22)

All calculations were done using the mathematical package Maple V. Figure 3 shows

boundaries of the bubble and respective stagnant zones. As it is seen from Fig. 4, even at

large γ the elongated bubbles are almost elliptical.

3.3 Numerical-analytical solution for a power-law fluid

In this case, (2.2) becomes

1

s

∂

∂w

(
ws

∂ψ

∂w

)
+ ws−2 ∂2ψ

∂θ2
= 0. (3.23)
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Figure 4. The shape of the bubble with γ = 0.5 (crosses) in comparison with an ellipse (solid line)

of the same length; V = 1, V∗ = 0.9.

The solution of (3.19) with the boundary conditions (see Figure 1)

ψ = 0 along AB and BC; (3.24)

H = 0

(
or

∂ψ

∂θ
= 0

)
along CD; (3.25)

0 � θ � π, 0 � w � V , isψ(u, θ) =

∞∑
n=1

Cnw
kn sin αnθ, (3.26)

kn =
1 − s

2
+

√
(1 − s)2

4
+ sα2

n. (3.27)

The unknown coefficients Cn are determined using the collocation method from conditions

on the bubble surface as stated above:

A(w, θ)
∂ψ

∂w
+ B(w, θ)

∂ψ

∂θ
= 0 along AD; (3.28)

ψ
(
ρg1/s, π

)
= λV at the point D. (3.29)

Once more, the Saffman–Taylor solution corresponding to s = 1 was used as a benchmark

(cf. Figures 5 and 6).

Figures 7–10 summarize the results. In Figures 7 and 8, the bubble aspect ratio (length-

to-width ratio) and relative area are presented as functions of the bubble velocity for

different values of γ. Both the aspect ratio and the rate of its growth with velocity increase

with increasing γ (i.e. the plastic component of flow resistance). Briefly, in a Bingham

fluid the bubbles prove to be more elongated. The same qualitative behaviour is observed
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Figure 5. The bubble shapes derived by the collocation technique at different V∗ for a power-law

fluid for s = 1 (diamonds), flow with limiting pressure gradient with γ = 0.01 (broken lines). Solid

lines correspond to the Saffman–Taylor solution. 1: V∗ = 0.9, 2: V∗ = 0.6 , 3: V∗ = 0.4.
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Figure 6. The bubble shape for power-law fluids derived by the collocation technique for s = 1

(crosses) s = 0.7 – broken line (1), s = 3 – broken line (3), the Saffman–Taylor solution is shown by

a solid line.

for power-law shear-thinning fluids (s < 1). Notice (Figures 9 and 10), that in this formal

theory the bubble velocity and thickness λ are both free parameters, and for given bubble

area there exists a family of bubbles of different aspect ratio, the bubble velocity being

the greater the greater the aspect ratio.
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Figure 7. The bubble aspect ratio (the length-to-width ratio), vs dimensionless velocity, V0 =

12ηV/ρgb2. The solid line shows the Saffman–Taylor solution, circles and broken lines correspond

to flow with limiting pressure gradient at different γ derived by the collocation technique. The

respective values are: γ = 0.005 (circles), γ = 0.1 (curve 1), γ = 0.3 (curve 2), γ = 0.4 (curve 3),

γ = 0.5 (curve 4), γ = 0.6 (curve 5), γ = 0.7 (curve 6).
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Figure 8. The bubble relative area vs dimensionless velocity, V0 = 12ηV/ρgb2. The solid line shows

the Saffman–Taylor solution, circles and broken lines correspond to flow with limiting pressure

gradient at different γ derived by the collocation technique. The respective values are: γ = 0.005

(circles), γ = 0.1 (curve 1), γ = 0.3 (curve 2), γ = 0.4 (curve 3), γ = 0.5 (curve 4), γ = 0.6 (curve 5),

γ = 0.7 (curve 6).
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Figure 9. The bubble aspect ratio (length-to-width ratio). The solid line shows the Saffman–Taylor

solution, circles and broken lines correspond to power-law fluid at different s derived by the

collocation technique. The respective values are: s = 1 (circles), s = 0.7 (curve 1), s = 0.8 (curve 2),

s = 2 (curve 3), s = 3 (curve 4).
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Figure 10. The bubble dimensionless area vs dimensionless velocity. The solid line shows the

Saffman–Taylor solution, circles and broken lines correspond to power-law fluid at different s

derived by the collocation technique. The respective values are: s = 1 (circles), s = 0.7 (curve 1),

s = 0.8 (curve 2), s = 2 (curve 3), s = 3 (curve 4).
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4 Conclusion

A combined analytical-numerical technique was developed to treat the problem of an

inviscid bubble rising due to buyoancy through an unbounded Hele–Shaw cell filled

with a nonlinearly viscous fluid. Results are presented for the cases of a Bingham and

power-law fluids. In the limiting case of a Newtonian fluid these results agree rather well

with benchmark solution due to Saffman and Taylor. In all cases, for given bubble area

a one-parameter family of solutions is derived differing in the bubble shape and rising

velocity. The bubbles aspect ratio increases with velocity, the rate of increase being greater

for Bingham and shear-thinning fluids than for a Newtonian fluid.

The technique can be extended to many related problems of plane flows with free

boundaries following a nonlinear flow rule.
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