Analysis of evolutionary, biogeographical and taxonomic patterns of nucleotide composition in demosponge rRNA

Dirk Erpenbeck*^{†‡¶}, Danny F.R. Cleary^J, Oliver Voigt[†], Scott A. Nichols[§], Bernard M. Degnan[‡], John N.A. Hooper* and Gert Wörheide[†]

*Biodiversity Programme, Queensland Museum, 4101 South Brisbane, Queensland, Australia. [†]Department of Geobiology, Geoscience Centre Göttingen, 37077 Göttingen, Germany. [‡]School of Integrative Biology, University of Queensland, Brisbane, Australia. ^JInstitute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands. [§]Department of Molecular & Cell Biology, University of California Berkeley, USA.

[¶]Corresponding author, e-mail: derpenb@gwdg.de

The ribosome is the location of protein translation and therefore a pivotal macromolecular complex for all organisms. The RNA molecules involved in the formation and functioning of the ribosome (rRNA) are partially single-stranded (loops) and partially double-stranded (helices or stems) as a result of pairing of complementary regions in either their own or other rRNA subunits. This pattern provides the rRNA with a secondary structure crucial for its functionality. The stability of these secondary structures is mediated by their base compositions: a helix rich in G-C pairs possesses a higher thermodynamic stability than an A-T rich counterpart. However, the base composition of these structures is neither homogeneous throughout the molecule nor throughout the demosponge taxa. Here, we present patterns of biased nucleotide composition in demosponge 28S rDNA. We analyse their correlation in respect to environment and taxonomy. We find significantly higher G+C contents in haplosclerid demosponges compared to other orders and investigate evidence for an association between water temperature and rRNA base composition in demosponges.

INTRODUCTION

The frequency of the four nucleotide types in organismal DNA has been shown to be variable among lineages. In particular, the different ratios of the G-C as opposed to the A-T Watson-Crick nucleotide pairs have attracted the interest of evolutionary biologists (see Mooers & Holmes (2000) for a detailed review on G+C composition studies). The G+C content of genomes is, for example, relatively low in invertebrates but highly variable for protists and algae. Bacterial genomes, which are among the best studied for G+C contest (see Galtier et al. (1999) for a systematic context) display the highest variation in G+C content with ranges between 25 and 75% (see Mooers & Holmes, 2000). One reason for those differences might be the general mutational bias in DNA, which results from the preference of one nucleotide pair above the other (Eyre-Walker, 1993). Another reason for the pronounced variance in nucleotide frequency is natural selection (Smit et al., 2006). Natural selection might favour a higher percentage of G-C bonds in a DNA strand because this nucleotide pair forms more energetically stable bonds compared to A-T bonds. Although this bias appears plausible for organisms that live in extreme environmental conditions, a direct correlation between genomic G+C content and environment is not always evident. Selection for higher G+C contents has been shown for UV exposure of bacteria (Singer & Ames, 1970), but thermophilic bacteria do not have a significantly higher

Journal of the Marine Biological Association of the United Kingdom (2007)

G+C content than mesophilic bacteria (Galtier & Lobry, 1997; see also Nakashima et al., 2003), although G+C rich DNA (and RNA) chains would be more heat-stable than their G+C poorer counterparts. In addition, *Drosophila* species of colder climates can have a higher G+C content than their warmer climate congenerics (Rodriguez-Trelles et al., 1999; Mooers & Holmes, 2000).

Apparently, selection towards higher G+C is more evident in single genes and gene-fragments than in entire genomes. Such bias can be seen in rRNA genes (rDNA), which code for rRNA molecules that undergo a complex folding into a secondary structure of single-strands ('loops') and doublestrands ('stems' or 'helices', see Figure 1); these form tertiary (and higher) structures in the final ribosome. The ribosome's shape, which is important for its functionality, is mediated in particular (but not exclusively) by rRNA helices. Therefore, there is considerable evolutionary pressure on maintaining a functional shape of secondary structure maintained by helices within the rRNA molecule. In thermophilic bacteria, helix regions possess a higher G+C rate than mesophilic bacteria, presumably in order to maintain rRNA function in extreme environments (Galtier & Lobry, 1997). For vertebrates it has been shown that warm-blooded species have a higher overall G-C content in rRNA than their cold-blooded counterparts. However, this difference is not concentrated in the paired regions of the molecule, suggesting that thermal adaptation is not the cause of the nucleotide differences among vertebrate lineages (Wang et al., 2006). To our knowledge,

Figure 1. Schematic view of LSU. The pairing nucleotide sites (helices) are given in thicker lines, single stranded regions with thinner lines. The section included in our alignments is shaded in grey and flanked by arrows. Hypervariable sites of other sections are marked with dashed lines.

the correlation between environmental temperature and stem-rDNA G+C content has rarely been analysed among invertebrates. In this study we aim to seek evidence for such a correlation in early-branching Metazoa.

RESULTS AND DISCUSSION

Sponges are particularly suitable for this type of analysis. As sessile marine invertebrates they are poikilothermic and surrounded by a medium of easily measurable temperature without sudden changes. Demosponges are also cosmopolitan and present in all marine habitats. Furthermore, a considerable number of demosponge large sub-unit 28S (LSU) rDNA sequences are published with their secondary structure readily assessed (Erpenbeck et al., 2007a). The latter were used to align the LSU sequences and to identify the position of stems in the transcribed and assembled rRNA molecule (see Figure 1). We analysed the data of Nichols (2005), which comprises a relatively long LSU fragment (>1400 characters) and a suitable representation of demosponge orders (11 out of 15) (Figure 2). G+C contents of stems and loops were calculated with PAUP 4.0 (Swofford, 2002) and statistically analysed with ANOVA using Statistica for Windows 6.1 (Statsoft, Tulsa, OK, USA).

First, we tested for taxonomical bias in the rRNA helix and loop nucleotide compositions throughout the 106 demosponge sequences. We observed a strongly increased helix G+C content in the taxa of the order Haplosclerida (67.8%; SD=1.4; N=13) compared to all other demosponges pooled (62.6%; SD=2.1; N=83). Haplosclerid sponges contained a significantly higher G+C content in stem regions $(F_{5.71}=45.53, P<0.001)$ compared to all other orders tested (Bonferroni test: P<0.001). Astrophorids also contained a significantly higher G+C content than dictyoceratids, poecilosclerids and hadromerids but not halichondrids. There was no significant difference in G+C content among dictyoceratids, poecilosclerids, hadromerids or halichondrids (Bonferroni test: P > 0.05). These findings are in congruence with earlier observations, in which Haplosclerida displayed higher substitution rates and different secondary structure features compared to all other demosponge rRNA, in addition to increased substitution rates in mitochondrial DNA (Erpenbeck et al., 2004, 2007b). The order Haplosclerida comprises the highest biodiversity of all sponges in terms of species and habitats (van Soest & Hooper, 2002), perhaps caused by higher evolutionary rates that allowed members of this taxon to open up new ecological niches. The resulting structural diversity of the ribosomal rRNA is stabilized by increased G+C contents in the helices.

There were also significant differences in the nucleotide composition of the loops among orders ($F_{5,71}$ =45.00, P<0.001). G+C content was highest in the astrophorids, haplosclerid and halichondrids and did not differ significantly among these orders (Bonferroni test: P>0.05). G+C content was significantly lower in the poecilosclerid than astrophorids (Bonferroni test: P=0.006). The dictyoceratids had a significantly lower G+C content than all other orders (Bonferroni test: P<0.001). The increased amount of loop adenosine in taxa of all orders (33.7–40.4%) is usual for unpaired sites in ribosomal loop partitions (Telford et al., 2005).

In addition to assessing variation in G+C content among orders we also tested for the effect of the environment on G+C substitutions in demosponge LSU rDNA loops and stems. For this approach, species were divided into two simplified groups of 'cold' (approximately temperate/mediterranean and polar) and warm (tropical) locations, in which minimum and maximum temperatures were least overlapping (see Appendix 1). Temperature charts for the species locations have been taken from the NOAA Satellite and Information Service (http://nodc.noaa.gov/OC5/WOA01F/tsearch.html). This simplification certainly bears the risk of experimental error, which, however, cannot entirely be excluded due to the lack of knowledge on optimal growth temperatures for the individual sponge species. Collection depth of 30 m (opposed to surface, 10 m, 50 m, or deeper as alternative options) has been assumed to approximate the temperature conditions of the taxon set best. For this depth we chose the annual mean temperature (as opposed to maximum and minimum temperature as their influence has not been estimated yet).

For the analysis we followed the method of Charette et al. (2006) and compared our pool of 'cold water' species with their closest known warm-water relative. For our data set this resulted in the formation of a maximum of 15 species pairs, which included seven congeneric pairs (pairs A-G, see Appendix 1), five confamilial pairs (pairs H-L) and three pairs of species within the same order (pairs M–O). When there were multiple candidate species for a matched pair, species with name lowest in alphabetical order were chosen (considered as a random choice). Differences in G+C content between 'cold water' and 'warm water' species were tested for significance with a paired *t*-test (aka *t*-test for dependent samples) using Statistica for Windows v. 6.1. The loop G+C content of 'cold' and the 'warm' species did not differ significantly (*t*=1.427, *P*=0.175, N=15), but the helix G+C content was significantly higher among the species in the 'warm' group compared to the 'cold' group (t=2.303, P=0.037, N= 15). This result would support the hypothesis of evolutionary pressure on more stable RNA helices by increasing the ratio of G+C pairs.

In any event, the G+C content does not necessarily reflect the number of triple bonds in a given stretch of RNA. G can form the 'wobble'-bonds with uracil (U), which are double bonds and considerably weaker than the G-C triple bonds. As C only binds with G, the frequency of C in paired sites is a direct indicator for the number of triple hydrogen-bonds in RNA secondary structure. In fact the samples originating from warmer waters exhibit a higher C content (28.4%; SD=0.03, N=76) than their 'cold'-group counterparts (27.3%; SD=0.01; N=13) (*t*-test, *P*<0.05).

Nevertheless, there are clear pitfalls in our analysis, which are frequently neglected by other analyses: sponge systematics frequently suffers from ambiguous classification paired with incongruent (and inconsistent) molecular phylogenies. This phenomenon affects our present study as well.

First, freshwater sponges are morphologically classified with the marine Haplosclerida (van Soest & Hooper, 2002), but molecular (predominantly rDNA) analyses provide evidence against the monophyletic relationship of marine and freshwater sponges (e.g. Borchiellini, 2004; Addis &

Figure 2. Plot of the sampling locations (three letter codes) of the 95 non-haplosclerid demosponges against the water temperatures used as basis for raw division into 'cold' and 'warm' water regions (annual mean, 30 m, source: NOAA Satellite and Information Service). Locality codes: AMI, Seychelles, Amirantes; ANT, Curacao, Netherlands Antilles; BER, Bermuda; CAR, Carmel, California; CON, Contreras Island, Panama; CRO, Croatia; GRO, Dampier and Onslow WA, Australia; HOB, Hobart, Australia; LTH, Lake Tahoe, California, USA; MAL, Maldives; NOU, Nouadhibou, Mauritania; NWA, North West Cape, WA, Australia; PAC, Panama (Caribbean); PAP, Panama (Pacific); PIT, Pitcairn Islands; PNG, Papua New-Guinea; ROS, Roscoff; SUN, Sunshine Coast, QLD, Australia; SYD, Sydney Heads, Australia; VIR, Virgin Islands; WAL, Waldergrove Islands, Australia; ZEE, Zeeland, Netherlands.

Peterson, 2005; Nichols, 2005; Redmond et al., 2007). Inclusion of the Haplosclerida pair into our statistics might infer a conceptual error even if the classification of this group still awaits final acceptance.

Secondly, several other taxon pairs are not recovered at their expected positions: Both *Polymastia* sp. 1 and *Geodia barretti*, cluster distantly from their congenerics in the original phylogenetic tree (Nichols, 2005), which may raise some doubt on their suitability for this analysis. While *G. barretti* can be exchanged against *G. papyracea* from our taxon set, there is no sequence to replace *Polymastia* sp 1.

When the haplosclerid sponge pair is excluded from the analysis the result is marginally non-significant using an α of 0.05 (*t*=2.011, *P*=0.066, df=13). Likewise if the taxon-pair including *Polymastia* sp.1 is disregarded the result is marginally non-significant (*t*=-1.788, *P*=0.099, df=12). It must be noted, however, that the exclusion of data points decreases the power of the sample set, which effects small data sets in particular. All tests, however, revealed a probability below 0.1, which due to the small sample size suggests an association between G+C content and environment although this warrants further research.

We therefore find some evidence of a trend towards increased evolutionary pressure on stem triple hydrogen bonds, but more exhaustive research is needed, in particular of sequences of verified entity with unambiguous phylogenetic origin. Answering molecular evolutionary questions using published sequences generated for a different purpose, however, remains problematic, especially in sponges, as long as contamination and misidentification problems are not resolved. Nevertheless, we can deduce from our analysis on evolutionary nucleotide composition in demosponge rRNA that taxonomic patterns are clearly present and there is evidence that environmental patterns might exist.

The authors thank Jane Fromont and Mark Salotti, Western Australian Museum, for species locality information and two anonymous referees for their critical, but constructive comments to improve the manuscript. D.E. acknowledges financial support of the European Union under a Marie-Curie outgoing fellowship (MOIF-CT-2004 contract no 2882). G.W. is funded by Deutsche Forschungsgemeinschaft (DFG) projects Wo896/3, Wo896/6 (Priority Programme SPP1174 'Deep Metazoan Phylogeny').

REFERENCES

- Addis, J.S. & Peterson, K.J., 2005. Phylogenetic relationships of freshwater sponges (Porifera, Spongillina) inferred from analyses of 18S rDNA, COI mtDNA, and ITS2 rDNA sequences. *Zoologica Scripta*, **34**, 549–557.
- Borchiellini, C., Chombard, C, Manuel, M., Alivon, E., Vacelet, J. & Boury-Esnault, N., 2004. Molecular phylogeny of Demospongiae: implications for classification and scenarios of character evolution. *Molecular Phylogenetics and Evolution*, **32**, 823– 837.
- Charrette, N.A., Cleary, D.F.R. & Mooers, A.Ø., 2006. Rangerestricted, specialist Bornean butterflies are less likely to recover from enso-induced disturbance. *Ecology*, 87, 2330–2337.
- Erpenbeck, D., McCormack, G.P., Breeuwer, J.A.J. & Soest, R.W.M. van, 2004. Order level differences in the structure of partial LSU across demosponges (Porifera): new insights into an old taxon. *Molecular Phylogenetics and Evolution*, **32**, 388–395.
- Erpenbeck, D., Nichols, S.A., Voigt, O., Dohrmann, M., Degnan, B.M., Hooper, J.N.A. & Wörheide, G., 2007a. Phylogenetic analyses under secondary structure-specific substitution models outperform traditional approaches—case studies with diploblast LSU. *Journal of Molecular Evolution*, **64**, 543–557.
- Erpenbeck, D., Voigt, O., Adamski, M., Adamska, M., Hooper, J.N.A., Wörheide, G. & Degnan, B.M., 2007b. Mitochondrial diversity of early-branching Metazoa is revealed by the complete mt genome of a haplosclerid demosponge. *Molecular Biology and Evolution*, 24, 19–22.
- Eyre-Walker, A., 1993. Recombination and mammalian genome evolution. Proceedings of the Royal Society of London B, 252, 237– 243.
- Galtier, N. & Lobry, J.R., 1997. Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. *Journal of Molecular Evolution*, 44, 632–636.
- Galtier, N., Tourasse, N. & Gouy, M., 1999. A nonhyperthermophilic common ancestor to extant life forms. *Science, New York*, 283, 220–221.
- Mooers, A.Ø. & Holmes, E.C., 2000. The evolution of base composition and phylogenetic inference. *Trends in Ecology and Evolution*, **15**, 365–369.

- Nakashima, H., Fukuchi, S. & Nishikawa, K., 2003. Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures. *Journal of Biochemistry*, **133**, 507– 513.
- Nichols, S.A., 2005. An evaluation of support for order-level monophyly and interrelationships within the class Demospongiae using partial data from the large subunit rDNA and cytochrome oxidase subunit I. *Molecular Phylogenetics and Evolution*, **34**, 81–96.
- Redmond, N.E., Soest, R.W.M. van, Kelly, N., Raleigh, J., Travers, S.A.A. & McCormack, G.P., 2007. Reassessment of the classification of the Order Haplosclerida (Class Demospongiae, Phylum Porifera) using 18S rRNA gene sequence data. *Molecular Phylogenetics and Evolution*, **43**, 344–352.
- Rodriguez-Trelles, F., Tarrio, R. & Ayala, F.J., 1999. Switch in codon bias and increased rates of amino acid substitution in the *Drosophila saltans* species group. *Genetics*, **153**, 339–350.
- Singer, C.E. & Ames, B.N., 1970. Sunlight ultraviolet and bacterial DNA base ratios. *Science*, *New York*, **170**, 822–826.
- Smit, S., Yarus, M.Y. & Knight, R., 2006. Natural selection is not required to explain universal compositional patterns in rRNA secondary structure categories. *RNA—a Publication of the RNA Society*, **12**, 1–14.
- Soest, R.W.M. van & Hooper, J.N.A., 2002. Order Haplosclerida Topsent, 1928. In Systema Porifera. Guide to the classification of sponges, vol. 1 (ed. J.N.A. Hooper and R.W.M. van Soest), pp. 831–832. New York: Kluwer Academic/ Plenum Publishers.
- Swofford, D.L., 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sunderland, Massachusetts: Sinauer Associates.
- Telford, M.J., Wise, M.J. & Gowri-Shankar, V., 2005. Consideration of RNA secondary structure significantly improves likelihoodbased estimates of phylogeny: examples from the Bilateria. *Molecular Biology and Evolution*, **22**, 1129–1136.
- Wang, H.C., Xia, X.H. & Hickey, D., 2006. Thermal adaptation of the small subunit ribosomal RNA gene: a comparative study. *Journal of Molecular Evolution*, 63, 120–126.

Submitted 30 April 2007. Accepted 14 September 2007.

	, .
	ns.
•	2
-	tr1
	ar
	ē,
	ē
	ğ
	11
	ä
	a .
:	Ľ
	se.
	2
•	\mathcal{L}
	Ð
	t_{l}
-	11
	5
	re
	a
	es
	22
	en
	nl
,	ĩ.
	5
	đ
	oti
	le
	ш
- P	ŝ.
	Se
	ė
	at
	σ
ĩ	2
<	5
2	2
2	Ľ
	S
	õ
	2
- A	Š.
ç	Ϋ.
	0,
	i.
	nc
	E .
	Ъ
	<u>~</u>
ç	4
ر ا	e fr
J	nde fr
J	sotude fr
J 1 1	steotude fr
	mcteotude fr
J 1. 1 1	t nucleotude fr
	nd nucleotide fr
	and nucleotide fr
5 I. I	rs and nucleotide fr
	bers and nucleotide fr
	mbers and nucleotide fr
	numbers and nucleotide fr
	ı numbers and nucleotide fr
	on numbers and nucleotide fr
	ssion numbers and nucleotide fr
	cession numbers and nucleotide fr
	accession numbers and nucleotide fr
	k accession numbers and nucleotide fr
	ink accession numbers and nucleotide fr
	Bank accession numbers and nucleotide fr
	nBank accession numbers and nucleotide fr
	JenBank accession numbers and nucleotide fr
	, GenBank accession numbers and nucleotide fr
	ns, GenBank accession numbers and nucleotide fr
	vons, GenBank accession numbers and nucleotide fr
	ations, GenBank accession numbers and nucleotide fr
	ocations, GenBank accession numbers and nucleotide fr
	, locations, GenBank accession numbers and nucleotide fr
	va, locations, GenBank accession numbers and nucleotide fr
	axa, locations, GenBank accession numbers and nucleotide fr
	Iaxa, locations, GenBank accession numbers and nucleotide fr
	L. Laxa, locations, GenBank accession numbers and nucleotide fr
	\mathbf{x} 1. Laxa, locations, GenBank accession numbers and nucleotide fr
	1x 1. Laxa, locations, GenBank accession numbers and nucleotide fr
	dix 1. Laxa, locations, GenBank accession numbers and nucleotide fr
	endix 1. Laxa, locations, GenBank accession numbers and nucleotide fr
	Dendix 1. Laxa, locations, GenBank accession numbers and nucleotide fr
	ppendix 1. Laxa, locations, GenBank accession numbers and nucleotide fr
	Appendix 1. <i>Laxa, locations, GenBank accession numbers and nucleotide fr</i>

$_{\rm A+T}^{\rm Loop}$	0.565	0.566	0.531	0.533	0.528	0.528	0.565	0.535	0.564	0.535	0.540	0.533	0.578	0.607	0.606	0.607	0.606	0.625	0.614	0.625	0.566	0.557	0.553	0.556	0.559	0.559	0.566	0.538	0.552	0.552	0.529	0.563	0.566	0.573	0.569	0.554	0.575	0.564	0880
Loop	0.196	0.196	0.182	0.182	0.182	0.182	0.196	0.182	0.199	0.185	0.179	0.161	0.174	0.207	0.208	0.207	0.204	0.221	0.214	0.221	0.196	0.191	0.191	0.189	0.195	0.197	0.196	0.171	0.185	0.203	0.188	0.196	0.192	0.199	0.179	0.176	0.204	0.195	0.109
Loop G	0.288	0.287	0.297	0.291	0.301	0.297	0.277	0.294	0.280	0.294	0.295	0.291	0.266	0.253	0.254	0.253	0.254	0.249	0.253	0.249	0.278	0.284	0.287	0.287	0.278	0.294	0.287	0.294	0.290	0.304	0.308	0.287	0.287	0.287	0.288	0.292	0.284	0.287	0 987
Loop C	0.147	0.147	0.171	0.175	0.171	0.175	0.159	0.171	0.156	0.171	0.165	0.175	0.156	0.140	0.141	0.140	0.141	0.126	0.133	0.126	0.157	0.159	0.159	0.157	0.162	0.147	0.147	0.168	0.157	0.143	0.163	0.150	0.147	0.139	0.142	0.154	0.140	0.149	0.154
Loop A	0.368	0.371	0.349	0.351	0.346	0.346	0.369	0.353	0.365	0.349	0.361	0.372	0.404	0.400	0.398	0.400	0.401	0.404	0.400	0.404	0.370	0.365	0.362	0.367	0.365	0.362	0.371	0.367	0.367	0.349	0.341	0.367	0.374	0.374	0.389	0.378	0.372	0.369	0 367
Helix C+G	0.626	0.630	0.647	0.653	0.657	0.655	0.643	0.659	0.628	0.656	0.681	0.645	0.638	0.619	0.625	0.631	0.635	0.621	0.631	0.633	0.598	0.611	0.610	0.617	0.630	0.611	0.615	0.654	0.658	0.628	0.627	0.613	0.621	0.614	0.605	0.614	0.617	0.612	0.617
Helix T	0.219	0.217	0.208	0.203	0.200	0.200	0.205	0.202	0.209	0.204	0.196	0.203	0.204	0.215	0.212	0.212	0.210	0.213	0.209	0.211	0.229	0.218	0.220	0.224	0.207	0.216	0.226	0.201	0.203	0.212	0.206	0.227	0.220	0.219	0.227	0.222	0.220	0.218	0 994
Helix G	0.344	0.346	0.351	0.351	0.357	0.355	0.364	0.363	0.348	0.356	0.373	0.347	0.340	0.334	0.334	0.337	0.339	0.337	0.335	0.339	0.338	0.339	0.341	0.339	0.357	0.347	0.338	0.354	0.363	0.340	0.347	0.335	0.340	0.339	0.342	0.342	0.335	0.345	0330
Helix C	0.282	0.284	0.296	0.302	0.301	0.301	0.279	0.297	0.281	0.299	0.309	0.297	0.298	0.285	0.291	0.294	0.296	0.285	0.295	0.293	0.260	0.271	0.269	0.279	0.273	0.263	0.277	0.301	0.295	0.288	0.280	0.278	0.281	0.275	0.263	0.272	0.283	0.268	0.979
Helix A	0.155	0.153	0.145	0.144	0.142	0.144	0.152	0.138	0.163	0.141	0.122	0.153	0.158	0.166	0.163	0.157	0.155	0.166	0.161	0.157	0.173	0.171	0.169	0.158	0.163	0.174	0.159	0.144	0.139	0.160	0.167	0.160	0.159	0.167	0.168	0.164	0.162	0.170	0.158
Pair							V	A			В	в									U	U								D	Ω		Э	ſ-	ы	щ			
Temp	warm	warm	warm	warm	warm	warm	cold	warm	warm	warm	warm	warm	warm	warm	warm	warm	warm	warm	warm	warm	cold	warm	warm	warm	warm	warm	warm	warm	warm	warm	cold	warm	cold	cold	warm	warm	warm	warm	warm
											pu										Parad										Iouri							Banc	
Location	Papua New Guinea	Papua New Guinea	Panama Caribbean	Papua New Guinea	Papua New Guinea	Papua New Guinea	Sweden	Panama Pacific	Panama Caribbean	Papua New Guinea	Henderson Island/Pitcairn Isla	Australia, Sydney Heads	Papua New Guinea	Bermuda	Papua New Guinea	Papua New Guinea	Papua New Guinea	Papua New Guinea	Papua New Guinea	Panama Pacific	France, Bretagne, Roscoff Le]	Panama Caribbean	Australia, WA, Dampier	Papua New Guinea	Australia, WA, Dampier	Australia, WA, Onslow	Australia, Sunshine Coast	Papua New Guinea	Australia, WA, NW-Cape	Papua New Guinea	France, Bretagne, Roscoff Ar	Papua New Guinea	Antarctica	USA, California, Carmel	Australia, WA, Dampier	Australia, WA, NW-Cape	Panama Caribbean	Mauritania, Nouadhibou, off]	d'Arguin Panama Caribbean
Accession number Location	AY561929 Papua New Guinea	AY561928 Papua New Guinea	AY561938 Panama Caribbean	AY561942 Papua New Guinea	AY561940 Papua New Guinea	AY561939 Papua New Guinea	AY561877 Sweden	AY561937 Panama Pacific	AY561879 Panama Caribbean	AY561941 Papua New Guinea	AY561867 Henderson Island/Pitcairn Isla	AY561868 Australia, Sydney Heads	AY561866 Papua New Guinea	AY561954 Bermuda	AY561957 Papua New Guinea	AY561951 Papua New Guinea	AY561953 Papua New Guinea	AY561952 Papua New Guinea	AY561955 Papua New Guinea	AY561958 Panama Pacific	AY561891 France, Bretagne, Roscoff Le 1	AY561889 Panama Caribbean	AY561887 Australia, WA, Dampier	AY561886 Papua New Guinea	AY561890 Australia, WA, Dampier	AY561902 Australia, WA, Onslow	AY561901 Australia, Sunshine Coast	AY561946 Papua New Guinea	AY561947 Australia, WA, NW-Cape	AY561949 Papua New Guinea	AY561950 France, Bretagne, Roscoff Ar	AY561896 Papua New Guinea	AY561922 Antarctica	AY561924 USA, California, Carmel	AY561897 Australia, WA, Dampier	AY561923 Australia, WA, NW-Cape	AY561965 Panama Caribbean	AY561921 Mauritania, Nouadhibou, off]	d'Argum AV561893 Panama Caribbean
Accession Species number Location	Agelas sp. AY 561929 Papua New Guinea	Astrosclera willeyana AY561928 Papua New Guinea	Ecionemia sp. AY561938 Panama Caribbean	Holoxea sp. AY561942 Papua New Guinea	Melophilus sp. AY 561940 Papua New Guinea	Rhabdastrella sp. AY 561939 Papua New Guinea	Geodia barretti AY561877 Sweden	Geodia media AY561937 Panama Pacific	Geodia papyracea AY561879 Panama Caribbean	Lamellomotha sp. AY561941 Papua New Guinea	Chondrilla australiensis AY561867 Henderson Island/Pitcairn Isla	Chondrilla sp. AY561868 Australia, Sydney Heads	Chondrosia sp. AY561866 Papua New Guinea	Dysidea etheria AY561954 Bermuda	Lamellodysidea chlorea AY561957 Papua New Guinea	Spongia sp. 4 AY561951 Papua New Guinea	Spongiidae 1 AY561953 Papua New Guinea	Luffariella sp. AY561952 Papua New Guinea	Thorectidae 1 AY561955 Papua New Guinea	Dictyoceratida 1 AY561958 Panama Pacific	Cliona ælata AY561891 France, Bretagne, Roscoff Le 1	Cliona delitrix AY561889 Panama Caribbean	Cliona orientalis AY561887 Australia, WA, Dampier	Cliona sp. AY561886 Papua New Guinea	Pione velans AY561890 Australia, WA, Dampier	Axos sp. AY561902 Australia, WA, Onslow	Hemiasterella sp. 1 AY561901 Australia, Sunshine Coast	Hemiasterella sp. 2 AY 561946 Papua New Guinea	Hemiasterella sp. 3 AY561947 Australia, WA, NW-Cape	Stelligera sp. AY561949 Papua New Guinea	Stelligera stuposa AY 561950 France, Bretagne, Roscoff Ar	Placospongia sp. AY561896 Papua New Guinea	Polymastia invaginata AY561922 Antarctica	Polymastia pachymastia AY561924 USA, California, Carmel	Polymastia sp. 1 AY561897 Australia, WA, Dampier	Polymastia sp. 2 AY561923 Australia, WA, NW-Cape	Pseudotrachya sp. AY 561965 Panama Caribbean	Spinularia spinularia AY561921 Mauritania, Nouadhibou, off 1	d'Argum Didadwlla mondellata AV561803 Panama Caribbean
Accession Family Species number Location	Agelasidae Ageles sp. AY561929 Papua New Guinea	Astroscleridae Astrosclera willeyana AY561928 Papua New Guinea	Ancorinidae <i>Ecionemia</i> sp. AY561938 Panama Caribbean	Ancorinidae Holoxea sp. AY561942 Papua New Guinea	Ancorinidae Melophlus sp. AY 561940 Papua New Guinea	Ancorinidae Rhabdastrella sp. AY 561939 Papua New Guinea	Geodiidae Geodia barretti AY561877 Sweden	Geodiidae Geodia media AY561937 Panama Pacific	Geodiidae Geodia papyraeea AY561879 Panama Caribbean	Incertae Sedis Lanellomorpha sp. AY561941 Papua New Guinea	Chondrillidae Chondrilla australiensis AY561867 Henderson Island/Pitcairn Isla	Chondrillidae Chondrilla sp. AV561868 Australia, Sydney Heads	Chondrillidae Chondrosia sp. AY561866 Papua New Guinea	Dysideidae Dysidea etheria AY 561954 Bermuda	Dysideidae Lanellodysidea chlorea AY561957 Papua New Guinea	Spongüdae Spongia sp. 4 AY 561951 Papua New Guinea	Spongüdae Spongüdae 1 AY561953 Papua New Guinca	Thorectidae Luffariella sp. AY561952 Papua New Guinea	Thorectidae Thorectidae 1 AY561955 Papua New Guinea	Undetermined Dictyoceratida 1 AY561958 Panama Pacific	Clionaidae Cliona celata AY561891 France, Bretagne, Roscoff Le 1	Clionaidae Cliona delitrix AY561889 Panama Caribbean	Clionaidae Cliona orientatis AY561887 Australia, WA, Dampier	Clionaidae Cliona sp. AY561886 Papua New Guinea	Clionaidae Pione veluus AY561890 Australia, WA, Dampier	Hemiasterellidae Axos sp. AY561902 Australia, WA, Onslow	Hemiasterellidae Hemiasterella sp. 1 AY561901 Australia, Sunshine Coast	Hemiasterellidae Hemiasterella sp. 2 AY561946 Papua New Guinea	Hemiasterellidae Hemiasterella sp. 3 AY561947 Australia, WA, NW-Cape	Hemiasterellidae Stelligen sp. AY561949 Papua New Guinea	Hemiasterellidae Stelligen stuposa AY 561950 France, Bretagne, Roscoff Ar	Placospongiidae <i>Placospongia</i> sp. AY561896 Papua New Guinea	Polymastiidae Polymastia invaginata AY 561922 Antarctica	Polymastiidae Polymastia pachymastia AY561924 USA, California, Carmel	Polymastiidae Polymastia sp. 1 AY561897 Australia, WA, Dampier	Polymastiidae Polymasta sp. 2 AY561923 Australia, WA, NW-Cape	Polymastiidae Pseudotrachya sp. AY561965 Panama Caribbean	Polymastiidae Spinularia spinularia AY561921 Mauritania, Nouadhibou, off 1	d'Arguin Snirastrellidae Diúloctwlla moarchlata AV561803 Panama Carithean

Hadromerida	Spirastrellidae	Diplastrella spiniglobata	AY561894	Seychelles, Amirantes	warm	0.1	69 0.27.	3 0.33	3 0.221	0.610	0.362	2 0.159	9 0.287	0.191	0.553
Hadromerida	Spirastrellidae	Spirastrella hartmani	AY561895	Panama Caribbean	warm	0.1	70 0.27	0 0.33	3 0.225	0.607	0.362	3 0.155	5 0.285	0.194	0.556
Hadromerida	Spirastrellidae	Spirastrella sp.	AY561892	Australia, WA, Dampier	warm	0.1	68 0.27.	5 0.34	3 0.214	0.618	0.362	3 0.157	7 0.285	0.196	0.559
Hadromerida	Suberitidae	Aaptos cf. lithophaga	AY561909	USA, Virgin Islands, St Croix	warm	H 0.	76 0.25	3 0.33	5 0.235	0.589	0.374	4 0.139	9 0.283	0.203	0.577
Hadromerida	Suberitidae	Aaptos sp.	AY561908	Australia, WA, Dampier	warm	I 0.	77 0.24	8 0.33	3 0.237	0.586	0.369	9 0.142	2 0.284	0.206	0.574
Hadromerida	Suberitidae	Caulospongia reticulata	AY561914	Australia, SA, Waldergrove Isl.	cold	H 0.	77 0.26	0 0.33	4 0.225	0.594	0.374	4 0.139	9 0.283	0.203	0.577
Hadromerida	Suberitidae	Prosuberites laughlini	AY561927	Panama Caribbean	warm	0.1	66 0.27	6 0.34	4 0.214	0.620	0.381	1 0.139	9 0.283	0.196	0.577
Hadromerida	Suberitidae	Protosuberites denhartogi	AY561916	Netherlands, Zeeland, Neeltje Jans	cold (0. D	78 0.26	1 0.34.	2 0.219	0.603	0.366	5 0.143	3 0.283	0.208	0.573
Hadromerida	Suberitidae	Protosuberites sp. nov.	AY561915	Panama, Contreras Island,	warm	G 0.1	69 0.27.	5 0.35	4 0.202	0.629	0.362	3 0.158	3 0.277	0.201	0.565
Hadromerida	Suberitidae	Pseudosuberites sp. 2	AY561913	Panama Caribbean	warm	0	76 0.26	4 0.33	5 0.224	0.600	0.371	1 0.139	9 0.287	0.203	0.573
Hadromerida	Suberitidae	Pseudosuberites sp. 3	AY561917	Papua New Guinea	warm	i.0	63 0.27	1 0.33.	5 0.231	0.606	0.371	1 0.139	9 0.287	0.203	0.573
Hadromerida	Suberitidae	Pseudosuberites sp. 1	AY561919	Mauritania, Nouadhibou, off Banc	warm	0.1	82 0.26	0 0.34	1 0.218	0.601	0.363	3 0.147	7 0.284	0.205	0.568
				d'Arguin,											
Hadromerida	Suberitidae	Rhizaxinella sp.	AY561910	Australia, Hobart	cold	I 0.1	66 0.26	3 0.32	9 0.245	0.590	0.377	7 0.13	7 0.278	0.208	0.585
Hadromerida	Suberitidae	Suberites ficus	AY026381	taken from GenBank	n/a	0.1	68 0.27.	3 0.32	9 0.230	0.601	0.374	4 0.133	3 0.287	0.206	0.580
Hadromerida	Suberitidae	Suberites sp.	AY561912	USA, California, Carmel	cold	1.0 X	84 0.25.	3 0.32	7 0.235	0.581	0.374	4 0.136	5 0.283	0.206	0.580
Hadromerida	Suberitidae	Terpios aurantiaca	AY561911	Netherlands Antilles, Curacao,	warm	0.1	84 0.25.	5 0.33	1 0.231	0.585	0.377	7 0.14]	1 0.278	0.204	0.581
				Schottegat				: : :	0		0		0		
Hadromerida	Suberitidae	<i>Terpios</i> ct. australiensis	AY561918	Australia, WA, Dampier	warm	0.	74 0.25	8 0.34	8 0.215	0.607	0.365	3 0.14(0 0.284	0.212	0.576
Hadromerida	Tethyidae	Laxotethya dampierensis	AY561905	Australia, WA, Dampier	warm	0	71 0.27	5 0.33	9 0.216	0.613	0.365	5 0.149	9 0.287	0.199	0.564
Hadromerida	Tethyidae	Stellitethya ingens	AY561899	Australia, WA, NW-Cape	warm ,	J 0.1	63 0.27.	8 0.33.	3 0.227	0.610	0.371	1 0.150	0.287	0.192	0.563
Hadromerida	Tethyidae	Tethya californiana	AY561900	USA, California, Carmel	cold .	I 0.1	66 0.28	4 0.34	0.210	0.624	0.364	4 0.152	2 0.288	0.197	0.561
Hadromerida	Tethyidae	Tethyidae 1	AY561904	Papua New Guinea	warm	0.1	65 0.27.	5 0.33.	3 0.227	0.608	0.371	1 0.147	7 0.287	0.196	0.566
Hadromerida	Tethyidae	Tethytimea stellagrandis	AY561920	Maldives, Rashdoo Atoll, Kuramathi	warm	0.1	69 0.27.	5 0.32.	5 0.231	0.600	0.371	1 0.143	3 0.287	0.199	0.569
Hadromerida	Timeidae	Timea cf. centrifera	AY561906	Australia, WA, Dampier	warm	0.1	70 0.26	3 0.34.	5 0.222	0.608	0.369	9 0.145	5 0.284	0.202	0.571
Hadromerida	Timeidae	Timea lowchoyi	AY561871	Australia, Bass Reef	warm	0.1	54 0.29.	5 0.34.	2 0.205	0.637	0.374	4 0.147	7 0.287	0.192	0.566
Hadromerida	Timeidae	Timea sp.	AY561907	Australia, Sunshine Coast	warm	0.1	62 0.27	9 0.33	7 0.222	0.615	0.371	1 0.139	9 0.287	0.203	0.573
Halichondrida	Axinellidae	Axinella sp. 2	AY561931	Panama Caribbean	warm	0.1	46 0.29	9 0.35	7 0.198	0.655	0.355	3 0.15	4 0.304	0.189	0.542
Halichondrida	Axinellidae	Axinellidae 1	AY561930	Papua New Guinea	warm	0.1	48 0.29	9 0.35.	5 0.198	0.653	0.357	7 0.15	4 0.301	0.189	0.545
Halichondrida	cf, Axinellidae	Axinellidae 2	AY561932	Papua New Guinea	warm	0.1	45 0.29.	8 0.35	7 0.200	0.655	0.349	9 0.15	4 0.308	0.189	0.538
Halichondrida	Desmoxyidae	Didiscus sp.	AY561948	Papua New Guinea	warm	0.1	52 0.29.	2 0.34	7 0.209	0.640	0.346	5 0.145	3 0.301	0.209	0.556
Halichondrida	Dictyonellidae	Acanthella sp.	AY561936	Panama Pacific	warm	0.1	45 0.29	6 0.35	3 0.201	0.654	0.355	3 0.16	1 0.301	0.185	0.538
Halichondrida	Dictyonellidae	Scopalina ruetzleri	AY561872	Panama Caribbean	warm	0.1	53 0.29	7 0.34	4 0.206	0.642	0.371	1 0.15	4 0.287	0.189	0.559
Halichondrida	Halichondrüdae	Halichondrüdae sp. 1	AY561926	Papua New Guinea	warm	0.	51 0.28	5 0.34	7 0.217	0.632	0.360	0.143	3 0.304	0.192	0.552
Halichondrida	Halichondrüdae	Halichondrüdae sp. 2	AY561933	Papua New Guinea	warm	0.	47 0.29	6 0.35	4 0.205	0.650	0.352	2 0.14	4 0.306	0.197	0.549
Halichondrida	Halichondrüdae	Halichondrüdae sp. 3	AY561935	Papua New Guinea	warm	0.1	49 0.29	4 0.34	3 0.205	0.642	0.378	3 0.139	9 0.287	0.196	0.573
Halichondrida	Unidentified	Halichondrida 1	AY561934	Papua New Guinea	warm	0.1	45 0.29	9 0.34	9 0.206	0.648	0.351	1 0.14	4 0.309	0.196	0.547
Haplosclerida	Callyspongiidae	Callyspongia sp.	AY561863	Papua New Guinea	warm	1.0 C	27 0.29	9 0.36	5 0.208	0.665	0.376	5 0.12]	1 0.316	0.188	0.564
Haplosclerida	Chalinidae	Haliclona sp.	AY561862	Papua New Guinea	warm	0.1	27 0.30.	2 0.36	3 0.208	0.665	0.379	9 0.119	9 0.316	0.186	0.565
Haplosclerida	Haplosclerina	Haplosclerida 2	AY561856	Papua New Guinea	warm	0.1	32 0.310	6 0.36	7 0.185	0.684	0.354	4 0.137	7 0.326	0.182	0.537
Haplosclerida	Haplosclerina	Haplosclerina 1	AY561855	Papua New Guinea	warm	0.1	35 0.31.	3 0.36.	5 0.187	0.679	0.372	2 0.123	3 0.325	0.182	0.554
Haplosclerida	Haplosclerina	Haplosclerina 2	AY561854	Papua New Guinea	warm	0.1	29 0.31:	9 0.36	5 0.187	0.684	0.382	2 0.125	3 0.312	0.182	0.565
Haplosclerida	Haplosclerina	Haplosclerina 3	AY561858	Papua New Guinea	warm	0.]	29 0.30	0 0.36	5 0.205	0.666	0.337	7 0.15	4 0.325	0.179	0.516
Haplosclerida	Haplosclerina	Haplosclerina 4	AY561860	Papua New Guinea	warm	0.1	27 0.30	2 0.36	3 0.205	0.670	0.354	4 0.13	7 0.326	0.182	0.537
Haplosclerida	Haplosclerina	Haplosclerina 5	AY561861	Papua New Guinea	warm	0.	23 0.32	5 0.37	4 0.178	0.699	0.358	3 0.140	0.319	0.182	0.540
Haplosclerida	Petrosiidae	Petrosia sp.	AY561859	Panama Caribbean	warm	0.1	37 0.30	3 0.35	7 0.205	0.660	0.372	2 0.12(5 0.312	0.189	0.561

Haplosclerida	Petrosiidae	Xestospongia sp.	AY561853	Papua New Guinea	warm	0.	29 0.32	1 0.375	5 0.175	0.696	0.351	0.144	0.326	0.179	0.529
Haplosclerida	Phloeodictyidae	Oceanapia sp.	AY561857	Papua New Guinea	warm	0.	27 0.31	3 0.374	ł 0.186	0.687	0.369	0.137	0.313	0.179	0.549
Haplosclerida	Spongillidae	Spongilla lacustris	AY561873	USA, California, Lake Tahoe	cold C	0.	53 0.29	2 0.355	3 0.202	0.645	0.364	0.161	0.287	0.189	0.552
Haplosclerida	Undetermined	Haplosclerida 1	AY561852	Papua New Guinea	warm	0.	25 0.31	9 0.375	5 0.181	0.694	0.347	0.144	0.333	0.175	0.523
Homosclerophorida	Plakinidae	Plakinastrella sp. 1	AY561869	Panama Caribbean	warm	0.	55 0.30	2 0.339	9 0.204	0.640	0.374	0.150	0.294	0.182	0.556
Homosclerophorida	Plakinidae	Plakinastrella sp. 2	AY561870	Panama Caribbean	warm	0.	[54 0.30]	2 0.342	2 0.202	0.643	0.374	0.150	0.294	0.182	0.556
Lithistids	Scleritodermidae	Aciculites sp.	AY561945	Panama Caribbean	warm	0.	38 0.29	9 0.36	0.202	0.659	0.353	0.175	0.290	0.182	0.535
Poecilosclerida	cfRaspailiidae	Raspailiidae 1	AY561885	Papua New Guinea	warm	0.	64 0.27	1 0.33	0.232	0.604	0.371	0.157	0.279	0.192	0.563
Poecilosclerida	Coelosphaeridae	Lissodendoryx topsenti	AY561876	USA, California, Carmel	cold F		45 0.28	7 0.352	2 0.216	0.640	0.374	0.150	0.290	0.185	0.559
Poecilosclerida	Crambeidae	Crambe crambe	AY561883	Croatia	cold I	0	172 0.26	9 0.345	3 0.216	0.612	0.369	0.152	0.280	0.199	0.567
Poecilosclerida	Crambeidae	Monanchora arbuscula	AY561882	Panama Caribbean	warm I		67 0.27	7 0.347	7 0.210	0.624	0.369	0.163	0.280	0.188	0.557
Poecilosclerida	Iotrochotidae	Iotrochota birotulata	AY561884	Panama Caribbean	warm	0.	68 0.28	1 0.34(0.211	0.621	0.365	0.156	0.280	0.199	0.564
Poecilosclerida	Isodictyidae	Coelocarteria singaporensis	AY561874	Papua New Guinea	warm F		[45 0.30]	0.349	9 0.206	0.649	0.372	0.161	0.284	0.182	0.554
Poecilosclerida	Isodictyidae	Coelocarteria sp.	AY561875	Papua New Guinea	warm N	1 0.	43 0.29	7 0.35	4 0.206	0.652	0.371	0.161	0.287	0.182	0.552
Poecilosclerida	Mycalidae	Mycale fibrexilis	AY026376	USA, Woods Hole	cold N	1 0.	157 0.27	9 0.34	0.223	0.620	0.371	0.157	0.279	0.192	0.563
Poecilosclerida	Podospongiidae	Diacarnus spinipoculum	AY561881	Papua New Guinea	warm	0.	55 0.27	9 0.342	2 0.224	0.621	0.371	0.154	0.287	0.189	0.559
Poecilosclerida	Tedaniidae	Tedania ignis	AY561878	Panama Caribbean	warm	0.	63 0.26	9 0.352	2 0.216	0.621	0.365	0.159	0.280	0.195	0.560
Spirophorida	Tetillidae	Cinachyrella sp.	AY561943	Papua New Guinea	warm N	0.	39 0.30	3 0.359	9 0.199	0.663	0.357	0.168	0.297	0.178	0.535
Spirophorida	Tetillidae	$Tetilla \ arb$	AY561944	USA, California, Carmel	cold	0.	46 0.29	5 0.355	3 0.206	0.647	0.360	0.168	0.279	0.192	0.552
Verongida	Aplysinellidae	Aplysinella sp.	AY561865	Papua New Guinea	warm	0.	157 0.29	7 0.345	3 0.203	0.641	0.394	0.144	0.257	0.204	0.599
Verongida	Aplysinidae	Aplysina fistularis	AY561864	Panama Caribbean	warm	0.	157 0.29	9 0.342	2 0.202	0.641	0.391	0.151	0.257	0.201	0.592
Verongida	Pseudoceratinidae	Pseudoceratina sp.	AY561956	Papua New Guinea	warm	0.	157 0.29	4 0.33	4 0.215	0.628	0.404	0.126	0.249	0.221	0.625

Appendix 1. (Continued).