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Abstract

Let BH be a fractional Brownian motion in R
d of Hurst index H ∈ (0, 1), f : [0, 1] −→

R
d a Borel function and A ⊂ [0, 1] a Borel set. We provide sufficient conditions for the

image (BH + f )(A) to have a positive Lebesgue measure or to have a non-empty interior.
This is done through the study of the properties of the density of the occupation measure of
(BH + f ). Precisely, we prove that if the parabolic Hausdorff dimension of the graph of f is
greater than Hd, then the density is a square integrable function. If, on the other hand, the
Hausdorff dimension of A is greater than Hd, then it even admits a continuous version. This
allows us to establish the result already cited.

2020 Mathematics Subject Classification: Primary 60J65

1. Introduction

Many sets from the trajectories of the fractional Brownian motion are somehow random
fractals. These sets have an interesting geometric structure at all scales. Among the most
studied in the literature, it is worth mentioning images and graphs of a fractional Brownian
motion. For standard references we refer to Adler [1], Kahane [10]. We start by recalling the
exact Hausdorff dimension of the image BH(A), where BH is a fractional Brownian motion
in R

d of Hurst index H ∈ (0, 1) and A ⊂R is a Borel set. It is clear that BH(A) is a random
set in R

d. There has been considerable interest in the study of its geometric and arithmetic
properties. It is has been proved that almost surely

dim BH(A) = min

{
dim (A)

H
, d

}
.

We write dim (·) for the Hausdorff dimension, and refer to [6, 10] for its definition and basic
properties. Several works have focused strongly on determining whether BH(A) is a.s. a set
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of positive Lebesgue measure or a Salem set by comparing dim (A) and Hd, see [10, 20].
Two distinct cases are clearly apparent : dim (A)>Hd or dim (A)<Hd.

In the first case, a proof based on Fourier transform due to Kahane (see [10]) provided
a preliminary result, namely BH(A) a.s. has positive d-dimensional Lebesgue measure. Pitt
[18] and Kahane [10] strengthened this result by proving that BH(A) a.s. has non-empty
interior. However, it should be noted that, for the one dimensional Brownian motion the fact
that BH(A) has non-empty interior when dim (A)> 1/2 is due to Kaufman in [11]. In the case
dim (A)<Hd, Kahane [10] established that BH(A) is a.s. a Salem set. That is dim

(
BH(A)

)=
dimF

(
BH(A)

)
, where dimF (·) is Fourier dimension. The reader might refer to the book of

Mattila [15] for the precise definition of Fourier dimension.
Recently Peres and Sousi [17] studied fractal properties of images and graphs of BH + f

where f : [0, 1] �→R
d is a Borel measurable function. They expressed, for a Borel set

A ⊂ [0, 1], the dimension of the image set
(
BH + f

)
(A) in terms of the so-called parabolic

Hausdorff dimension of the graph of f restricted to A denoted by dim�,H (GrA(f )), see
Definition 2·1. Precisely, the authors stated that almost surely

dim
(
(BH + f )(A)

)= min

(
dim�,H (GrA(f ))

H
, d

)
.

It is important to note that the parabolic Hausdorff dimension was first considered by
Taylor and Watson [21] for the study of polar sets of the heat equation. It has also been
shown to be useful for analysing the geometry of the images of Brownian motion, see
Khoshnevisan and Xiao [13]. Once again when BH is the multifractional Brownian motion
(mBm), the parabolic Hausdorff dimension again happens to be the relevant tool to describe
the geometry of its graph and the images of sets, cf [3]. For these reasons, it is therefore quite
natural to ask the following question: what are the properties of the set

(
BH + f

)
(A) that can

be explored deeply from the information provided by the parabolic dimension of the graph
of f ? This issue will be the main aim of this paper, which we consider as a continuation
of [17].

In Section 2, first we give a comparison result for parabolic Hausdorff dimensions for
different parameters. We also seek to determine the exact value of dim�, H (GrA(f )). It is
already becoming apparent that calculation of parabolic Hausdorff dimensions can be a little
involved, even for simple sets. For this, as a first step we establish lower and upper bounds of
dim�, H (GrA(f )), that take into account the Hölder continuity and dim (A). We note that the
lower bound of dim�, H (GrA(f )) can be seen as a kind of the Mastrand projection theorem.
Secondly, in order to give sharp bounds, we look for functions with known graphs, such as
the paths of Hölder’s continuous stochastic process. Precisely, we have considered the paths
of the fractional Brownian motion with a Hurst parameter less than H. For this class we are
able to calculate the exact value of the desired parabolic Hausdorff dimension.

In Section 3, our investigation focuses on the fractional Brownian motion with drift(
BH + f

)
and turns to the question of whether the image

(
BH + f

)
(A) admits a positive

Lebesgue measure or has a non-empty interior. The question we are examining arises from
the subject of the polar functions of the planar Brownian motion initiated by Graversen [9]
and explored in a more general context, including both the spatial dimension and the Hölder
property, by Le Gall [14] and Antunović et al [2]. Here the idea is to construct, under the
condition dim�, H (GrA(f ))>Hd, a probability ν carried by A such that its image measure
μ under the mapping A � t → (

BH + f
)

(t), commonly known as occupation measure, which
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is supported by
(
BH + f

)
(A) has a density with respect to the Lebesgue measure. This latter

density is known as occupation density and interpreted as local time over the set A. The idea
of introducing local times as densities of occupation measure has been fruitful in a variety
of contexts, see for example Geman and Horowitz [7] and Geman, Horowitz and Rosen
[8]. Our first result indicates that image

(
BH + f

)
(A) admits a positive Lebesgue measure

since the occupation density is a square integrable function. For the second part of our ques-
tion, we will follow the approach used in Kahane [10] and Pitt [18]. The keystone of this
approach is to reduce the problem of covering an open set to the existence of a continuous
occupation density function. To do this, we will draw upon on the condition used in the case
without drift, which is a little stronger than that already assumed, namely dim (A)>Hd,
see Propositon 2·6. It should be noted that the results of this section are indeed extensions
of those established by Pitt and Kahane for fractional Brownian motion to the case of frac-
tional Brownian motion with variable drift through the comparison between dim�,H (GrA(f ))
and Hd.

Our motivation for Section 4 is as follows: in his note [14] on Graversen’s conjecture
on the polar functions for the planar Brownian motion, Le Gall asked if for each γ < 1/d
there exist γ -Hölder continuous functions which are non-polar for d-dimensional Brownian

motion B
1
2 . An answer is given by Antunović et al [2] in terms of modifications of the

standard Hilbert curve perturbed by Brownian motion. Precisely, they showed that for any
γ < 1/d, there exists a γ -Hölder continuous function f : [0, 1] −→R

d for which the set(
B

1
2 − f

)
([0, 1]) covers an open set almost surely. On the other hand, as mentioned before

when dim (A)<Hd, BH(A) is a.s. a Salem set. It is natural to ask whether for each α ∈
(0, dim (A)/d) there exist α-Hölder continuous function f : [0, 1] →R

d for which the range
(BH + f )(A) has a non-empty interior a.s.?

The key idea is to choose f to be one of the trajectories of an independent fractional
Brownian motion Bα . This induces us to consider BH and Bα together on the same space
while preserving their distributions. The best way to do this is to work on the product space
and to consider processes on this later.

Here are some notations that we will use throughout: ‖ · ‖∞ denotes the maximum norm
on R

d. 〈·, ·〉 and ‖ · ‖ are the ordinary scalar product and the Euclidean norm in R
d respec-

tively. If (E, ρ) is a metric space, then the Borel σ -algebra over E will be denoted by B(E).
We denote by dim A the Hausdorff dimension of a set A ⊂R. For a function f : R+ →R

d,
GrA(f ) = {(t, f (t)) : t ∈ A} is the graph of f over the set A. We will use C, C1, . . . , C4 to
denote unspecified positive finite constants which may not necessarily be the same in each
occurrence.

2. Preliminaries on parabolic Hausdorff dimension

Let BH
0 = {BH

0 (t), t ≥ 0
}

be a real-valued fractional Brownian motion of Hurst index H
defined on a complete probability space (�, F , P), i.e. a real valued Gaussian process with
stationary increments and covariance function given by

E
(
BH

0 (s)BH
0 (t)
)= 1

2

(
|t|2H + |s|2H − |t − s|2H

)
.

Let BH
1 , ..., BH

d be d independent copies of BH
0 , then the stochastic process BH ={

BH(t), t ≥ 0
}

given by

BH(t) = (BH
1 (t), ...., BH

d (t)),

https://doi.org/10.1017/S0305004122000093 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000093


696 MOHAMED ERRAOUI AND YOUSSEF HAKIKI

is called a d-dimensional fractional Brownian motion of Hurst index H ∈ (0, 1). We start by
giving the definition of the parabolic Hausdorff dimension.

Definition 2·1. Let F ⊂R+ ×R
d and H ∈ (0, 1). For all β > 0 the H-parabolic

β-dimensional Hausdorff content is defined by

�
β
H(F) = inf

⎧⎨⎩∑
j

δ
β
j : F ⊆ ∪

j

[
aj, aj + δj

]× [bj,1, bj,1 + δH
j

]
× · · · ×

[
bj,d, bj,d + δH

j

]⎫⎬⎭ ,

(2·1)
where the infimum is taken over all countable covers of F by rectangles of the form given
above. The H-parabolic Hausdorff dimension is then defined to be

dim�, H (F) = inf
{
β :�βH(F) = 0

}
.

Remark 2·2. Let ρH be the metric defined on R+ ×R
d by

ρH((s, x), (t, y)) = max{|s − t|H , ‖x − y‖∞} ∀(s, x), (t, y) ∈R+ ×R
d. (2·2)

We define the β-dimensional Hausdorff content as

Hβ
ρH

(F) = inf

⎧⎨⎩∑
j

diam(Uj)
β : F ⊆ ∪

j
Uj

⎫⎬⎭ , (2·3)

where
{
Uj
}

is a countable cover of F by any sets and diam(Uj) denotes the diameter of a set
Uj relatively to the metric ρH . For any F ⊆R+ ×R

d, the Hausdorff dimension, in the metric
ρH , of F is defined by

dimρH (F) = inf
{
β : Hβ

ρH
(F) = 0

}
.

Since the family
([

aj, aj + δj
]× [bj,1, bj,1 + δH

j

]
× . . .×

[
bj,d, bj,d + δH

j

])
j≥1

form a par-

ticular cover of F by sets of diameters δH
j , then for any β > 0 and F ⊆R+ ×R

d we have

Hβ/H
ρH

(F) ≤�βH(F). (2·4)

On the other hand, each set Uj with diam
(
Uj
)= δj can be covered by([

aj,k, aj,k + δ
1/H
j

]
× [bj,k,1, bj,k,1 + δj

]× . . .× [bj,k,d, bj,k,d + δj
])

1≤k≤2d+1
.

Therefore, we obtain

�
β
H(F) ≤

∞∑
j=1

2d+1∑
k=1

δ
β/H
j = 2d+1

∞∑
j=1

δ
β/H
j ,

which implies

�
β
H(F) ≤ 2d+1Hβ/H

ρH
(F). (2·5)
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Hence, we conclude from (2·4) and (2·5) that

dim�, H (F) = H × dimρH (F). (2·6)

The following proposition relates β-dimensional capacity to the H-parabolic Hausdorff
dimension.

PROPOSITION 2·3. Let F ⊂R+ ×R
d be a compact set. Then we have:

dim�, H (F) = sup{β : CρH ,β/H(F)> 0} = inf{β : CρH ,β/H(F) = 0}, (2·7)

where CρH ,β (.) is the β-capacity on the metric space (R+ ×R
d, ρH) defined by

CρH ,β (F) =
[

inf
μ∈P(F)

∫
R+×Rd

∫
R+×Rd

μ(du)μ(dv)

(ρH(u, v))β

]−1

. (2·8)

Here P(F) is the family of probability measure carried by F.

Proof. The proof is the same as in the Euclidean case, see for example [4, theorem 3·4·2] or
[16, theorem 4·32].

The next theorem is the analogue of Frostman’s theorem for parabolic Hausdorff dimen-
sion. The statement can be found in Taylor and Watson [21, lemma 4] and the proof follows
along the same lines as the proof of usual Frostman’s theorem.

THEOREM 2·4. (Frostman’s theorem) Let F a Borel set in R+ ×R
d. If dim�,H (F)>

κ , then there exists a Borel probability measure μ supported on F, and a constant C> 0,
such that

μ

⎛⎝[a, a + δ] ×
d∏

j=1

[
bj, bj + δH]⎞⎠≤ Cδκ , (2·9)

for any (a, b1, . . . , bd) ∈R+ ×R
d and δ > 0.

Now we give a comparison result for the Hausdorff parabolic dimensions with different
parameters. We note that it is a generalisation of [3, lemma 5·4] to the d-dimensional case.
However, there is a flaw (may be a misprint) in the lower bound of Lemma 5·4. The following
proposition corrects it and improves the lower and upper bounds.

PROPOSITION 2·5. Let F ⊂R+ ×R
d and H, H′ ∈ (0, 1) such that H <H′. Then we have:

dim�, H (F) ∨
(

H′

H
dim�, H (F) + 1 − H′

H

)
≤ dim

�,H′ (F)

≤
(

H′

H
dim�,H (F)

)
∧ (dim�,H (F) + (H′ − H)d

)
. (2·10)

An equivalent reformulation is

H

H′ dimρH (F) ∨
(

dimρH (F) + 1

H′ − 1

H

)
≤ dimρ

H
′ (F)

≤
(

dimρH (F) ∧
(

d + H

H′
(
dimρH (F) − d

)))
.
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Proof. Firstly let us remark that for the infimum in (2·1) does not change if we consider only
δj ≤ 1. Therefore an immediate consequence of the definition is

dim�, H (F) ≤ dim
�,H′ (F). (2·11)

Now let 0< ε < 1 and γ > dim
�, H′ (F) − 1/H′. Then �γH′+1

H′ (F) = 0, and hence there

exists a cover

(
[an, an + δn] ×

d∏
j=1

[bn,j, bn,j + δH′
n ]

)
n≥1

of the set F, such that

∑
n≥1

δγH′+1
n ≤ ε. (2·12)

It follows from (2 · 12) that δn < 1 for all n. Each interval [an, an + δn] can be divided

into

⌈
δ

1− H
′

H
n

⌉
intervals of length δ

H′
/H

n each. In this way we obtain a new cover([
a′

l, a′
l + δ

H′
/H

l

]
×

d∏
j=1

[
b′

l,j, b′
l,j +

(
δ

H′
/H

l

)H
])

l≥1

of the set F which satisfies

∑
l≥1

(
δ

H′
/H

l

)γH+1

≤ 2
∑
n≥1

δ
1− H

′
H

n

(
δH′

/H
n

)γH+1 ≤ 2ε. (2·13)

From (2·13) we deduce that dim�, H (F) ≤ γH + 1, which implies dim�, H (F) − 1/H ≤ γ .
Therefore letting γ go to dim

�, H′ (F) − 1/H′ we conclude

H′

H
dim�, H (F) + 1 − H′

H
≤ dim

�, H′ (F). (2·14)

Combining (2·11) and (2·14), we obtain the lower bound

dim�, H (F) ∨
(

H′

H
dim�, H (F) + 1 − H′

H

)
≤ dim

�,H′ (F).

For the second inequality let κ < dim
�, H′ (F). Then by Frostman’s Theorem 2·4 there exists

a probability measure μ supported on F such that (2·9) is satisfied. Our aim is to show that

μ

⎛⎝[a, a + δ] ×
d∏

j=1

[
bj, bj + δH]⎞⎠≤ C

(
δκ+d(H−H′) ∧ δκH/H′)

, (2·15)

for any a ∈R+, b1, ..., bd ∈R and 0< δ < 1. Note first that since δ ≤ δH/H′
we have

[a, a + δ] ×
d∏

j=1

[
bj, bj + δH]⊂ [a, a + δH/H′]×

d∏
j=1

[
bj, bj +

(
δH/H′)H′]

.

Using (2·9) we obtain

μ

⎛⎝[a, a + δ] ×
d∏

j=1

[
bj, bj + δH]⎞⎠≤ Cδκ H/H′

. (2·16)
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Now, for any j = 1, ..., d, the interval [bj, bj + δH] can be covered by at most δ(H−H′) interval

of length δH′
. Using once again (2·9) we deduce that

μ

⎛⎝[a, a + δ] ×
d∏

j=1

[
bj, bj + δH]⎞⎠≤ Cδκ+d(H−H′). (2·17)

Thus the inequality (2·15) is proved. Since, in the metric space (R+ ×R
d, ρH), the diameter

of the set [a, a + δ] ×∏d
j=1

[
bj, bj + δH

]
is δH then the Mass Distribution Principle, (see

[16, theorem 4·19]), implies that

dimρH (F) ≥ κ

H′ ∨ κ + d(H − H′)
H

.

From (2·6) it follows that

κ ≤
(

H′

H
dim�, H (F)

)
∧ (dim�, H (F) + d(H′ − H)

)
.

Therefore letting κ ↑ dim
ψ ,H′ (F) the assertion (2·10) follows.

The following proposition looks at the effect of Hölder continuous maps on the Hausdorff
dimension of sets dim (A) and dim�, H (GrA( f ))

PROPOSITION 2·6. Let f : [0, 1] →R
d be a Borel measurable function and A be a Borel

subset of [0,1]. Then we have:

dim (A) ≤ dim�,H (GrA( f )). (2·18)

If in addition the function f is Hölder continuous with exponent α ≤ H (α-Hölder continu-
ous), that is

∃ K ≥ 0 : ‖f (x) − f (y)‖∞ ≤ K|x − y|α , ∀x, y ∈ [0, 1] ,

then we have:

dim�,H (GrA( f )) ≤
(

H

α
dim (A)

)
∧ (dim (A) + (H − α)d) . (2·19)

Especially, when f is (H − ε)-Hölder continuous for all ε > 0 then

dim (A) = dim�,H (GrA( f )). (2·20)

Proof. We begin by proving (2·18). Let γ > dim�,H (GrA( f )). Since �γH(GrA( f )) = 0 then

for all ε > 0 there exists a cover

(
[al, al + δl] ×

d∏
j=1

[bl,j, bl,j + δH
l ]

)
l≥1

of GrA( f ) such that∑
l≥1

δ
γ

l ≤ ε. Consequently, in R with the absolute-value metric, ([al, al + δl])l≥1 is a covering

of A such that ∑
l≥1

|[al, al + δl]|γ ≤ ε.
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Here |[al, al + δl]| is the diameter of the set [al, al + δl]. Then we deduce that the
γ -dimensional Hausdorff content satisfies

Hγ (A) := inf

⎧⎨⎩∑
j

|Uj|γ : A ⊆ ∪
j

Uj

⎫⎬⎭≤ ε. (2·21)

Thus Hγ (A) = 0 and therefore dim (A) ≤ γ . Now by making γ ↓ dim�,H (GrA(f )) we get
the desired inequality.

Now let α ≤ H and assume that f is α-Hölder continuous. For any 0< κ <
dim�,H (GrA(f )), by resorting again to Frostman’s theorem there exist a measure μ on
GrA(f ) and a constant C> 0 such that

μ

⎛⎝[a, a + δ] ×
d∏

j=1

[
bj, bj + δH]⎞⎠≤ Cδκ , (2·22)

for any (a, b1, . . . , bd) ∈ A ×R
d and δ ∈ (0, 1]. Let ν be the measure on A satisfying

ν =μ ◦ P−1
1 where P1 is the projection mapping on A, i.e. P1(s, f (s)) = s. Our aim is to

show that

ν([a, a + δ]) =μ(P−1
1 ([a, a + δ])) ≤ C1

(
δκ+d(α−H) ∧ δκ α/H

)
, (2·23)

for some constant C1 > 0 and any δ ∈ (0, 1]. Since f is Hölder continuous function with
exponent α and constant K, then for s ∈ [a, a + δ] we have fj(s) ∈ [ fj(a) − Kδα , fj(a) + Kδα].
There are two ways to cover

P−1
1 ([a, a + δ])= {(s, f (s)) ∈ GrA(f );s ∈ [a, a + δ]} .

The first one is : for all j = 1, ..., d we decompose every interval [fj(a) − Kδα , fj(a) + Kδα]
into at most �2K�δ(α−H) interval of length δH , then P−1

1 ([a, a + δ]) is covered by at most
�2K�dδd(α−H) sets of the form

[a, a + δ] ×
d∏

j=1

[bj, bj + δH].

With regard to the second way, since δ ≤ δα/H then P−1
1 ([a, a + δ]) may be covered by at

most �2K�d sets of the form

[a, a + δα/H] ×
d∏

j=1

[bj, bj + δα].

Now using (2·22) we conclude that there exists a constant C′ > 0 which depends only on K
and d, such that

ν([a, a + δ]) = σ (P−1
1 ([a, a + δ])) ≤ C′δκ+d(α−H),

for the first cover. For the second one we get

ν([a, a + δ]) ≤ C′′δκ α/H ,
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where C′′ > 0 is a constant depending only on K and d. Thus inequality (2·23) is proved.
Thanks to the mass distribution principle, see [16, theorem 4·19], we obtain

κ ≤
(

H

α
dim (A)

)
∧ (dim (A) + (H − α)d) .

Therefore letting κ ↑ dim�,H (GrA(f )) the assertion (2·19) follows.
Finally it is easy to see from (2·18) and (2·19) that when f is (H − ε)-Hölder continuous

for all ε > 0 we have dim (A) = dim�,H (GrA(f )).

Remark 2·7. It is worth noting that the inequality (2·19) is also obtained by assuming only
that the function f is (α − ε)-Hölder continuous for all ε > 0.

A natural question that arises from Proposition 2·6 whether (2·19) is a sharp estimate?
The main idea is to use the paths of Hölder continuous stochastic process. Precisely, we
have the following result

THEOREM 2·8. Let α ≤ H, {Bα(t) : t ∈ [0, 1]} a d-dimensional fractional Brownian
motion of Hurst index α and A ⊂ [0, 1] a Borel set. Then we have:

dim�, H (GrA(Bα)) =
((

H

α
dim (A)

)
∧ ( dim (A) + d(H − α))

)
a.s. (2·24)

Moreover, if α <H we have

dim�, H (GrA(Bα))> dim (A). (2·25)

For the proof we need the following lemma.

LEMMA 2·9. There exists a constants C such that for all t ∈ (0, 1] we have:

E

[
1

( max{tH , ‖Bα(t)‖∞})γ /H
]

≤
⎧⎨⎩

C t−γα/H if γ <Hd,

C td(H−α)−γ if γ >Hd.
(2·26)

Proof. We first note that the denominator on the left-hand side of (2·26) has the same dis-
tribution as ( max{tH , tα‖N‖∞})γ /H , where N is a d-dimensional standard normal random
variable.

Now assume that γ <Hd. Then we obtain

E

[
1(

max
(
tH , ‖Bα(t)‖∞

))
γ /H

]
=E

[
1(

max
(
tH , tα‖N‖∞

))γ /H
]

≤ t−αγ/HE
[
‖N‖−γ /H∞

]
.

Since γ <Hd, we have that E
[
‖N‖−γ /H∞

]
is finite and therefore

E

[
1(

max
(
tH , ‖Bα(t)‖∞

))
γ /H

]
≤ C t−αγ/H .
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Next, let γ >Hd. Since ‖y‖∞ ≤ ‖y‖ for any y ∈R
d it yields

E

[
1(

max
(
tH , tα‖N‖∞

))γ /H
]

= 1

tγ
P
[‖N‖∞ ≤ tH−α]+ 1

tγα/H
E

[
1

‖N‖γ /H∞
11{‖N‖∞>tH−α}

]

≤ C

(
1

tγ

∫
‖y‖∞≤tH−α

e−‖y‖2/2dy

+ 1

tγα/H

∫
‖y‖∞>tH−α

e−‖y‖2/2

‖y‖γ /H∞
dy

)

≤ C1

(
td(H−α)−γ + t−γα/H

∫ 1

tH−α
rd−1−γ /Hdr + t−γα/H

)
≤ C2

(
td(H−α)−γ + t−γα/H

)
≤ C3 td(H−α)−γ ,

where the constants Cj, j = 1, 2, 3 depend only on d, H, α and γ .

Proof of Theorem 2·8. The upper bound of dim�, H (GrA(Bα)) follows directly from
Lemma 2·6.

Now let us prove the lower bound. First, we consider the case dim (A) ≤ αd. Let
γ <H/α dim (A) ≤ dim (A) + d(H − α). By [16, theorem 4·32], there exists a probability
measure ν on A such that

Eγα/H(ν) :=
∫

A

∫
A

1

|t − s|γα/H ν(ds)ν(dt)<∞. (2·27)

Let μ̃ be the random measure defined by

μ̃(E) = ν{s : (s, Bα(s)) ∈ E},
where E ⊂ GrA(Bα). We will show that

EρH ,γ /H(μ̃) :=
∫
R+×Rd

∫
R+×Rd

μ̃(du)μ̃(dv)

(ρH(u, v))γ /H
<∞ a.s.

Taking expectation and using a change of variables and Fubini’s theorem we get

E
[EρH ,γ /H(μ̃)

]= ∫
A

∫
A
E

[
1(

max
(|s − t|H , ‖Bα(t) − Bα(s)‖∞

))
γ /H

]
ν(ds)ν(dt).

By recalling the fact that Bα has stationary increments we see that the denominator has the
same distribution as

(
max

(|s − t|H , ‖Bα(|s − t|)‖∞
))
γ /H . It follows that

E
[EρH ,γ /H(μ̃)

]= ∫
A

∫
A
E

[
1(

max
(|s − t|H , ‖Bα(|s − t|)‖∞

))
γ /H

]
ν(ds)ν(dt).

Since γ <Hd we deduce from Lemma 2·9 that

E
[EρH ,γ /H(μ̃)

]≤ C
∫

A

∫
A

1

|t − s|γα/H ν(ds)ν(dt),
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which is finite from (2·27). Hence CρH ,γ /H(GrA(Bα))> 0 almost surely and Proposition 2·3
allows that dim�, H (GrA(Bα)) ≥ γ a.s.

Now assume that dim (A)>αd. In this case, we choose Hd< γ < dim (A) + d(H − α)<
H/α dim (A). We use the same tools, as in the previous case, to prove that
CρH ,γ /H(GrA(Bα))> 0 a.s via the probability measure ν satisfying

Eγ−d(H−α)(ν)<∞.

Letting γ ↑ (H/α dim (A)) ∧ ( dim (A) + d(H − α)) completes the proof.
As a consequence of (2·24) in Theorem 2·8 and (2·6) we have the following result.

COROLLARY 2·10. Let α ≤ H, {Bα(t) : t ∈ [0, 1]} a fractional Brownian motion of Hurst
index α and A ⊂ [0, 1] a Borel set. Then we have:

dimρH

(
GrA(Bα)

)
> d a.s ⇐⇒ dim�, H

(
GrA(Bα)

)
>Hd a.s ⇐⇒ dim (A)>αd.

Proof. The first equivalence comes from (2·6), whereas the second one arises from

(
H

α
dim (A)

)
∧ ( dim (A) + d(H − α))>Hd ⇐⇒

⎧⎪⎨⎪⎩
H

α
dim (A)>Hd,

dim (A) + d(H − α)>Hd.

3. Positive Lebesgue measure and non-empty interior of (BH + f )(A)

Let Y = (Y(t))t∈[0,1] be an R
d-valued stochastic process and ν is a positive measure on

[0, 1]. The occupation measure of the sample path [0, 1] � t → Y(t)(w) ∈R
d is defined by

νY (E) := ν {t ∈ [0, 1] : Y(t) ∈ E} ,

where E ⊂R
d is a Borel set. We say that Y has an occupation density relative to the Lebesgue

measure λd if νY is absolutely continuous with respect to λd almost surely.
Simple modifications of the differentiation’s method, see [7, theorem 21·15], allow to give

necessary and sufficient conditions under which νY has an occupation density relative to the
Lebesgue measure λd a.s. Hence we omit the proof. Here is a precise statement:

PROPOSITION 3·1. The following assertions are equivalent:

(1) νY <<λd with
dνY

dλd
(.) ∈ L2(λd ⊗ P);

(2) lim inf
r↓0

r−d
∫

A

∫
A
P {‖Y(s) − Y(t)‖< r} dν(s) dν(t)<∞.

Let A ⊂ [0, 1] and assume that η := dim�,H (GrA(f ))>Hd. It follows from Theorem 2·4
that for κ ∈ (Hd, η) there exists a Borel probability measure μ supported on GrA(f ) and
C> 0 such that

μ

⎛⎝[a, a + δ] ×
d∏

j=1

[
bj, bj + δH]⎞⎠≤ Cδκ , (3·1)
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for all a ∈ A, b1, ..., bn ∈R
d and all δ ∈ (0, 1]. Let ν be the measure defined on A by ν =μ ◦

P−1
1 . We are now ready to state

THEOREM 3·2 Let {BH(t) : t ∈ [0, 1]} be a d-dimensional fractional Brownian motion of
Hurst index H ∈ (0, 1). Let f : [0, 1] →R

d be a Borel measurable function and let A ⊂ [0, 1]
be a Borel set. If η := dim�,H (GrA(f ))>Hd then λd((BH + f )(A))> 0 almost surely.

Proof. To achieve this purpose, it is enough to verify the second assertion of Proposition 3·1
for the process BH + f . Indeed for s, t ∈ A and r> 0, we have

P
{‖(BH + f )(s) − (BH + f )(t)‖< r

}= 1

(2π)d/2|t − s|Hd

∫
‖y‖<r

exp

(
−‖y − f (t) + f (s)‖2

2|t − s|2H

)
dy.

Then using Fubini’s theorem we obtain, for any fixed t ∈ A and r> 0, that∫
A
P
{‖(BH + f )(s) − (BH + f )(t)‖< r

}
dν(s) =

1

(2π)d/2

∫
‖y‖<r

∫
A

1

|t − s|Hd
exp

(
−‖y − f (t) + f (s)‖2

2|t − s|2H

)
dν(s) dy

≤ C rd sup
‖y‖<r

∫
A

1

|t − s|Hd
exp

(
−‖y − f (t) + f (s)‖2

2|t − s|2H

)
dν(s)︸ ︷︷ ︸

=I(y,(t,f (t)))

,

(3·2)

where C is a positive constant depending only on r and d.
For any fixed y in {‖y‖< r} and (t, f (t)) ∈ GrA(f ), we have the following decomposition

I (y, (t, f (t)))= I1 (y, (t, f (t)))+ I2 (y, (t, f (t))) ,

where

I1 (y, (t, f (t)))=
∫
{s∈A:‖y−f (t)+f (s)‖≤C1 |s−t|H√| log |s−t||}

× 1

|s − t|Hd
exp

(
−‖y − f (t) + f (s)‖2

2|s − t|2H

)
dν(s)

=
∫
{(s,f (s))∈GrA(f ):‖y−f (t)+f (s)‖≤C1 |s−t|H√| log |s−t||}

× 1

|s − t|Hd
exp

(
−‖y − f (t) + f (s)‖2

2|s − t|2H

)
dμ(s, f (s)).

and

I2 (y, (t, f (t)))=
∫
{s∈A:‖y−f (t)+f (s)‖>C1 |s−t|H√| log |s−t||}

× 1

|s − t|Hd
exp

(
−‖y − f (t) + f (s)‖2

2|s − t|2H

)
dν(s)
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=
∫
{(s,f (s))∈GrA(f ):‖y−f (t)+f (s)‖>C1 |s−t|H√| log |s−t||}

× 1

|s − t|Hd
exp

(
−‖y − f (t) + f (s)‖2

2|s − t|2H

)
dμ(s, f (s)),

where C1 is a positive constant which will be chosen later. We first show that

sup
(y,(t,f (t)))∈{‖y‖<r}×GrA(f )

I1 (y, (t, f (t))) <+∞.

By the inequality (3·1) we can verify that the measure ν is no atomic. Then we have

I1(y, (t, f (t)))≤
∞∑

n=1

2nHd μ
{
‖y − f (t) + f (s)‖

≤ C1 |s − t|H√| log |s − t||, 2−n < |s − t| ≤ 21−n
}

≤
∞∑

n=1

2nHd μ
{
‖y − f (t) + f (s)‖ ≤ C2 2−nH√

n, 2−n < |s − t| ≤ 21−n
}

,

where C2 = C1 2H√
log (2). Now, for n ≥ 1, we set

Sn (y, (t, f (t)))=
{
(s, f (s)) ∈ GrA(f ) : ‖y − f (t) + f (s)‖ ≤ C2 2−nH√

n, 2−n < |s − t| ≤ 21−n
}

.

For (s, f (s)) ∈ Sn (y, (t, f (t))) we have s ∈ [t − 21−n, t + 21−n] and

fj(s) ∈ Jj =
[
fj(t) − yj − C22−nH√

n, fj(t) − yj + C22−nH√
n
]

for all j ∈ {1, ..., d}. Since
[
t − 21−n, t + 21−n

]
is covered by 4 intervals of length 2−n and

every Jj is covered by no more than a constant multiple (which depends only on H) of√
n intervals of length 2−nH , then we can cover Sn (y, (t, f (t))) by no more than a con-

stant (which depends only on d and H) multiple of nd/2 sets of the form
[
a, a + 2−n

]×∏d
j=1

[
bj, bj + 2−nH

]
. Applying inequality (3·1) allows to have

sup
(y,(t,f (t)))∈{‖y‖<r}×GrA(f )

μ(Sn (y, (t, f (t)))≤ C3 nd/2 2−κn.

Therefore we get

sup
(y,(t,f (t)))∈{‖y‖<r}×GrA(f )

I1 (y, (t, f (t)))≤ C4

∞∑
n=1

2−(κ−Hd)n nd/2 <∞, (3·3)

where C4 depends on d and H only. For the second term I2 (y, (t, f (t))) we have

I2 (y, (t, f (t)))≤
∞∑

n=1

2nHd exp

(
−C2

1

2
(n − 1) ln 2

)
×μ

{
‖f (s) − f (t)‖>C1 |s − t|H√| log |s − t||, 2−n < |s − t| ≤ 21−n

}
.
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Thus, for C1 >
√

2Hd we obtain

sup
(y,(t,f (t)))∈{‖y‖<r}×GrA(f )

I1 (y, (t, f (t)))≤ eC2
1 ln 2/2

∞∑
n=1

2−n
(
C2

1/2−Hd
)
<+∞. (3·4)

Now putting all this together yields

sup
(y,(t,f (t)))∈{‖y‖<r}×GrA(f )

∫
A

1

|s − t|Hd
exp

(
−‖y − f (t) + f (s)‖2

2|s − t|2H

)
dν(s)<∞.

Thus we get from (3·2) that

lim inf
r↓0

r−d
∫

A

∫
A
P
{‖(BH + f )(s) − (BH + f )(t)‖< r

}
dν(s) dν(t)<∞.

We can therefore state from Proposition 3·1 that the occupation measure νBH+f is absolutely
continuous with respect to the Lebesgue measure λd a.s. Hence λd

(
BH + f

)
(A)> 0 a.s.

Remark 3·3. In connection with the existence of the occupation density let us mention that
another, often easier to apply, criterion due to Berman tells us that, νY has a density dνY

dλd
(.) ∈

L2(λd ⊗ P) if and only if∫
Rd

∫
A

∫
A
E

(
ei〈θ ,(Y(s)−Y(t)〉) dν(s) dν(t) dθ <∞. (3·5)

However, we were unable to apply it to prove the absolute continuity of the occupation
measure νBH+f with respect to the Lebesgue measure λd a.s. The difficulty stems from the
lack of informations on the measure ν. Indeed, a simple calculation using characteristic
function of Gaussian random vector yields

E

(
ei〈θ ,(BH+f )(s)−(BH+f )(t)〉)= ei〈θ ,f (s)−f (t)〉 exp

(
−|s − t|2H‖θ‖2

2

)
.

Now integrating the modulus we have∫
Rd

∣∣∣E (ei〈θ ,(BH+f )(s)−(BH+f )(t)〉)∣∣∣ dθ = (2π)d/2

|s − t|Hd
,

which may be too loose to ensure the finiteness of the energy∫
A

∫
A

(2π)d/2

|s − t|Hd
dν(s) dν(t).

This is because the measure ν =μ ◦ P−1
1 does not satisfy necessarily the Frostman’s condi-

tion even though it is true for μ. Hence one cannot use Fubini’s theorem which make the
cited criterion unworkable.

According to the conclusion of Theorem 3·2, it may be expected that the interior of (BH +
f )(A) is not empty. Recall that Kahane ([10, theorems 1 and 2, p. 267]) has shown that, for
any compact subset A ⊂ [0, 1], BH(A) is a Salem set almost surely if dim (A)<Hd and BH(A)
has a non-empty interior almost surely if dim (A)>Hd. That is what prompted us to consider
the case Hd< dim (A). Let us note that in the light of (2·18), the condition Hd< dim (A)
leads to dim�,H (GrA(f ))>Hd and therefore λd((BH + f )(A))> 0 almost surely. Our aim is
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to prove that, under this condition, the set (BH + f )(A) not only has a positive measure but
also a non-void interior. A key ingredient is the continuity of the occupation density over A.
Obtaining this continuity we will make use of the following.

It follows from [18, lemma 7·1] that, for any H ∈ (0, 1), the real-valued fractional
Brownian motion BH

0 has the following important property of strong local nondeterminism:
There exists a constant 0<C<∞ such that for all integers n ≥ 1 and all t1, . . . , tn, t ∈ [0, 1],
we have

Var
(
BH

0 (t)|BH
0 (t1), . . . , BH

0 (tn)
)≥ C min

0≤j≤n
|t − tj|2H ,

where Var
(
BH

0 (t)|BH
0 (t1), . . . , BH

0 (tn)
)

denotes the conditional variance of BH
0 (t) given

BH
0 (t1), . . . , BH

0 (tn) and t0 = 0, see Appendix for the definition. The following elementary
formula allows to estimate the determinant of the covariance matrix of the Gaussian random
vector (Z1, . . . , Zn)

detCov(Z1, . . . , Zn) = Var(Z1)
n∏

k=2

Var (Zk|Z1, . . . , Zk−1) .

For the vector
(
BH

0 (t1), . . . , BH
0 (tn)

)
one obtains

detCov
(
BH

0 (tj), 1 ≤ j ≤ p
)≥ p∏

j=1

(
min

{
|tj − ti|2H , 0 ≤ i ≤ j − 1

})
. (3·6)

We need also the following lemma which is due to Cuzick and DuPreez [5]

LEMMA 3·4. Let Z1, ..., Zn be linearly-independent centered Gaussian variables.
If g : R→R is a Borel measurable function such that∫ ∞

−∞
g(v)e−εv2

dv<∞

for all ε > 0. Then

∫
Rn

g(v1) exp

⎛⎝−1

2
Var

⎛⎝ n∑
j=1

vjZj

⎞⎠⎞⎠ dv1...dvn

= (2π)(n−1)/2

(detCov(Z1, ..., Zn))1/2

∫ ∞

−∞
g

(
v

σ1

)
e−v2

dv,

where σ 2
1 = Var(Z1|Z2...Zn) is the conditional variance of Z1 given Z2, ..., Zn.

The next result, using the above-mentioned preliminaries, strengthens the result of
Theorem 3·2 since it shows that (BH + f )(A) has a non-empty interior.

THEOREM 3·5. Let {BH(t) : t ∈ [0, 1]} be a d-dimensional fractional Brownian motion of
Hurst index H ∈ (0, 1). Let f : [0, 1] →R

d be a continuous function and let A ⊂ [0, 1] be a
closed set. Assume that dim (A)>Hd. Then we have (BH + f )(A) has a non-empty interior
almost surely.
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Proof. The usual Frostman’s theorem ensure that for all Hd< κ < dim (A) there is a constant
C> 0 and a Borel probability measure ν on A such that

τ ([a, a + δ]) ≤ C δκ , (3·7)

for all a ∈ A and 0< δ < 1. it is easily verified that∫
Rd

∫
A

∫
A
E

(
ei〈θ ,(BH+f )(s)−(BH+f )(t)〉) dτ (s) dτ (t) dθ ≤ (2π)d/2

∫
A

∫
A

dτ (s)dτ (t)

|t − s|Hd
,

which is finite by (3·7) since κ >Hd. Hence the condition (3·5) for the process BH + f and
the probability measure τ is checked. Consequently, the occupation measure τBH+f has an
occupation density relative to the Lebesgue measure λd a.s denoted by ϑ . Hence, in order to
prove our theorem, it is sufficient to prove that ϑ has a continuous version.

First of all, let us note that the arguments used to show [7, (25.7)] can be modified to see
that, for all x, y ∈R

d and for all even integers p ≥ 2, we have

E (ϑ(x) − ϑ(y))p = (2π)−pd
∫

Ap

∫
Rpd

p∏
j=1

(
exp

(
i〈x, ξj〉

)− exp
(
i〈y, ξj〉

))

×E exp

⎛⎝i
p∑

j=1

〈ξj,
(
BH + f

)
(tj)〉
⎞⎠ dξ1 . . . dξp dτ (t1) . . . dτ (tp).

Let p ≥ 2 be a fixed even integer and 0< γ < 1 whose value will be determined later. Using
the facts that

|eiu − 1| ≤ 21−γ |u|γ , ∀ u ∈R,

and |a + b|γ ≤ |a|γ + |b|γ , we have
p∏

j=1

| exp
(
i〈x, ξj〉

)− exp
(
i〈y, ξj〉

) | ≤ 2(1−γ )p ‖x − y‖γ p
∑ p∏

j=1

|ξj,kj |γ ,

where the summation
∑

is taken over all (k1, ..., kp) ∈ {1, ..., d}p. It follows that

E (ϑ(x) − ϑ(y))p ≤ (2π)−pd 2(1−γ )p ‖x − y‖γ p
∑ ∫

Ap

∫
Rpd

p∏
j=1

|ξj,kj |γ

× exp

⎛⎝−1

2
Var

⎛⎝ p∑
j=1

〈
ξj, BH(tj)

〉⎞⎠⎞⎠ dξ1 . . . dξp dτ (t1) . . . dτ (tp).

Now the generalised Hölder’s inequality leads to

E (ϑ(x) − ϑ(y))p ≤ (2π)−pd 2(1−γ )p ‖x − y‖γ p
∑ ∫

Ap

p∏
j=1

×
⎡⎣∫

Rpd
|ξj,kj |pγ exp

⎛⎝−1

2
Var

⎛⎝ p∑
j=1

〈
ξj, BH(tj)

〉⎞⎠⎞⎠ dξ1 . . . dξp

⎤⎦1/p

× dτ (t1) . . . dτ (tp).
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Fix a sequence (k1, ..., kp) ∈ {1, ..., d}p, 0< t1 < . . . < tp, and consider

J =
p∏

j=1

⎡⎣∫
Rpd

|ξj,kj |pγ exp

⎛⎝−1

2
Var

⎛⎝ p∑
j=1

〈
ξj, BH(tj)

〉⎞⎠⎞⎠ dξ1 . . . dξp

⎤⎦1/p

.

Note that
{
BH

l , 1 ≤ l ≤ d
}

are independent copies of BH
0 . The strong local nondetermin-

ism of the fractional Brownian motion BH
0 and (3·6), ensure that the random variables{

BH
l (tj), 1 ≤ l ≤ d;1 ≤ j ≤ p

}
are linearly independent. Hence by applying Lemma 3·4, we

derive that J is bounded by

J ≤ (2π)(pd−1)/2[
det Cov

(
BH

l (tj), 0 ≤ l ≤ d, 1 ≤ j ≤ p
)]1/2 ∫

R

|r|pγ e−r2/2dr
p∏

j=1

1

σ
γ
j

≤ (dK)p(p!)γ[
det Cov

(
BH

0 (tj), 1 ≤ j ≤ p
)]d/2 p∏

j=1

1

σ
γ
j

, (3·8)

where σ 2
j is the conditional variance of BH

kj
(tj) given BH

l (ti) (l �= kj or l = kj, i �= j) and the last
inequality follows from Stirling’s formula. Combining (3·8) with the well-known facts, see
for example the proof of [22, lemma 2·5], that

p∏
j=1

1

σ
γ
j

≤ Kp[
det Cov

(
BH

0 (tj), 1 ≤ j ≤ p
)]γ ≤ Kp

p∏
j=1

(
min

{|tj − ti|2Hγ , 0 ≤ i ≤ j − 1
}) , (3·9)

we conclude

J ≤
(
dK2

)p
(p!)δ

p∏
j=1

(
min

{|tj − ti|H(d+2γ ), 0 ≤ i ≤ j − 1
}) . (3·10)

Now we can simply prove∫
Ap

dτ (t1) . . . dτ (tp)
p∏

j=1

(
min

{|tj − ti|, 0 ≤ i ≤ j − 1
})H(d+2γ )

≤ p!
(

sup
s∈[0,1]

∫
A

dτ (t)

|t − s|H(d+2γ )

)p

, (3·11)

which is finite, by using (3·7), if we take

0< γ <
1

2
(κ/H − d).

Putting all the above facts together, we arrive at

E(ϑ(x) − ϑ(y))p ≤ Cp,γ ‖x − y‖γ p, (3·12)

where Cp,γ is a constant depends only on p and γ . Hence we can apply the Kolmogorov’s
continuity theorem ([12, theorem 2·3·1, p.158]) to get a continuous version on R

d of ϑ(.).
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Since A is a compact subset of [0, 1] (closed subset of [0, 1]) and
(
BH + f

)
is continuous

then
(
BH + f

)
(A) is a compact set in R

d. Taking into account that ϑ has a version which
is continuous in x then it follows from Pitt [18, p. 324] or Geman and Horowitz [7, p. 12]
that {x : ϑ(x)> 0} is open, non-empty and contained in

(
BH + f

)
(A) almost surely. This

completes the proof.

Remark 3·6. It is worth noting that the condition dim�, H (GrA(f ))>H d in Theorem 3·2
is a weaker than dim (A)>H d in Theorem 3·5. Indeed let us take A the classical mid-
dle thirds Cantor set which Hausdorff dimension dim (A) = ln (2)/ln (3). For 0<α d<
ln (2)/ln (3) <H d, we have from (2 · 24) that dim�, H (GrA(Bα))>Hd. Then by choosing f
as a sample function of Bα we obtain

dim (A)<H d< dim�, H (GrA(f )).

Moreover, as can be seen from the proofs of Theorems 3·2 and 3·5, we were able to prove
the existence of an occupation density through the conditions dim�, H (GrA(f ))>H d and
dim (A)>H d using respectively two different measures namely ν and τ . It should be noted
that these two measures are constructed by Frostman’s lemma. But it was simpler and more
practical to work with τ thanks to the advantageous properties that presents, which are con-
sequences of the condition dim (A)>H d, and who have played a key role in the fact that
(BH + f )(A) has a non-empty interior. We are therefore naturally led to ask the following
question that we have not solved: can we establish the result of Theorem 3·5 by assuming
only that dim�, H (GrA(f ))>H d?

4. Hölder functions for which (BH + f )(A) has a non-empty interior a.s.

The aim of this section is to consider the case dim (A) ≤ Hd. Precisely, we seek to con-
struct Hölder functions for which the range (BH + f )(A) has non-empty interior. Let us make
this precise in the following statement.

THEOREM 4·1. Let {BH(t) : t ∈ [0, 1]} be a d-dimensional fractional Brownian motion of
Hurst index H ∈ (0, 1). Let A ⊂ [0, 1] a closed set such that 0< dim (A) ≤ Hd. Then for all
α ∈ (0, dim (A)/d) there exists a α-Hölder continuous function f : [0, 1] →R

d for which the
range (BH + f )(A) has a non-empty interior a.s.

The remainder of this section is devoted to the proof of this theorem. To that end, we will
make some preparations. Let (�′, F ′, P′) be another probability space and Bα

′
be a fractional

Brownian motion with Hurst parameter α′ ∈ (0, dim (A)/d) defined on it. Let us consider the
d-dimensional centred Gaussian process Z defined on (�×�′, F ×F ′, P⊗ P

′) by

Z(t, (ω,ω′)) = BH(t,ω) + Bα
′
(t,ω′) for all t ∈ [0, 1] and (ω,ω′) ∈�×�′. (4·1)

It is easy to see that Z = (Z1, ..., Zd) where Zi are independent copies of the real-valued
Gaussian process Z0 = BH

0 + Bα
′

0 with the covariance function given by

Ẽ(Z0(s)Z0(t)) =E(BH
0 (s)BH

0 (t)) +E
′(Bα′

0 (s)Bα
′

0 (t))

= 1

2
(s2H + t2H − |t − s|2H) + 1

2
(s2α′ + t2α

′ − |t − s|2α′
),

where Ẽ and E
′ denote the expectation under the probability P̃= P⊗ P

′ and P
′ respectively.
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The following proposition is about the local nondeterminism property of the process Z.
Let I ⊂ (0, 1] be a closed interval, then we have

PROPOSITION 4·2. The real-valued process {Z0;t ≥ 0} satisfy the following

(1) for any s, t ∈ I, we have

|s − t|2α′ ≤ Ẽ (Z0(t) − Z0(s))2 ≤ 2 |s − t|2α′
; (4·2)

(2) there exists a positive constant C depending on α′, H and I only, such that

Var (Z0(u)|Z0(t1), ..., Z0(tn))≥ C

[
min

0≤k≤n
|u − tk|2α′ + min

0≤k≤n
|u − tk|2H

]
, (4·3)

for all integers n ≥ 1, all u, t1, ..., tn ∈ I and t0 = 0;

(3) there exists a positive constant C depending on α′, H and I only, such that for any
t ∈ I and any 0< r ≤ t,

Var (Z0(t)|Z0(s), |s − t| ≥ r)≥ C r2α′
. (4·4)

Proof.

(1) For any s, t ∈ I, we have

Ẽ (Z0(t) − Z0(s))2 = E
(
BH

0 (t) − BH
0 (s)

)2 +E
′
(

Bα
′

0 (t) − Bα
′

0 (s)
)2

= |t − s|2H + |t − s|2α′
.

Since α ≤ H it follows that

|t − s|2α′ ≤ Ẽ (Z0(t) − Z0(s))2 ≤ 2 |t − s|2α′
.

(2) By definition we can write

Var (Z0(u)|Z0(t1), ..., Z0(tn))= inf
aj∈R,1≤j≤n

Ẽ

⎛⎝Z0(u) −
p∑

j=1

aj Z0(tj)

⎞⎠2

= inf
aj∈R,1≤j≤n

[ E

⎛⎝BH
0 (u) −

p∑
j=1

aj BH
0 (tj)

⎞⎠2

+E
′
⎛⎝Bα

′
0 (u) −

p∑
j=1

aj Bα
′

0 (tj)

⎞⎠2

]

≥ inf
aj∈R,1≤j≤n

E

⎛⎝BH
0 (u) −

p∑
j=1

aj BH
0 (tj)

⎞⎠2

+ inf
bj∈R,1≤j≤n

E
′
⎛⎝Bα

′
0 (u) −

p∑
j=1

bj Bα
′

0 (tj)

⎞⎠2
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= Var
(
BH

0 (u)|BH
0 (t1), ..., BH

0 (tn)
)

+ Var
(

Bα
′

0 (u)|Bα′
0 (t1), ..., Bα

′
0 (tn)

)
.

By the property of strong local nondeterminism of fractional Brownian motion there exists
a positive constant C depending on α, H and I only, such that for all integers n ≥ 1, all u,
t1, ..., tn ∈ I,

Var (Z0(u)|Z0(t1), ..., Z0(tn))≥ C

[
min

0≤k≤n
|u − tk|2α′ + min

0≤k≤n
|u − tk|2H

]
.

(3) We note that, in the Hilbert space setting, the conditional variance in (4·4) is the squared
distance of Z0(t) from the linear subspace spanned by {Z0(s), |s − t| ≥ r} in L2(̃P). Hence it
is sufficient to show that there exists a positive constant C depending on α′ and H only, such
that for all integers n ≥ 1, aj ∈R and sj ∈ I satisfying |sj − t| ≥ r, (j = 1, . . . , n),

Ẽ

⎛⎝Z0(t) −
p∑

j=1

aj Z0(sj)

⎞⎠2

≥ C r2α′
.

What follows from (4·3). This completes the proof.
The following is a direct consequence of [20, corollary 3·3].

PROPOSITION 4·3. Z(A) has P⊗ P
′ − a.s. non-empty interior.

Proof of Theorem 4·1. Let α′ ∈ (α, dim (A)/d). It follows from Proposition 4·3 that Z(A) =
(BH + Bα

′
)(A) has P⊗ P

′ − a.s. a non-void interior. Therefore, there exists a P
′-negligible

set N′ such that, for any ω′ ∈ N′ c, there exists a P-negligible set N with for any ω ∈ Nc

the set (BH(ω) + Bα
′
(ω′))(A) has a non-void interior. It is a well known fact that almost all

trajectories of Bα
′

are α-Hölder continuous, and hence the desired drift can be chosen as a
sample function of Bα

′
.

5. Appendix

We first recall the definition of the conditional variance. Let X1, . . . , Xn, Y be a family of
integrable random variables, the conditional variance of Y given X1, . . . , Xn is

Var (Y | X1, . . . , Xn) := E

(
(Y −E(Y | X1, . . . , Xn))2 | X1, . . . , Xn

)
.

In the particular case when (X1, . . . , Xn, Y) is a centered Gaussian vector, the condi-
tional expectation E (Y|X1, . . . , Xn) is none other than the orthogonal projection of Y onto
span(X1, . . . , Xn) ⊂ L2 (�, σ (X1, ..., Xn), P). Therefore, it follows from Hilbert projection
theorem that the random variable Y −E (Y|X1, . . . , Xn) is orthogonal to span (X1, . . . , Xn)

and

E (Y −E (Y|X1, . . . , Xn))
2 = inf

aj∈R,1≤j≤n
E

⎛⎝Y −
n∑

j=1

aj Xj

⎞⎠2

.

On the other hand, it is well known that, the “orthogonality” is equivalent to the
“independence” for centered Gaussian vector, see [19, proposition 6·3 (p. 12)]. Since
(X1, · · · , Xn, (Y −E (Y|X1, . . . , Xn)) , ) is a centered Gaussian vector, then the random
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variable (Y −E (Y|X1, . . . , Xn)) is independent of (X1, . . . , Xn). Hence we have

E

(
(Y −E(Y | X1, . . . , Xn))2 | X1, . . . , Xn

)
=E(Y −E(Y | X1, . . . , Xn))2 a.s.,

which implies that the conditional variance is deterministic in this case.
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