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This paper uses the concept of dual likelihood to develop some higher order asymp-
totic theory for the empirical likelihood ratio test for parameters defined implic-
itly by a set of estimating equations+ The resulting theory is likelihood based in
the sense that it relies on methods developed for ordinary parametric likelihood
models to obtain valid Edgeworth expansions for the maximum dual likelihood
estimator and for the dual0empirical likelihood ratio statistic+ In particular, the
theory relies on certain Bartlett-type identities that can be used to produce a sim-
ple proof of the existence of a Bartlett correction for the dual0empirical likeli-
hood ratio+ The paper also shows that a bootstrap version of the dual0empirical
likelihood ratio achieves the same higher order accuracy as the Bartlett-corrected
dual0empirical likelihood ratio+

1. INTRODUCTION

Empirical likelihood~EL! is introduced by Owen~1988! as a way of extending
parametric methods of inference to certain nonparametric situations+ In the sim-
plest situation, one is interested in obtaining a confidence region for the mean
of the unknown distribution of a sample of independent and identically distrib-
uted~i+i+d+! observations+Without specifying a parametric form for the unknown
distribution, Owen~1988, 1990! shows that under very weak conditions the EL
ratio function can be used to construct confidence regions for the mean using
an asymptoticx2 calibration+ EL confidence regions have a data-determined
shape~i+e+, they tend to be more concentrated in places where the density of
the parameters estimator is greatest!, and they are not necessarily ellipsoidal,
as in the case of confidence regions based on the normal approximation+ Fur-
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thermore, they are Bartlett-correctable~DiCiccio, Hall, and Romano, 1991!, so
that the actual coverage error differs from the nominal by a term of orderO~n22!+
These attractive properties have motivated various researchers to extend the
EL method to more general statistical models+ See the monograph of Owen
~2001! for an excellent account of recent developments and applications of EL+

In this paper we consider EL inference for the class of statistical models where
the parameters are defined implicitly through a set of estimating equations+ This
class of models is particularly relevant in econometrics, because most maxi-
mum and quasi-maximum likelihood, nonlinear least squares, and M estima-
tors are defined through estimating equations+ We shall refer to this set of
estimating equations as generalized scores~GS!+

The main objective of the paper is to develop some higher order asymptotic
theory for the EL ratio~ELR! test of a simple hypothesis about the parameters
defined by GS+ The approach we follow exploits an important connection relat-
ing EL to dual likelihood~DL! ~Mykland, 1995!: in the case of independent
observations, the ELR statistic coincides with the DL ratio~DLR! statistic+ The
importance of this connection stems from the fact that the DL concept is intro-
duced by Mykland~1995! as a device for using likelihood methods in the
context of martingale inference+ Thus, in the special case of independent obser-
vations, the connection between DL and EL implies the possibility of using
likelihood methods in the context of EL inference+ This is very convenient
because we can then rely on techniques developed for ordinary parametric like-
lihood models and can use the classical methods of Bhattacharya and Ghosh
~1978!, Chandra and Ghosh~1979, 1980!, and Hill and Davies~1968! to derive
rigorously results on the higher order properties of the ELR statistic+

The results obtained in the paper extend and0or complement results of Owen
~1988, 1991!, DiCiccio and Romano~1989!, DiCiccio et al+ ~1991!, Chen~1993,
1994!, Mykland ~1995!, and others+ The new results are the following: first, we
prove the validity of the Edgeworth expansion for the maximum DL estimator
and for the ELR statistic under a sequence of local alternatives+ The latter extends
to the multiparameter case and to the third order Mykland’s asymptotic analy-
sis ~1995, Sect+ 7! of the alternative hypothesis induced by the DL+ Inciden-
tally, we note here that, with the exception of Chen~1994! and Lazar and
Mykland ~1998!, much of the research on the higher order properties of the
ELR statistic has been focused on its accuracy rather than on its power+ The
Edgeworth expansion for the ELR under a sequence of local alternatives derived
in the paper fills this gap, because it can be used to approximate the power of
the ELR test for particular values of the local alternatives+

Second, we show that, under the null hypothesis, the ELR statistic for the
parameters defined by GS admits always a Bartlett correction+ This result in
itself is not new in the sense that the Bartlett correction factor obtained in the
paper coincides in practice1 with the one obtained originally by DiCiccio et al+
~1991! in the case of a multivariate mean~see also, in the case of linear regres-
sions, Chen, 1993; in the case of one parameterM functionals, see Zhang, 1996!+
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What is new instead is the way in which the Bartlett correction is obtained+
Our method relies on certain Bartlett-type identities~Mykland, 1994! ~see~5!,
which follows! and produces an alternative proof of the Bartlett-correctability
of the ELR that complements the results of DiCiccio et al+ ~1991! and, we
believe, provides a key to understanding the Bartlett phenomenon in the con-
text of EL inference for GS; see the discussion following Corollary 3 in Sec-
tion 3+We also propose a simple consistent estimator for the Bartlett correction+

Third, we provide asymptotic justification for a bootstrap version of the ELR
statistic originally proposed by Owen~1988! as a “hybrid” method in which
EL confidence regions for the parameters of interest are based on the bootstrap
distribution of the ELR rather than the asymptoticx2 calibration+We show that
the bootstrap approximates the distribution of the ELR to an ordero~n21! except
if the observed sample is contained in a set of probabilityo~n21!, and we also
show that the ELR with bootstrap calibration accomplishes the Bartlett correc-
tion automatically; i+e+, the ELR with bootstrap critical values has the same
level of accuracy as the Bartlett-corrected one+ The same phenomenon was noted
by Beran~1988, p+ 694! in the case of parametric bootstrap likelihood ratio
tests+

Finally, we prove in the Appendix a general theorem on the density of gen-
eralized noncentral quadratic forms, which is of its own independent interest,
because it can be used to calculate formal Edgeworth expansions of asymptotic
x2 test statistics admitting a stochastic expansion under a sequence of local
alternatives+

The results in the paper are useful to obtain ELR tests that have a desirable
higher order accuracy property+ The bootstrap version of the ELR is particu-
larly useful because the bootstrap calibration is likely to be more accurate than
the Bartlett-correctedx2 calibration+ Monte Carlo simulations~see, e+g+, Cor-
coran, Davidson, and Spady, 1995; Baggerly, 1998; and Tables 1 and 2 in Sec-
tion 4 of this paper! seem to suggest in fact that thex2 calibration itself is not
very reasonable, implying that the practical usefulness of the Bartlett correc-
tion is limited+

The results of the paper can be applied to test simple hypotheses for param-
eters defined in practice by any GS: e+g+, they can be applied to the ELR test
for generalized linear models considered by Kolaczyk~1994! and to the ELR
test for generalized projection pursuit models considered by Owen~1992!+ Other
examples include ELR tests for “moment” models similar to those considered
~albeit in the more general context of weakly dependent observations! by Burn-
side and Eichenbaum~1996!, and for nonlinear and robust regression models;
the latter are considered in Section 4 of this paper+

On the other hand, the results of this paper do not cover the case of compos-
ite hypothesis+When nuisance parameters are present~even in the form of over-
identifying restrictions!, it is not clear from DL arguments what the higher order
behavior of the ELR statistic should be, because the Bartlett-type identities do
not hold for the nuisance parameters+ This is the principal way in which dual
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~and hence empirical! likelihood shows different behavior from an ordinary para-
metric likelihood, and this implies that the profile ELR test obtained by maxi-
mizing out the nuisance parameters is in general not Bartlett-correctable~Lazar
and Mykland, 1999!+ Whether it is possible to obtain higher order refinements
to the distribution of profile ELRs is an open question that is relevant to econo-
metrics, because the latter is typically characterized by~possibly overidenti-
fied! models with many nuisance parameters+ One possibility is to adjust the
critical values rather than the test statistics themselves using generalized Cornish–
Fisher expansions~Hill and Davies, 1968!+ The calculations involved in such
expansions are however notoriously difficult: computerized algebra or possibly
a suitable bootstrap procedure might be very useful in this respect; see the dis-
cussion at the end of Corollary 7 in Section 3+

The remainder of the paper is organized as follows+ The next section reviews
briefly EL inference for GS, emphasizing its DL interpretation+ Section 3 con-
tains the main results of the paper+ Section 4 considers two examples that illus-
trate the theory and reports the results of some Monte Carlo simulations used
to assess the effectiveness of the Bartlett correction and bootstrap calibration
in finite samples+ Section 5 contains some concluding remarks and indications
for future research+ All the proofs are contained in the Appendix+

Throughout the rest of the paper we follow tensor notation and indicate
arrays by their elements+ Thus, for any index 1# rj # q ~ j 5 1,2, + + + , k!,
ar is an Rq-valued vector, ars is an Rq3q-valued matrix, etc+ We also follow
the summation convention; i+e+, for any two repeated indices, their sum is under-
stood+ Finally the sum( and product) operators are intended, unless other-
wise stated, as(i51

n and) i51
n +

2. THE RELATIONSHIP BETWEEN EMPIRICAL
AND DUAL LIKELIHOOD

Suppose that the observations~zi !i51
n are i+i+d+ Rm-valued random vectors from

an unknown distributionF+ Let u [ Q # Rq be an unknown parameter vector
associated withF andE denote the expectation operator with respect toF+ We
assume that the information aboutF andu is available in the form

E @ fr ~z,u0!# 5 0, (1)

for some specified valueu0 of u, with the GSfr ~z,u! :Rq 3 Q r Rq-valued
vector of known functionally independent functions, satisfying the following
standard regularity conditions+

GS1+ ~i! E @ fr ~z,u!# 5 0 for a uniqueu0 [ int$Q% , ~ii ! fr ~z,u! is continu-
ous atu0 with probability 1, ~iii ! E @]fr ~z,u0!0]us# is of full column rankq,
~iv! E @ fr ~z,u0! fs~z,u0!# is positive definite+
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The EL approach to inference for the parameteru defined by the constraint
~1! is based on the profile ELR function

R~u! 5 sup
pi

H) npi 6pi $ 0,( pi fr ~zi ,u! 5 0,( pi 5 1J, (2)

wherepi 5 Pr~z 5 zi !, which shows that EL inference may be interpreted as
parametric likelihood inference using a data-determined multinomial distribu-
tion supported on the observations+ Assume that

EL+ Pr~0 [ ch$ fr ~z1,u0! + + + fr ~zn,u0!%! 5 1 asn r `,

wherech${% denote convex hull of the pointsfr ~zi ,u!, and suppose that we are
interested in testing the hypothesisH0 : u 5 u0+ A Lagrange multiplier argument
shows~Owen, 1990! that the unique solution of~2! evaluated atu 5 u0 is given
by pi 5 @n~1 1 lr fr ~zi ,u0!!#21, wherelr 5 lr ~u0! is an Rq-valued vector of
Lagrange multipliers determined by( fr ~zi ,u0!0~1 1 lr fr ~zi ,u0!! 5 0+ Simple
algebra shows that the log ELR test22 logR~u0! for the null hypothesis
H0 : u 5 u0 is given by

W~u0! 5 2( log~11 lr fr ~zi ,u0!!, (3)

and Owen~1990! proves that, underGS1~iv! andEL ,W~u0! d
&& xq

2—similarly,
confidence regions foru may be obtained as the set of pointsu such that
W~u! # ca, whereca 5 Pr~xq

2 # ca! 5 1 2 a+
Suppose now that, for a fixed u0, l is regarded as afree-varyingvector of

unknown parameters and consider the following statistic:

Wl~u0! 5 ( log~11 lr fr ~zi ,u0!!, (4)

where the subscriptl is used to emphasize that~4! now depends on the unknown
parameterl+ In the case of independent observations, Wl~u0! coincides with
the logarithm of the DL Mykland~1995!; the latter corresponds to the product
integral oflr fr ~zi ,u0! and can be viewed as a likelihood function for the param-
eterl because, as long asfr ~zi ,u0! is bounded andl is contained in a neigh-
borhood of 0,

EF)~11 lr fr ~zi ,u0!!G 5 1, and 11 lr fr ~zi ,u0! . 0,

for small l+ A standard optimization argument shows that the ELR test of
u 5 u0 defined in~3! is then equivalent to a DL ratio~DLR! test on the dual
hypothesisH0 : l 5 0, i+e+,

W~u0! 5 2~W Zln
~u0! 2 W0~u0!!,
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whereW0~u0! 5 Wl~u0!6l50 and Zln is the maximum DL estimator solution of
the first-order conditions]Wl~u0!0]lr 5 0; we shall call the maximum DL esti-
mator DLE+

As mentioned in the introduction, the equivalence between the ELR test of
u 5 u0 and the DLR test ofl 5 0 is crucial in the paper because it implies the
possibility of analyzing the higher order properties of the ELR statistic using
likelihood methods on the dual parameterl instead+ To elaborate further, let us
introduce some additional notation: for k 5 ~k1, + + + , kl ! [ ~Z1! l write 6k6 5

(j51
l kj ; let ]kWl~{! 5 ]kWl~{!0]lr1+ + +]lrk andGt 5 G~0,t! be an open sphere

centered around 0 with radiust . 0+ Assume that for alll [ Gt

DL1+ E @6]kWl~u0!6# , ` for 6k6 $ 0,

where the inequality should be interpreted componentwise+ For 6k65 0, DL1 is
a sufficient condition for showing the existence and consistency of the DLEZln

solution of ]Wl~u0! 5 0+ To see this, notice that theRq3q-valued matrix
E @]2Wl~u0!# is negative definite as long as 11 lr fr ~zi ,u0! $ 10n ~which is
implied by the fact that under EL the setSl 5 $lr : 1 1 lr fr ~zi ,u0! $ 10n% is
closed convex and bounded!+ Therefore, by the implicit function theorem there
exists a neighborhoodGt where]Wl~u0! 5 0 have a unique solution+ Moreover,
E @Wl~u0!# is uniquely maximized atl 5 0, andWl~u0!0n

p
&& E @Wl~u0!# for all

l [ Gt+ Thus, given the strict concavity ofWl~u0! in Gt, it follows by standard
consistency results for concave objective functions~e+g+, Theorem 2+7 of Newey
and McFadden, 1994! that Zln

p
&& 0+

For 6k6 $ 1, DL1 is a sufficient condition for interchanging the differential
and integral operators in the equation]kE$exp@Wl~u0!# 2 1% 5 0; the latter can
then be used to produce a new set of regularity conditions known in ordinary
parametric likelihood theory as Bartlett identities~Bartlett, 1953!+ The result-
ing Bartlett-type identities relate linear combinations of expectations of DL deriv-
atives and can be summarized concisely as

(
Rk

E @]k1W0~u0! + + +]kl W0~u0!# 5 0, (5)

where]kjW0~{! 5 ]kjWl~{!6l50~ j 5 1, + + + , l ! and the sum is over all partitions
k16k26 + + + 6kl of the set of indicesRk+ In practice~5! can be used as in paramet-
ric likelihood inference to simplify some of the expressions arising in the cal-
culations of the higher order cumulants of the DLR statistic~see~A+20! in the
Appendix!, leading to the general result~13! about the Bartlett-correctability
property of the DLR~whence of the ELR!+

3. HIGHER ORDER ASYMPTOTICS AND THE BOOTSTRAP
FOR THE ELR STATISTIC

This section contains the main results of the paper+ Section 3+1 derives valid
Edgeworth expansions for the DLE and the ELR under both a sequence of local
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alternatives and the null hypothesis+ Section 3+2 discusses how to estimate in
practice the Bartlett correction, and Section 3+3 shows how the bootstrap and
EL can be combined to produce highly accurate inference for the parameters
defined by GS+

3.1. A Valid Edgeworth Expansion for the DLE
and for the ELR Statistic

Let us introduce some additional notation and assumptions+ Let 7{7 denote the
Euclidean norm; assume that for alll [ Gt and somea,b [ Z1

DL2+

~i! E @6]kWl~u0!6a# , ` for 1 # 6k6 # b,
~ii ! E @max6k65b11 sup7 Nl2l7#t6]kW Nl~u0!6a# , `,

DL3+ sup7t 7.d 6E exp$it Tr Z Tr 0
l %6 , 1, for i2 5 21 and alld . 0 andl [ Z1,

where, for Sql 5 (k51
l Sq1k21

k
D, 1 # Tr # Sq, and Z Tr 0

l [ R Sql denote the vector
containing all the different DL derivatives up tol th order evaluated atlr 5 0+
Conditions DL2 and DL3 are sufficient for proving the validity of Edgeworth
expansions; notice that DL2 is satisfied ifE7 f ~z,u0!7ab , `+

Let (j50
2 n2j02fq,krs

~x!pj ~x! denote the formal Edgeworth expansion~Bhat-
tacharya and Ghosh, 1978, eq+ ~1+14!! of the distribution of Zln, wherefq,krs

~{!
denote theq-dimensional normal density with mean 0 and covariancekrs 5
E @ fr ~z,u0! fs~z,u0!# + The following theorem shows that the DLE admits a valid
Edgeworth expansion in the sense of Bhattacharya and Ghosh~1978!+

THEOREM 1+ Assume that GS1, EL, and DL2 witha 5 4, b 5 3 hold. Then,
for some constant C. 0,

Pr~n1027 Zln7 , C~ log n!102! 5 1 2 o~n21!+ (6)

Furthermore, assume that the Cramér condition DL3 holds with l5 3. Then,

sup
B[B *Pr~n102 Zln [ B! 2 (

j50

2

n2j02E
B

fq,krs
~x!pj ~x! dx* 5 o~n21!, (7)

whereB is the class of Borel subsets inRq satisfying

sup
B[B

E
~]B!e

fq,krs
~x! dx 5 O~e! ase f 0+ (8)

Before obtaining an Edgeworth expansion for the ELR under a sequence of
local alternatives, we first discuss what type of local alternatives is consistent
with the DL approach to EL inference+ A simple modification of the argument
of Mykland ~1995, pp+ 410–411! shows that the sequence of local alternatives
induced by the DL is of the formHn : ln

r 5 krs Hls0n102 for some finite non-
random vector Hlr + This type of local alternatives assumes implicitly that the
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DL under the alternative hypothesis belongs to the same parametric subfamily
specified under the null hypothesis~i+e+, the product integral oflr fr ~zi ,u0!!,
ruling out effectively the possibility of considering local alternatives whereboth
l andu are allowed to depend on a sequence of local alternatives+ This type of
local analysis is introduced by Chesher and Smith~1997! as a generalization
of the standard likelihood based local analysis~see, e+g+, Peers, 1971! and
requires the specification of an augmented local alternative of the form
Hn

a : wn 5 @un ln# , whereun 5 u0 1 Nu0n102 andln 5 l~ Nu0n102! 5 Nl0n102 for
some finite nonrandom vectorNu+ This general framework, however, might break
down the DL construction for it requires the consideration of alternatives that
might not necessarily lie in the~log!DL subfamily defined in~4!+ Bearing this
in mind, it should be clear why the only sequence of local alternatives for the
ELR consistent with the DL construction takes the formHn : ln

r 5 krs Hls0n102+
For simplicity we reparameterizeHn asHn : ln

r 5 krs
102 Hls0n102 wherekrs

102 is
the square root of the symmetric positive definite matrixkrs, and we define the
scaled arrays~moments!

kr1 + + + rk
5 E @~k r1s1 !102fs1

~z,u0! + + + ~k rksk !102fsk
~z,u0!# , (9)

so thatkrs 5 d rs—the Kronecker delta, i+e+, d rr 5 1, d rs 5 0 for r Þ s+ Let
Gq,t~{! denote the distribution function of a noncentral chi square random vari-
able withq degrees of freedom and noncentrality parametert+ The following
theorem shows that the ELR test under a sequence of local alternativesHn admits
a valid Edgeworth expansion in the sense of Chandra and Ghosh~1980!+

THEOREM 2+ Suppose that the assumptions of Theorem 1 hold. Then, uni-
formly in c [ @c0,`! for some c0 $ 0 ~c0 5 0 if r . 1!,

sup
c[@c0,`!

*Pr~W~u0! # c6Hn! 2 (
j50

2

(
k50

4

pjk Gq12k,t~c!0n j02*5 o~n21! (10)

uniformly over compact subsets ofHlr , wheret 5 Hlr Hlr , and

p00 5 1, p10 5 2krst Hlr Hls Hlt06, p11 5 0,

p12 5 krst Hlr Hls Hlt06, p13 5 0, p14 5 0,

p20 5 2@Brs 2 7krstu Hlt Hlu0121 ~8krst ktuv2 krtu kstv ! Hlu Hlv09#

3 ~d rs 2 Hlr Hls!02 2 7krsst Hlr Hlt0242 ~12 q!t06 2 t202

2 ~27krtt d su 1 krst d
tu!ksuv Hlr Hlv0182 ~4krst ' kt 'tu09 2 krstu04! Hlr Hls Hlt Hlu

1 ~2kr vv1 2kr vw Hlv Hlw!kstu~2 Hlr Hls Hlt Hlu0361 @3#d rs Hlt Hlu036!

1 krstu~2@3#d rs 1 Hlr Hls! Hlt Hlu0121 @3#5krsuktvwd rs~ @3#d tu 2 Hlt Hlu!

3 Hlv Hlw02161 krtvksuw~ @3#d rsd tu 2 @6#d rs Hlt Hlu 1 Hlr Hls Hlt Hlu! Hlv Hlw072

1 ~krtt ksvv1 4krtu ksvw Hlt Hlu Hlv Hlw 2 4krtt ksvw Hlv Hlw!~ Hlr Hls 2 d rs!,
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p21 5 @Brs 2 7krstu Hlt Hlu0121 ~8krst ktuv2 krtu kstv ! Hlu Hlv09#

3 ~d rs 2 2 Hlr Hls!02 1 7krsst Hlr Hlt0241 ~27krtt d su 1 krst d
tu!ksuv Hlr Hlv018

1 ~12 q!t06 1 t202 1 ~4krst ' kt 'tu09 2 krstu04! Hlr Hls Hlt Hlu

1 ~kr vv2 2kr vw Hlv Hlw!kstu~ Hlr Hls Hlt Hlu0122 @3#d rs Hlt Hlu018!

1 krstu~ @3#d rs06 2 Hlr Hls04! Hlt Hlu 1 @3#5krsuktvwd rs

3 ~22@3#d tu 1 3 Hlt Hlu! Hlv Hlw0216

2 krtvksuw~2@3#d rsd tu 2 3@6#d rs Hlt Hlu 1 4 Hlr Hls Hlt Hlu! Hlv Hlw072

1 ~krtt ksvv1 4krtu ksvw Hlt Hlu Hlv Hlw 2 4krtt ksvw Hlv Hlw!~22 Hlr Hls 1 d rs!072,

p22 5 Brs Hlr Hls02 2 7krstu Hlr Hls Hlt Hlu0241 ~8krst ktuv2 krtu kstv ! Hlr Hls Hlu Hlv018

1 ~krtt ksvv1 4krtu ksvw Hlt Hlu Hlv Hlw 2 4krtt ksvw Hlv Hlw! Hlr Hls072

1 krtvksuw~ @3#d rsd tu 2 3@6#d rs Hlt Hlu 1 6 Hlr Hls Hlt Hlu! Hlv Hlw072

2 ~kr vv2 2kr vw Hlv Hlw!kstu~23 Hlr Hls Hlt Hlu 1 @3#d rs Hlt Hlu!036

1 @3#5krsuktvwd rs~ @3#d tu 2 3 Hlt Hlu! Hlv Hlw0216

2 krstu~ @3#d rs 2 3 Hlr Hls! Hlt Hlu012,

p23 5 krtvksuw~ @6#d rs 2 4 Hlr Hls! Hlt Hlu Hlv Hlw0722 ~kr vv2 2kr vw Hlv Hlw!kstu

3 Hlr Hls Hlt Hlu0362 krstu Hlr Hls Hlt Hlu0121 @3#5krsuktvwd rs Hlt Hlu Hlv Hlw0216,

p24 5 krtvksuw Hlr Hls Hlt Hlu Hlv Hlw072,

where

Brs 5 krstt 02 2 krtu kstu03, (11)

and, e.g.,@3#d rs Hlt Hlu 5 d rs Hlt Hlu 1 d rt Hls Hlu 1 d ru Hls Hlt is the sum over the three
different ways to partition a set of four indices into two subsets of two indices
each.

The preceding expansion is useful for two reasons: first, it can be used to
compute the approximate local power function of the testH0 : l 5 0 versus
alternatives of the formHn : ln

r 5 krs
102 Hls0n102 ~i+e+, Pr~W~u0! . ca6Hn! where

ca 5 Pr~xq
2 $ ca! 5 a!+ Second, it can be used to obtain a valid Edgeworth

expansion of the ELR statistic underH0 with remainder of ordero~n21!+ To
improve the latter to the orderO~n22! we need to strengthen DL2 and DL3 as
in the following corollary; let gq~{! denote the density of a chi square random
variable withq degrees of freedom and letB 5 Brr +
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COROLLARY 3+ Assume that GS1, EL, and DL2 witha 5 6 andb 5 5 and
DL3 with l 5 4 hold. Then, for some c0 $ 0

sup
c[@c0,`!

6Pr~W~u0! # c! 2 Gq~c! 1 Bcgq~c!0~nq!65 O~n22!+ (12)

Let WB~u0! 5 W~u0!0~1 1 B0~nq!! and ca 5 Pr~xq
2 $ ca! 5 a. Then

Pr~WB~u0! # ca! 5 1 2 a 1 O~n22!+ (13)

Expansion~12! shows clearly that the Bartlett factorB is the main error term
for the ELR statistic; moreover becauseB enters linearly in the expansion it is
clear that scalingW~u0! by the same factor improves the coverage error to the
order O~n22!, as in ~13!+ This remarkable property of the ELR statistic is a
direct consequence of the connection relating dual and empirical likelihood in
the case of independent observations: because the ELR can be interpreted as a
DLR for l, and a DLR inherits properties of an ordinary parametric likelihood
ratio statistic via the Bartlett-type identities~5!, it is perhaps not surprising that
the ELR shares the Bartlett-correctability property of an ordinary likelihood
ratio statistic+ In particular, as shown in the proof of Theorem 2 in the Appen-
dix, the Bartlett-type identities~5! imply that, for DL2 with a 5 5 andb 5 4
and DL3 withl 5 3, the signed square rootWr ~u0! of the ELR~i+e+, anRq-valued
random vector such thatWr ~u0!Wr ~u0! 5 W~u0! 1 Op~n2302!! is asymptotically

Wr ~u0! ; N~cr 0n102,d rs 1 crs0n! 1 O~n2302!, (14)

wherecr andcr,s are constants defined askr
2 andkr,s

3 ~with Hlr 5 0! in ~A+20! in
the Appendix+ This result was originally proved by DiCiccio and Romano~1989!,
using a different technique involving some lengthy algebra, and shows that
Wr ~u0! can be mean and variance corrected so that the resulting adjusted statis-
tic is N~0,d rs! 1 O~n2302!, as is typically the case for the signed square root of
ordinary parametric likelihood ratios+ The existence of a Bartlett correction for
the ELR then follows from this result combined with an Edgeworth expansion
argument+ The latter shows in fact that the density ofWr ~u0!Wr ~u0! 1 Op~n2302!
is proportional to exp~2x202!~x2!q0221@1 1 c~x2!0n# 1 O~n22! wherec~x2!
is a linear function in x2, so that scalingW~u0! by a factor 11 B0~nq! with
B 5 cr cr 1 crr eliminates the coefficient ofn21 in the expansion ofWB~u0!
yielding ~13!+

3.2. Estimation of the Bartlett Correction

The Bartlett correction for GS

B 5 krrss02 2 krst krst 03 (15)

depends on the third and fourth multivariate moments offr ~z,u0!+ The compu-
tation of the moments involved in the threefold summation in~15! takesO~nq3!
computing time, so unlessq is very large the computational cost of the Bartlett
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correction is not very high+ Recall thatB is based on the scaled moments
kr1 + + + rk

5 E @~k r1s1 !102fs1
~z,u0! + + + ~k rksk !102fsk

~z,u0!# and suppose thatZu p
&& u0;

then a simple estimator of~15! can be based on

ZB 5 ZKrstu~ Zu! ZK rs~ Zu! ZK tu~ Zu!02 2 ZKrtv~ Zu! ZKsuw~ Zu! ZK rs~ Zu! ZK tv~ Zu! ZK uw~ Zu!03, (16)

where ZKr1 + + + rk
~u! 5 ( fr1

~zi ,u! + + + frk
~zi ,u!0n+ The following theorem shows

that ZB is consistent for~15! and that replacingB with ZB in Corollary 3 does not
alter the order of magnitude of the approximation error~13!+ Let N denote a
neighborhood ofu0 and make the following assumption+

GS2+ ~i! E @supu[N7 f ~z,u!74# , `, ~ii ! ]fr ~z,u!0]us is continuous with prob-
ability 1 at u0, ~iii ! E @supu[N 6]fr ~z,u!0]us6# , `+

THEOREM 4+ Assume that GS2 holds. Then,ZB p
&& B for any Zu p

&& u0.
Furthermore, suppose that the assumptions of Corollary 3 hold and that
n1027 Zu 2 u07 5 Op~1!. Then, for some c0 $ 0

sup
c[@c0,`!

6Pr~W ZB~u0! # c! 2 Gq~c!65 O~n22!+ (17)

Remark+ The assumption of i+i+d+ sampling can be relaxed by considering
~zin!i#n, n$1 as a triangular array ofRm-valued random vectors as in Owen
~1991!; i+e+, for eachn, fr ~z1n,u!, + + + , fr ~znn,u! are independent but not identi-
cally distributedRq valued random vectors+ The results presented in Sec-
tions 3+1 and 3+2 are still valid by replacing some of the previous regularity
conditions with the following uniform~in n! version+

GS1+ ~i! E @ fr ~zin,u0!# 5 0 for a uniqueu0 [ Q for all n, ~ii ! lim inf nr` zn0
n . 0, wherezn is the smallest eigenvalue of( E @ fr ~zin ,u0! fs~zin ,u0!# ,

GS2+

~i! lim supnr`( E @supu[N 7 f ~zin ,u!740n# , `,
~iii ! lim supnr`( E @supu[N 6]fr ~zin ,u!0]us6# , `+

EL+ Pr~0 [ ch$ fr ~z1n,u0!, + + + , fr ~znn,u0!%! 5 1 asn r `,

DL2+

~i! lim supnr`E @6]kWnl~u0!6a# , ` for 1 # 6k6 # b for any lr [ Gt,
~ii ! lim supnr` E @max6k65b11 sup7 Nl2l7#t 6]kWnlr ~u0!6a # , `, and

~iii ! lim supnr` E @6Zn Tr 0
l 6# b11I $Zn Tr 0

l . en102% 5 0 for every e . 0 and some
l [ Z1,

DL3+ lim supnr` sup7t 7$d 6E @exp~ıt Tr Zn Tr 0
l !#6 , 1 for all d . 0 and some

l [ Z1,

where Wnl~{! and Zn Tr 0
l are, respectively, the log DL defined in~4! and the

R Sql -valued vector of DL derivatives evaluated atl 5 0 for the triangular array
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fr ~zin,u0! n $ 1+ In particular GS1, GS2~i!, EL, and DL2~iii ! with b 5 3 and
Zn Tr 0

l 5 Znr 0 for l 5 1 imply Theorem 2 of Owen~1991!, whereas DL2~i!–~ii !
and DL3 imply that we can use Theorem 20+6 of Bhattacharya and Rao~1976!
together with Theorem 3+2 and Remarks 3+3 and 3+4 in Skovgaard~1981! to
justify the validity of the Edgeworth expansions in Theorems 1 and 2+ The results
shown in Section 3+3, which follows, are also valid by replacing BDL with
uniform versions similar to those just shown+

3.3. A Valid Edgeworth Expansion for the Bootstrap DLE
and the Bootstrap ELR Statistic

In this section we consider the higher order properties of bootstrap dual0EL
inference+ Let xn

* 5 ~z1
*, + + + , zn

*! denote a bootstrap sample, i+e+, a resample
drawn independently and uniformly from the observed samplexn with the prop-
erty that Pr~zi

* 5 zj 6xn! 5 10n for 1 # i, j # n, and let fr ~zi
*,u0! denote the

corresponding bootstrap GS+
We first consider bootstrapping the DLEZln+ Let

Wl*
* ~u0! 5 ( log~11 l*r fr ~zi

*,u0!!

denote the bootstrap~log! DL where, in analogy to Section 2, the dual
parameterl*r is free-varying+ The bootstrap DLE~BDLE! Zln

* solves 05
]Wl*

* ~u0!0]lr + Assume that for somea,b [ Z1 andg . 0

BDL+

~i! E @supl[Gt
6]kWl~u0!6a1g # , ` for 1 # 6k6 # b,

~ii ! E @supl[Gt
max6k65b11 sup7 Nl2l7#t 6]kW Nl~u0!6a1g # , `,

and let Pr* denote the bootstrap probability conditional onxn+ The following
theorem establishes the higher order equivalence between the original and BDLE+

THEOREM 5+ Assume that GS1, EL, and BDL witha 5 6, b 5 3, and some
g . 0 hold. Then, for some constant C. 0

Pr*~n1027 Zln
* 2 Zln7 . C log n102! 5 o~n21!, (18)

except ifxn is contained in a set with probability o~n21!. Furthermore, assume
that the Cramér condition DL3 holds with l5 3. Then, for every classB of
Borel subsets inRq satisfying (8)

sup
B[B
6Pr*~n102~ Zln

* 2 Zln! [ B! 2 Pr~ Zln [ B!6 5 o~n21!, (19)

except ifxn is contained in a set of probability o~n21!.
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Notice that another way to express~18! ~and analogously~19! and also~21!,
which follows! is

Pr~6Pr*~n1027 Zln
* 2 Zln7 . C log n102!6 . n21! 5 o~n21!+

We now consider bootstrapping the ELR+ It is important to note that the valid-
ity of the bootstrap in the context of EL inference depends crucially on the
validity of the bootstrap moment conditionE* @ fr ~zi

*,u!# 5 0 at u 5 u0, where
E* is the bootstrap expectation under Pr* + A straightforward method to
achieve this is to consider the centered bootstrap GSfr

*~zi ,u! 5 fr ~zi
*,u! 2

E* @ fr ~zi
*,u0!# , which mimics the original GS as defined in~1! because by

construction the bootstrap moment conditionE* @ fr
*~zi ,u0!# 5 0+ Alternatively,

we can consider the so-called biased bootstrap GSfr ~zi
†,u!, where thezi

†’s are
resamples drawn independently from the original samplexn with the property
that Pr~zi

† 5 zj 6xn! 5 pj for 1 # i, j # n, and thepj s are the estimated EL
probabilities+ This resampling procedure was proposed, originally in 1992, by
Brown and Newey~2001! in the context of bootstrapping for generalized method
of moments~GMM !; the termbiasedused here is borrowed from Hall and
Presnell~1999!+ Notice thatfr ~zi

†,u! does not need to be centered, because by
definition E† @ fr ~zi

†,u0!# 5 0 whereE† is the expectation under Pr†+ Thus both
methods lead to unbiased~conditional onxn! bootstrap GS atu 5 u0+ The latter
fact is the key to the validity of bootstrap ELR because it implies that the dis-
tribution of the bootstrap ELR~BELR! resembles the null distribution of the
original ELR regardless of whether the null hypothesis is true or not+ More
important, at least in the context of this paper, the results of Brown and Newey
~2001! ~see also Horowitz, 2001! imply that biased bootstrap leads to the same
theoretical improvements to the finite-sample distribution of the ELR statistic
as those obtained using the standard~uniform! bootstrap~cf+ Corollary 7!+ Bear-
ing this in mind, in the remaining part of this section we consider bootstrap EL
inference based on the centered bootstrap GSfr

*~zi ,u!+
An immediate consequence of centering is that the bootstrap equivalent of

assumption EL holds, i+e+,

BEL+ Pr*~0 [ ch$ fr
*~z1,u0! + + + fr

*~zn,u0!%! 5 1 asn r `+

The latter implies that the bootstrap analogue of the profile ELR function defined
in ~2!,

R*~u! 5 sup
pi

H) npi 6pi $ 0,( pi fr
*~zi ,u! 5 0,( pi 5 1J, (20)

admits a unique solution atu 5 u0 and that such a solution can be obtained by
the same Lagrangian argument of Section 2+ Let 22 log~R*~u0!! denote the
resulting log BELR+ Solving ~20! and calculating22 log~R*b~u0!! for b 5
1, + + + ,B bootstrap samplesxn

* yields an estimator of the distribution of the ELR
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that can be used to form critical values for test statistics~and0or confidence
regions! in the usual way+

As in Section 2, the BELR22 log~R*~u0!! can be interpreted as a bootstrap
DLR test for the dual parameterl*r , i+e+,

22 log~R*~u0!! 5 2~Wln
*
*
Z ~u0! 2 W0

*~u0!!,

whereWln
*
*
Z ~u0! 5 ( log~1 1 Zl*r fr*~zi ,u0!! is the bootstrap DL based on the

centered bootstrap GSfr
*~zi ,u0!, W0

*~u0! is the “restricted” bootstrap DL eval-
uated atl* 5 0, and Zln

* is the BDLE that solves 05 ]Wl*
* ~u0!0]lr using cen-

tered bootstrap GSfr
*~zi ,u0!+ Note that because of the centeringZln

* converges
~in bootstrap probability! to 0 and not to the DLEZln as in Theorem 5+ Because
W0
*~u0! 5 0, let W *~u0! 5 2Wln

*
*
Z ~u0!; the following theorem shows that the

BELR statistic approximates the distribution of the ELR statistic under the null
hypothesis up to the ordero~n21!+

THEOREM 6+ Suppose that the assumptions of Theorem 2 witha 5 6 hold.
Then for some c0 $ 0

sup
c[@c0,`!

6Pr*~W *~u0! # c! 2 Pr~W~u0! # c!65 o~n21!, (21)

except ifxn is contained in a set with probability o~n21!.

Notice that the moment assumption of Theorem 6~which is slightly stronger
than the one assumed in Theorem 2! is necessary to ensure that the BELR test
is accurate up too~n21!; i+e+, the BELR test has rejection probabilities that are
correct up to the same order+ To see this note that~21! is equivalent to

PrS sup
c[@c0,`!

6Pr*~W *~u0! # c! 2 Pr~W~u0! # c!6 . n21D5 o~n21!;

thus using the same arguments as Andrews~2002, pp+ 149–150!, it follows that
for ca

* 5 inf $c [ @c0,`! :Pr*~W *~u0! $ c! $ a%

Pr~612 a 2 Pr~W~u0! # ca
* !6 . n21! 5 o~n21!,

which implies that, for large n, 61 2 a 2 Pr~W~u0! # ca
* !6 # n21, or

equivalently

Pr~W~u0! . ca
* ! 5 a 1 o~n21!+ (22)

Thus, with the bootstrap calibration the level of ELR test is correct through the
orderO~n21!+ In contrast, as shown in Theorem 2, the ELR test withx2 cali-
bration is accurate up toO~n21!+ On the other hand, using a slightly refined
argument based on generalized Cornish–Fisher expansions~Hill and Davies,
1968!, the approximation error in~22! can be improved toO~n22!, as next
corollary shows+
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COROLLARY 7+ Suppose that the assumptions of Corollary 3 witha 5 8
hold. Then,

Pr~W~u0! . ca
* ! 5 a 1 O~n22!+ (23)

Corollary 7 shows that bootstrapping the ELR delivers the same type of higher
order accurate inference implied by the existence of a Bartlett correction+ The
same phenomenon was noted by Beran~1988! in the context of bootstrap like-
lihood ratio inference+ Unless dim@ f ~z,u!# is very large, it is clear that the
Bartlett-corrected ELR is computationally more convenient than the BELR+ On
the other hand, as already mentioned in the Introduction and further illustrated
in Section 4 by some simulations, it seems that the BELR has better finite-
sample accuracy than the Bartlett-corrected ELR+ Moreover, the higher order
refinements delivered by the bootstrap approach to ELR inference do not depend
in general on Bartlett-type identities+ This should be important when consider-
ing the ELR statistic with nuisance parameters+ To see why, let h be a finite-
dimensional vector of nuisance parameters andW~u0, [h! denote the resulting
profile ELR ~PELR! where [h 5 maxh W~u0,h!+ As shown by Lazar and
Mykland ~1999! the fact that the Bartlett-type identities~5! do not hold forh
implies that in generalW~u0, [h! is not Bartlett-correctable+ Suppose however
thatW~u0, [h! admits a valid asymptotic expansion in the sense of Chandra and
Ghosh~1979! and that Pr~7 [h 2 h07 . C~ log!21! 5 O~n2302!+ Then, at least
theoretically, generalized Cornish–Fisher expansions can be brought to bear to
show thatW~u0, [h! with adjusted critical values is accurate to an orderO~n22!,
independent of whether the Bartlett-type identities hold or not+ Furthermore,
using arguments similar to those used in the proofs of Theorem 6 and Corol-
lary 7 in the Appendix it might be possible to obtain higher order refinements
to the distribution of the PELR using critical values based on the bootstrap
PELR W *~u0, [h!+

4. SOME ECONOMETRIC APPLICATIONS

In this section, we illustrate the theory developed in the paper by considering
EL inference for two classes of widely used econometric models that, as far as
we know, have not been considered previously in the literature on EL+ The finite-
sample effectiveness of the two proposed methods to improve the accuracy of
the ELR~i+e+, Bartlett correction and bootstrap critical values! is illustrated by
a small Monte Carlo study+

Example I. Nonlinear regressions

We consider nonlinear regression modelsy 5 g~xr,u0
r ! 1 « for a given~differ-

entiable! parametric functiong~{! andE~« 6xr ! 5 0+ Following Newey~1990!,
the GS is given by

fr ~z,u! 5 @]g~xr,u r !0]us#«, (24)
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which corresponds to an IV based estimating function+ Notice that as long as
the regression function is correctly specified, we do not need to model explic-
itly the ~conditional! variances2~x! of «; clearly if we knew the functional
form of s2~x! we could use an IV based GS with instruments equal to]g~xr,u r !0
]us ands2~x!21 to gain efficiency, but we stress here our view of the EL method
as a technique to improve the accuracy of inference+

For this class of models the bootstrap calibration is based on the resamples
~xi

r *, yi
*!, and the centered bootstrap GS is

fr
*~zi ,u! 5 @]g~xi

*r ,u r !0]us#«i
*2 E* @]g~xi

*r ,u0
r !0]us#«i

*,

where«i
* 5 yi

* 2 g~xi
*r ,u0

r !+
In the Monte Carlo study, we specifyg~{! as exp~u1 1 u2x! with x ; N~0,1!

and« ; N~0,1! or ;t~5! or x4
2 2 4+ The values ofu1 andu2 are both set equal

to 1+ Table 1 reports the finite-sample sizes of the ELR test~3!, of the Bartlett-
corrected ELR with the estimated Bartlett correction~16!, and of the ELR with
bootstrap critical values~23! of the null hypothesisH0 : @u1 u2# 5 @1 1# at
0+10, 0+05, and 0+01 nominal size+ The results are based on 5,000 replica-
tions, and the bootstrap critical values are calculated from 1,000 bootstrap
replications+

Table 1. Nonlinear regression models

Nominal size 0+100 0+050 0+010

Model with N~0,1! errors
n 5 50 0+128a 0+116b 0+111c 0+080a 0+071b 0+062c 0+033a 0+030c 0+026c

n 5 100 0+114a 0+110b 0+109c 0+070a 0+065b 0+060c 0+026a 0+024b 0+019c

n 5 200 0+110a 0+109b 0+107c 0+063a 0+061b 0+058c 0+024a 0+022b 0+017c

n 5 500 0+108a 0+107b 0+106c 0+062a 0+060b 0+057c 0+022a 0+021b 0+016c

Model with t~5! errors
n 5 50 0+161a 0+147b 0+134c 0+105a 0+090b 0+074c 0+042a 0+034b 0+027c

n 5 100 0+135a 0+127b 0+120c 0+084a 0+074b 0+069c 0+036a 0+031b 0+024c

n 5 200 0+129a 0+123b 0+115c 0+073a 0+069b 0+062c 0+031a 0+026b 0+023c

n 5 500 0+125a 0+119b 0+114c 0+067a 0+064b 0+062c 0+026a 0+026b 0+022c

Model with x4
2 2 4 errors

n 5 50 0+183a 0+178b 0+148c 0+144a 0+132b 0+088c 0+056a 0+051b 0+038c

n 5 100 0+177a 0+170b 0+132c 0+130a 0+120b 0+078c 0+051a 0+048b 0+032c

n 5 200 0+152a 0+144b 0+126c 0+121a 0+109b 0+073c 0+044a 0+041b 0+028c

n 5 500 0+146a 0+140b 0+123c 0+115a 0+099b 0+072c 0+040a 0+039b 0+027c

aELR ~3!+
bELR with estimated Bartlett correction~16!+
cELR with bootstrap critical values~23!+
Note:Underlined values indicate that the empirical level is not statistically different from the nominal at the 0+05
level+
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Example II. Robust regressions

We consider robust regression models with fixed regressorsxi
r that are

assumed to satisfy max1#i#n7xi
r 7 5 O~1!+ The GS in this case is given by

fr ~zi ,u! 5 xi
r c~ yi 2 xi

sus! (25)

for the psi functionc :R r R satisfyingE @c~ yi 2 xi
r u0

r !# 5 0+ For this model,
the centered bootstrap GS is

fr
*~zi ,u! 5 xi

r @c~ yi
*2 xi

sus! 2 «n
*# ,

whereyi
* 5 xi

r u0
r 1 «i

* is the bootstrap pseudo-observation, «i
* is the bootstrap

sample drawn from«i 5 yi 2 xi
r u0

r , and«n
* 5 E* @c~«i

*!# +
Following Huber~1973!, we specify the psi functionc~{! as

~ yi 2 xi
r u r ! I $6yi 2 xi

r u r 6 # k% 1 k{Sgn$ yi 2 xi
r u r %I $6yi 2 xi

r u r 6 . k%

with the constantk 5 1+4, the scale parameters2 5 1, and Sgn${% denoting the
sign function+

Table 2 reports some Monte Carlo results for a simple two covariates design
with an intercept and a single fixed regressorxi generated as an equally spaced

Table 2. Robust regression model

Nominal size 0+100 0+050 0+010

Model with N~0,1! errors
n 5 50 0+162a 0+151b 0+136c 0+097a 0+087b 0+079c 0+039a 0+034b 0+028c

n 5 100 0+145a 0+132b 0+128c 0+083a 0+072b 0+066c 0+031a 0+027b 0+023c

n 5 200 0+124a 0+120b 0+118c 0+070a 0+064b 0+059c 0+028a 0+026b 0+020c

n 5 500 0+123a 0+119b 0+115c 0+069a 0+065b 0+059c 0+027a 0+024b 0+019c

Model with t~5! errors
n 5 50 0+173a 0+162b 0+153c 0+112a 0+093b 0+084c 0+055a 0+045b 0+037c

n 5 100 0+152a 0+137b 0+132c 0+101a 0+085b 0+073c 0+045a 0+039b 0+035c

n 5 200 0+140a 0+130b 0+120c 0+084a 0+077b 0+069c 0+039a 0+031b 0+024c

n 5 500 0+133a 0+123b 0+118c 0+079a 0+072b 0+066c 0+032a 0+030b 0+023c

Model with x4
2 2 4 errors

n 5 50 0+191a 0+184b 0+166c 0+141a 0+123b 0+104c 0+061a 0+053b 0+034c

n 5 100 0+180a 0+175b 0+154c 0+132a 0+110b 0+091c 0+055a 0+053b 0+029c

n 5 200 0+172a 0+164b 0+143c 0+119a 0+109b 0+083c 0+050a 0+047b 0+027c

n 5 500 0+165a 0+161b 0+138c 0+115a 0+108b 0+080c 0+046a 0+040b 0+027c

aELR ~3!+
bELR with estimated Bartlett correction~16!+
cELR with bootstrap critical values~23!+
Note: Underlined values indicate that the empirical level is not statistically different from the nominal at the
0+05 level+
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grid of numbers between21 and 1 and points at23 and 3, so that we have a
rather substantial leverage effect+ As with the previous example, the error« is
specified to beN~0,1! or t~5!, or x4

2 2 4, and the two parametersu1 andu2 are
set equal to 1+ Table 2 reports the finite-sample sizes of the ELR test~3!, of the
Bartlett-corrected ELR with estimated Bartlett correction~16!, and of the ELR
with bootstrap critical values~23! of the null hypothesisH0 : @u1 u2# 5 @1 1#
at 0+10, 0+05, and 0+01 nominal size+ The results are based on 5,000 replica-
tions, and the bootstrap critical values are calculated from 1,000 bootstrap
replications+

Bearing in mind that the scale of the simulation study is small, the results of
Tables 1 and 2 seem to indicate the following+ First, with the exception of the
nonlinear regression case withN~0,1! errors, the ELR test is characterized by a
noticeable size distortion, although the distortion tends to diminish when the
sample size increases+ Not surprisingly, the size distortion is more severe for
the skewedx4

2 2 4 errors+ Second, in the case of errors from a symmetric dis-
tribution, both the Bartlett correction and the bootstrap reduce the finite-sample
size distortion of the ELR, although some size distortion is still present, espe-
cially at the 0+01 nominal level+ On the other hand, for skewed errors the effec-
tiveness of the Bartlett correction is reduced considerably+ Finally, the ELR
with bootstrap calibration has smaller size distortion than the ELR with a
Bartlett-correctedx2 calibration+ The first point supports the findings of Cor-
coran et al+ ~1995! and Baggerly~1998! about the relative poor quality of the
x2 approximation to the distribution of the ELR statistic+ The second point
depends clearly on the form of the Bartlett correction~15!, which implies that
nonzero skewness typically reduces the magnitude of the Bartlett correction
itself+ The last point is related to the first one and should not therefore come as
a surprise: the effectiveness of the Bartlett correction depends crucially on the
quality of thex2 approximation+ Thus for data sets for which the latter is not
reasonable there should be significant gains by using the bootstrap+

To conclude this section, it is worth mentioning that the EL framework can
easily incorporate additional information, most noticeably information about
the second moment+ For example, the conditional variances2~x! of the inno-
vations« in Example I can be parameterized by a known functionh~xr,ha!
that depends on an additionalR p-valued vector of parametersha—which may
includeu r also—and, similarly, in Example II one can introduce an estimating
equation for the scale parameters2+

5. CONCLUSIONS

In this paper we have developed some higher order asymptotic theory for the
ELR test for parameters defined implicitly by GS+ By exploiting the connec-
tion between empirical and dual likelihood we have obtained valid Edgeworth
expansions for the distribution of the DLE and of the ELR+ The latter is used to
~i! derive an explicit expression of the third-order power function of the ELR
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under a sequence of local alternatives, ~ii ! justify rigorously the existence of a
Bartlett correction for the ELR, and~iii ! show that the “hybrid” bootstrap pro-
cedure suggested by Owen~1988! yields the same type of higher order accu-
rate inference implied by the existence of a Bartlett correction for the ELR+
The derivation of~i! and~ii ! relies on a set of Bartlett-type identities that, apart
from simplifying as in parametric likelihood inference some calculations, pro-
vide a simple explanation of the Bartlett-correctability phenomenon in the con-
text of EL inference for GS+

The application of bootstrap methods in the context of EL inference seems
very promising and suggests some directions for future research+ First, ELRs
with bootstrap calibration appear to have better finite-sample size properties
than ELRs with a Bartlett-correctedx2 calibration+ This is certainly true in the
Monte Carlo study reported in the paper; however, more simulation studies are
required to support this conclusion in full generality+

Second, bootstrap methods might be used to deliver higher order refine-
ments to the distribution of ELRs when nuisance parameters are present+ We
have conjectured that this might be the case as long as we can obtain Cornish–
Fisher expansions for the critical values of the resulting profiled ELRs+ This
possibility is certainly of interest and is left for future research+

Finally, bootstrap methods can be used in the context of weakly dependent
processes+ Kitamura~1997! shows that it is possible to obtain higher order refine-
ments to the distribution of the ELR statistic for smooth functions of means of
a-mixing processes, using blockwise resampling techniques similar to those used
in the bootstrap literature+ The same methods could be used in the context of
GS for time series models+

NOTE

1+ Our calculations support Keith Baggerly’s conjecture, as reported in the Errata section of
Owen’s empirical likelihood Web page: http:00www-stat+stanford+edu0;owen0empirical, that there
is a mistake in the formula of DiCiccio et al+ ~1991, p+ 1056! of the Bartlett correction+ Specifically
the term t2 should be 0, whereas the termt1 should be1

3
_ + With this correction, the formula of

DiCiccio ~1991! coincides with the one obtained in this paper~cf+ ~15!! in the case of GS+
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APPENDIX

A Theorem on the Density of Generalized Noncentral Quadratic Forms and Its Applica-
tion to Hermite Polynomials+ The following theorem derives a general formula useful to
express the density of generalized noncentral quadratic forms~i+e+, of scalar random
variables obtained by contracting nonzero mean normal random vectors over multidimen-
sional arrays of constants! in terms of finite linear combinations of noncentral chi square
random variables+ The formula can be applied to obtain asymptotic expansions for test
statistics under a sequence of local alternatives starting from the Edgeworth expansion
of their corresponding signed square root, rather than from their approximate moment
generating function+

Let fq,g~{! denote theq-dimensional normal density with meang and identity covari-
ance matrix and letgq,t~{! denote the density of a noncentral chi square random variate
with q degrees of freedom and noncentrality parametert , `+

THEOREM 8+ Let wRk 5 wr1+ + +wrk where each wrj ; fq,g~w! ~ j 5 1,2, + + + , k!,
bRk 5 br1 + + + rk an Rqk

-valued array of constants not depending on n, tr an Rq-valued
vector of auxiliary variables, and]k~{! 5 ]k~{!0]t r1+ + +]t rk. Consider the function
f ~{; t r ! :Rq r R and make the following assumptions.

GQF1. f ~{; t r ! [ CNk , the space ofk times continuously differentiable functions on
an open setN of t r 5 0,

GQF2. * supt r[N 6]kf ~{, v r ; t r !6dv r , `,

where theRq-valued vectorv r is defined subsequently. Then, for any arbitrary noncen-
tral k form wRkbRk, the following holds:

wRkbRkfq,g~w! 5 (
Y

bRkgRk1dRk2gq12#Rk,t
~x!, (A.1)

where(j51
2 kj 5 k, x 5 wrwr, t 5 g rg r, gRk1 5 g r1+ + +g rk1, dRk2 5 d rk111 rk112+ + +d rk221 rk2,

the symbol#Rk
denotes the number of different indices in the set Rk, and the sum is over

Y 5 $n2, + + + ,nk%—the number of ways of partitioning a set of Rk indices intonj subsets
containing j indices~ j 5 2, + + + , k! such that the resulting homogeneous polynomial in
gRk1 is even or odd according to the number of indices in the set Rk.
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Proof. We use the transformation fromRq to Rq11

T :wr r ~x, v r !,

wherex 5 wrwr, v r 5 wr0~wsws!102 and the following identity:

wRkbRkfq,g~w! [ (
j51

k

bRj] j @fq,g~w!exp~wrt r !#6t50+

Using T, the density forx is obtained by integrating out the vectorv r [ V1,q ~i+e+, over
the unit spherev rv r 5 1 in Rq!, i+e+,

~2p!2q02E
V1,q

(
j51

k

bRj exp@2~x 1 t!02#6JT 6] j @exp~x102v r t r !#6t50~dv r !, (A.2)

where 6JT 6 5 xq022102 is the Jacobian of the transformationT and ~dv r ! denotes the
unnormalized Haar measure on the Stiefel manifoldV1,q+ Upon normalizing the Haar
measure onV1,q by the constant 2pq020G~q02! and interchanging differentiation and inte-
gration in ~A+2!, which is permissible under GQF2 forf ~{, v r ; t r ! 5 exp~x102v r t r !, we
can then use Theorem 7+4+1 in Muirhead~1982! to obtain

C~x,q,t! (
j51

k

bRj] j @0 F1~;q02;x~t 1 t r t r 1 2g r t r !04!#6t50 (A.3)

with C~x,q,t! 5 xq0221 exp@2~x 1 t!02#0@2q02G~q02!# , 0F1~;c;z! 5 (j50
` z j0~c!j j! ,

and~c!j 5 G~c 1 j !0G~c!+ Differentiating~A+3! and evaluating the resulting derivatives
at t 5 0 yields a polynomial inx of degree at mostk with coefficients given by

0 F1~;q02 1 #Rk
;xt04!C~b,g,#Rk

!0@2#Rk~q02!#Rk
# k 5 1,2, + + + (A.4)

The constantC~b,g,#Rk
! in ~A+4! is itself an even or odd polynomial ingRk1 with coef-

ficients obtained by contracting accordingly the components ofgRk1, dRk2 , andbRk+ Ele-
mentary symmetry considerations show that the number of such contractions can be
found using standard combinatorial results on partitions reported, e+g+, in Abramowitz
and Stegun~1970, Table 24+2, p+ 831!+ Combining~A+3! and ~A+4!, becausegq,t~x! 5
exp@2~x 1 t!02#xq0221

0 F1~;q02;xt04!02q02G~q02!, ~A+1! follows immediately+ n

For generalized quadratic forms up tok 5 6 ~corresponding to the terms appearing in
third-order Edgeworth expansions!, ~A+1! yields

brwrfq,g~w! 5 brg rgq12,t~x!,

brswrwsfq,g~w! 5 brsg rgsgq14,t~x! 1 brsd rsgq12,t~x!,

brstwr + + +wtfq,g~w! 5 brstg rgsg tgq16,t~x! 1 @3#brstg td rsgq14,t~x!,

br + + +uwr + + +wufq,g~w! 5 br + + +ug r + + +gugq18,t~x! 1 @6#br + + +ug rgsd tugq16,t~x!

1 @3#br + + +ud rsd tugq14,t~x!,

br + + + vwr + + +wvfq,g~w! 5 br + + + vg r + + +g vgq110,t~x! 1 @10#br + + + vg rgsg tduvgq18,t~x!

1 @15#br + + + vg rdstduvgq16,t~x!,

br + + +wwr + + +wwfq,g~w! 5 br + + +wg r + + +gwgq112,t~x! 1 @15#br + + +wg r + + +gud vwgq110,t~x!

1 @45#br + + +wg rgsd tud vwgq18,t~x!

1 @15#br + + +wd rsd tud vwgq16,t~x!,
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from which the generalized quadratic formsbRkhRk ~1 # k # 6! based on the multivar-
iate Hermite polynomialhRk 5 hr1 + + + rk 5 ~21!k]kfq,g~w!0]wr1+ + +]wrk have densities

brhr 5 brg r ¹gq,t~x!, brshrs 5 brsg rgs¹2gq,t~x! 1 brsd rs ¹gq,t~x!,

brsthrst 5 brstg rgsg t ¹3gq,t~x! 1 @3#brstg td rs ¹2gq,t~x!,

br + + +uhr + + +u 5 br + + +ug r + + +gu ¹4gq,t~x! 1 @6#br + + +ug rgsd tu ¹3gq,t~x!

1 @3#br + + +ud rsd tu ¹2gq,t~x!,

br + + + vhr + + + v 5 br + + + vg r + + +g v¹5gq,t~x! 1 @10#br + + + vg rgsg tduv¹4gq18,t~x!

1 @15#br + + + vg rdstduv¹3gq,t~x!,

br + + +whr + + +w 5 br + + +wg r + + +gw ¹6gq,t~x! 1 @15#br + + +wg r + + +gud vw ¹5gq,t~x!

1 @45#br + + +wg rgsd tud vw ¹4gq,t~x! 1 @15#br + + +wd rs+ + +d vw ¹3gq,t~x!,

(A.5)

where¹kgq,t~{! is thekth-difference operator applied to the densitygq,t~{!, i+e+, ¹kgq,t~{! 5

(j50
k ~21! j Sk

j
Dgq12~k2j !,t~{!+

Proofs.Let C denote a generic positive constant not depending onn that may vary from
one~in!equality to another+ For simplicity of notation letW~u0! 5 W andWl~u0! 5 Wl+

Proof of Theorem 1. We first establish~6!+ Let lRk 5 lr1+ + +lrk ; a Taylor expansion
of the DL first-order condition 05 ]Wl about 0 gives, for any lr [ Gt,

0 5 ]W00n 1 (
k52

3

]kW0lRk210~k 2 1!! n 1 Rn~ Nl!, (A.6)

whereRn~ Nl! # C7lr 73max6k654 sup7 Nl2l7#t6]kW Nl60n+ By DL2 for someC« , ` and all
« . 0

Pr~7]W00n1027 . C~ log n!102! # Cn21~ log n!22,

Pr~6]kW0 2 E @]kW0#6 . «n! 5 o~n21! for 1 # 6k6# 3,

PrS*max
6k654

sup
7 Nl2l7#t

6]kW Nl 60n* . C«D5 o~n21!, (A.7)

where the first inequality follows by a moderate deviations result of Bhattacharya and
Rao ~1976, Corollary 17+12!, the second by Rosenthal and Markov inequality, and the
third by combining the second equality with the triangle inequality+ Let Sn denote the
union of the sets in~A+7!; clearly Pr~Sn! 5 o~n21!, so that on the setSn

c we can write
~A+6! as lr 5 gn~lr ! wheregn~{! is a continuous function fromRq r Rq satisfying
7gn~u!7# Cn2102~ log n!102 for all 7u7# Cn2102~ log n!102+Application of Brower’s fixed
point theorem as in Theorem 2+1 of Bhattacharya and Ghosh~1978! and the concavity of
Wl show that there exists a unique sequenceln

r such that Pr~7ln
r 7, Cn2102~ log n!102! $

1 2 Cn21~ log n!22, whence~6!+ To derive the Edgeworth expansion~7!, we first derive
a stochastic expansion forZln+ For notational convenience letl 5 n102 Zln; define the
following Op~1! random arrays:
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Zr1 + + + rk
5 ( fr1

~zi ,u0! + + + frk
~zi ,u0!0n102 2 n102kr1 + + + rk

, (A.8)

wherekr1 + + + rk
5 E @ fr1

~z,u0! + + + frk
~z,u0!# , and let

kRk,Rl , + + + ,Rv 5 E @ZRk
,ZRl
, + + + ,ZRv # (A.9)

denote thevth-order~mixed! cumulant ofZRj
5 Zr1 + + + rj

+
Combining~A+7! and~A+8! yields

0 5 Zr 2 Zrslr0n102 2 krslr 1 ]3W0lR30~2n302! 1 Rn~ Nl!, (A.10)

for 7 Nl7 # 7l7, where Pr~7Rn~ Nl!7 . Cn22~ log n!502! 5 o~n21!+ Becauselr 5 k rsZs 1
z1n

r , where Pr~7z1n
r 7 . Cn2102~ log n!! 5 o~n21!, and]3W00n

p
&& 2krst by the weak law

of large numbers, ~A+10! can be written as

lr 5 k rsZs 1 ~2k rsk tuZst Zu 1 k ruksvk twkuvw ZsZt !0n102 1 z2n
r ,

where Pr~7z2n
r 7 . Cn21~ log n!302! 5 o~n21!+ Upon substituting this last stochastic

expansion into~A+10!, because]4W00n
p
&& 2 6krstu, we obtain the stochastic expansion

lr 5 Zr 1 ~2k rsZst Z
t 1 k rskstuZtZu!0n102

1 ~k rsk tuZst ZuvZ
v 2 2k ruk twkuvw ZvZtu' Z

u' 1 k rsZstuZtZu

2 k rsk tukuvw Zst Z
vZw 2 k rskstuvZ

tZuZv

1 2k rr 'kss'k t 'u'kr 's't ' ku'uvZsZuZv !0n 1 z3n
r

5 Zr 1 Ln
r 1 z3n

r , (A.11)

whereZr 5 k rsZs and Pr~7z3n
r 7 . Cn2302~ log n!2! 5 o~n21!+ To derive the Edgeworth

expansion oflr on B [ B ~the class of all Borel subsets ofRq!, notice thatlr is a
function of the three random arraysZr , Zrs, andZrst and recall thatZ Tr

3 is theR Sq3-valued
vector containing all the different DL derivatives underH0 up to third order+ Let gZ Tr

3~B!
denote the~signed! measure corresponding to the characteristic function ofZ Tr

3 for
B [ QB ~the class of all Borel subsets ofR Sq3 ! and consider the following continuous
transformation: U Tr 5 x~Z Tr

3!, where

x :Ur 5 Zr , Urs 5 2Zrs 1 kr,st Z
t, Urst 5 2Zrst 2 2kr,stuZu, (A.12)

and kr,st and kr,stu are defined in~A+9!+ Let r1, + + + , rk denote indices each withq 5

(j52
3 Sq1j21

j
D components, E~U Tr U Ss! 5 S Tr Ss, E~Ur Us! 5 Srs 5 krs, E~U sr U ss! 5 Srs,

k Tr1 + + + Trk
5 CUM~U Tr1

, + + + ,U Trk
!, the kth-order multivariate cumulant ofU Tr , and

h Tr1 + + + Trk
~u! 5 ~21!k~]k0]U Tr1

+ + +]U Trk
!f Sq,S Tr Ss~U Tr !+ Given the continuity of~A+12! and the

independence ofUr from Urs and Urst we have that, for Z Tr
3 [ x21~B!, gU Tr ~B! 5

gZ Tr
3 @x21~B!# is given by
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gU Tr ~B! 5E
B

fq,Srs
~Ur !fq,Srs~U sr !$11 @k Tr h Tr ~u! 1 krst hrst~u!06#0n102

1 @~k Tr k Ss 1 k Tr Ss!h Tr Ss~u!02 1 ~k Tr kstu06 1 krstu024!hrstu~u!

1 krst kuvwhrstuvw~u!072#0n% du

5E
B

§n~u! du+ (A.13)

Consider the following continuous transformation: X Tr 5 c~U Tr !,

c :Xr 5 g~Ur !, Xrs 5 Urs, Xrst 5 Urst (A.14)

for

g~Ur ! 5 k rsUs 1 ~k rsUstU
t 2 k rsks, tvU

tU v 1 k rstUsUt !0n102

1 ~k rsk tuUstUuvU
v 1 2k rsk tuku, vwUstU

vU w 1 k rsk tuks, tvku,wzU
vU wU z

1 k rskuvkstuUvwU tU w 2 k rsk tuvks, twUuUvU
w 1 k rsUstuU tU u02

1 k rsks, tuvU
tU uU v02 2 k rsk tuvUstUuUv2 2k rstkt,uvUsU uU v

1 2k rskuvwkstuU tUvUw 2 k rstuUsUt Uu!0n,

where U r 5 k rsUs, k rst 5 k rr 'kss'k tt 'kr 's't ' , and k rstu 5 k rr 'kss'k tt 'kuu'kr 's't 'u' + By
~A+7! there exists aC . 0 such that on the setSn

U 5 $U : 7U Tr 7 , C~ log n!102% the trans-
formation c of ~A+14! is a C` diffeomorphism onSn

U onto its image+ Set gU Tr @{# 5
gU Tr @c21~B 3 Rq!# ; clearly

gU Tr @{# 5E
c21~B 3 Rq !

§n~u! du 5E
Sn

U ù c21~B 3 Rq !

§n~u! du 1 o~n21!

5E
c~Sn

U! ù ~B 3 Rq !

§n @c21~x!#6Jx 6 dx 1 o~n21!,

where6Jx6 is the Jacobian of the transformation~A+14!+ Because§n@c21~x!#6Jx6 can be
expressed as

gU Tr @{# 5E
c~Sn

U! ù ~B 3 Rq !

fq,Srs
~Xr !fq,Srs

~X sr !F11 (
j51

2

qj ~x!0n j02G dX Tr 1 o~n21!

5E
B

fq,Srs
~Xr ! HE

Rq
fq,Srs

~X sr !F11 (
j51

2

qj ~x!0n j02G dX srJ dXr 1 o~n21!,

for some polynomialsqj ~{!, we can integrateX sr out, obtaining

gU Tr @{# 5E
B

fq,Srs
~Xr !F11 (

j51

2

qj
'~Xr !0n j02G dXr 1 o~n21!

5E
B

§n~Xr ! dXr 1 o~n21! (A.15)
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for some polynomialsqj
'~{!+ Thus by ~A+15! we have that forln

r [ B« with « 5
Cn2302~ log n!2

sup
B[B*Pr~lr [ B! 2E

B
§n~Xr ! dXr* # sup

B[B
E

~]B!«
6§n~Xr !6 dXr 1 o~n21!

5 O~«! 1 o~n21!+

It remains to show that the densityfq,krs
~x!@1 1 (j51

2 pj ~x!0n j02# of the formal two-
terms Edgeworth expansion of the DLElr obtained by the delta method coincides with
§n~Xr !+ Becauselr is a maximum likelihood type estimator, its cumulants of order
bigger than 4 areo~n21!, whence sup7h7,16E$exp@ih r ~Zr 1 Ln

r !#% 2 [§n~h!6 5 o~n21!,
where [§n~{! is the Fourier transform of§n~{! defined in~A+15!+ By Cauchy’s estimates
for derivatives of analytic functions~Bhattacharya and Rao, 1976, Lemma 9+2!, we then
have that all the derivatives ofE$exp@ih r ~Zr 1 Ln

r !#% and [§n~h! differ by o~n21! at
h 5 0, implying that the two expansions are identical+ n

Proof of Theorem 2. A Taylor expansion ofW about the DLElr and ~A+7! show
that on the same setSn

c of Theorem 1W5 lrls~]2Wl!pn~Zr1 + + + rk
,lr ! 1 z4n, wherepn~{!

is a quartic polynomial inlr and the random variablez4n is such that Pr~ 6z4n6 .
Cn2302~ log n!502! 5 o~n21!+ By a further Taylor expansion ofW about the normalized
deviationn102h r 5 h r 5 ~lr 2 ln

r ! and the second inequality in~A+7!, we have that on
Sn

c with Pr~Sn
c! 5 1 2 o~n21! W admits the following stochastic expansion,

W 5 krslrls02 2 @]2Wl 02 1 E~]3Wl!h t 2 E~]3Wl!lt03#lrls0n102

2 @]3Wl h t 2 ]3Wl lt03 1 E @]4Wl#h thu02 2 E~]4Wl!lthu03

1 E @]4Wl~u0!#ltlu012#lrls0n, (A.16)

uniformly over compact subsets ofHlr + Define the scaled arrays

Zr1 + + + rk
5 (~k r1s1 !102fs1

~zi ,u0! + + + ~k rksk !102fsk
~zi ,u0!0n102 2 n102kr1 + + + rk

,

wherekr1 + + + rk
5 E @~k r1s1 !102fs1

~z,u0! + + + ~k rksk !102fsk
~z,u0!# + Substituting the stochastic

expansionlr 2 ln
r 5 Zr 1 Ln

r 1 op~n21! ~whereLn
r is as in ~A+11!! in ~A+16!, some

algebra shows that the stochastic expansion for the ELR statisticW under a sequence of
local alternatives has signed square rootWr ~i+e+, Wr Wr 1 op~n21! 5 W! given by

Wr 5 Zr 1 Hlr 1 ~krst ZsZt 03 2 Zrs Zs02 2 Zrs Hls02 1 2krst Zs Hlt03 1 krst Hls Hlt03!0n102

1 @Zrst ZsZt 03 1 3Zrs Zst Zt 08 2 5kstuZrs Zt Zu06

2 ~krstu04 2 4krst ' kt 'tu09!ZsZt Zu 2 5kstuZrs Zt Hlu03 1 2Zrst Zs Hlt03

1 3Zrs Zst Hlt08 2 ~3krstu04 2 4krst ' kt 'tu03!ZsZt Hlu 1 Zrst Hls Hlt03

2 ~3krstu04 2 4krst ' kt 'tu03!Zs Hlt Hlu 2 5kstuZrs Hlt Hlu06 2 Hlrt02

2 @2#dstZr Zs Hlt02 1 @3#dst~Zr Zs 1 2Zr Hls 1 Hlr Hls! Hlt03

2 @2#dstZr Hls Hlt02 2 ~krstu04 2 4krst ' kt 'tu09! Hls Hlt Hlu#0n+ (A.17)
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To prove~10!, we first show thatWr admits a valid Edgeworth expansion in the sense of
Bhattacharya and Ghosh~1978!+ BecauseWr is a function of the first three DL deriva-
tives, let gZ Tr

3~B! denote the measure corresponding to the characteristic function of the
vectorZ Tr

3 ~as in the proof of Theorem 1! and consider the same continuous transforma-
tion defined in~A+12!, U Tr 5 x~Z Tr

3! where

x :Ur 5 Zr
Dl , Urs 5 2Zrs 1 kr,st Zt , Urst 5 2Zrst 2 2kr,stuZu, (A.18)

andZr
Dl 5 Zr 1 Hlr + Clearly ~A+18! implies thatgU Tr ~B! 5 gZ Tr

3 @x21~B!# can be expressed
using the same Edgeworth measure as in~A+13!, the only difference being that the nor-
mal distribution appearing in the leading term has now nonzero meanHlr + Proceeding
now as in the proof of Theorem 1, defineX Tr 5 c~U Tr !

c :Xr 5 g Dl~Ur !, Xrs 5 Urs, Xrst 5 Urst , (A.19)

where

g Dl~Ur ! 5 Ur 1 ~UrsUs 2 kr,stUsUt !0n102

1 @Urst UsUt 06 1 kr,stuUsUt Uu06 2 Urst Hls Hlt06 2 kr,stuUs Hlt Hlu06

1 3UrsUstUt 08 2 3ks, tuUrsUt Uu04 1 3kr,stkt,uvUsUuUv 04

1 5kstuUrsUt Uu06 2 5kr,stksuvUt UuUv 06

2 ~krstu04 2 4krst ' kt 'tu09!UsUt Uu 1 Hlrt02 1 ~9krstu 2 16krst ' kt 'tu!

3 Us Hlt Hlu0181 @3# ~dstUr Hls Hlt 2 d rsd tu Hls Hlt Hlu!03#0n+

On the setSn
U 5 $U : 7U Tr 7 , C~ log n!102% , the transformationc defined in~A+19! is a

C` diffeomorphism onSn
U onto its image+ Then, as in the proof of Theorem 1, the

measuregU Tr @c21~B 3 Rq !# corresponding to the characteristic function of the inverse
transformation of~A+19! can be expressed as in~A+15! for some polynomialsqj

''~{!
whose degree is even or odd according toj+ Integrating outX sr , the joint expansion for
U Tr is then reduced to that ofWr 2 Hlr [ B+ It remains to calculate the formal Edgeworth
expansion ofWr 2 Hlr + Using the delta method, some algebra shows that the approxi-
mate cumulants forWr are

kr 5 Hlr 1 ~kr
20n102 1 kr

30n! 1 o~n21!,

kr,s 5 d rs 1 ~kr,s
2 0n102 1 kr,s

3 0n! 1 o~n21!,

kr,s, t 5 kr,s, t
3 0n 1 o~n21!, kr,s, t,u 5 kr,s, t,u

4 0n 1 o~n21!,

kr1, + + + , rl
5 o~n21! l $ 5,
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wherekr 5 E~Wr !, kr,s 5 Cov~Wr ,Ws!, etc+, with

kr
2 5 2kr,s,s06 1 krst Hls Hlt03, kr,s

2 5 ~2krst 2 kr,s, t ! Hlt03,

kr
3 5 ~9krs,st 1 16kr,sst2 18krsst! Hlt0242 q Hlr06 1 Hlr06

1 @2~4kr, t, t 1 3kr, tt !dsv 1 ~9kr,st 2 8kr,s, t !d tv #ksvw Hlw018

1 ~4krst ' kt 'tu09 2 krstu04! Hls Hlt Hlu 1 Hlrt02,

kr,s
3 5 ~krs, tt 1 2kr,stt 2 kr,s, t, t !04

1 ~9kr, tuks, tu 1 4krtu kstu2 24kr, tukstu2 kr, t,uks, t,u!036

1 ~27kr, tt ks,uu 1 32krtt ksuu2 60kr, tt ksuu!036

1 ~8kr,stu1 3krs, tu 2 18krstu! Hlt Hlu012

1 ~8krst ktuv1 16krtu kstv1 kr, t,ukstv2 18kr, tukstv ! Hlu Hlv09,

kr,s, t
3 5 kr,s, t 2 @3#kr,st 1 2krst 1 @3~kr,s, tu 2 krstu! 2 kr,s, t,u# Hlu02

1 @3# @4~9kr,s,u 1 32krsu 2 39kr,su!ktvw 1 3~2kr,s,u 2 3kr,su!kt, vw#duv Hlw036,

kr,s, t,u
4 5 kr,s, t,u 1 2@4#kr,stu1 @3#krs, tu 2 @6#kr,s, tu 2 6krstu

1 @4# ~kr,s, t 1 2kr,st 2 @2#kr,st!kuvv 03

2 ~3@4#kr,s, t 1 4@6#krst 2 6@6#kr,st!ku, vv 06

1 ~2krtv2 @3#kr, tv1 kr, t, v !ksuv+ (A.20)

Applying now the Bartlett-type identities~5! to ~A+20!, it is straightforward to verify
that kr,s, t 2 @3#kr,st 1 2krst 5 0 andkr,s, t,u

4 5 0+ Thus, as in the conclusion of Theo-
rem 1, for the classB of Borel subsets inRq satisfying~8!, the formal Edgeworth expan-
sion of GWr 5 Wr 2 Hlr ,

sup
B[B*Pr~ GWr [ B! 2 (

j50

2

n2j02E
B

fq~x!pj
'~x! dx* 5 o~n21!, (A.21)

is valid in the sense of Bhattacharya and Ghosh~1978!+ The validity of expansion~10!
follows by verifying that the conditions~a!–~c! of a theorem in Chandra and Ghosh
~1980, p+ 173! that we will denote as Theorem CG hold+ By ~A +17!, W 5
Zr Zr pn~Zr1 + + + rk

, Hlr ! for 1 # 6k6# 3 andpn~{! is a polynomial; therefore condition~a! of
Theorem CG holds—in particularAs ~iv! ~see p+ 172! holds on the same setSn

c of Theo-
rem 1+ Condition~b! of Theorem CG is a Cramér condition as assumed in DL3, whereas
condition ~c! of Theorem CG holds by the validity of~A+21!+ Expansion~10! is there-
fore valid in the sense of Chandra and Ghosh~1980!+ It remains to calculate the poly-
nomialspjk in ~10!+ By ~A+21! and the linear transformationT : yr 5 xr 1 Hlr , we have
that onSc 5 $ yr : yr yr # c% for any c [ @c0,`! with c0 $ 0

Pr~W # c6Hn! 5E
Sc

$11 @]kr
2 1 ]2kr,s

2 02#0n102 1 @]kr
3 1 ]2~kr,s

3 1 kr
2ks

2!02

1 ]3~kr,s, t
3 06 1 kr

2ks, t
2 02! 1 ]4kr,s

2 kt,u
2 08#0n%fq~ y! dyr , (A.22)
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where]k 5 ]k~{!0]yr1
+ + +]yrk

and the cumulantskr
j , kr,s

j ~ j 5 2,3!, andkr,s, t
3 are defined

in ~A+20!+ Integrating~A+22! and using~A+5! yields

Pr~W # c6Hn! 5 Gq,t~c! 1 P10n102 1 P20n 1 o~n21!,

where

P1 5 @2~krss2 kr,s,s 1 krst Hls Hlt !¹Gq,t~c! 1 ~2krst 2 kr,s, t ! Hls Hlt ¹2Gq,t~c!# Hlr06,

P2 5 $~9krs,st 1 16kr,sst2 18krsst! Hlr Hlt0242 qt06 1 t06 1 t202

1 @2~4kr, t, t 1 3kr, tt !dsv 1 ~9kr,st 2 8kr,s, t !d tv #ksvw Hlr Hlw018

1 ~4krst ' kt 'tu09 2 krstu04! 3 Hlr Hls Hlt Hlu 1 Brsd rs02

1 ~8kr,stu1 3krs, tu 2 18krstu!d rs Hlt Hlu024

1 ~8krst ktuv1 16krtu kstv1 kr, t,ukstv2 18kr, tukstv !d rs Hlu Hlv018

1 ~kr, t, t ks, v, v1 4krtu ksvw Hlt Hlu Hlv Hlw 2 4kr, t, t ksvw Hlv Hlw!d rs072%¹Gq,t~c!

1 $Brs Hlr Hls02 1 ~8kr,stu1 3krs, tu 2 18krstu! Hlr Hls Hlt Hlu024

1 ~8krst ktuv1 16krtu kstv1 kr, t,ukstv2 18kr, tukstv ! Hlr Hls Hlu Hlv018

1 ~kr, t, t ks, v, v1 4krtu ksvw Hlt Hlu Hlv Hlw 2 4kr, t, t ksvw Hlv Hlw! Hlr Hls072

1 @3# ~2kr,u,u 1 2kruv Hlu Hlv !~2kstw2 ks, t,w!d rs Hlt Hlw036

1 @3# @3# @4~9kr,s,u 1 32krsu 2 39kr,su!ktvw

1 3~2kr,s,u 2 3kr,su!kt, vw#d rsduv Hlt Hlw0216

1 @3# @3~kr,s, tu 2 krstu! 2 kr,s, t,u#d rs Hlt Hlu012

1 @3# ~4krtvksuw2 4krtvks,u,w 1 kr, t, vks,u,w!d rsd tu Hlv Hlw072%¹2Gq,t~c!

1 $6~2kr,u,u 1 2kruv Hlu Hlv !~2kstw2 ks, t,w! Hlr Hls Hlt Hlw

1 18@3~kr,s, tu 2 krstu! 2 kr,s, t,u# Hlr Hls Hlt Hlu

1 @3# @4~9kr,s,u 1 32krsu 2 39kr,su!ktvw

1 3~2kr,s,u 2 3kr,su!kt, vw#duv Hlr Hls Hlt Hlw

1 3@6# ~4krtvksuw2 4krtvks,u,w 1 kr, t, vks,u,w!d rs Hlt Hlu Hlv Hlw%¹3Gq,t~c!0216

1 ~4krtvksuw2 4krtvks,u,w 1 kr, t, vks,u,w! Hlr Hls Hlt Hlu Hlv Hlw ¹4Gq,t~c!072, (A.23)

with

Brs 5 2kr,stt 2 3krstt 02 1 ~9kr, tuks, tu 1 4krtu kstu2 24kr, tukstu

2 kr, t,uks, t,u 1 27kr, tt ks,uu 1 32krtt ksuu2 60kr, tukstu!036,

from which ~10! and ~11! follow after some algebra, noting thatkr , stt 5 krstt and
kr,st 5 krst+ n

Proof of Corollary 3. By ~essentially! the same arguments of Theorem 2, it is pos-
sible to show that, except on a setSn with Pr~Sn! 5 o~n22!, Wr admits a stochastic
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expansion that depends on the first four DL derivativesZ Tr
4 and that there exists a trans-

formationc ' similar to the one given in~A+19! such that the measure corresponding to
the characteristic function of~c '!21 can be expressed as the product of a multivariate
normal and some polynomialsqj

'''~{!0n j02 for j 5 1, + + + ,4+ Then, the same integration
argument giving~A+15! in the proof of Theorem 1 shows thatWr has a valid Edgeworth
expansion up too~n22! whose coefficients cannot be written down explicitly+ Thus, using
the moment condition and Cauchy’s estimates for derivatives of analytic functions~Bhat-
tacharya and Rao, 1976, Lemma 9+2! it is possible to show that this expansion agrees
with the formal four-terms Edgeworth expansion(j50

4 fq~x!pj ~x!0n j02, i+e+, for the
classB of Borel subsets inRq satisfying~8!, the following expression,

sup
B[B*Pr~Wr [ B! 2 (

j50

4

n2j02E
B

fq~x!pj ~x! dx* 5 o~n22!, (A.24)

is a valid Edgeworth expansion in the sense of Bhattacharya and Ghosh~1978!+ Thus to
show~12! it suffices to calculate*Sc

fq~x!pj ~x! dx for j 5 1, + + + ,4, whereSc is a sphere
in Rq with radiusc102 for somec [ @c0,`!+ Integrating over the sphereSc, using~A+5!
~with g 5 0! and the standard argument based on the oddness0evenness property of the
Hermite polynomials appearing in the Edgeworth expansion ofW ~Barndorff-Nielsen
and Hall, 1988!, gives the following Edgeworth expansion,

sup
c[@c0,`!

6Pr~W # c! 2 Gq~c! 2 B@Gq12~c! 2 Gq~c!#0~2n!65 O~n22!, (A.25)

whose validity in the sense of Chandra and Ghosh~1979! follows, using the same argu-
ments of Theorem 2, by the validity of ~A+24!+ Let ¹Gq~{! 5 Gq12~{! 2 Gq~{!; noting
that¹Gq~{! 5 22gq12~{! andgq12~c!0gq~c! 5 c0q, ~12! follows immediately from~A+25!+
To prove~13! notice that by a Taylor expansion

Gq @c~11 B0~nq!!# 5 Gq~c! 1 Bcgq~c!0~nq! 1 O~n22!, (A.26)

whence inserting~A+26! in ~12! yields

sup
c[@c0,`!

6Pr~WB # c! 2 Gq @c~11 B0~nq!!# 1 Bcgq~c!0~nq!65 O~n22!,

from which ~13! follows+ n
Proof of Theorem 4. We first show that ZB p

&& B for any Zu p
&& u0+ Let fRk

~z,u! 5
fr1

~z,u! + + + frk
~z,u! and notice that by GS1~ii ! fRk

~z,u! is continuous atu0 with probabil-
ity 1 ~w+p+1! for k 5 2,3,4; the consistency of Zu implies that there exists adn r 0
such that7 Zu 2 u07 # dn+ Let Df ~u! 5 sup7u2u07#dn

6 fRk
~z,u! 2 fRk

~z,u0!6; continuity of
fRk

~z,u! at u0 shows thatDf ~u! r 0 with probability 1+ The dominance condition
GS2~i! implies that Df ~u! # 2supu[N 6 fRk

~z,u!6 whence by dominated convergence
E @Df ~u!# r 0+ By Markov inequality Pr~6(Dfi ~u!0n6 . «! # E @Df ~u!#0« r 0 for all
« . 0+ By the weak law of large numbers( fRk

~zi ,u0!0n
p
&& E @ fRk

~z,u0!# ; moreover

*( fRk
~zi , Zu!0n 2 ( fRk

~zi ,u0!0n* # ( 6 fRk
~zi , Zu! 2 fRk

~zi ,u0!60n

# ( Dfi ~u!0n
p
&& 0+
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Therefore, the triangle inequality implies that6( fRk
~zi , Zu!0n 2 E @ fRk

~z,u0!#6 5 op~1!+
The consistency ofZB follows then by the continuity of tensor multiplication and matrix
inversion+ To establish~17! we use the following mean value expansion:

ZB 5 ZB0 1 ] ZB Nu 0]u r ~ Zu r 2 u0
r !, (A.27)

where ZB0 5 ZB6u5u0
, ZB Nu 5 ZB6u5 Nu and7u07# 7 Nu7# 7 Zu7+ Because by the weak law of large

numbers ZB0
p
&& B, it suffices to show that] ZB Nu0]u r p

&& E~] ZB00]u r !+ This follows by
the same argument used to establishZB p

&& B+ Because by GS2~ii ! the derivative
]fRk

~z,u!0]u r is continuous atu0, it follows thatD]f ~u! 5 sup7u2u07#dn
6]fRk

~z,u!0]u r 2
]fRk

~z,u0!0]u r 6r 0 ~w+p+1!, so that by GS2~iii !, Nu p
&& u0, and the triangle inequality we

have that

*n21 ( ]fRk
~zi , Nu!0]u r 2 E @]fRk

~z,u0!0]u r #* p
&& 0,

i+e+, n21 ( ]fRk
~zi , Nu!0]u 5 Op~1!+ By the n102 consistency of Zu, the stochastic expan-

sion ~A+27! shows that ZB 5 B 1 Op~n2102!, whence by the delta method Pr~W ZB # c! 5
Pr~W B # c! 1 O~n2302!+ The conclusion of the theorem follows by the oddness0
evenness property of the Hermite polynomials as in Corollary 3+ n

Let xn denote the observed sample+ In what follows we write Pr~xn! 5 o~n21! to
denote the event “the observed samplexn is contained in a set of probabilityo~n21!+”

Proof of Theorem 5. We first show ~18!+ Recall that ]kWl*
* 5

( fr1
~zi
*,u0! + + + frk

~zi
*,u0!0~1 1 l*r fr ~zi

*,u0!!k and that the BDLE Zln
* solves 0 5

]Wl*
* ~u0!+ By ~A+7! and Markov inequality we have that for all« . 0

Pr*~6]kW0
*2 E* @]kW0

*#6 . «n! 5 o~n21! for 1 # 6k6# 3,

Pr*S*max
6k654

sup
7 Nl2 Zln7#t

6]kW Nl
* 60n* . CD5 o~n21!, (A.28)

except if Pr~xn! 5 o~n21!+ The triangle and Markov inequalities show that
6E*~]kW0

*!6 # 6E*~]kW0
*! 2 E~]kW0!6 1 6E~]kW0!6 and Pr~6E*~]kW0

*! 2 E~]kW0!6 .
«! 5 o~n21!, implying that for 2# 6k6 # 3 except if Pr~xn! 5 o~n21!

Pr*~6E*]kW0
* 6 . C« ! 5 o~n21!, Pr*~6]kW0

*0n6 . C« ! 5 o~n21!+ (A.29)

Furthermore the moderate deviations estimates of Bhattacharya and Rao~1976, Corol-
lary 17+12! show that fora 5 6

Pr*~7]W0
*0n 2 E*~]W0

*!7 . Cn2102~ log n!102! 5 o~n21!, (A.30)

except if Pr~xn! 5 o~n21!+ Let Sn
* denote the union of sets where~A+28!–~A+30! hold,

and consider a Taylor expansion of 05 ]Wl*
* ~u0!0n about the DLE Zln

0 5 ]W Zln

* 0n 1 (
k52

3

]kW Zln

* ~ln
* 2 Zln!Rk210~k 2 1!! n 1 Rn

*~ Nl!, (A.31)

where Rn
*~ Nl! # C7ln

* 2 Zln
r 73max6k654 sup7 Nl2 Zln7#t 6]kW Nl 60n+ A further mean value

expansion of each of the]kW Zln

* ’s in ~A+31! about 0, the uniform moment condition
BDL ~i! and ~ii !, and ~A+28!–~A+30! show that outside the setSn

* with bootstrap proba-
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bility Pr*~Sn
*! 5 o~n21!, we can rewrite~A+31! as ln

* 2 Zln 5 gn~ln
* 2 Zln! where the

continuous functiongn~{! :Rq r Rq satisfies7gn~u!7 # Cn2102~ log n!102 for all 7u7 #
Cn2102~ log n!102+ Thus as in the proof of Theorem 1, Brower’s fixed point theorem
implies that there exists a sequence of random vectorsZln

* such that

Pr*~7 Zln
* 2 Zln7 # Cn2102~ log n!102! 5 1 2 o~n21!,

except if Pr~xn! 5 o~n21!+ To prove~19! we follow the same arguments of Theorem 1+
First, by repeated application of~A+28!–~A+30! it is possible to show that, except if
Pr~xn! 5 o~n21!, n102~ Zln

*r 2 Zln
r ! has the following stochastic expansion:

n102~ Zln
*r 2 Zln

r ! 5 @2E*~]2W Zln

* !#21]W Zln

* 0n102 1 ZLn
*r 1 op* ~n

21!, (A.32)

where ZLn
*r is an Rq-valued function of the BDL derivatives~and their expectations!

evaluated atZln whose norm isOp* ~n
21~ log n!302! except if Pr~xn! 5 o~n21! ~i+e+, ZLn

*r

is the bootstrap analogue ofLn
r given in ~A+11!!+ Next by Lemma 2 of Babu and Singh

~1984! the characteristic function of ZZ Tr3* satisfies with probability 1

lim sup
nr`

sup
d#7t Tr 7#exp~ng!

E* @exp~it Tr ZZ Tr3*!# , 12 g '

for some positive constantsd,g,g ' , where ZZ Tr3* is theR Sq3-valued vector containing all
the different BDL derivatives~up to third order! evaluated atZln+ Thus, as in Theorem 1,
it is possible to show that except if Pr~xn! 5 o~n21! for every classB of Borel subsets
in Rq satisfying supB[B *~]B!e fq,krs

~x! dx 5 O~e! ase f 0

sup
B[B*Pr*~n102~ Zln

* 2 Zln! [ B! 2E
B
Z§n
*~x! dx* 5 o~n21!,

where Z§n
*~{! 5 fq,krs

* ~{!@1 1 (j51
2 Zpj

*~{!0n j02# is the density of the empirical Edgeworth
expansion obtained by replacing the population moments with their bootstrap analogue+
Thus~19! follows if for all « . 0

Pr~6 Zpj
*~{! 2 pj ~{!6 . «! 5 o~n21! j 5 1,2+ (A.33)

Because each bootstrap moment can be expressed asE* @) l51
k ~ ZZRk

* !# for 1 # 6k6 # 4,
and

lim sup
nr`

E*F)
l51

k

~ ZZRl

* !G # lim
nr`

sup
l[Gt

( )
l51

k

~ZiRl
!0n,

whereZiRl
is the i th component of theRql

-valued array of DL derivatives evaluated at
an arbitraryl [ Gt, ~A+33! follows by verifying that for 1# 6k6 # 4

PrS*( )
l51

k

~ ZZiRk
! 2 ( )

l51

k

~ZiRl
!* . n«D5 o~n21!,

PrS*( )
l51

k

@ZiRk
2 E~ZRl

!#* . n«D 5 o~n21!+ (A.34)
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The first limit follows by a mean value expansion about 0+ To see this notice that by the
second equality in~A+7!, we have

PrS*n21 ( ]F)
l51

k

ZiRl
2 ES)

l51

k

ZRlDGY]l* . «D5 o~n21!,

so that by the triangle inequality Pr~6n21 ( ]~) l51
k OZiRk

!0]lr 6 . C«! 5 o~n21! for
someC« , `, where OZiRk

5 Zr1 + + + rk
6l5 Nl and7 Nl7 # 7 Zln7+ Moreover by~6! and Markov

inequality Pr~7 Zln7 . «! 5 o~n21! whence

PrS*n21 (
i
S])

l51

k

OZiRl
0]lrD Zln

s * . «D5 o~n21!+

The second limit in~A+34! follows by Rosenthal and Markov inequality+ n

Proof of Theorem 6. Let Zr1 + + + rk

* 5 ( fr1
~zi
*,u0! + + + fr1

~zi
*,u0! and kr1 + + + rk

* 5
E*~Zr1 + + + rk

* 0n! and notice that]kW0
* 5 ~21!k21~k 2 1!~Zr1 + + + rk

* 2 kr1 + + + rk

* !, whereW0
* 5

Wl*
* 6l*50 is the “restricted” BDL evaluated at 0+ As in Theorem 5 we have that, except if

Pr~xn! 5 o~n21!, for 1 # 6k6 # 3

Pr*~6Zr1 + + + rk

* 0n 2 kr1 + + + rk

* 6 . Cn2102~ log n!102! 5 o~n21!,

whereas by Markov inequality6kr1 + + + rk

* 2 kr1 + + + rk
6 5 op~n21!, so that

Pr*~6Zr1 + + + rk

* 0n 2 kr1 + + + rk
6 . Cn2102~ log n!102! 5 o~n21!, (A.35)

except if Pr~xn! 5 o~n21!+ A Taylor expansion ofW * about 0 gives

W * 5 (
k51

3

~21!k21~Zr1 + + + rk

* 2 kr1 + + + rk

* ! Zln
*r1 + + + Zln

*rk0k 1 Rn
*~l* !, (A.36)

whereRn
*~l* ! # C7 Zln

* 74max6k654 sup7l* 7#t 6]kWl*
* 60n+ As in Theorem 5 it is possible to

show thatn102 Zln
*r admits a stochastic expansion of the form

n102 Zln
*r 5 k*rs~Zs

*2 ks
*!0n102 1 Ln

*r 1 op* ~n
21!, (A.37)

wherek*rs is the matrix inverse ofkrs
* andLn

*r is as in~A+32!+ Repeated applications of
~A+35! show that Pr*~7n102 Zln

* 7 . C log n102! 5 o~n21! except if Pr~xn! 5 o~n21!, and
thus by triangle inequality it follows that

Pr*~6Rn
*~l* !6 . 7 Zln

* 74C~11 n2102~ log n!102!! 5 o~n21!+

Substituting~A+37! into ~A+36! shows that, except if Pr~xn! 5 o~n21!, the BELR admits
the following stochastic expansion:

W * 5 k*rs~Zr
*2 kr

*!~Zs
*2 ks

*!pn~Zr1 + + + rk

* !0n 1 op* ~n
21!,

wherepn~{! is a polynomial inZr1 + + + rk

* with coefficients depending onkr1 + + + rk

* + Let Zr
*c 5

Zr
*2 kr

*; as in Theorem 2, we can obtain the signed square root decomposition ofW * 5
k*rsWr

*Ws
* 1 op* ~n

21! with
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Wr
* 5 Zr

*c0n102 1 @2Zrs
* ~k*ss'Zs'

*c!02 1 krst
* ~k*ss'Zs'

*c!~k*tt
'
Zt '
*c!03#0n

1 @Zrst
* ~k*ss'Zs'

*c!~k*tt
'
Zt '
*c!03 1 3Zrs

* Zst
* ~k*tt

'
Zt '
*c!08

2 5Zstu
* Zrs

* ~k*tt
'
Zt '
*c!~k*uu'Zu'

*c!06 2 ~krstu
* 04 2 4krst '

* kt 'tu
* 09!

3 ~k*ss'Zs'
*c!~k*tt

'
Zt '
*c!~k*uu'Zu'

*c!#0n,

which shows that, except if Pr~xn! 5 o~n21!, Wr
* is a function of the first three BDL

derivatives outside a setSn
* with bootstrap probability Pr*~Sn

*! 5 o~n21!+ Thus, by the
same arguments of Theorem 5 it can be shown thatWr

* admits a valid Edgeworth
expansion in the sense of Bhattacharya and Ghosh~1978! except if Pr~xn! 5 o~n21!+
Therefore following the same steps of Theorem 2 it can be shown that, except if Pr~xn! 5
o~n21!,W * admits the following valid~in the sense of Chandra and Ghosh, 1979! Edge-
worth expansion

sup
c[@c0,`!

6Pr*~W * # c! 2 Gq~c! 2 B* @Gq12~c! 2 Gq~c!#0~2n!65 o~n21!, (A.38)

whereB*5 krstu
* k*rsk*tu02 2 krtv

* ksuw
* k*rsk*tuk*vw03 is the bootstrap Bartlett correction,

i+e+, ~16! at u 5 u0+ By ~A+34! we have

Pr~6B* 2 B6 . «! 5 o~n21!, (A.39)

and thus combining~A+38!, ~A+39!, and~A+25! yields

sup
c[@c0,`!

6Pr*~W * # c! 2 Pr~W# c! 2 ~B* 2 B!@Gq12~c! 2 Gq~c!#0~2n!6 5 o~n21!,

sup
c[@c0,`!

6Pr*~W * # c! 2 Pr~W# c! 2 op~n22!6 5 o~n21!,

except if Pr~xn! 5 o~n21!+ n
Proof of Corollary 7. As in the proof of Corollary 3 it is possible to show that the

BELR admits a valid Edgeworth expansion up too~n22! except if Pr~xn! 5 o~n22!+
Thus by the results of Corollary 3, Theorem 6, and the generalized Cornish–Fisher expan-
sion formula of Hill and Davies~1968! it follows that the asymptotic expansions for the
a point of W andW * are

ca,n 5 ca~11 B0~nq!! 1 O~n22!,

ca,n
* 5 ca~11 B*0~nq!! 1 Op~n22!,

respectively, whereca 5 Pr~xq
2 $ ca! 5 a+ Therefore using the delta method, a Taylor

expansion, and the Edgeworth expansion ofW, we have

Pr~W . ca,n
* ! 5 Pr~W2 ~ca,n

* 2 ca,n! . ca,n!

5 Pr~W2 Op~n22! . ca 1 ca B0~nq!!

5 12 Gq @ca~11 B0~nq!!# 1 ca Bg~ca!0~nq! 1 O~n22!

5 a 1 O~n22!,

which shows that effectively the BELR accomplishes the Bartlett correction automatically+
n
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