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EMPIRICAL LIKELIHOOD BASED
INFERENCE WITH APPLICATIONS
TO SOME ECONOMETRIC MODELS

FRANCESCO BRAVO
University of York

This paper uses the concept of dual likelihood to develop some higher order asymp-
totic theory for the empirical likelihood ratio test for parameters defined implic-
itly by a set of estimating equationghe resulting theory is likelihood based in

the sense that it relies on methods developed for ordinary parametric likelihood
models to obtain valid Edgeworth expansions for the maximum dual likelihood
estimator and for the du&mpirical likelihood ratio statisticln particular the
theory relies on certain Bartlett-type identities that can be used to produce a sim-
ple proof of the existence of a Bartlett correction for the daaipirical likeli-

hood ratio The paper also shows that a bootstrap version of the/dogirical
likelihood ratio achieves the same higher order accuracy as the Bartlett-corrected
dual/empirical likelihood ratio

1. INTRODUCTION

Empirical likelihood(EL) is introduced by Oweli1988 as a way of extending
parametric methods of inference to certain nonparametric situatiottse sim-
plest situationone is interested in obtaining a confidence region for the mean
of the unknown distribution of a sample of independent and identically distrib-
uted(i.i.d.) observationsWithout specifying a parametric form for the unknown
distribution Owen (1988 1990 shows that under very weak conditions the EL
ratio function can be used to construct confidence regions for the mean using
an asymptoticy? calibration EL confidence regions have a data-determined
shape(i.e., they tend to be more concentrated in places where the density of
the parameters estimator is greateand they are not necessarily ellipsoidal
as in the case of confidence regions based on the normal approximfation
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thermore they are Bartlett-correctabl@iCiccio, Hall, and Romanp1991), so

that the actual coverage error differs from the nominal by a term of @der?).

These attractive properties have motivated various researchers to extend the
EL method to more general statistical modef®e the monograph of Owen
(2001 for an excellent account of recent developments and applications.of EL

In this paper we consider EL inference for the class of statistical models where
the parameters are defined implicitly through a set of estimating equalibiss
class of models is particularly relevant in econometrlscause most maxi-
mum and quasi-maximum likelihopdonlinear least squareand M estima-
tors are defined through estimating equation&e shall refer to this set of
estimating equations as generalized scO@&S).

The main objective of the paper is to develop some higher order asymptotic
theory for the EL ratid ELR) test of a simple hypothesis about the parameters
defined by GSThe approach we follow exploits an important connection relat-
ing EL to dual likelihood(DL) (Mykland, 1995: in the case of independent
observationsthe ELR statistic coincides with the DL rati@LR) statistic The
importance of this connection stems from the fact that the DL concept is intro-
duced by Mykland(1995 as a device for using likelihood methods in the
context of martingale inferenc&hus in the special case of independent obser-
vations the connection between DL and EL implies the possibility of using
likelihood methods in the context of EL inferencthis is very convenient
because we can then rely on techniques developed for ordinary parametric like-
lihood models and can use the classical methods of Bhattacharya and Ghosh
(1978, Chandra and Ghosi979 1980, and Hill and Davie$1968 to derive
rigorously results on the higher order properties of the ELR statistic

The results obtained in the paper extend awctomplement results of Owen
(1988 1991), DiCiccio and Roman@1989, DiCiccio et al (1991), Chen(1993
1994, Mykland (1995, and othersThe new results are the followinjrst, we
prove the validity of the Edgeworth expansion for the maximum DL estimator
and for the ELR statistic under a sequence of local alternaflVeslatter extends
to the multiparameter case and to the third order Mykland’s asymptotic analy-
sis (1995 Sect 7) of the alternative hypothesis induced by the.Dhciden-
tally, we note here thatwith the exception of Cheiri1994 and Lazar and
Mykland (1998, much of the research on the higher order properties of the
ELR statistic has been focused on its accuracy rather than on its poheer
Edgeworth expansion for the ELR under a sequence of local alternatives derived
in the paper fills this gapbecause it can be used to approximate the power of
the ELR test for particular values of the local alternatives

Second we show thatunder the null hypothesishe ELR statistic for the
parameters defined by GS admits always a Bartlett correcTibis result in
itself is not new in the sense that the Bartlett correction factor obtained in the
paper coincides in practiéavith the one obtained originally by DiCiccio et.al
(199) in the case of a multivariate me#&see alspin the case of linear regres-
sions Chen 1993 in the case of one parametdrfunctionals see Zhang1996.
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What is new instead is the way in which the Bartlett correction is obtained
Our method relies on certain Bartlett-type identitid@dykland, 1994 (see(5),
which follows) and produces an alternative proof of the Bartlett-correctability
of the ELR that complements the results of DiCiccio et(@991) and we
believe provides a key to understanding the Bartlett phenomenon in the con-
text of EL inference for GSsee the discussion following Corollary 3 in Sec-
tion 3. We also propose a simple consistent estimator for the Bartlett correction

Third, we provide asymptotic justification for a bootstrap version of the ELR
statistic originally proposed by Owef1988 as a “hybrid” method in which
EL confidence regions for the parameters of interest are based on the bootstrap
distribution of the ELR rather than the asymptoti€ calibration We show that
the bootstrap approximates the distribution of the ELR to an artfer®) except
if the observed sample is contained in a set of probability *), and we also
show that the ELR with bootstrap calibration accomplishes the Bartlett correc-
tion automatically i.e., the ELR with bootstrap critical values has the same
level of accuracy as the Bartlett-corrected ORlge same phenomenon was noted
by Beran(1988 p. 694) in the case of parametric bootstrap likelihood ratio
tests

Finally, we prove in the Appendix a general theorem on the density of gen-
eralized noncentral quadratic formshich is of its own independent interest
because it can be used to calculate formal Edgeworth expansions of asymptotic
x? test statistics admitting a stochastic expansion under a sequence of local
alternatives

The results in the paper are useful to obtain ELR tests that have a desirable
higher order accuracy propertyhe bootstrap version of the ELR is particu-
larly useful because the bootstrap calibration is likely to be more accurate than
the Bartlett-correctegy? calibration Monte Carlo simulationgseg e.g., Cor-
coran Davidson and Spady1995 Baggerly 1998 and Tables 1 and 2 in Sec-
tion 4 of this paperseem to suggest in fact that thyé calibration itself is not
very reasonableimplying that the practical usefulness of the Bartlett correc-
tion is limited

The results of the paper can be applied to test simple hypotheses for param-
eters defined in practice by any G&g., they can be applied to the ELR test
for generalized linear models considered by Kolaczi/894 and to the ELR
test for generalized projection pursuit models considered by G®&90). Other
examples include ELR tests for “moment” models similar to those considered
(albeit in the more general context of weakly dependent observatigriBurn-
side and Eichenbaurf1996, and for nonlinear and robust regression mogels
the latter are considered in Section 4 of this paper

On the other handhe results of this paper do not cover the case of compos-
ite hypothesisWhen nuisance parameters are presewen in the form of over-
identifying restrictiong it is not clear from DL arguments what the higher order
behavior of the ELR statistic should bgecause the Bartlett-type identities do
not hold for the nuisance parametersis is the principal way in which dual
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(and hence empiricalikelihood shows different behavior from an ordinary para-
metric likelihood and this implies that the profile ELR test obtained by maxi-
mizing out the nuisance parameters is in general not Bartlett-correctzdaar
and Mykland 1999. Whether it is possible to obtain higher order refinements
to the distribution of profile ELRs is an open question that is relevant to econo-
metrics because the latter is typically characterized (pgssibly overidenti-
fied) models with many nuisance parameteBse possibility is to adjust the
critical values rather than the test statistics themselves using generalized Cornish—
Fisher expansiongHill and Davies 1968. The calculations involved in such
expansions are however notoriously difficiddmputerized algebra or possibly
a suitable bootstrap procedure might be very useful in this respeetthe dis-
cussion at the end of Corollary 7 in Section 3

The remainder of the paper is organized as folloWee next section reviews
briefly EL inference for GSemphasizing its DL interpretatio$ection 3 con-
tains the main results of the pap&ection 4 considers two examples that illus-
trate the theory and reports the results of some Monte Carlo simulations used
to assess the effectiveness of the Bartlett correction and bootstrap calibration
in finite samplesSection 5 contains some concluding remarks and indications
for future researchAll the proofs are contained in the Appendix

Throughout the rest of the paper we follow tensor notation and indicate
arrays by their element§hus for any index 1=r; = q (j = 1,2,...,k),
a, is anN9-valued vectara,s is an 9 9-valued matrix etc We also follow
the summation conventione., for any two repeated indicgtheir sum is under-
stood Finally the sum>, and producf ] operators are intendednless other-
wise statedas >, and[l;.

2. THE RELATIONSHIP BETWEEN EMPIRICAL
AND DUAL LIKELIHOOD

Suppose that the observatiais)_, are ii.d. #™-valued random vectors from
an unknown distributior. Let # € ® C N9 be an unknown parameter vector
associated witl andE denote the expectation operator with respedt.tove
assume that the information abdutand®é is available in the form

E[f.(z60)] =0, 1)

for some specified valué, of 0, with the GSf,(z,0): 1% X ©® — N%-valued
vector of known functionally independent functigreatisfying the following
standard regularity conditions

GS1 (i) E[ f,(z,6)] = 0 for a uniquef, € int{®}, (ii) f,(z,0) is continu-

ous atfy with probability 1, (iii) E[0f,(z, 6,)/06%] is of full column rankg,
(iv) E[ f.(z,60)fs(z,00)] is positive definite
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The EL approach to inference for the paramétetefined by the constraint
(1) is based on the profile ELR function

R(0) = sup{[Irplp =0, pifi(z,0)= 0,3 p =1}, 2)
Pi

wherep, = Pr(z = z), which shows that EL inference may be interpreted as
parametric likelihood inference using a data-determined multinomial distribu-
tion supported on the observatiodssume that

EL. Pr(0 € ch{f,(z1,00) ... f(zn,6p)}) =1 asn— oo,

wherech{-} denote convex hull of the poinfs(z;, #), and suppose that we are
interested in testing the hypothesls: 6 = 6,. A Lagrange multiplier argument
shows(Owen 1990 that the unique solution d2) evaluated ab = 6, is given
by pi = [n(1 + A'f,(z,600))] %, where A" = A"(6,) is an N 9-valued vector of
Lagrange multipliers determined Y f.(z,6,)/(1 + A'f.(z,6y)) = 0. Simple
algebra shows that the log ELR test2 logR(6,) for the null hypothesis
Ho: 6 = 6y is given by

W(6,) = 2>, log(1+ A", (z,6p)), ©)

and Owen(1990 proves thatunderGS1(iv) andEL, W(6) N Xg—similarly,
confidence regions fo# may be obtained as the set of poirtssuch that
W(6) = c,, wherec, = Pr(yi=c,) =1-a.

Suppose now thafor a fixed 6y, A is regarded as &ee-varyingvector of
unknown parameters and consider the following statistic

W, (6p) = > log(1+ A'f(z;,65)), (4)

where the subscript is used to emphasize th@) now depends on the unknown
parameteri. In the case of independent observation(6,) coincides with
the logarithm of the DL Mykland1995); the latter corresponds to the product
integral ofA'f,(z, 6,) and can be viewed as a likelihood function for the param-
eter A becausgas long ad,(z,0,) is bounded ana is contained in a neigh-
borhood of 0

E[TTA+ )T (z.00)| =1 and 1+ A, (z.6) >0,
for small A. A standard optimization argument shows that the ELR test of

0 = 0, defined in(3) is then equivalent to a DL ratidDLR) test on the dual
hypothesisHg: A = 0, i.e,,

W(6,) = Z(Win(eo) — Wo(6o)),
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whereWp(6) = W, (6o)|,—o and A,, is the maximum DL estimator solution of
the first-order conditiongW, (6,)/0A" = 0; we shall call the maximum DL esti-
mator DLE

As mentioned in the introductigrthe equivalence between the ELR test of
0 = 6, and the DLR test of = 0 is crucial in the paper because it implies the
possibility of analyzing the higher order properties of the ELR statistic using
likelihood methods on the dual parameteinstead To elaborate furthetet us
introduce some additional notatiofor k = (ky,...,k) € (Z,)" write |k| =

}:1k-; let 9KW, (-) = a*W, (-)/0A™...0A™ andT, = I'(0,7) be an open sphere
centered around 0 with radius> 0. Assume that for alh € I,

DL1. E[|0"W,(6o)|] < oo for |k| = 0,

where the inequality should be interpreted componentviise|k| = 0, DL1 is
a sufficient condition for showing the existence and consistency of the QLE
solution of aW,(6,) = 0. To see this notice that thedi9*9-valued matrix
E[02W,(6,)] is negative definite as long as+ A"'f.(z,6,) = 1/n (which is
implied by the fact that under EL the sBf = {A\": 1 + A'f,(z,6,) = 1/n} is
closed convex and bounded herefore by the implicit function theorem there
exists a neighborhood wheredW, (6,) = 0 have a unique solutioMoreover
E[W,(6,)] is uniquely maximized at = 0, andW, (6y)/n L5 E[W,(6,)] for all

A € I.. Thus given the strict concavity oWV, (6,) in I,, it follows by standard
consistency results for concave objective functi@mg., Theorem 27 of Newey
and McFadden1994) that A,, - 0.

For |k| = 1, DL1 is a sufficient condition for interchanging the differential
and integral operators in the equati@fE {exp[W, (6,)] — 1} = 0; the latter can
then be used to produce a new set of regularity conditions known in ordinary
parametric likelihood theory as Bartlett identiticBartlett 1953. The result-
ing Bartlett-type identities relate linear combinations of expectations of DL deriv-
atives and can be summarized concisely as

> E[0%Wp(8p) ... 0" W (6)] = O, (5)
Ry
whered“W,(-) = 08W,(-)|,_o(j = 1,...,1) and the sum is over all partitions

kilks|...|k of the set of indice®. In practice(5) can be used as in paramet-
ric likelihood inference to simplify some of the expressions arising in the cal-
culations of the higher order cumulants of the DLR statigsee(A.20) in the
Appendiy, leading to the general result3) about the Bartlett-correctability
property of the DLR(whence of the ELR

3. HIGHER ORDER ASYMPTOTICS AND THE BOOTSTRAP
FOR THE ELR STATISTIC

This section contains the main results of the paferction 31 derives valid
Edgeworth expansions for the DLE and the ELR under both a sequence of local
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alternatives and the null hypothesBection 32 discusses how to estimate in
practice the Bartlett correctiorand Section 3 shows how the bootstrap and

EL can be combined to produce highly accurate inference for the parameters
defined by GS

3.1. A Valid Edgeworth Expansion for the DLE
and for the ELR Statistic

Let us introduce some additional notation and assumptiogis| - | denote the
Euclidean normassume that for alh € I, and somex,B8 € Z,

DL2.

(i) E[10"W,(60)|*] < oo for 1= k| = B,
(i) E[MaXy—p+1SURi—aj=-|0"W5(0o)|*] < oo,

DL3. supy=s/Eexp{tt’Z}o}| < 1, for .2 = —1 and alls > 0 andl € Z,,

where for g = 3\, (‘“E*), 1=r=4q,andZ}, € R denote the vector
containing all the different DL derivatives up tth order evaluated at” = 0.
Conditions DL2 and DL3 are sufficient for proving the validity of Edgeworth
expansionsnotice that DL2 is satisfied iE|| f(z, 6y)|** < co.

Let X7 on 29, . (x)p;(x) denote the formal Edgeworth expansi@hat-
tacharya and Ghosti978 eq (1.14)) of the distribution ofA,, whereg, , (-)
denote theg-dimensional normal density with mean O and covariarge=
E[ f,(z 6p)fs(z,600)]. The following theorem shows that the DLE admits a valid
Edgeworth expansion in the sense of Bhattacharya and GA8313.

THEOREM 1 Assume that GS1, EL, and DL2 with= 4, 8 = 3 hold. Then,
for some constant G 0,

Pr(n¥2|A,| < C(logn)¥2) =1 —o(n™1). (6)

Furthermore, assume that the Cramér condition DL3 holds wih3. Then,

2
sup Pr(n21, €)= 3,007 [ 4., (0p 0 e = oln ) @)
BeB i=0 B
whereB is the class of Borel subsets #? satisfying
sup &g . (X)dx=O(e) ase lo. (8)

BeB J(9B)¢

Before obtaining an Edgeworth expansion for the ELR under a sequence of
local alternativeswe first discuss what type of local alternatives is consistent
with the DL approach to EL inferencé& simple modification of the argument
of Mykland (1995 pp. 410—41) shows that the sequence of local alternatives
induced by the DL is of the fornH,: A, = k,sA%nY2 for some finite non-
random vectorA”. This type of local alternatives assumes implicitly that the
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DL under the alternative hypothesis belongs to the same parametric subfamily
specified under the null hypothesise., the product integral oi\'f,(z, 6y)),
ruling out effectively the possibility of considering local alternatives wtierin
A andf are allowed to depend on a sequence of local alternafiviés type of
local analysis is introduced by Chesher and Snitd97) as a generalization
of the standard likelihood based local analy&se e.g., Peers 1971 and
requires the specification of an augmented local alternative of the form
H2: 0, =[6n Anl, Whered, = 6, + 6/n¥? and A, = A(6/nY?) = X/nY/? for
some finite nonrandom vectér This general frameworkowevey might break
down the DL construction for it requires the consideration of alternatives that
might not necessarily lie in th@og) DL subfamily defined in(4). Bearing this
in mind, it should be clear why the only sequence of local alternatives for the
ELR consistent with the DL construction takes the fdry A", = k,sA5/nY2

For simplicity we reparameterizd,, asH,: A\, = kY219n%2 wherex %2 is
the square root of the symmetric positive definite maiiiy and we define the
scaled arraysmoment$

Kry..n, = E[(K)Y2E(2,00) ... (k"5)V2Mg (2, 60)], (9)

so thatk,s = 6"™—the Kronecker deltai.e, 6" =1, 8 = 0 forr # s. Let

G, -(+) denote the distribution function of a noncentral chi square random vari-
able withq degrees of freedom and noncentrality parameterhe following
theorem shows that the ELR test under a sequence of local alterntdtiaeimits

a valid Edgeworth expansion in the sense of Chandra and GHOS).

THEOREM 2 Suppose that the assumptions of Theorem 1 hold. Then, uni-
formly in c € [cy,00) for some g =0 (co = 0if r > 1),

Sup Pr(W(6,) = c|H,) — éo é‘,o P Gq+2k-(€)/nV?| = o(n™1) (10)
uniformly over compact subsets &, wherer = AT A", and
Poo = 1, P1o= _KrstXF)F\EXF/B, P11 =0,
P12 = KrstXFF}\T/& P13 =0, P1sa=0,
Poo = —[B"™ — 7k, AAAY12 + (8K, Kuw — Krtu KS,U)}\T‘/’\U/Q]
X (8™ — N A%)/2 — Ty A AY24— (L—q)7/6 — 7%/2
— (~ T 8% + Kyt ™) kg A AY/18 — (AKyey Kyny /9 — Kot/ ) AT AS AT AT
F (— Ky T 2Kp py A AY) kgri(— AT ASATAY/36 + [3]6"ATAY/36)
+ Kty (—[3]8"™ + AT AZ) ATAY/12 + [3]5k o K ([3]8™ — ATAT)
X AT A 216+ Ky Ksun([3]676™ — [6]6™ATAT + AT ASATAT) A AW/ 72

+ (Krtthuu+4KrtuKsuw}\T/\FTj;\?)F\vv_4KrtthuW/F\?}\W)(}‘T;\§_6rs),
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P21 = [B™ = Tk ATAY12 + (8Kysp Ky — Krtu Kop) A A7/9]

X (8" — 2N X5)/2 + Thysq N AV 24+ (— Tiyy 85U + Ky 8™ ) kg AT /18

+ (1= Q)7/6+ 72+ (AKygr Kyny /9 — Krstu/D) AT AS AT AT

+ (Kypy = 2Ky A AV ) Ky ( AT ASATAT/12 — [3]8"ATAY/18)

+ Kty ([3]167/6 — AT AY4) ATAT + [3]5k,cy Ky O™

X (—2[3]8% + 3ATAY) \” A"/216

— Ky Ksun(2[3]8™8™ — 3[6]8™ATATY + 4AT ASATAT) A7 AW/ 72

+ (K Ky T AKpu Kew AAS AT AV — Ak kg A AV) (—2AT A5 + 879)/72,
oo = BSATAY2 — Tiyqu N ASAAY 24 + (8Kyep Ky — Ky Ky ) X' A5 AU AY/18

F (Kpg Kepy + 4Kty Ko AL AT AT AY — Ay Ky AY AY) AT XY/ 72

+ Ky Ksun( [3]878M — 3[6]8™ATAT + 6AT ASATAT) A7 A/ 72

— (Kypp — 2Kr A" A7) ke (—3AT ASATAY + [3]6"ATAY) /36

+ [3]5k,cu K0 S([3]6™ — 3ATAY) A7 AY/216

— Krey([3]6" — 3ATA%) AT AY/12,
Poz = Krty Ksunl [618™ — 4XT ) AXXNTN AW/ 72 — (K; o — 267 p A AV) Kty

X AT ASATAY/36 — Ky AT ASATAY/12 + [3]5k,gy Ky 6 SATAY A% XY/ 216,
Pas = Kyt KsuwA ASALAU AT AW/ 72,
where
B"™ = kst /2 — Kpiy Kstu/ 3, (12)
and, e.9.[3]86™ATAY = §™ATAT + §"™ASAU + 8™ASAT is the sum over the three
different ways to partition a set of four indices into two subsets of two indices

each.

The preceding expansion is useful for two reasdinst, it can be used to
compute the approximate local power function of the tdgtA = O versus
alternatives of the forn,: AT, = k¥2A%nY? (i.e., Pr(W(6,) > c,|H,) where
Co = Pr(Xg = c,) = a). Secondit can be used to obtain a valid Edgeworth
expansion of the ELR statistic undel, with remainder of ordeo(n™?). To
improve the latter to the ordéd(n~2) we need to strengthen DL2 and DL3 as
in the following corollary let g4(-) denote the density of a chi square random
variable withq degrees of freedom and IBt= B".
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COROLLARY 3. Assume that GS1, EL, and DL2 with= 6 and8 = 5 and
DL3 with | = 4 hold. Then, for someye= 0

s[up )\Pr(W(eo) = ¢) — G4(c) + Beg,(c)/(ng)| = O(n2). (12)
Let WB(6,) = W(6o)/(1 + B/(nq)) and ¢, = Pr(x5 = c,) = a. Then
Pr(W8(6,) =c,)=1—a+ O(n"2). (13)

Expansion(12) shows clearly that the Bartlett factBris the main error term
for the ELR statisticmoreover becaus® enters linearly in the expansion it is
clear that scalingV(6,) by the same factor improves the coverage error to the
order O(n~2), as in(13). This remarkable property of the ELR statistic is a
direct consequence of the connection relating dual and empirical likelihood in
the case of independent observatiomscause the ELR can be interpreted as a
DLR for A, and a DLR inherits properties of an ordinary parametric likelihood
ratio statistic via the Bartlett-type identiti€s), it is perhaps not surprising that
the ELR shares the Bartlett-correctability property of an ordinary likelihood
ratio statistic In particular as shown in the proof of Theorem 2 in the Appen-
dix, the Bartlett-type identitie5) imply that for DL2 with « = 5 andB = 4
and DL3 withl = 3, the signed square ro®¥ (6,) of the ELR(i.e., an)i%-valued
random vector such th&¥, (6,)W, (65) = W(6,) + Op(n~¥2)) is asymptotically

W, (6p) ~ N(c, /n*28™ + cs/n) + O(n~/2), (14)

wherec, andc, ; are constants defined &andk®; (with AT = 0) in (A.20) in

the AppendixThis result was originally proved by DiCiccio and Romd#689),
using a different technique involving some lengthy algelarad shows that

W, (6p) can be mean and variance corrected so that the resulting adjusted statis-
ticis N(0,8") + O(n~¥?), as is typically the case for the signed square root of
ordinary parametric likelihood ratiohe existence of a Bartlett correction for
the ELR then follows from this result combined with an Edgeworth expansion
argumentThe latter shows in fact that the densityMif(6,)W; (65) + Op(n~%2)

is proportional to exp—x%/2)(x2)¥271[1 + (x?)/n] + O(n~2) wherey (x?)

is alinear function in x?, so that scalingV(6,) by a factor 1+ B/(ng) with

B = ¢, ¢ + ¢, eliminates the coefficient ofi~* in the expansion ofV&(6,)
yielding (13).

3.2. Estimation of the Bartlett Correction
The Bartlett correction for GS
B= Krrss/2 - KrstKrst/3 (15)

depends on the third and fourth multivariate moment @, 6,). The compu-
tation of the moments involved in the threefold summatiofili) takesO(ng®)
computing timeso unlesgy is very large the computational cost of the Bartlett
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correction is not very highRecall thatB is based on the scaled moments
Ky oo = EL(K)Y2f (2,6,) ... (k%) V2, (2,6,)] and suppose thak - 6,;
then a simple estimator @f.5) can be based on

Al e~ A e A Al o AL e A —— A

B = Keu(O)KP(O)KT(0)/2 — K (0) Koy 0) KB () KT (9)K™(6)/3,  (16)

where Kr1 1 (0) = 21.(z,6)...1,(z,0)/n. The foIIowmg theorem shows
thatB is consistent fof15) and that replacin@ with B in Corollary 3 does not
alter the order of magnitude of the approximation er®3). Let A/ denote a
neighborhood of, and make the following assumption

GS2 (i) E[supen f(z 0)]*] < oo, (i) of.(z,8)/06° is continuous with prob-
ability 1 at6y, (i) E[supen|of.(z,0)/00°|] < oo.

THEOREM 4 Assume that GS2 holds. TheB,~> B for any § - 6,.
Furthjarmore, suppose that the assumptions of Corollary 3 hold and that
n%2|6 — 6o| = Oy(1). Then, for some= 0

sup |Pr(W8(8,) = ¢) — G,4(c)| = O(n2). (17)
cE[cy,00)

Remark The assumption of.iid. sampling can be relaxed by considering
(Zin)i=nn=1 as a triangular array ofi™-valued random vectors as in Owen
(1992); i.e., for eachn, f.(zy,,0),..., f.(z., 6) are independent but not identi-
cally distributedi® valued random vectorsThe results presented in Sec-
tions 31 and 32 are still valid by replacing some of the previous regularity
conditions with the following uniforn{in n) version

GS1 (i) E[ f,(zn,0)] = 0 for a uniqued, € 0 for all n, (i) liminf,_ ./
n > 0, where(, is the smallest eigenvalue & E[ f,(z,, o) fs(zin, 6o)],
GS2
(i) limsup, .. 2 E[supey| f(zin,0)]/n] < oo,
(ii) limsup,_,., > E[supen|df (zin,6)/06°]] < co.
EL. Pr(0 € ch{f,(z1,00),..., f(Zan, 00)}) = 1 asn — oo,
DL2.

(i) 1im sup,_ e E[|0¥Wiy (60)|*] < oo for 1 = |k| = B for any A" € T,

(i) lim Sun1~>ooE[ma)qk| ﬁ+1SUH/\ A= [0*Why (60)[*] < o0, and

(i) limsup,_o E[|1ZLol1774{Z} o > en¥?} = O for everye > 0 and some
lez,,

DL3. limsup, ., SUpyj=s|E[exp(it"Z}-)]| < 1 for all 56 > 0 and some
lez,,

where W,,,(-) and Z!., are respectively the log DL defined in(4) and the
N -valued vector of DL derivatives evaluated)at= 0 for the triangular array
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f.(zin,6p) N = 1. In particular GS1GS2i), EL, and DLZiii) with 8 = 3 and
Z!vo = Znro for | = 1 imply Theorem 2 of Oweri1991), whereas DL2i)—(ii)
and DL3 imply that we can use Theorem.@@f Bhattacharya and Ra4976
together with Theorem.3 and Remarks.3 and 34 in Skovgaard1981 to
justify the validity of the Edgeworth expansions in Theorems 1 arfich2 results
shown in Section .3, which follows are also valid by replacing BDL with
uniform versions similar to those just shown

3.3. A Valid Edgeworth Expansion for the Bootstrap DLE
and the Bootstrap ELR Statistic

In this section we consider the higher order properties of bootstrap/ Eual
inference Let y;: = (z3i,...,z,) denote a bootstrap sampliee.,, a resample
drawn independently and uniformly from the observed sanyplith the prop-
erty that Pz = z| x,) = 1/nfor 1 =i,j = n, and letf,(z,6,) denote the
corresponding bootstrap GS

We first consider bootstrapping the DLE,. Let

Wi (8p) = > log(1 + A (Z7,6,))

denote the bootstraflog) DL wherg in analogy to Secti/cln ,2the dual
parameterA™ is free-varying The bootstrap DLE(BDLE) A}, solves 0=
IW,i(6,)/0A". Assume that for some,3 € Z, andy >0

BDL.

(i) E[supier, [0*W,(6p)|*"Y] < oo for 1 = |k| = B,
(i) E[supier, MaXy g1 SURx-j=-10"W;5(6p)[**7] < oo,

and let Pt denote the bootstrap probability conditional gp. The following
theorem establishes the higher order equivalence between the original and BDLE

THEOREM 5 Assume that GS1, EL, and BDL with= 6, 8 = 3, and some
v > 0 hold. Then, for some constant€ 0

Pri(nY2| A7 — A,| > Clogn¥2) = o(n™1), (18)

except ify, is contained in a set with probability(@a~?). Furthermore, assume
that the Cramér condition DL3 holds with=+ 3. Then, for every clas8 of
Borel subsets it satisfying (8)

sup|Prs(nY2(X5 — A,) € B) — Pr(A, € B)| = o(n™ 1), (19)
BeB

except ify, is contained in a set of probability(a™?).
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Notice that another way to expre€k8) (and analogously19) and alsa(21),
which follows) is

Pr(|Pr<(n¥2| A% — A,| > Clogn¥?)| > n~1) =o(n™1).

We now consider bootstrapping the ELIRis important to note that the valid-
ity of the bootstrap in the context of EL inference depends crucially on the
validity of the bootstrap moment conditidEr [ f,(z",0)] = 0 até = 6,, where
E* is the bootstrap expectation under*PA straightforward method to
achieve this is to consider the centered bootstrapfG8,0) = f,(z,0) —
E*[ f.(z",6,)], which mimics the original GS as defined i) because by
construction the bootstrap moment conditleh| f*(z,6,)] = 0. Alternatively,
we can consider the so-called biased bootstra,G£, §), where thez’s are
resamples drawn independently from the original sampl&vith the property
that Pi(zf = z|x,) = p, for 1 = i,j = n, and thep;s are the estimated EL
probabilities This resampling procedure was propasedginally in 1992 by
Brown and Newey200Y) in the context of bootstrapping for generalized method
of moments(GMM ); the termbiasedused here is borrowed from Hall and
Presnell(1999. Notice thatf,(z',8) does not need to be centerdcause by
definition E'[ f,(z',6,)] = 0 whereE" is the expectation under PrThus both
methods lead to unbiasédonditional ony,) bootstrap GS ai = 6,. The latter
fact is the key to the validity of bootstrap ELR because it implies that the dis-
tribution of the bootstrap ELRBELR) resembles the null distribution of the
original ELR regardless of whether the null hypothesis is true or kiatre
important at least in the context of this papéne results of Brown and Newey
(200)) (see also Horowitz2001) imply that biased bootstrap leads to the same
theoretical improvements to the finite-sample distribution of the ELR statistic
as those obtained using the stand@ndiform) bootstrap(cf. Corollary 7). Bear-
ing this in mind in the remaining part of this section we consider bootstrap EL
inference based on the centered bootstrapfG3g,0).

An immediate consequence of centering is that the bootstrap equivalent of
assumption EL holds.e.,

BEL. Pr(0 € ch{f*(z.,6y) ... f*(z,,65)}) =1asn— oo.
The latter implies that the bootstrap analogue of the profile ELR function defined
in (2),
R*(0) = sup{[Inp|p = 0,3 pi f,/(z;,0) = 0,3 p = 1}, (20)
Pi

admits a unique solution @ = 6, and that such a solution can be obtained by
the same Lagrangian argument of SectiorL@t —2 log(R*(6y)) denote the
resulting log BELR Solving (20) and calculating—2 log(R**(6,)) for b =
1,...,B bootstrap sampleg;, yields an estimator of the distribution of the ELR
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that can be used to form critical values for test statistarsd/or confidence
regiong in the usual way

As in Section 2the BELR—2log(R*(6y)) can be interpreted as a bootstrap
DLR test for the dual parameteai’, i.e,

—2log(R*(65)) = 2(W; (65) — W (65)),

whereW;= (6,) = 3 log(1 + X7f*(z,6,)) is the bootstrap DL based on the
centered bootstrap GiS(z, 6,), Wy (6,) is the “restricted” bootstrap DL eval-
uated at\* = 0, and X%, is the BDLE that solves & aW;:(6,)/dA" using cen-
tered bootstrap G§*(z, 6,). Note that because of the centeriﬁﬁconverges

(in bootstrap probabilityto 0 and not to the DLE , as in Theorem 5Because
W5'(6p) = O, let W*(6p) = 2Wiz (6,); the following theorem shows that the
BELR statistic approximates the distribution of the ELR statistic under the null
hypothesis up to the orde(n™1).

THEOREM & Suppose that the assumptions of Theorem 2 with6 hold.
Then for some£= 0

sup |Pri(W*(6,) = c) — Pr(W(6,) =c)| =o(n?1), (21)

cE[cy,0)
except ify, is contained in a set with probability(a™1).

Notice that the moment assumption of Theoreiftwéich is slightly stronger
than the one assumed in TheorejnLnecessary to ensure that the BELR test
is accurate up te(n~1); i.e., the BELR test has rejection probabilities that are
correct up to the same orddio see this note thgR1) is equivalent to

Pr( sup |Prf(W#*(6,) = c) — Pr(W(6,) =c)| > n‘l) =o(nt);
cE[cy,0)

thus using the same arguments as André@2 pp. 149-150, it follows that
for ¢ = inf{c € [cp,0) : Pr'(W*(6y) = C) = a}

Pr(|1—a — Pr(W(6,) =c)|>n"1)=o0(n"?),

which implies that for large n, |1 — a — Pr(W(6,) = c¢*)| = n™%, or
equivalently

Pr(W(6,) >c)=a +o(n 1), (22)

Thus with the bootstrap calibration the level of ELR test is correct through the
orderO(n™1). In contrastas shown in Theorem, 2he ELR test withy? cali-
bration is accurate up t@(n~1). On the other handusing a slightly refined
argument based on generalized Cornish—Fisher expanéitiisand Davies
1968, the approximation error iff22) can be improved t®(n~2), as next
corollary shows
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COROLLARY 7. Suppose that the assumptions of Corollary 3 withk 8
hold. Then,

Pr(W(6,) > ¢*) = a + O(n"2). (23)

Corollary 7 shows that bootstrapping the ELR delivers the same type of higher
order accurate inference implied by the existence of a Bartlett corredtren
same phenomenon was noted by BefB®88 in the context of bootstrap like-
lihood ratio inferenceUnless din f(z 6)] is very large it is clear that the
Bartlett-corrected ELR is computationally more convenient than the BEMR
the other handas already mentioned in the Introduction and further illustrated
in Section 4 by some simulation& seems that the BELR has better finite-
sample accuracy than the Bartlett-corrected EM®reover the higher order
refinements delivered by the bootstrap approach to ELR inference do not depend
in general on Bartlett-type identitieShis should be important when consider-
ing the ELR statistic with nuisance parameters see whylet n» be a finite-
dimensional vector of nuisance parameters #Wi(d,,7) denote the resulting
profile ELR (PELR) where 7) = max,W(6,,71). As shown by Lazar and
Mykland (1999 the fact that the Bartlett-type identiti€S) do not hold fory
implies that in generaWW(6y, ) is not Bartlett-correctableSuppose however
thatW(6,, i) admits a valid asymptotic expansion in the sense of Chandra and
Ghosh(1979 and that P(|7 — no| > C(log) ) = O(n~%?). Then at least
theoretically generalized Cornish—Fisher expansions can be brought to bear to
show thatW(6,, ) with adjusted critical values is accurate to an or@én—2),
independent of whether the Bartlett-type identities hold or Rotrthermore
using arguments similar to those used in the proofs of Theorem 6 and Corol-
lary 7 in the Appendix it might be possible to obtain higher order refinements
to the distribution of the PELR using critical values based on the bootstrap
PELRW*(6o, 7).

4. SOME ECONOMETRIC APPLICATIONS

In this sectionwe illustrate the theory developed in the paper by considering
EL inference for two classes of widely used econometric models aisdfar as

we know have not been considered previously in the literature onTieE finite-
sample effectiveness of the two proposed methods to improve the accuracy of
the ELR(i.e,, Bartlett correction and bootstrap critical valyésillustrated by

a small Monte Carlo study

Example I. Nonlinear regressions

We consider nonlinear regression modgls g(x', 65) + ¢ for a given(differ-
entiable parametric functiomy(-) andE(e|x") = 0. Following Newey(1990),
the GS is given by

f.(z,0) = [09(X",0")/06%]e, (24)
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which corresponds to an IV based estimating functidotice that as long as
the regression function is correctly specifiece do not need to model explic-
itly the (conditiona) varianceo?(x) of ; clearly if we knew the functional
form of o2(x) we could use an IV based GS with instruments equagjtx’,6")/
06° ando?(x)* to gain efficiencybut we stress here our view of the EL method
as a technique to improve the accuracy of inference
For this class of models the bootstrap calibration is based on the resamples
(X, yi"), and the centered bootstrap GS is

f°(z,0) = [09(x",0")/00°% ]’ — E*[09(X", 05)/060°] ",

whereg" = yi* — g(x", 64).

In the Monte Carlo studywe specifyg(-) as exgé* + 62x) with x ~ N(0,1)
ande ~ N(0,1) or ~t(5) or yZ — 4. The values of* and#? are both set equal
to 1. Table 1 reports the finite-sample sizes of the ELR {8stof the Bartlett-
corrected ELR with the estimated Bartlett correcti@6), and of the ELR with
bootstrap critical value§23) of the null hypothesisdy:[0* 62]=[1 1] at
0.10, 0.05, and Q01 nominal size The results are based on0B0 replica-
tions and the bootstrap critical values are calculated fro@0Q bootstrap
replications

TaBLE 1. Nonlinear regression models

Nominal size Q100 Q050 Q010

Model with N(0,1) errors
n =50 0128 0.116° 0.111° 0.080* 0.071° 0.062° 0.033* 0.03C° 0.026°
n=100 Q114% 0.110° 0.109° 0.070* 0.065° 0.060° 0.026* 0.024° 0.01%°
n= 200 01107 0.109 0.107° 0.063 0.061° 0.058° 0.0242 0.022° 0.017°
n=500 Q108 0.107° 0.106° 0.062* 0.06(° 0.057° 0.0222 0.021° 0.016°

Model with t(5) errors
n =50 01612 0.147° 0.134° 0.105* 0.090° 0.074° 0.0422 0.034°> 0.027°
n=100 Q135 0.127° 0.120° 0.084* 0.074° 0.06%° 0.036 0.031° 0.024°
n=200 Q129" 0.123" 0.115° 0.073* 0.06% 0.062 0.031% 0.026° 0.023°
n=500 Q125 0119 0.114° 0.067* 0.064° 0.062° 0.026* 0.026" 0.022°

Model with x2 — 4 errors
n =50 01837 0.178 0.148 0.144* 0.132° 0.088° 0.056* 0.051° 0.038
n =100 Q1772 0.170° 0.132° 0.130* 0.12C° 0.078° 0.051* 0.048 0.032
n = 200 Q1522 0.144° 0.126° 0.1212 0.10% 0.073 0.044* 0.041° 0.028
n=500 Q146* 0.140° 0.123 0.115* 0.09% 0.072° 0.040* 0.03%* 0.027°

aELR (3).

PELR with estimated Bartlett correctidii6).

°ELR with bootstrap critical value€3).

Note: Underlined values indicate that the empirical level is not statistically different from the nominal abthe 0
level
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Example Il. Robust regressions

We consider robust regression models with fixed regress¢rghat are
assumed to satisfy max_,| x|l = O(1). The GS in this case is given by

f(zi,0) = X' (y; = X76°) (25)

for the psi functiony : i — N satisfyingE [ (y; — X 65)] = 0. For this model
the centered bootstrap GS is

f"(z,0) = X [ (¥ = X70°) — &7],

wherey” = x 6§ + & is the bootstrap pseudo-observatigfiis the bootstrap
sample drawn fronz; = y; — X 6§, ande = E*[¢(g)].
Following Huber(1973, we specify the psi functiog(-) as

(Vi = x|y —x/0"| =k} + k-Sgn(y, — x{ 0"} {|y, — x{6"| >k}

with the constank = 1.4, the scale parameter? = 1, and Sgr-} denoting the
sign function

Table 2 reports some Monte Carlo results for a simple two covariates design
with an intercept and a single fixed regresgpgenerated as an equally spaced

TABLE 2. Robust regression model

Nominal size Q100 Q050 Q010

Model with N(0,1) errors
n =50 01622 0.151° 0.136° 0.097* 0.087° 0.07% 0.039* 0.034° 0.028
n=100 Q145 0.132° 0128 0.083 0.072° 0.066° 0.031* 0.027° 0.023°
n= 200 Q1242 0.120° 0.118 0.070* 0.064° 0.059° 0.028% 0.026° 0.020C°
n=500 Q123 0.11% 0.115° 0.069* 0.065° 0.05%° 0.0272 0.024° 0.01%°

Model with t(5) errors
n=>50 0173 0.162° 0.153° 0.1122 0.093° 0.084° 0.055* 0.045° 0.037°
n=100 Q152* 0.137° 0.132° 0.101* 0.085° 0.073 0.045* 0.03% 0.035°
n=200 Q140* 0.130° 0.120° 0.084* 0.077° 0.06%° 0.03% 0.031° 0.024°
n=500 Q133 0123 0118 0.079 0.072° 0.066° 0.032 0.030° 0.023°

Model with x2 — 4 errors
n =50 01917 0.184° 0.166° 0.1412 0.123° 0.104° 0.061* 0.053° 0.034°
n =100 Q180* 0.175° 0.154° 0.1322 0.11C° 0.091° 0.055* 0.053° 0.02%°
n = 200 Q1722 0.164° 0143 0.119* 0.10% 0.08% 0.050* 0.047° 0.027°
n=500 Q165 0.161° 0.138 0.115* 0.108° 0.08C° 0.046* 0.040° 0.027°

aELR (3).

PELR with estimated Bartlett correctidii6).

°ELR with bootstrap critical value€3).

Note: Underlined values indicate that the empirical level is not statistically different from the nominal at the
0.05 level
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grid of numbers betweer1 and 1 and points at3 and 3 so that we have a
rather substantial leverage effeds with the previous examplehe errore is
specified to beN(0,1) or t(5), or x3 — 4, and the two parametegs andd? are
set equal to 1Table 2 reports the finite-sample sizes of the ELR (8stof the
Bartlett-corrected ELR with estimated Bartlett correcti@6), and of the ELR
with bootstrap critical value€3) of the null hypothesi#ly: [6* 62]=[1 1]
at 010, 0.05, and Q01 nominal sizeThe results are based orp0BO0 replica-
tions and the bootstrap critical values are calculated fra@0Q bootstrap
replications

Bearing in mind that the scale of the simulation study is sntladl results of
Tables 1 and 2 seem to indicate the followifgrst, with the exception of the
nonlinear regression case wit{0,1) errors the ELR test is characterized by a
noticeable size distortigralthough the distortion tends to diminish when the
sample size increaselNot surprisingly the size distortion is more severe for
the skewedyZ — 4 errors Secondin the case of errors from a symmetric dis-
tribution, both the Bartlett correction and the bootstrap reduce the finite-sample
size distortion of the ELRalthough some size distortion is still preseespe-
cially at the 001 nominal levelOn the other handor skewed errors the effec-
tiveness of the Bartlett correction is reduced considerdhilyally, the ELR
with bootstrap calibration has smaller size distortion than the ELR with a
Bartlett-correctedy? calibration The first point supports the findings of Cor-
coran et al (1995 and Baggerly(1998 about the relative poor quality of the
x? approximation to the distribution of the ELR statistithe second point
depends clearly on the form of the Bartlett correcti@s), which implies that
nonzero skewness typically reduces the magnitude of the Bartlett correction
itself. The last point is related to the first one and should not therefore come as
a surprisethe effectiveness of the Bartlett correction depends crucially on the
quality of the y? approximation Thus for data sets for which the latter is not
reasonable there should be significant gains by using the boatstrap

To conclude this sectignt is worth mentioning that the EL framework can
easily incorporate additional informatipmost noticeably information about
the second momenEor examplethe conditional variance ?(x) of the inno-
vationse in Example | can be parameterized by a known functid®'’, n?)
that depends on an additiort8lP-valued vector of parameteyg—which may
included" also—andsimilarly, in Example Il one can introduce an estimating
equation for the scale parametef.

5. CONCLUSIONS

In this paper we have developed some higher order asymptotic theory for the
ELR test for parameters defined implicitly by GBy exploiting the connec-

tion between empirical and dual likelihood we have obtained valid Edgeworth
expansions for the distribution of the DLE and of the EORe latter is used to

(i) derive an explicit expression of the third-order power function of the ELR
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under a sequence of local alternativép justify rigorously the existence of a
Bartlett correction for the ELRand(iii ) show that the “hybrid” bootstrap pro-
cedure suggested by Oweh988 yields the same type of higher order accu-
rate inference implied by the existence of a Bartlett correction for the .ELR
The derivation of(i) and(ii) relies on a set of Bartlett-type identities thapart
from simplifying as in parametric likelihood inference some calculatipns-
vide a simple explanation of the Bartlett-correctability phenomenon in the con-
text of EL inference for GS

The application of bootstrap methods in the context of EL inference seems
very promising and suggests some directions for future resebidt ELRS
with bootstrap calibration appear to have better finite-sample size properties
than ELRs with a Bartlett-correctegf calibration This is certainly true in the
Monte Carlo study reported in the papbowever more simulation studies are
required to support this conclusion in full generality

Second bootstrap methods might be used to deliver higher order refine-
ments to the distribution of ELRs when nuisance parameters are pré¥gent
have conjectured that this might be the case as long as we can obtain Cornish—
Fisher expansions for the critical values of the resulting profiled ELIRs$s
possibility is certainly of interest and is left for future research

Finally, bootstrap methods can be used in the context of weakly dependent
processeKitamura(1997) shows that it is possible to obtain higher order refine-
ments to the distribution of the ELR statistic for smooth functions of means of
a-mixing processesising blockwise resampling techniques similar to those used
in the bootstrap literaturéfhe same methods could be used in the context of
GS for time series models

NOTE

1. Our calculations support Keith Baggerly’s conjectuas reported in the Errata section of
Owen'’s empirical likelihood Web paghttp://www-statstanfordedu/~owen/empirical that there
is a mistake in the formula of DiCiccio et.dl1991 p. 1056 of the Bartlett correctionSpecifically
the termt, should be Qwhereas the terny should be3. With this correction the formula of
DiCiccio (1991 coincides with the one obtained in this pagef. (15)) in the case of GS
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APPENDIX

A Theorem on the Density of Generalized Noncentral Quadratic Forms and Its Applica-
tion to Hermite PolynomialsThe following theorem derives a general formula useful to
express the density of generalized noncentral quadratic forms of scalar random
variables obtained by contracting nonzero mean normal random vectors over multidimen-
sional arrays of constants terms of finite linear combinations of noncentral chi square
random variablesThe formula can be applied to obtain asymptotic expansions for test
statistics under a sequence of local alternatives starting from the Edgeworth expansion
of their corresponding signed square ra@tther than from their approximate moment
generating function

Let ¢ , () denote the-dimensional normal density with megrand identity covari-
ance matrix and leg, .(-) denote the density of a noncentral chi square random variate
with q degrees of freedom and noncentrality parameter co.

THEOREM 8 Let w™ = w'...w'« where each W ~ ¢q, (W) (j = 1,2,...,K),
bR« = b7« an M9“-valued array of constants not depending on han 9t 9-valued
vector of auxiliary variables, and () = 9%(.)/ot"...ot". Consider the function
f(-;t"): N9 — N and make the following assumptions.

GQFL. f(-;t") € CK, the space ok times continuously differentiable functions on
an open setV of t" = 0,

GQF2. [suprep o f(-,0";t")|dv" < oo,

where theli9-valued vectow' is defined subsequently. Then, for any arbitrary noncen-
tral k form wRbR«, the following holds:

WRkbde,q,y(W) — 2 bRkyRklngzgqﬂ#Rk,T(x), (A1)
Y

whereS2 K =k x = WW', 7 = y'y", yRa =y yha, §Re = §farilarz, | §lieilie,

the symbo#y,_denotes the number of different indices in the sgtaRd the sum is over
Y = {v,,...,nJ—the number of ways of partitioning a set of iRdices intoy; subsets
containing j indices(j = 2,...,k) such that the resulting homogeneous polynomial in
vyRa is even or odd according to the number of indices in the et R
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Proof. We use the transformation frofi9 to 9191
T:w" — (x,0"),

wherex = w'w", v" = w'/(wsw®)¥/2 and the following identity
k
WRbRgpy (W) = > b8 [, (W)expw't")] .
=1

Using T, the density forx is obtained by integrating out the vector € Vy 4 (i.e., over
the unit sphere'v" =1 in N9), i.e,

k
(m) %2 [ 3 bRexp—(x+ 7)/2]|Ir |01 [exp(x Y20 t")]|,—o(dv"), (A.2)

Vigi=1

where |Jr| = x¥27Y2 is the Jacobian of the transformatidnand (dv") denotes the
unnormalized Haar measure on the Stiefel manifgjd. Upon normalizing the Haar
measure oy q by the constant 2%%/T'(g/2) and interchanging differentiation and inte-
gration in(A.2), which is permissible under GQF2 fot-,v";t") = exp(xY?v't"), we
can then use Theorem471 in Muirhead(1982 to obtain

k

C(x,0,7) > bR [oFiGa/2ix(7 + t't" + 2yt")/4)]|—o (A.3)
=

with C(x,q,7) = x¥> texp—(x + 7)/2]/[2¥°T (q/2)], oF1(;¢;2) = Z[ZoZY/(c); ]!,
and(c); = I'(c + j)/I'(c). Differentiating(A.3) and evaluating the resulting derivatives
att = 0 yields a polynomial inx of degree at mosgt with coefficients given by

oF1Ga/2 + #z 3 x7/4)C(b, 'y,#Rk)/[Z#Rk(q/Z)#Rk] k=12,... (A.4)
The constanC(b, y,# ) in (A.4) is itself an even or odd polynomial inRa with coef-
ficients obtained by contracting accordingly the componentg™f 6™, andb®«. Ele-
mentary symmetry considerations show that the number of such contractions can be
found using standard combinatorial results on partitions reppetgd in Abramowitz

and Stegur(197Q Table 242, p. 831). Combining(A.3) and(A.4), becausey, ,(X) =
exp[—(x + 7)/2]xY? o/ 2 x7/4)/292T (9/2), (A.1) follows immediately M

For generalized quadratic forms upke= 6 (corresponding to the terms appearing in
third-order Edgeworth expansiongA.1) yields

b'W' g, (W) = b'y"gq, 2 ,(X),
bW W (W) = by ygq 4 - (X) + DS8"gq, 2 - (X),
bW, . W' (W) = by y®y'gq,e - (X) + [3]0™y'6"0q 4 - (X),

brtw. . Wl , (W) = bty yYq, g (X) + [6]D7 Y Y8 gqg 6 - (X)
+ [3]b" 18" gy 4, - (%),

bW W g, (W) = b Py Ly Gq 10, (X) + [10]D" 0y Ty Sy '8¥ gy g - (X)
+ [15]b" Uy 8% gy 6, (X),

bW W, (W) = bWy ' y¥gg 15 - (X) + [15]D" "y ...y 8 Yg 10 (X)
+ [45]b" Wy Y356 gy 5 . (X)
+ [15]b" 89567 gy .- (X),
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from which the generalized quadratic fori8hR« (1 < k = 6) based on the multivar-
iate Hermite polynomiah™« = h's--"x = (=1)ka*¢,, . (w)/ow™...9w"< have densities
b'h' = br,yr ng’T(X)’ pb'sh's = brs,yr,ysvzgq,f(x) + brsgrsvgqﬂ_(x)’
brsthrst brst,yr,ys,ytv?,gq”_(x) + [3i|bl'st,yt5r$v2gq,7(x)’

pr-Upr---u = brmu,yr.“,yuv4gq’7(x) + [6]brmu,yr,ysatuv3gq,7(x)

+ [3]br...ugrsgtuvzgqy‘r(x)’
pr--vhf-v = br...v,yr“.,yvv5gq)7(x) + [10]b""”y"ysyt5””V4gq+g,T(X)

+ [15]brmv,yr55t6uvVSQQ’T(X),
br...whr W = pr-- w . ')’ergq,T(X) + [15:|br...w,yr.__,yu(SUWVqu’T(X)

+ [45]b" Wy Ty S5 UE V4G, L (X) + [15]b" 78S, .. 8° V3g, ,(X),

(A.5)

wherevkgq -(+) is thekth-difference operator applied to the dengjgy,(-), i.e, Vg ,(-) =
o( 1) ( )gq+2(k i, (5).

Proofs.Let C denote a generic positive constant not depending tivat may vary from
one(in)equality to anotherFor simplicity of notation letV(6y) = W andW, (6y) = W,

Proof of Theorem 1. We first establish(6). Let AR« = A", A"<; a Taylor expansion
of the DL first-order condition 6= dW, about O givesfor any A" € T,

3

0= Wo/Nn+ D oWy AR/ (k — 1)In + Ry(A), (A.6)
k=2

whereR,(1) = C||A"[3maXy -4 SUPi-aj=-|0*Ws|/n. By DL2 for someC, < oo and all
>0

Pr(|oW,/nY2| > C(logn)¥?) = Cn~(logn)~2
Pr(|0"W, — E[0"W,]| > en) = o(n™!) forl=|k| =3,

il

where the first inequality follows by a moderate deviations result of Bhattacharya and
Rao (1976 Corollary 1712), the second by Rosenthal and Markov inequakiyd the
third by combining the second equality with the triangle inequalist S, denote the
union of the sets ifA.7); clearly Pi(S,) = o(n™%), so that on the se§S we can write
(A.6) as A" = gn(A") whereg,(-) is a continuous function fronii9 — M9 satisfying
lgn(W] = Cn~Y2(logn)¥2 for all ||u| = Cn~¥?(log n)Y/2. Application of Brower’s fixed
point theorem as in Theorem12of Bhattacharya and Gho$h978 and the concavity of
W, show that there exists a unique sequekigsuch that P A", < Cn~Y2(logn)Y/?) =
1—-Cn1(logn)—2 whence(6) To derive the Edgeworth expansi@n), we first derive
a stochastic expansion for,. For notational convenience let = nY/2A,; define the
following Oy (1) random arrays

max sup |a"W;|/n| > C£> =o(n™), (A7)

[KI=4 |A-A|=7
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Zrl...rk = E frl(zi ’00) frk(zi ’00)/nl/2 - nl/ZKrl...rw (A8)

wherexk,, . =E[f,(z,6y)...1,(z6)], and let

KRG,R,..., R, — E[ZRWZRU'”:ZRu] (A.9)

denote thesth-order(mixed) cumulant ofZg =2
Combining(A.7) and(A.8) yields

ry...re

0=2Z — Z A/NY2 — i, X' + 03Wp ARY(2n¥/2) + R, (A), (A.10)

for |A| = |All, where Pf|R,(A)| > Cn~2(logn)*?) = o(n~1). Because\” = k"SZ +
£, where PE|Z5, | > CnY2(logn)) = o(n~1), andd®Wp/n - 2k, by the weak law
of large numbers(A.10) can be written as

AN = kSZ+ (—kSkYNZGZ, + kRN kg Zs Zy) /MY + 25,

where Pf|Z5,] > Cn~(logn)¥?) = o(n~1). Upon substituting this last stochastic
expansion intqA.10), because*Wy/n SN 6k,st, We Obtain the stochastic expansion

A =77+ (—KSZy Zt + K"Kk Z'ZY) /nY?
+ (K™K Z 20 ZY — 2K kWK ZY Zoy ZY + K8 Z g ZZY
— KKKy Zst ZV 2" — K"Ky, Z2'Z1Z°
+ 2k kS kY Koy Ky ZsZYZY) /N + £5,
= 7"+ N+ L, (A.11)

whereZ" = k"Zg and P(|Z5,] > Cn=%?(logn)?) = o(n™*). To derive the Edgeworth
expansion ofA" on B € B (the class of all Borel subsets 8t%), notice that)" is a
function of the three random arrags, Z,s, andZ,s; and recall thaZ 3 is the R %-valued
vector containing all the different DL derivatives unddy up to third orderLet y,3(B)
denote the(signed measure corresponding to the characteristic functiorZ pffor

B € B (the class of all Borel subsets 8f%) and consider the following continuous
transformationU, = y(Z2), where

x:U =27, Us= —Zs+ Kr,stzt: Urst = 2erl - 2Kr,stuzur (A.12)

and k&t and k; <y are defined in(A.9). Letry,...,r, denote indices each with =

,.3:2((“}‘1) components E(UrUs) = Zrs, E(U;Ug) = ¢ = e, E(U,Ug) = 3,
Kr. o = CUM(U.,...,U,), the kth-order multivariate cumulant ofUr, and
hr, (W) = (=D¥@%3Uy, ...0U; ) ¢q 5,.(Ur). Given the continuity ofA.12) and the
independence ofJ, from U, and U,; we have thatfor Z¢ € x 1(B), yy,(B) =
vzz[x~*(B)] is given by
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Y0rB) = | 05,0 gns(U L+ [N (W) + i /612

+ [(Kr ks + Kes)is(U)/2 + (K ks /6 + K/ 24) Nesm (W)

+ Krst Kgw Nesmow(U)/72]/n} du

= f sn(u) du. (A.13)
B
Consider the following continuous transformatiofy = ¢ (Uy),
lvb . XI’ = g(Ur), er = UI'S7 xl’St = Urst (A14)
for

9(U;) = k"SUg+ (k"Ug U — k"kg ,, U'UY + k"SUU,) /N2
+ (kK "Ug U, U? + 26Kk o Ust U YUY + KBk Mg 1 Ky w,U YU WU 2
+ kK Wk Uy U U — k™ kg 1, U U, U + k"SUg U U Y2
+ Ky U U U Y2 — k36U U U, — 26, , UU MU
+ 2Kk, U'U, U, — kS"UU, U, )/N,
where U™ = k™Ug, k™' = k™ k5 k" kg, and k™Y = k™ x5k Wi,y By
(A.7) there exists & > 0 such that on the s&Y = {U: |U;| < C(logn)¥2} the trans-

formation ¢ of (A.14) is a C* diffeomorphism onSY onto its image Set yo 1=
yu, [ (B X NI)]; clearly

yo 1= f sp(U) du =f s,(u)du+o(n?1)
¥ H(B X R9) sY Ny (B xR

salr (0] dx + o(n™ 1),

J://(sy) N (B x M9)

where|J,| is the Jacobian of the transformatiof.14). Becauses, [ ~1(x)]|J,| can be
expressed as

2
yo[-]1= f g5 (X ) g 5, (X;) [1+ > q (X)/nj/z] dX, +o(n1)
#(SY) N (Bx R9) G 2rs

=1
2 .
= f bas.(X) U . bqx,.(X;) {1+ > q,.(x)/nvz} er} dX. +o(n™1),
B na - =1
for some polynomials);(-), we can integrate, out, obtaining

2
’YUr[‘] = J ¢q,z‘rs(xr) |:1+ 21 Qj’(xr)/nj/2:| dxr + O(nil)
B j=

= [ 50 + on (A.15)
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for some polynomialsy/(-). Thus by (A.15 we have that forAl, € B® with ¢ =
Cn~¥2(logn)?

IA

sup |9n(xr)‘dxr +0(n71)

BeB J(9B)"

O(g) + o(n™1).

sup
BEB

Pr(A" € B) —f gn(Xr)dX,‘
B

It remains to show that the density, . (X)[1 + 21-2:1 p;(x)/ni2] of the formal two-
terms Edgeworth expansion of the DLE obtained by the delta method coincides with
sn(X;). Because)™ is a maximum likelihood type estimatoits cumulants of order
bigger than 4 ar@(n~'), whence supy<1| E{expl¢n"(Z" + A1} — én(n)| = o(n™?),
wheres,(-) is the Fourier transform of,(-) defined in(A.15). By Cauchy’s estimates
for derivatives of analytic functionBhattacharya and Ra@976 Lemma 92), we then
have that all the derivatives &{exp[tn'(Z" + A")]} andé.(n) differ by o(n™1) at

n = 0, implying that the two expansions are identical u

Proof of Theorem 2. A Taylor expansion ofV about the DLEA" and (A.7) show
that on the same s&f of Theorem 1IW = AFAS(GZWA)pn(Zrl_”,k,/\’) + {an, Wherepy(+)
is a quartic polynomial inA\" and the random variablé,, is such that P Zs,| >
Cn~*2(logn)¥2) = o(n™1). By a further Taylor expansion ai about the normalized
deviationn¥2n" = »" = (A" — %)) and the second inequality {#\.7), we have that on
S¢ with Pr(S$) =1 — o(n~1) W admits the following stochastic expansjon

W = K, ATAY2 — [92W, /2 + E(93W,)n' — E(93W, ) AY3] A" AY/n2/2
— [93W, ' — 93W, AY3 + E[0*W, In'n¥/2 — E(9*W,)A\'n"/3

+ E[9%W, (6)]A'AY12] AT AN, (A.16)
uniformly over compact subsets af. Define the scaled arrays

Zrl...rk = E (Krlsl)l/zfsl(zi , 00) cee (Krksk)l/zfsk(zi ) 00)/nl/2 - I']1/2’(r1...r

K’

wherek,, ., = E[(k"%)Y2f (2,6)...(k"%)V?f, (z,6,)]. Substituting the stochastic
expansion\" — A}, = Z, + A, + 0p(n~1) (where A, is as in(A.11)) in (A.16), some
algebra shows that the stochastic expansion for the ELR stafisticder a sequence of
local alternatives has signed square régt(i.e., W, W, + o,(n~*) = W) given by

W, = Z, + AT+ (Kt Zs Ze /3 — Zys Zs/2 — Z,s X2 + 2k, ZAY3 + 1, A5 AY3) /N2
+ (2t ZsZ /3 + 32,25 Z, /8 — SkeZis Z: Z,,/6
— (Kyspu/ 4 — Bkysp Ko /NZsZy Zy — Bk Zis Zy Y3 + 27,4, ZAY3
+ 8Z,s Z AY8 — (B,euy/ 4 — Bkyey Kyey /3)Z3ZAY + Z, ASAY3
— (BKysu/4 — Ky Ky /3 ZSNENY — Bk Z s AAAY6 — N 7/2
— [2]8%Z, ZAY2 + [3]85(Z, Zs + 2Z, XS + AT X5)AY3

—[2]18%Z, BAY2 — (kyeuu/8 — diysp Koy /9 XS A AT /0. (A.17)
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To prove(10), we first show thai\, admits a valid Edgeworth expansion in the sense of
Bhattacharya and Ghogthi978. BecauséW, is a function of the first three DL deriva-
tives let y,2(B) denote the measure corresponding to the characteristic function of the
vectorZ? (as in the proof of Theorem)fnd consider the same continuous transforma-
tion defined in(A.12), Ur = x(Z2) where

X Ur = Z(\, Urs = _er + Kr,stzt, Urst = zzrst - 2Kr,5tuzua (A18)

andz} = Z, + \. Clearly (A.18) implies thaty, (B) = y,3[ x *(B)] can be expressed
using the same Edgeworth measure agAiri3), the only difference being that the nor-
mal distribution appearing in the leading term has now nonzero méaRroceeding
now as in the proof of Theorem tlefine X, = ¢ (Uy)

X =0iY), Xs=Us, X =Ug, (A.19)
where
9:(Uy) = U, + (UsUs — ;o UsUp)/n*2
+ [Uret UsUy /6 + ip guUsU Uy, /6 — U, ASAY6 — K, g Us ATAY/6
+ 3U,sUq U, /8 — 3k 1y Urs U Uy /4 + 3k ik o UsUL U, /4
+ 5ksuUrs U U, /6 — 5k, ke, U U, U, /6
— (Kystu/8 — Bkpsp Ky /O UsUp Uy + AT7/2 + (9K gpy — 16K,s Kerny)

X UATAY18 + [3](85tU, ASAT — 6"6MAS ATAY)/3]/n.

On the set§Y = {U:||Ur| < C(logn)¥?}, the transformations defined in(A.19) is a

C= diffeomorphism onSY onto its image Then as in the proof of Theorem, the
measurey, [ (B X 9%9)] corresponding to the characteristic function of the inverse
transformation of(A.19) can be expressed as {A.15) for some polynomialsy’(-)
whose degree is even or odd according.tmtegrating outX,, the joint expansion for
Ur is then reduced to that &, — AT € B. It remains to calculate the formal Edgeworth
expansion oW, — A". Using the delta methgdsome algebra shows that the approxi-
mate cumulants fow\, are

k.= A" + (k2/nY2 + k3/n) + o(n" 1),
ks = 8"+ (kZs/nY2+ Kk3,/n) +o(n1),

Kot = k¥s/n+o(n™?), Kosru=kKtsiuo/n+o(nt),
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wherek, = E(W,), ki s = Cov(W,W;), etc, with
k2= =k, 4o/6+ K ASAY3, K2 = (2Kpg — Kyp.61) Y3,
k3 = (9K ot T 16K, oo — 18K,5) AT24 — QA/6 + N'/6
+ [—(4kp o+ 3kp )% + (9K; ot — 8Ky )8 kg A/18
+ (Bkysp Keta/9 — Krsa/ D A XAT + XT7/2,
k?s = (Kis,u + 2K su — K5 0,0)/4
+ 9Ky, 1y Ks 1 T 3Ky Kstu — 28K, i Kstu — Kot uKs t.u)/36
+ (27K, 4 Kguu T 32K Ksyu— 60K, 1 Ksyy)/36
+ (8K, stu+ 3Krs 1 — 18K,er) ATAY12
+ (Bkyst Ky + 16Ky ks T Kr ¢ uKsp — 18Ky, 1K) AU AT/,
K2t = Krat — [Blkr st + 2kt + [B(Ky g 10— Krstu) — K,,S,t,u]X(‘/Z
+ [31[4(9%, ¢ u + 32k,su — 39K, su) Keow + 3(2K; s — 3K¢ 1) Kt,vw]ﬁu"ﬁ’/36,
ks tu= Krsut 2041k st [B1kes = [6]Kr, s  — Bkrsuy
+ [4] (ke s o + 20 0~ [2]Kp s0) ki /3
— (3[4]k, 1 + 4[6]kst — 6[6] K, st) Ky 00 /6
+ 2k, — [BKr 1 T Krot0) Ksu - (A.20)

Applying now the Bartlett-type identitie) to (A.20), it is straightforward to verify

thatk, st — [3]Kr st + 2Kt = 0 andk,‘fat,u = 0. Thus as in the conclusion of Theo-
rem 1 for the class3 of Borel subsets i 9 satisfying(8), the formal Edgeworth expan-
sion of W, = W, — AT,

= o(nfl), (A.21)

2
sup|Pr(W, € B) — >, n*j/zf $q(X)p/(X) dx
i—o B

BEB

is valid in the sense of Bhattacharya and Gh@kdi78. The validity of expansiori10)
follows by verifying that the conditionga)—(c) of a theorem in Chandra and Ghosh
(198Q p. 173 that we will denote as Theorem CG holBy (A.17), W =
Z,Z PalZy, A7) for 1= |k| = 3 andp,(-) is a polynomial therefore conditiorfa) of
Theorem CG holds—in particuld (iv) (see p 172 holds on the same s&f of Theo-
rem 1 Condition(b) of Theorem CG is a Cramér condition as assumed in,Ditfreas
condition (c) of Theorem CG holds by the validity ¢AA.21). Expansion(10) is there-
fore valid in the sense of Chandra and Gh¢$880. It remains to calculate the poly-
nomialspy in (10). By (A.21) and the linear transformatiof:y, = X, + AT, we have
that onS. = {y,:y;y; = c} for anyc &€ [cp,o0) with co =0

Pr(W = c|H,) :f {1+ [0k? + 0%k?s/2]/n¥2 + [0k + 02 (k35 + k?k2)/2
S

+0°(k3s /6 + KPKZ(/2) + 9°KZ KEu/8]/ntg(y) dyr,  (A22)
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whereak = 9%(-)/ay;, ...dy,, and the cumulantk/, ki . (j = 2,3), andk3, , are defined
in (A.20). Integrating(A.22) and using(A.5) yields
Pr(W = c[H,) = G .(c) + P;/nY2 + P,/n+o(n™1),
where
P, = [2(kyes— Kr g6 T Krst AXADVGq , (C) + (2K,et — Ky, 1) ASATV2Gy . (C)] AT/6,

P, = {(9kys ot + 16K, st — 18kss) A AY24 — qr/6 + 7/6 + 72/2
+ [— (@, 3K 1) 0% + (9K, o — 8Ky g 1) 0 TKgu AT A/18
+ 4Ky Ky /9 — Kysuu/4) X AT ASXTAT + B'S§S/2
+ (8K stu T 3Krs 1w — 18Key) ™ ATAY/ 24
+ 8Kyt Ky T 16Ky Koy, + Kp 1 uKsy — 18K, 4 sz)(S'S)F /18
F (K gt Kepp + Apau Kew A AT AY — Ak, ¢ Ko A AY)8™/T2IVG, ,(C)
+ {B"ATAY2 + (8K, g+ 3Kys 1 — 18K i) AT ASATAY/ 24
+ (BKysp Ky T 16Ky Koy, T Ky ¢ uKsp — 18K, 4 KSW)XF)FP /18
+ (Kp gt K v T 4Ky K&,W)?)T“)F/\T’" — 4Kr’t’[KS,WX6X‘7V)XFX§/72
+ [B(—Kpgu + 2K AV A7) 2Ky — K 1) S"SATAY/36
+ [31[31[4(9%; s u + 32K,su — 39K; su) Kiow
+ 3(2K;. sy — 3Ky, s0) Ki o ]88 WATAY/ 216
+ [31[3(Ky g 10 — Krsta) — Kr.s ul0ATAT/12
+ [3](4Ky Ksuw — AKrtp Ksuw T Kr 1o Ks, u,W)S'SSt“XE X"JV/72}V2Gq,T(C)
+{6(—K yut 2Ky, Al XJ)(ZKSN,— KSt,\,\,)/F)Tg)T{)T"JV
+ 18[3(ky, g 1y — Krst) — K,,St,u])FXé)?’XG
+ [3][4(9%, s u + 32K,su — 39K, su) Krow
+ 3(2k;. s u — 3Ky, s0) K ow ]S W AT A5 ATAY
+ 3[6] (4K, Ksuw— 4Kt Ksuw + Kr 1o Ks, U,W)SrSXr)TU X;X"d"}V3Gq,T(C)/216
+ (K, Ksuw— 3Kty Ks uw T Kr,t,UKSU,W)XF)F)T{XG d X"JVV“GQ,T(C)/?Z, (A.23)
with
B'™S = 2k, o — 3Krsit/2 + (9Kp. ks 10 + A Ksu — 24K, 0 Kst

— Kr t,uKs t,u + 27Kr,tt Ksuu + 32Krtt Ksuu ™ 60Kr,tu Kstu)/36>

from which (10) and (11) follow after some algebtanoting thatk, su = ks and
Ky st = Krst- | ]

Proof of Corollary 3. By (essentially the same arguments of Theoremit2s pos-
sible to show thatexcept on a se§, with Pr(S,) = o(n™?), W, admits a stochastic
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expansion that depends on the first four DL derivatizésand that there exists a trans-
formationys’ similar to the one given ifA.19) such that the measure corresponding to
the characteristic function dfy’) " can be expressed as the product of a multivariate
normal and some polynomiatg”(-)/n”’? for j = 1,...,4. Then the same integration
argument giving/A.15) in the proof of Theorem 1 shows thét has a valid Edgeworth
expansion up t@(n~2) whose coefficients cannot be written down explicifiyaus using

the moment condition and Cauchy'’s estimates for derivatives of analytic funcBas-
tacharya and Rad976 Lemma 92) it is possible to show that this expansion agrees
with the formal four-terms Edgeworth expansi@f‘:o%(x)pj(x)/ni/z, i.e., for the
classB of Borel subsets imi9 satisfying(8), the following expressian

= o(n2), (A.24)

sup Pr(W, € B) — n J/ZJ (X p;(x) dx

is a valid Edgeworth expansion in the sense of Bhattacharya and Gh®88. Thus to
show (12) it suffices to calculatds ¢q(X)p;(x) dxfor j =1,...,4, whereS; is a sphere
in 99 with radiusc/? for somec € [co,o0). Integrating over the sphe@, using(A.5)
(with ¥ = 0) and the standard argument based on the oddeesaness property of the
Hermite polynomials appearing in the Edgeworth expansiolvdBarndorff-Nielsen
and Hall 1988, gives the following Edgeworth expansion

sup ‘PF(WS C) - Gq(c) - B[Gq+2(c) - Gq(C)]/(Zn)| = O(n72)5 (A25)

cE[cp, )

whose validity in the sense of Chandra and Ghd€iv9 follows, using the same argu-
ments of Theorem,2by the validity of (A.24). Let VG4(-) = Ggq+2(-) — Gq4(+); noting
thatVGqy(-) = —20q+2(+) andgq2(c)/g4(c) = ¢/q, (12) follows immediately from(A.25).
To prove(13) notice that by a Taylor expansion

Gylc(1+ B/(ng))] = G4(c) + Beg,(c)/(ng) + O(n~2), (A.26)
whence insertingA.26) in (12) yields

sup |Pr(W® = c) — G,[c(1+ B/(ng)] + Beg,(c)/(ng)| = O(n~2),

cE[cy,0)

from which (13) follows. n

Proof of Theorem 4. We first show tha > B for any 6 % 6. Let fg (z,6) =

f,(z,0)... 1, (z,6) and notice that by GSit) ka(z #) is continuous a#l, with probabil-
|ty 1 (w.p. 1) for k = 2,3,4; the consistency of implies that there exists &, — 0
such that]§ — 6o = 8. Let A¢(0) = SUP,_gy1=s,| fr,(2.0) — fr (2 65)]; continuity of
fr(z,0) at 6y shows thatA;(#) — 0 with probability 1 The dominance condition
GS2i) implies thatA¢(0) = 2supe,fr (z,6)| whence by dominated convergence
E[A{(6)] — 0. By Markov inequality P¢|XA¢ (6)/n| > s) = E[A¢(0)]/e — 0 for all
¢ > 0. By the weak law of large numbes fr (z,6,)/n 2 E[ fr(z,60)]; moreover

| Stz 000 = 2 e (z.60/n | = 2 1e,(2.0) — (2., 60) /0

=> A (0)/n >0
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Therefore the triangle inequality implies thal ka(z,,G)/n — E[ fr (Z,00)]] = 0,(1).
The consistency oB follows then by the continuity of tensor multiplication and matrix
inversion To establish(17) we use the following mean value expansion

B =B, + dB;/00" (6" — 65), (A.27)

whereB, = B\H . Bs = Bly—g and| 6] = 6] = | 6]. Because by the weak law of large
numbersB, - B, it suffices to show thafiBg/aar L5 E(9By/060"). This follows by
the same argument used to establBh"> B. Because by GS#) the derivative
0t (2,0)/00" is continuous ab, it follows thatAaf(e) = SURy—gy|=5,r (2,6)/060" —
0t (2,6,)/06"| — 0 (w.p.1), so that by GSQii), 6 -2 6, and the triangle inequality we

have that
|02 S e, (2,,8)/a0" — Eifs, LN
i.e, n lEaka(z,,e)/ao = Op(1). By the n¥/2 consistency o), the stochastic expan-

sion (A.27) shows thaB = B + O,(n~Y2), whence by the delta method Y8 < ¢) =
Pr(WB =< ¢) + O(n~%2). The conclu3|on of the theorem follows by the oddness
evenness property of the Hermite polynomials as in Corollary 3 n

Let y, denote the observed sampla what follows we write P¢y,) = o(n"?!) to
denote the event “the observed samplgs contained in a set of probabiliy(n—1).”

Proof of Theorem 5.We first show (18). Recall that 9*wW;: =
2H.(Z5,00) ... 1, (Z5,600)/(1 + NTT.(z7,6,))¢ and that the BDLEAE solves 0=
dW,=(6,). By (A.7) and Markov inequality we have that for al> 0

Pre(jo*Wg — E*[0"Wg]| > en) =o(n™t) for 1= |k| =3,

Pr* <

except if P(y,) = o(n~ ). The triangle and Markov inequalities show that
[E*(0"Wg)| = [E*(0"Wg) — E(0"Wo)| + |E(9"W)| and PX|E*(9"Wg) — E(0*Wp)| >
€) = o(n~1), implying that for 2= |k| = 3 except if Pf y,,) = o(n™1)

Pre(|E*0"Wg| > C,) = o(n™ 1), Pre(|o"Wg/n| > C,) = o(n™1). (A.29)

max sup [9*W;'[/n
[Kl=4 |i-A,|=7

> c) =o(n1), (A.28)

Furthermore the moderate deviations estimates of Bhattacharya and & Corol-
lary 17.12) show that fora = 6

Pr (oW /n — E* (W) > Cn~Y2(logn)¥/?) = o(n™), (A.30)

except if P y,,) = o(n™1). Let §' denote the union of sets whef&.28)—(A.30) hold,
and consider a Taylor expansion of0dW,(6,)/n about the DLEA,

3

0= aW; /n+ >0 W5 (A5 — A,)Ret/(k— DIn + Ri(A), (A.31)
k=2

where Ri(1) = C[A;, — AL I3max, _,SUp;_,=-[0"W;|/n. A further mean value
expansion of each of thekan’s in (A.31) about Q the uniform moment condition
BDL (i) and(ii), and (A.28)—(A.30) show that outside the s& with bootstrap proba-
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bility Pr*(S:) = o(n~1), we can rewrite(A.31) as A% — An = g,(A* — A,) where the
continuous functiom,(-) : N9 — N9 satisfies|g,(u)| = Cn=¥?(logn)¥? for all |Jul| =
Cn~Y2(logn)¥2. Thus as in the proof of Theorem Brower’s fixed point theorem
implies that there exists a sequence of random vectpisuch that

Pri(|A; — Anl = Cn Y2(logn)¥2) =1 —o(n 1),

except if PX yn) = o(n~1). To prove(19) we follow the same arguments of Theorem 1
First, by repeated appligatiog qfA.28)—(A.30) it is possible to show thaexcept if
Pr(yn) = o(n™1), n¥2(XT — A7) has the following stochastic expansion

NY2(XT — A7) = [~E*(92Wy)] ~*W; /nY2 + AT + 0,+(n 1), (A.32)

where AT is an 9i9-valued function of the BDL derivative&nd their expectations
evaluated ait,, whose norm i0,-(n~*(logn)¥?2) except if P x) = o(n™%) (i.e,, AT
is the bootstrap analogue af, given in(A.11)). Next by Lemma 2 of Babu and Singh
(1989 the characteristic function o 3* satisfies with probability 1

lim sup sup E*[exp(et"ZF)] < 1— '

n—oo 8=|t"|=exp(ny)

for some positive constangy,y’, Wheref? is the N%-valued vector containing all
the different BDL derivativesup to third ordey evaluated ah,. Thus as in Theorem 1

it is possible to show that except if y,,) = o(n~?1) for every class3 of Borel subsets
in N9 satisfying SUBe [sm)c Do« (X) X = O(e) ase L 0

sup | Pri(n¥2(X% — A,) € B) —f si(x)dx| = o(n™1),
B

BEB

wheres;(-) = ¢q . ()[1+ 27, p7(-)/n¥/2] is the density of the empirical Edgeworth
expansion obtained by replacing the population moments with their bootstrap analogue
Thus(19) follows if for all e > 0

Pr(lpf() —p ()| >e)=0o(n™) j=12 (A.33)

Because each bootstrap moment can be expressEd[ﬁrzl(Zik)] for 1= |k| = 4,
and

K k
lim sup E*[H(Z”E)] = lim sup X [[ (Zg )/,
=1 N aer, (=1

n—oo

whereZg is theith component of théi9' -valued array of DL derivatives evaluated at
an arbitraryr € T, (A.33) follows by verifying that for 1= |k| < 4

k k
oo | = 11 2o - S [T 2| > ne) =0t
k
Pr( > [11zr, -~ EZR)]| > ns) =o(nt). (A.34)
I=1
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The first limit follows by a mean value expansion abouT0 see this notice that by the
second equality iA.7), we have

Pr< nlza[l_ﬁlzm, — E<|1_E[12R')}/a)‘

so that by the triangle inequality An~*X a(T1{_; Zig )/0A"| > C,) = o(n~1) for
someC, < oo, whereZig, = Z,. . [,—x and|A[ = |A,]. Moreover by(6) and Markov
inequality PX|A,| > &) = o(n"1) whence

Pr( > s) =o(n1).

The second limit in(A.34) follows by Rosenthal and Markov inequality u

Proof of Theorem 6.Let Z; , = Xf.(z60,)...1 (z,6,) and «} . =
E*(Z;.. /n) and notice that*Wg = (—D)* 2k — 1)(Z; ., — & 1), WhereWs
W, | »—o is the “restricted” BDL evaluated at Bs in Theorem 5 we have thagxcept if
Pr(xn) =0(n" 1), for1= |kl =3

> s) =o(n1),

k
nt (aH Zis, /aM> A5
i I=1

Pr(lz; . /n— x| >CnY2(logn)¥?) = o(n™ 1),

whereas by Markov inequaliti;” . — «,,. | = 0p(n"1), so that

1.

Pr(1Zy . /n— ke ] >Cn ¥2(logn)¥?) = o(n™ 1), (A.35)
except if P yn,) = o(n~1). A Taylor expansion ofV* about 0 gives

3
W= (D NZE K IAEL AR+ RA(A), (A.36)
k=1

whereR:(1*) = C|| Xﬂ|4ma>qk|:4 sup =, 10“W,:|/n. As in Theorem 5 it is possible to
show thatn?A¥ admits a stochastic expansion of the form

NY2XT = k*S(ZE — k2)/MY2 + AT+ 0pe(n71), (A.37)

wherex*™s is the matrix inverse ok;; and A} is as in(A.32). Repeated applications of
(A.35) show that Pt(|n¥2)%] > Clogn¥?) = o(n~1) except if P y,) = o(n~1), and
thus by triangle inequality it follows that

Pr(|Ry(A")| > [ X7 ]*C(L+ n~V2(logn)¥?)) = o(n~ ).

Substituting(A.37) into (A.36) shows thatexcept if P y,,) = o(n™?), the BELR admits
the following stochastic expansion

W* = k*S(ZF — k) (Z& = k)Pa(Z7,. 1 )/N+ 0y (N7H),
wherep,(-) is a polynomial inZ;, _, with coefficients depending oky, . LetZ=

Z; — k}'; as in Theorem 2we can obtain the signed square root decompositio bf=
K*SWEWS + 0+ (N7 1) with

https://doi.org/10.1017/50266466604202018 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604202018

264 FRANCESCO BRAVO

W = Z7o /2 + [~ 25 (k75 Z8)/2 + i (7 Z28) (kY 230) /3] /n
+ [Zi(k ™ Z28) (k™ Z09) /3 + BZ3 Z5(k ™ Z;°)/8

- Szztuzjs(’(*tt’ Zt*’c) (K*uu’ ZGF)/G - (Kr*stu/4 - 4K:<st’ Kt*’tu/g)

X (K*ss’ Z;«,C)(K*tt’zt*p)('(*uu’ Z:;)]/n’
which shows thatexcept if Pf y,) = o(n™1), W* is a function of the first three BDL
derivatives outside a s&: with bootstrap probability P(S) = o(n~?1). Thus by the
same arguments of Theorem 5 it can be shown Wgtadmits a valid Edgeworth
expansion in the sense of Bhattacharya and Gtin8i8 except if P y,) = o(n™1).
Therefore following the same steps of Theorem 2 it can be showetkagpt if PX y,,) =

o(n~1), W* admits the following validin the sense of Chandra and Ghp$879 Edge-
worth expansion

sup [Pri(W* = c) = Gy(c) = B*[Gq.2(C) = Gy(0)]/(2n)| = o(n™Y), (A.38)

cE[cy,0)

whereB* = kg k*Sk*Y2 — ki, kS MW/ 3 is the bootstrap Bartlett correction
i.e, (16) atd = 6y. By (A.34) we have

Pr(|B* —B| >¢) =0(n1), (A.39)
and thus combiningA.38), (A.39), and(A.25) yields
sup [Pri(W* =c) - Pr(W=c) — (B* — B)[Gg.»(c) — G4(c)]/(2n)| = o(n™1),

cE[cp,0)

sup [Pri(W* =c)—Pr(W=c) —o,(n"?)| = o(n1),
cE[cy,0)

except if P y,) = o(n™1). |

Proof of Corollary 7. As in the proof of Corollary 3 it is possible to show that the
BELR admits a valid Edgeworth expansion upam™2) except if P yn,) = o(n™2).
Thus by the results of Corollary, Theorem 6and the generalized Cornish—Fisher expan-
sion formula of Hill and Davie$1968 it follows that the asymptotic expansions for the
a point of WandW* are

Cck,n = Cn(l-‘r B/(nQ)) + O(n72)5
Can = Ca(1+ BY(nQ) + Oy(n~2),

respectivelywherec, = Pr()(,§| = ¢,) = a. Therefore using the delta methaal Taylor
expansionand the Edgeworth expansion \0f we have

Pr(W>c; ) = Pr(W—(C} , — Ca.n) > Cu.n)
= Pr(W—-0,(n~?) >c, + ¢, B/(nq))
= 1- Gy[c,(1+ B/(ng)] + c,Bg(c,)/(ng) + O(n~2)
=a+0(n?),

which shows that effectively the BELR accomplishes the Bartlett correction automatically
|
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