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Turbulence measurements were made in smooth-wall boundary layers subject to
changing pressure gradients. Cases were documented over a range of Reynolds
numbers and acceleration parameters. In all cases the boundary layer was subject
to an initial zero pressure gradient (ZPG) development, followed by a favourable
pressure gradient (FPG), a ZPG recovery and an adverse pressure gradient (APG).
In the non-ZPG regions, the acceleration parameter, K, was held constant. Two
component velocity profiles were acquired at multiple streamwise locations to
document the response to the changing pressure gradient of the mean velocity,
Reynolds stresses and triple products of the fluctuating velocity components. Velocity
field measurements were made to document the turbulence structure using two point
correlations. In general, turbulence was suppressed by the FPG while structures
became larger in streamwise and spanwise extent relative to the boundary layer
thickness, particularly near the wall. In the recovery region, the return to canonical
ZPG conditions was rapid. Changes in the structure in the APG region were less
pronounced. The changes in the turbulence statistics and correlations relative to the
ZPG baseline were quantified and presented as functions of streamwise location.
When the streamwise location is scaled using the acceleration parameter, the results
from all cases (including all statistical moments, and the size and inclination angles
of turbulence structures), collapse in each region of the flow, showing a common
non-equilibrium response to changes in the pressure gradient. These are new results
which apply to the present flows and those with similar types of pressure gradients,
but are not necessarily applicable to all flows with arbitrary pressure gradients.

Key words: turbulent boundary layers, boundary layer structure

1. Introduction

Turbulent boundary layers have been well studied, and the understanding of
their behaviour has steadily advanced with the development of new and higher
fidelity measurement techniques and the advent of computational tools for direct
numerical simulation (DNS). Mean velocity profiles, turbulence statistics, and wall
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shear have been documented over a large range of Reynolds numbers. Velocity
field measurements have shown the role of structures such as hairpin packets and
larger scale motions in determining the mean flow behaviour. Measurements and
computations have focused mainly, although certainly not exclusively, on the canonical,
flat, smooth-wall, zero pressure gradient (ZPG) case. Reviews of ZPG studies include
Fernholz & Finley (1996) and Klewicki (2010). Recent examples of experiments in
the literature include Vincenti et al. (2013) and Samie et al. (2018). Computational
studies include Jiménez et al. (2010) and Sillero, Jiménez & Moser (2013). The ZPG
case was the logical choice to start building the understanding of turbulent boundary
layers since in many ways it is the simplest case, at least in terms of complicating
effects, if not flow structure. The ZPG case also provides a useful baseline for
comparison to other cases.

Many flows of interest differ from the canonical case. The surfaces of ships,
aircraft, lifting and planning surfaces and turbomachinery components, for example,
may be approximately smooth or flat in some locations, but in general, their boundary
layers are subject to roughness and curvature effects. Curvature is often the cause
of non-zero pressure gradients. Both favourable (FPG) and adverse (APG) pressure
gradients are of fundamental and practical interest. Favourable pressure gradients
stabilize the boundary layer, reduce turbulence, and if sufficiently strong can lead
to relaminarization. Adverse pressure gradients are destabilizing and can lead to
boundary layer separation.

Although not as extensive as in the ZPG case, considerable work has been done
in non-ZPG boundary layers. Fundamental experimental studies include Aubertine
& Eaton (2005), who considered a mild APG and noted differences in turbulence
statistics from the ZPG case. Skåre & Krogstad (1994) considered a strong APG case
near separation. Castillo & George (2001) considered both favourable and adverse
pressure gradients and compared the results of several earlier studies. Jones, Marusic
& Perry (2001) documented FPG sink flow cases. Harun et al. (2013) considered
both FPG and APG effects. Computations have included the sink flow DNS of
Spalart (1986) and the APG DNS of Kitsios et al. (2017). Skote, Henningson &
Henkes (1998) considered self-similar APG cases. Lee & Sung (2009) and Lee
(2017) considered equilibrium APG boundary layers with pressure gradients of
various strength. Bobke et al. (2017) showed the history effects on APG boundary
layers near equilibrium. These are just a few examples. Many more studies have
documented boundary layers on airfoils for various applications.

While much has been learned from the studies in the literature, there is still limited
documentation of the flow structure beyond the turbulence statistics, and limited
information about the non-equilibrium development in boundary layers responding
to changes in pressure gradients. Presumably, the types of structures documented in
ZPG boundary layers by studies such as Adrian, Meinhart & Tomkins (2000) are
still present in non-ZPG cases. The DNS studies of Lee & Sung (2009) and Lee
(2017) have shown this for equilibrium APG flows, but such documentation is limited.
The non-equilibrium response of the size and shape of these structures to changes
in pressure gradient remains to be documented. The present study addresses these
issues by considering fully turbulent boundary layers on smooth, flat walls subject
to non-zero pressure gradients. Cases with a range of Reynolds numbers and mild
to strong pressure gradients are presented. The magnitudes of the strongest pressure
gradients approach, but remain below those necessary to cause relaminarization or
separation. The present paper begins with an examination of how the mean velocity
and turbulence statistics, along with the integral quantities and wall shear determined
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FIGURE 1. Cross-section of test section in streamwise–wall-normal plane. Three positions
of upper wall shown: blue, ramp 1; red, ramp 2; green, ramp 3. Numbers in test section
indicate streamwise measurement stations.

from them, change in response to the pressure gradient. This is followed by spatial
correlations of the turbulence, which illustrate how turbulence structures respond to
changes in the pressure gradient.

2. Experiments
Experiments were conducted in the water tunnel described by Volino, Schultz &

Flack (2007). The test section was 2 m long, 0.2 m wide and nominally 0.1 m tall
at the inlet of the test section. The lower wall was a flat plate that served as the test
wall and included a trip near the leading edge, as shown in figure 1. The upper wall
was comprised of four flat plates that were independently adjusted to set the pressure
gradient. The upper wall and sidewalls provided optical access.

Flow was supplied to the test section from a 4000 l cylindrical tank. Water was
drawn from the tank to two variable speed pumps operating in parallel and then sent
to a flow conditioning section consisting of a diffuser containing perforated plates,
a honeycomb, three screens and a three dimensional contraction. The test section
followed the contraction. The free-stream turbulence level was 0.3 %. Water exited
the test section through a perforated plate emptying into the cylindrical tank. The
test fluid was filtered and deaerated water. A chiller was used to keep the water
temperature constant to within 0.5 ◦C during all tests.

Boundary layer velocity measurements were obtained with a TSI FSA3500
two-component laser Doppler velocimeter (LDV). A four beam fibre optic probe
was used to collect data in backscatter mode. The beams entered the test section
through one of the sidewalls. A custom designed beam displacer was added to the
probe to shift one of the four beams, resulting in three co-planar beams that were
aligned parallel to the test wall. Additionally, a 2.6 : 1 beam expander was located at
the exit of the probe to reduce the size of the measurement volume. The resulting
probe volume diameter (d) was 45 µm with a probe volume length (l) of 340 µm.
The corresponding measurement volume diameter and length in viscous length scales
were d+ 6 4.8 and l+ 6 36. The flow was seeded with 2 µm diameter silver coated
glass spheres. The data were collected in coincidence mode. For each velocity profile,
the LDV probe was traversed to 46 locations within the boundary layer using a
Velmex three-axis traverse with resolution of ±5 µm in all directions. Data were
typically acquired at each location in the boundary layer for 180–240 s, depending
on the free-stream velocity, or until 50 000 random velocity samples were obtained.

The uncertainty in the mean streamwise velocity was 0.5 % of the free-stream
velocity. The 95 % confidence interval uncertainty in the turbulence quantities
was determined using the bootstrapping method and ranged from 2 % to 5 % in
the Reynolds stresses. Uncertainties in triple products ranged from 10 % to 30 %
depending on the quantity and the location in the boundary layer. More details of the
uncertainty estimates are available in Volino (2020).
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The wall friction velocity, uτ , and skin friction coefficient, Cf /2= (uτ/U∞)2, were
determined for each velocity profile using the method described in Volino & Schultz
(2018) with an uncertainty in uτ of 3 %. The method is based on the streamwise
momentum equation and utilizes the measured mean streamwise velocity and Reynolds
shear stress profiles. The Clauser chart method, which is based on fitting the mean
profile to the law of the wall, is not applicable in all of the present cases because the
strong pressure gradients cause deviation from the standard log law. In ZPG regions,
uτ from the present method and the Clauser chart method agreed to within 2 %.

Velocity field measurements were made using planar particle image velocimetry
(PIV) at the same streamwise locations as the LDV profiles. At each location a
streamwise–wall-normal (x–y) plane was acquired at the spanwise centreline of the
test section, and streamwise–spanwise (x–z) planes were acquired at y/δ = 0.15
and 0.4, where δ is the 99 % boundary layer thickness. The flow was seeded with
the same particles used in the LDV measurements. For each plane, 1000 image pairs
were acquired using a CCD camera with a 3320× 2496 pixel array. Velocity vectors
were obtained with TSI Insight 4G software using 32 pixel square windows with
50 % overlap. The field of view was 39 mm × 29 mm in the x–y plane, and 48 mm
× 41 mm in the x–z plane.

2.1. Test cases
All test cases included a 0.6 m long ZPG development region at the inlet of the test
section. The first measurement station was near the end of this section, and as shown
in Volino (2020), the turbulent boundary layer was fully developed at this location,
and both the mean flow and turbulence quantities agreed with the ZPG DNS results of
Jiménez et al. (2010) at the corresponding Reynolds number. The top wall of the test
section was slightly diverging in this region to account for the growth of the boundary
layer.

The following section was set for a FPG from x = 0.6 m to 1.1 m, where x is
the streamwise distance downstream of the trip. The FPG had a constant acceleration
parameter,

K =
ν

U2
∞

dU∞
dx

, (2.1)

where ν is the kinematic viscosity and U∞ is the local free-stream velocity. A constant
K FPG is a sink flow, which will reach equilibrium in all dimensionless quantities if
given sufficiently long to develop.

The FPG region was followed by a ZPG recovery region extending from x= 1.1 m
to 1.6 m. This was followed by a constant K APG region. The K value in the APG
was set to half the magnitude of the upstream FPG in each case. A free-stream
core was maintained between the test wall and upper wall boundary layers at all
measurement locations. Downstream of the last station, the rapid growth of the
boundary layers in the APG region eventually caused them to merge. Full equilibrium
can only be achieved in FPG sink flows, but as explained in Bobke et al. (2017)
based on the work of Mellor & Gibson (1966), near equilibrium, in which the mean
velocity is streamwise invariant in defect coordinates, is possible in some cases when
the free-stream velocity is described by U∞=C(x− xo)

m, with C, xo, and m constants.
Near equilibrium can be achieved in the ZPG case (m= 0) and in APG cases when
m>−1/3. In these cases, the pressure gradient parameter,

β =
δ∗

τo

dP
dx
= Reδ∗

−K
Cf /2

, (2.2)
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(where δ∗ is the displacement thickness, τo is the wall shear stress and P is pressure)
will reach a constant in equilibrium. For constant K, m = −1, so the present APG
flows do not approach or achieve equilibrium, and β continuously increases in the
APG region, similar to the cases considered by Monty, Harun & Marusic (2011).

Three positions of the upper wall were used, as shown in figure 1. Three different
inlet velocities, U∞o = 0.5, 1 and 2 m s−1, were used, resulting in 8 experimental
cases with K values shown in table 1. The cases with the same K value allow some
separation of Reynolds number and acceleration effects. In the FPG, cases with the
same K will eventually reach the same equilibrium condition if given long enough to
develop, but those with a more aggressive setting of the upper wall will approach
the sink flow condition more quickly. The momentum thickness Reynolds number,
Reθ , dropped with streamwise distance through the FPG region with the aggressive
setting of the upper wall (ramp 1), remained nearly constant with the moderate setting
(ramp 2) and rose (albeit more slowly than with a ZPG) in the cases with the mild
setting (ramp 3). This Reθ behaviour illustrates an unavoidable history dependence on
the initial boundary layer thickness and Reθ at the start of the FPG.

The twelve streamwise stations used for measurements are shown in table 2 and
figure 1. Station 1 was near the end of the ZPG entry region, stations 2–6 were in
the FPG region, stations 7–9 spanned the ZPG recovery and stations 10–12 were in
the APG region. Table 1 gives boundary layer parameters for all cases including the
friction Reynolds number, Reτ = uτδ/ν; and the shape factor, H. The wake strength,
Π , is defined as the difference between the measured velocity in wall coordinates at
δ and the log law

Π =
κ

2

(
0.99U+ −

(
1
κ

ln δ+ + B
))

, (2.3)

where κ=0.384. The value of the intercept, B, is set to best fit the data of each profile.
For the ZPG region, B was close to the canonical ZPG value of 4.2 corresponding to
κ = 0.384, as given by Nagib, Chauhan & Monkewitz (2007). In strong FPG regions,
B was slightly higher, as will be shown below. For the APG, Monty et al. (2011) note
that several studies with strong pressure gradients have shown a drop in B below the
canonical value, but the difference is typically not as strong as in the FPG, and was
small for the present cases. For cases with mild APGs (β < 2.3), Aubertine & Eaton
(2005) reported agreement with the standard log law.

For comparison to the cases described above, data were also acquired for cases over
the same Reynolds number range with a ZPG along the entire test section. These cases
are presented in Volino (2020).

3. Results
3.1. Mean velocity profiles

The format for presentation of the results will be to show profiles of the various
quantities for one of the stronger pressure gradient cases (case 2 in table 1) to
illustrate how the boundary layer changes in response to the pressure gradient, and
then to quantify and compare these changes in the streamwise direction for all cases.
All cases had qualitatively similar behaviour, but as expected, there was considerable
difference in the magnitude of the changes depending on the pressure gradient.

The mean streamwise velocity, U, is shown in figure 2. Figure 2(a) shows
the profiles at St. 1–6 in outer, defect coordinates. Also shown is a comparison
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St. 1 2 3 4 5 6 7 8 9 10 11 12

x (m) 0.590 0.681 0.772 0.845 0.938 1.105 1.272 1.439 1.607 1.673 1.740 1.806
Case 1 E C @ A 6 B ∗ D + K ×

x (m) 0.560 0.681 0.772 0.845 0.938 1.060 1.272 1.439 1.555 1.673 1.740 1.806
Cases 2–8

TABLE 2. Measurement station streamwise locations.
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FIGURE 2. Mean streamwise velocity profiles for case 2, (a) defect coordinates for
St. 1–6, (b) defect coordinates for St. 6–12, (c) inner scaling for St. 1–6, (d) inner scaling
for St. 6–12. Symbols from table 2. Lines in (a,b): —— canonical ZPG comparison,
— · — Spalart (1986) equilibrium sink flow DNS. Lines in (c,d): —— (blue) U+ = y+,
—— (black) log law with κ = 0.384, B= 4.2.

profile from the canonical ZPG study of Volino (2020) taken at Reθ = 6340, and an
equilibrium sink flow profile from Spalart (1986). The ZPG study showed essentially
no variation in these coordinates for y/δ > 0.2 over the full range of Reθ considered.
The St. 1 profile, at the end of the initial ZPG entrance region, agrees with the ZPG
comparison profile. The profiles at the subsequent stations drop in response to the
FPG, and by St. 5 are below the equilibrium result, which will be discussed below.
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FIGURE 3. Difference in A= (U∞ − U)/U∞ between ZPG and non-ZPG mean velocity
defect profiles at y/δ = 0.4. ZPG and non-ZPG compared at same Reθ . (a) FPG
St. 1–6, (b) ZPG St. 6–9, (c) APG St. 9–12. Symbols from table 1 for cases of present
study. Symbols for Jones (1998) results: ×, K = 0.539 × 10−6; +, K = 0.359 × 10−6;
∗, K = 0.270× 10−6.

The profiles in the recovery and APG regions are shown in figure 2(b), with the
St. 6 profile and the ZPG comparison profile from figure 2(a) repeated for reference.
The profiles rise through the recovery region and reach agreement with the ZPG
comparison case by St. 9. In the APG, there is a continuous increase above the ZPG
profile.

To quantify the variation from ZPG conditions for all cases, figure 3 shows the
difference between the measured defect velocity and the corresponding velocity in a
ZPG profile from Volino (2020). The difference is taken at a representative location
of y/δ = 0.4, and is shown as a function of streamwise location. The location y/δ =
0.4 was selected as about the centre of the region where the change in the profile
was most pronounced. Essentially equivalent results were produced when alternate
locations such as y/δ = 0.3 or 0.5 were selected. An integrated change over a range
in y was also tried, and this also gave similar results, but produced more scatter,
presumably because it included locations where the change was small. For the FPG
region in figure 3(a), the streamwise coordinate is normalized as (x− xf )/L, where xf
is the location at the start of the FPG, and L = ν/(KFPGU∞f ) is the FPG sink flow
length, with U∞f the free-stream velocity at the start of the FPG. This normalization
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was chosen because the profiles must reach equilibrium by the end of the sink flow
length. The data for all cases collapse onto a single curve for the FPG region. The
cases with the more aggressive ramps proceed farther along the curve, but none has
clearly plateaued to an equilibrium by the end of the FPG region. It is interesting
that all cases appear to proceed along the same curve, regardless of differences in
the test section geometry, Reynolds number, K, or the pressure gradient parameter, β.
Also shown are the sink flow experimental results of Jones et al. (2001), as tabulated
in Jones (1998). In their cases, with three different inlet velocities and K ranging
from 0.27 × 10−6 to 0.54 × 10−6, the results also follow a single curve, but with
a different slope than the present study. The difference may be due to differences
in the inlet condition to the FPG. In the present study, all cases had equal length
ZPG development regions after the trip, and achieved fully developed turbulent ZPG
boundary layer conditions. In the Jones et al. (2001) study, the FPG began at the start
of the test section, immediately after the trip.

The sink flow DNS of Spalart (1986), who considered K between 1.5× 10−6 and
2.75× 10−6, showed that the equilibrium profile shape in defect coordinates exhibited
very little variation with K for y/δ > 0.1. This is consistent with the findings of
Castillo & George (2001), who noted a common profile shape was reached for all
FPG cases. At y/δ = 0.4, the difference between the equilibrium sink flow and ZPG
profiles, in the coordinates of figure 3, is about 0.09. This is close to the St. 6
results for cases 3–5 with ramp 2 and the most downstream results of Jones et al.
(2001), suggesting that the boundary layer was close to reaching its equilibrium
condition. The profiles in all of these cases matched each other and the equilibrium
sink flow result, even with K as low as 0.25 × 10−6. In the ramp 3 cases (6–8),
the boundary layer was still in a non-equilibrium state with Reθ continuing to rise,
and the defect profiles remained above the equilibrium profile, as shown by the
y/δ = 0.4 values in figure 3(a). With ramp 1 (cases 1 and 2), the boundary layer
was again still not in equilibrium at St. 6, but with Reθ dropping. This led to an
overshoot of the equilibrium profile, as shown in figure 2. Presumably, if the FPG
region of the test section were longer, the profile development would have eventually
reversed, rising toward equilibrium. To explore this, two-dimensional, Reynolds
averaged Navier–Stokes (RANS) calculations were done using the boundary layer
code TEXSTAN (an extension of STAN5 by Crawford & Kays (1976)). The low
Reynolds number, two-equation turbulence model of Chien (1982) was used for
turbulence closure. The recommended settings were used for all constants; no attempt
was made to optimize or tune the computations. Cases were run using the boundary
conditions of the present study through the inlet and FPG regions, and for the Jones
et al. (2001) cases. The streamwise length of the FPG region was extended farther in
the computations than in the experiments. The computed mean velocity profiles did
not match the experiments precisely, but did show the correct trends with pressure
gradient. In defect coordinates, there was no difference between cases with the same
geometry and different inlet velocities, in agreement with the experiments. As shown
in table 1, at each station, β was the same for all cases with the same ramp. This
suggests that it is the geometry and the resulting pressure gradient parameter, β, that
are significant, not the Reynolds number or K. Results extracted from the calculations
are shown in figure 4. Comparison with figure 3(a) shows good agreement with the
exception that the calculation results are systematically low by 0.02 compared to the
experiments. The variation with different geometries and upstream development are
correctly predicted. The overshoot and predicted return to equilibrium is shown for
the ramp 1 cases. The predictions suggest that all cases would eventually reach the
same dimensionless profile by the end of the sink flow region.
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FIGURE 4. RANS prediction of difference in A= (U∞ −U)/U∞ between ZPG and non-
ZPG mean velocity defect profiles at y/δ = 0.4 in FPG region.

The recovery region data are shown in figure 3(b). The streamwise coordinate
is normalized as (x − xr)/L − xs/L, where xr is the location at the start of the
ZPG recovery, and xs = 0.7(xr − xf ). The xs term accounts for the cases with more
aggressive ramps (lower L) having departed more from ZPG conditions, and therefore
requiring a longer recovery distance to resume canonical ZPG behaviour. The constant
0.7 was determined empirically to collapse the data. Presumably it would decrease
towards zero if the FPG region were longer, allowing all cases to more closely
approach the sink flow equilibrium condition at the start of the recovery.

The APG region data are shown in figure 3(c). The streamwise distance is
normalized as (x − xa)/La, where xa is the location at the start of the APG, and
La = ν/(KAPGU∞a), with U∞a the free-stream velocity at the start of the FPG. Since
the recovery to a canonical ZPG profile was essentially complete in all cases, all begin
the APG under similar conditions, and the results for all cases collapse unto the same
curve. The normalizing length, La, was chosen using the same definition as for the
sink flow, and can be used in the present cases because K is constant. An alternative
for the APG region is to use the local pressure gradient parameter, β. Figure 5(a)
shows β as a function of (x− xa)/La for all cases. It increases monotonically with x,
and all cases fall roughly onto the same curve, although closer inspection shows
different slopes for the three ramps. This means that the results in figure 3(c) could
be shown as a function of β, as shown in figure 5(b). The same is true for all of
the APG results below. The ability to cast the present APG results as a function of
the local pressure gradient parameter suggests a possible independence of upstream
history. Monty et al. (2011) found similar collapse of profiles with different Reynolds
numbers and streamwise locations when β was held constant, even for cases that
were not in equilibrium. It is clear, however, that this result is not universal. Bobke
et al. (2017) showed history effects. The present cases and those of Monty et al.
(2011) started from a fully developed ZPG boundary layer and had monotonically
increasing β. Perhaps the present results do not indicate a history independence, but
behave similarly because they have the same β history in the scaling of figure 5(a).
Note that the streamwise development cannot be shown as a function of β in the
ZPG region (where β = 0) or in the FPG in the present cases where β does not
change monotonically in the streamwise direction.

The mean profiles for case 2 are shown in inner coordinates in figures 2(c) and 2(d).
The standard log law with κ = 0.384 and B= 4.2 is shown for reference. In the FPG,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

31
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.319


897 A2-12 R. J. Volino

0 0.05 0.10 0.15 0.20 0.25 0 2 4 6

6

4

2

0

-0.05

-0.10

(x - xa)/La ı

ı

A Z
PG

 -
 A

(a) (b)

FIGURE 5. Development of APG region as function of local pressure gradient. (a) β as
function of streamwise coordinate of figure 3(c), (b) A of figure 3(c) as function of β.

the profiles rise above the log law, and the wake is suppressed. The departure from
the log law is slightly larger than predicted by the sink flow DNS of Spalart (1986).
In the recovery, the profiles return to the log law, and the growth of the wake resumes.
The profile matches the canonical ZPG boundary layer at the same Reθ by St. 8. In the
APG region, agreement with the log law continues, but growth of the wake becomes
rapid. This growth of the wake can be quantified, and is shown in the Appendix to
follow the streamwise scaling shown in figure 3.

Quantities obtained from the mean velocity profile are considered next. The
boundary layer thickness provides one measure of the response to the pressure
gradient. In the FPG region, strong acceleration with ramp 1 caused δ to drop slowly,
and the momentum and displacement thicknesses to drop more rapidly. With ramp 2, δ
remained nearly constant, while δ∗ and θ dropped slowly after an initial rise. With the
weaker acceleration of ramp 3, δ rose, δ∗ remained constant and θ rose slowly. In the
recovery region, all the boundary layer thicknesses resumed the growth rate expected
for a ZPG boundary layer. In the APG, all the thicknesses grew more rapidly.

The skin friction coefficient is shown as a function of Reθ in figure 6(a). Other
quantities determined from the mean profile (Reτ ,H) are shown in the Appendix. For
the FPG and recovery regions, Cf agrees with a typical ZPG textbook correlation,
Cf = 0.025Re−0.25

θ taken from Kays & Crawford (1980). For an equilibrium sink flow,
it can be shown that Cf = 2K(1 + H)Reθ . For the ramp 2 cases, the measured Cf

agrees with the sink flow value by station 6, while for the ramp 1 cases the measured
Cf is below the sink flow value and for the ramp 3 cases it is above the sink flow
value. These results are consistent with the station 6 Reθ values noted above, which
are near their equilibrium value for the ramp 2 cases, but still dropping or rising
toward equilibrium for the ramp 1 and 3 cases, respectively. This was also shown in
figures 3(a) and 4, which indicate that a longer development length would be needed
for the mean velocity profiles of the ramp 1 and 3 cases to reach equilibrium. In the
APG region, Cf drops significantly below the ZPG correlation as β rises. In the limit
of boundary layer separation, an APG drives the mean velocity gradient near the wall
toward zero as the boundary layer thickness and Reθ remain finite. The drop below the
ZPG correlation should therefore be expected even for attached flows. It must be some
function of the pressure gradient, and a simple relationship would be a linear function
of β. Multiplying Cf by (1+ β/10) results in agreement of all the cases, as shown in
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FIGURE 6. Skin friction coefficient, Cf . Symbols for present cases from table 1.
(a) Present study, uncorrected; (b) present study with (1 + β/10) correction;
(c) uncorrected and including results of Harun et al. (2013) (+) and Skåre & Krogstad
(1994) (×); (d) corrected with (1 + β/10) and including Harun et al. (2013) and Skåre
& Krogstad (1994) results.

figure 6(b). The results of Skåre & Krogstad (1994) and Harun et al. (2013) are added
in figure 6(c,d). In agreement with the present cases, the APG causes the expected
drop in Cf below the ZPG correlation, and the (1 + β/10) correction re-establishes
agreement. The same correction also agrees with the APG DNS results of Lee (2017)
and the experiments of Monty et al. (2011). The linear form of the correction and the
constant 10 were determined empirically, but the trend of the correction is expected, as
explained above. It applies to the cases in figure 6, which are near equilibrium or have
monotonically increasing β. It is not necessarily useful for arbitrary pressure gradients,
and did not agree with data from cases with different pressure gradient histories, such
as those presented in Bobke et al. (2017).

3.2. Reynolds stresses
The boundary layer turbulence is considered next. Figure 7 shows profiles of the
streamwise component of the Reynolds normal stress, u′2, for case 2. In outer
coordinates there is a drop in the outer layer in the FPG region, similar to that in
the mean velocity profiles of figure 2(a). For the ramp 1 cases, the drop slightly
overshoots the equilibrium sink flow result. The overshoot is not seen with the milder
pressure gradients, again similar to the mean flow. By the end of the recovery region,
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FIGURE 7. Streamwise Reynolds normal stress profiles for case 2, (a) outer coordinates
for St. 1–6, (b) outer coordinates for St. 6–12, (c) inner coordinates for St. 1–6, (d) inner
coordinates for St. 6–12. Symbols from table 2. Lines: —— canonical ZPG comparison,
— · — Spalart (1986) equilibrium sink flow DNS.

there is good agreement with the canonical ZPG boundary layer. In the APG, the
profiles rise above the ZPG result. The differences between the FPG results for all
cases and the canonical ZPG case at the same Reθ are shown in figure 8(a) in the
format of figure 3. (As an alternative, the comparison could also be done at matching
Reτ in the ZPG case instead of Reθ . This was done for all of the quantities of
the present study with virtually no change in the results or conclusions.) As above,
y/δ = 0.4 is chosen as a representative location for the comparison. The results do
not collapse. At a given K, the values rise more quickly at the lower Reynolds
numbers. For K = 1 × 10−6, for example, case 3 reaches the same values as case 2
in about half the dimensionless streamwise distance. The mean streamwise velocity
profile responds directly to the pressure gradient, as the pressure forces act on the
mean momentum of the fluid. The turbulence quantities are then expected to respond
to the changes in the mean velocity, and it is conjectured that the response occurs
as a function of not only the sink flow length (along with the mean flow) but also
the eddy turnover distance, which scales with the boundary layer thickness, δ. The
normalizing length for the development of the u′2 profiles is, therefore, modified to
L∗ = LReδf = K/δf , where Reδf = U∞f δf /ν and δf is the boundary layer thickness
at the start of the FPG. This normalization is shown in figure 8(b), and although
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FIGURE 8. Difference between ZPG and non-ZPG u′2/U2
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profiles at y/δ= 0.4. ZPG and
non-ZPG compared at same Reθ . (a) FPG St. 1–6, (b) FPG St. 1–6, (c) ZPG St. 6–9,
(d) APG St. 9–12. Symbols from table 1.

determined empirically, appears to work well. It will also be seen to work well with
all of the turbulence quantities of the present study. For the data of Jones (1998),
an appropriate Reδf for streamwise scaling was not as clear, since the FPG was not
preceded by a ZPG region. His results did show, however, that the difference between
the FPG and canonical ZPG profiles approached an equilibrium that roughly matched
the most downstream results of the present study for cases with the same K. The
present results show that the most downstream magnitude of each case in figure 8(b)
increases with K. For K between 0.27× 10−6 and 0.539× 10−6, the results of Jones
(1998) reached an equilibrium magnitude of about 0.002, which is roughly consistent
with the present cases. If the recovery region is considered a reverse of the FPG, the
same streamwise scaling of the streamwise distance might apply there as well, as
shown in figure 8(c). In the APG region, shown in figure 8(d), the same scaling is
used as for the mean velocity in figure 3(c). This indicates that the u′2 response to
the APG does not exhibit the same Reynolds number dependence that it does in the
FPG and recovery. As will be further shown below, when the outer flow is strained
by a FPG, there is a drop in the dimensional magnitude of the turbulence quantities.
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FIGURE 9. Streamwise Reynolds normal stress profiles for case 2 with mixed scaling,
(a) St. 1–6, (b) St. 6–12. Symbols from table 2. Lines: —— canonical ZPG comparison.

In an APG the initial response is different, with the magnitude of the turbulence
quantities remaining approximately frozen while the mean velocity drops.

The u′2 results are shown in inner coordinates in figure 7(c,d). In the FPG and
recovery regions there is little change of the inner peak. The inner peak is due
primarily to fluctuations across the high mean shear near the wall (i.e. inactive
motions as explained by Bradshaw (1967)), so the peak scales with the wall shear. In
the APG, the rapid drop in the wall shear relative to the turbulence already present
in the boundary layer causes the inner peak to rise. Lee & Sung (2009) found using
quadrant analysis that sweep motions from the outer part of the boundary layer have
more influence on the inner region of APG flows, and the rise of the inner peak in
response to the rise of the outer peak is consistent with this. It will be discussed
further with the quadrant analysis results below. In all regions, the location of the
inner peak remains fixed at y+ = 15, consistent with experimental and DNS results
in the literature and the dependence on the near-wall mean shear. Farther from the
wall, u′2 is suppressed in the FPG and appears to collapse toward an equilibrium.
The recovery to ZPG conditions is rapid, and there is a large rise of the outer peak
in the APG. The streamwise development of the u′2/u2

τ profiles was essentially the
same as shown in figure 8 for the u′2/U2

∞
profiles. That is, the same scaling of the

streamwise distance applied for both the inner and outer scaled u′2. The same was
also true for the other turbulence quantities shown below.

The case 2 u′2 profiles are shown again in figure 9 using the mixed scaling of
DeGraaff & Eaton (2000). In these coordinates there is a small rise in the inner
peak in the FPG region, but much better collapse in the APG. For the APG, this
supports the idea that the inner peak depends on both the local mean shear, which
scales with uτ , and the increased influence of the outer region, which scales with U∞.
The trends farther from the wall are the same as with standard inner scaling.

The v′2 profiles for all cases have the same behaviour as the Reynolds shear stress,
and the same conclusions and scaling apply to v′2 and −u′v′. The −u′v′ are considered
next, with an example of the v′2 profiles presented for comparison in the Appendix.
The case 2 profiles are shown in figure 10. The inner peak observed in u′2 is not
present in −u′v′, but for the rest of the profile the trends with the pressure gradient in
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FIGURE 10. Reynolds shear stress profiles for case 2, (a) outer scaling for St. 1–6,
(b) outer scaling for St. 6–12, (c) inner scaling for St. 1–6, (d) inner scaling for St. 6–12.
Symbols from table 2. Lines: —— canonical ZPG comparison.

both inner and outer scalings are the same as those described for u′2 in figure 7. The
profiles are suppressed toward a new equilibrium by the FPG, recover to match the
canonical ZPG case by St. 9, and the peak grows rapidly in the APG. The dimensional
value of the peak −u′v′ in the outer region actually drops in the APG, so the rise
in the profiles of figure 10 are entirely due to the drop in U∞ and uτ . Figure 11
shows the difference in outer coordinates between all cases of the present study and
the canonical ZPG boundary layer at y/δ= 0.4. The results are similar to those of u′2
in figure 8, and the same streamwise scaling of the streamwise distance is used. For
the FPG, the Jones (1998) results for K of 0.27× 10−6 and 0.539× 10−6 approach an
equilibrium value of approximately 5 × 10−4 in the coordinates of figure 11, which
is roughly consistent with the most downstream results of the present cases in the
same K range.

Quadrant analysis (Willmarth & Lu 1972) was used to further consider the effect
of the pressure gradient. Within each quadrant, the response of the −u′v′ profiles
was essentially the same as for the composite −u′v′ of figure 10. As expected, and
in agreement with ZPG results, quadrants 2 (Q2, ejections, u′ < 0, v′ > 0) and 4 (Q4,
sweeps, u′ > 0, v′ < 0) were most significant. At the y location where the Reynolds
shear stress was largest, about twice as many events and four times the contribution
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FIGURE 11. Difference between ZPG and non-ZPG −u′v′/U2
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profiles at y/δ= 0.4. ZPG
and non-ZPG compared at same Reθ . (a) FPG St. 1–6, (b) ZPG St. 6–9, (c) APG St. 9–12.
Symbols from table 1.

to the Reynolds shear stress occurred in quadrants 2 and 4 than in quadrants 1 and 3,
respectively. The pressure gradient caused changes in the relative contributions of
Q2 and Q4. Profiles of the ratio of the contribution from Q2 to that from Q4 are
shown in figure 12 for case 2. For the ZPG comparison cases, the ratio rises from
the wall to a peak of about 1.2 at y+ ≈ 30. For locations very near the wall, there
is little fluid even closer from which ejections can originate, so Q2 contributions are
low. Farther out, Q2 and Q4 come more into balance and the ratio drops to near one.
Beyond y/δ = 0.4, the ratio rises as ejections remain significant but the intensity of
sweeps decreases as the free stream is approached. Beyond y/δ = 1 the ratio drops
toward 1.0 as the turbulence becomes uncorrelated in the free stream and u′v′ has
the same magnitude in all four quadrants. Volino (2020) found little variation in the
Q2/Q4 ratio with Reynolds number for ZPG cases. For the non-ZPG cases, there is
little change for y+ < 20. In the middle of the boundary layer, the FPG causes the
ratio to rise. The acceleration strains the turbulence in the outer flow, as shown above
by the reduction in the Reynolds stresses and in the notional sketch in figure 13.
This reduces the effect of sweeps. Ejections are still generated due to the high mean
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FIGURE 12. Profiles of the ratio of contributions to u′v′ from Q2 and Q4 for case 2,
(a) St. 1–6, (b) St. 6–12. Symbols from table 2. Lines: —— canonical ZPG comparison.

ZPG FPG APGSweeps Ejections

FIGURE 13. Notional drawing of the changes in turbulence in response to
pressure gradients.

shear near the wall. The result is the rising Q2/Q4 ratio. In the recovery region, the
ratio drops back to the canonical ZPG value. In the APG, the mean shear drops near
the wall, reducing the near-wall turbulence and the strength of ejections. In the outer
flow, the dimensional turbulence quantities do not change rapidly, as noted above, so
sweeps from the outer region become more significant relative to ejections. The result
is that the Q2/Q4 ratio drops below the ZPG profile. This is consistent with the DNS
results of Lee & Sung (2009) and Lee (2017) and the growth of the inner u′2 peak in
inner coordinates shown in figure 7(d). Case 1 showed the same behaviour as case 2.
For the weaker ramp cases, the trends were less clear, which is consistent with the
APG results of Lee (2017), who saw that the increasing strength of Q4 was most
clear for cases with β > 2.2.

3.3. Triple products
The budget equations of the Reynolds stresses, as presented in references such as
Reynolds (1976), are useful for understanding the development of turbulence. Many
of the terms in the equations, including the dissipation terms and those involving
pressure fluctuations, cannot typically be determined from experimental measurements.
The triple products of the turbulent fluctuations, which are related to the transport
of the Reynolds stresses, were measured and are considered next. Profiles of u′3
are shown in inner coordinates in figure 14 for case 2. There are two possible
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FIGURE 14. The u′3 profiles for case 2, (a) St. 1–6, (b) St. 6–12. Symbols from
table 2. Lines: —— canonical ZPG comparison.

physical explanations for the turbulent transport associated with u′3. One is the
streamwise transport of u′2 with u′ fluctuations, but even with a mean pressure
gradient, streamwise gradients are weak relative to wall-normal gradients, so there is
little reason to expect significant streamwise turbulent transport. The other explanation
is wall-normal transport of u′2 through the v′ fluctuations associated with ejections
and sweeps. Sweeps carry high speed fluid toward the wall, so they have positive u′

and negative v′. Transport of u′2 with a sweep results in positive u′3 and negative u′2v′

for the same event. Ejections correspondingly result in negative u′3 and positive u′2v′.
The behaviour in figure 14 is explained in terms of wall-normal motions. Transport
toward the wall from the near-wall peak at y+= 15 in figure 7 results in the positive
peak at y+ = 7 in figure 14. Transport away from the wall produces the negative
peak at y+ = 25. In the FPG, since there is little change in the near-wall peak in u′2,
there is little change in the near-wall peak in u′3. For the APG, the growth of the u′2

inner peak is reflected in the growth of the u′3 peak at y+= 7. The negative u′3 peak
at y+ = 25 grows in the FPG and then returns quickly to its original condition in
the recovery region. This can be explained by the increased importance of ejections
relative to sweeps at this location in the FPG shown in figure 12. The locations of
the inner peaks are invariant with the pressure gradient, remaining at y+ = 7 and 25
in all regions. This is consistent with the inner u′2 peak remaining at y+ = 15.

In the outer region of the ZPG boundary layer, there is a small, broad negative
peak in u′3 centred at y/δ = 0.6. Its position varies with Reynolds number in inner
coordinates, as shown for the ZPG cases in Volino (2020); it appears at y+ = 350
at station 1 in figure 14(a). This peak is generated by transport of the outer region
u′2 fluctuations, centred at y+ = 200 in figure 7(c), toward the free stream. As these
fluctuations are suppressed by the FPG, the corresponding u′3 is also suppressed. The
outer region u′2 would also tend to produce a positive u′3 peak closer to the wall,
but this effect appears to be overwhelmed by the effect of the larger near-wall peak
in u′2. In the recovery region, the outer peaks in u′2 and u′3 quickly return to ZPG
conditions. In the APG, as the outer peak in u′2, located at approximately y/δ= 0.35,
grows rapidly, the negative outer peak in u′3 at y/δ= 0.6 does the same. As the outer
u′2 peak grows, transport from it towards the wall causes a new positive peak in u′3 to
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FIGURE 15. Difference between ZPG and non-ZPG u′3/U3
∞

profiles at y/δ = 0.6. ZPG
and non-ZPG compared at same Reθ . (a) FPG St. 1, (b) ZPG St. 6–9, (c) APG St. 9–12.
Symbols from table 1.

emerge centred at y/δ = 0.13 (y+ ≈ 110 in figure 14b). The transport of outer region
u′2 toward the wall begins to overwhelm the negative u′3 peak at y+= 25 and pull u′3
there up to positive values.

The changes in u′3 relative to the ZPG results are qualitatively the same for all
cases, but of lower magnitude with milder pressure gradient. As an example, figure 15
shows the behaviour of the peak at y/δ = 0.6 as a function of streamwise position
in the format of figure 8. There is some scatter due to the uncertainty in the triple
products, but the trend in each region is clear. Plots in the format of figure 15 are not
included for the other peaks in u′3 or for the other triple products, but they exhibit
similar behaviour.

As noted above, the triple product u′2v′ also primarily results from the wall-normal
transport of u′2, and exhibits the same behaviour as u′3. It is not shown here, but
profiles are included in the Appendix for comparison.

Profiles of v′3, which is related to the wall-normal transport of v′2, are shown for
case 2 in figure 16. The profiles are somewhat simpler than those of u′3 because
v′2 has only a single peak, which is centred at approximately y+ = 100 at station 1.
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FIGURE 16. The v′3 profiles for case 2, (a) St. 1–6, (b) St. 6–12. Symbols from
table 2. Lines: —— canonical ZPG comparison.

Transport from this peak towards the wall results in the small negative v′3 peak at
y+ = 25, and transport away from the wall causes the positive peak at y+ ≈ 200.
The FPG suppresses v′2, particularly in the outer part of the flow, resulting in a
corresponding reduction in magnitude of the v′3 peaks. In the recovery region the
peaks increase in size, and the positive v′3 peak begins to split, with an inner peak
near y+ = 100 and an outer peak at y+ = 550. The same splitting was observed with
increasing Reynolds number in ZPG cases by Volino (2020), and is attributed to the
broadening and flattening of the v′2 peak (shown in the Appendix and similar to the
−u′v′ peak of figure 10). At the centre of the v′3 peak there is some cancelation of
the effects of the ejections and sweeps from either side of the v′2 peak, causing the
dip at y+ = 300. In the APG region, the rapid growth and shift to higher y+ of v′2
results in a corresponding increase in magnitude of both the negative and positive
v′3 peaks and a similar shift to higher y+. The triple product u′v′2 is also related
to the wall-normal transport of v′2, as carried by ejections and sweeps. It behaves
similarly to v′3 and is show in the Appendix for comparison. The quantity u′v′2 can
also be associated with the wall-normal transport of the Reynolds shear stress. Since
the profiles of v′2 and −u′v′ are similar, the same explanation of the u′v′2 behaviour
can be applied to both v′2 and −u′v′ transport.

3.4. Production terms
The production terms for the Reynolds stresses were also determined from the
measurements. The production terms for u′2 are −2u′v′∂U/∂y and −2u′2∂U/∂x,
as explained by Reynolds (1976). The former is the dominant term, at least for
the present flows, since the gradient of the mean velocity is much stronger in the
wall-normal direction than in the streamwise direction even for the strong pressure
gradient cases. Profiles of −2u′v′∂U/∂y are shown in figure 17 for case 2 in inner
coordinates. The peak at y+ = 11 is suppressed slightly by the FPG, but the change
is small, in agreement with the lack of change in the inner u′2 peak in figure 7. In
the outer region, the values are low, but they are still noticeably reduced by the FPG.
In the ZPG recovery, these trends are reversed, and the profile returns to match the
canonical ZPG comparison case. In the APG, the inner peak grows, and an outer
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FIGURE 17. The −2u′v′∂U/∂y (production term for u′2) profiles for case 2, (a) St. 1–6,
(b) St. 6–12. Symbols from table 2. Lines: —— canonical ZPG comparison.

peak centred at approximately y+ = 200 emerges, again in agreement with the u′2
behaviour in figure 7. All cases exhibit the same behaviour shown in figure 17 for
case 2. The changes in the inner peak are small, particularly for the weaker pressure
gradient cases, and of the order of the uncertainty in the measurements. The location
of the inner peak remains fixed at y+ = 11 as the pressure gradient changes, which
is consistent with fixed locations of the inner peaks in wall coordinates for all of the
quantities considered above. The trends for the outer peak are clearest in outer scaling
and are shown in figure 18 using the format of figure 8. Results are shown for the
representative location y/δ = 0.4, and are normalized as (−2u′v′∂U/∂y)(δ/U3

∞
). As

in the quantities shown above, there is good agreement between all cases.
The production terms for v′2 are −2u′v′∂V/∂x and −2v′2∂V/∂y. The latter is the

dominant term, but both are small compared to the dominant production terms in the
u′2 and −u′v′ budgets. As noted by Reynolds (1976), production of turbulent energy
typically occurs first in some components of the Reynolds stress followed by transfer
to others. The production terms for −u′v′ are u′2∂V/∂x, u′v′∂V/∂y, u′v′∂U/∂x and
v′2∂U/∂y. Of these, the last is the dominant term. Profiles of it are shown in figure 19
in inner scaling for case 2. Similar to the results in figure 17, the entire profile is
suppressed somewhat in the FPG region, recovers quickly in the ZPG recovery, and
grows significantly in the APG. An inner peak is present at y+ = 15, and an outer
peak emerges in the APG, centred at about y+ = 300. In outer scaling, the outer
peak location is y/δ = 0.3. Although not shown, all cases agree when presented in
the format of figure 18. The changes in figure 19 correspond to those observed in
−u′v′ in figure 10.

3.5. Spectra
Additional velocity data were acquired with the LDV at a sufficiently high sampling
rate for spectral analysis at each streamwise location of case 1 at y/δ= 0.15 and 0.4.
At each location, 240 s time records of instantaneous u and v were recorded in
coincidence mode with average sampling rates of approximately 500 Hz at y/δ= 0.15
and 700 Hz at y/δ = 0.4. Data for spectral analysis were also acquired in the ZPG
boundary layer at the same wall-normal locations at Reθ = 1960, 3600 and 6300
with an average sampling rate of about 1200 Hz. The dimensionless spectra for
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FIGURE 18. Difference between ZPG and non-ZPG profiles at y/δ = 0.4. ZPG and non-
ZPG compared at same Reθ . A= (−2u′v′∂U/∂y)(δ/U3
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FIGURE 19. The v′2∂U/∂y (production term for −u′v′) profiles for case 2, (a) St. 1–6,
(b) St. 6–12. Symbols from table 2. Lines: —— canonical ZPG comparison.
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FIGURE 20. Premultiplied spectra of Reynolds stresses for case 1 at y/δ = 0.15 (a) u′2,
St. 1–6, (b) u′2, St. 6–12, (c) v′2, St. 1–6, (d) v′2, St. 6–12, (e) u′v′, St. 1–6, ( f ) u′v′,
St. 6–12. Thick black line is smoothed, canonical ZPG comparison.

these ZPG cases were found to be invariant with Reynolds number. The spectra
from the Reθ = 3600 case are used for comparison below. Premultiplied spectra
of u′2, v′2 and −u′v′ at y/δ = 0.15 are shown in figure 20. Frequencies were
converted to wavenumbers, k, using the local mean streamwise velocity. Three
different scalings were considered for the wavenumber. These were an outer scaling,
kδ, an inner scaling, kν/uτ , and a mixed scaling k(δν/uτ )0.5. The latter is the meso
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FIGURE 21. Premultiplied spectra of Reynolds stresses for case 1 at y/δ = 0.4 (a) u′2,
St. 1–6, (b) u′2, St. 6–12, (c) v′2, St. 1–6, (d) v′2, St. 6–12, (e) u′v′, St. 1–6, ( f ) u′v′,
St. 6–12. Thick black line is smoothed, canonical ZPG comparison.

scale described in Wei et al. (2005). The inner scaling produced the best agreement
through all regions for the v′2 spectra, while the mixed scaling was best for u′2 and
−u′v′. These scalings are used in figures 20 and 21, and with these scalings there
is little variation in the dimensionless wavenumber of the spectral peaks through all
three regions. The magnitudes of the peaks do not collapse with any scaling and
cannot be expected to. In premultiplied coordinates, the area under each spectrum
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is equal to the respective Reynolds stress, and the Reynolds stresses clearly change
in response to the pressure gradients as shown above. At station 1, the spectra of
the present case are similar to those of the ZPG comparison case (shown smoothed
with a thick black line). The FPG suppresses the turbulence across the entire spectra.
As in the mean Reynolds stresses, the recovery to ZPG conditions is rapid. At the
end of the recovery the spectra agree well with the ZPG baseline. In the APG,
there is continuous growth in the spectra magnitude across all wavenumbers for all
quantities. The spectra at y/δ = 0.4, shown in figure 21, are very similar to those at
y/δ = 0.15 in terms of wavenumber and magnitude. There is a noticeable difference,
however, in the response to the FPG and ZPG recovery. At y/δ= 0.15, the approach
to equilibrium is more rapid, with the spectra at stations 5 and 6 agreeing well with
each other, and the station 3 spectra not greatly different. At y/δ= 0.4 there is more
separation between the spectra at these stations. The same is true in the recovery.
The spectra at stations 7–9 collapse at y/δ= 0.15, but the recovery is somewhat more
gradual at y/δ= 0.4, with the station 7 spectra distinct from those at stations 8 and 9.
The difference in the responses at y/δ = 0.15 and 0.4 is consistent with the above
discussion of the turbulence statistics. Closer to the wall the turbulence is generated
primarily through the mean shear and responds more directly to the change in mean
velocity. Farther from the wall, there is more of a lag as the rest of the boundary
layer responds to the near-wall change.

3.6. Turbulence structure, x–y plane
The turbulence structure in the x–y plane is illustrated using linear stochastic
estimation (LSE). The technique as used here is explained in Volino, Schultz &
Flack (2009), and is similar to that used by Hambleton, Hutchins & Marusic (2006)
and Christensen & Adrian (2001), based on the derivation of Adrian & Moin (1988).
In LSE, the average velocity field associated with a conditioning event is computed.
Whenever the conditioning event occurred, the instantaneous fluctuating velocity field
at locations 1x and 1y from the event was identified. Streamwise averaging was
then done among all locations with the same 1x and 1y in the field, and then over
the 1000 vector fields acquired. Prograde swirl at a specified distance, yref , from the
wall was used as the conditioning event in the x–y plane, as in Volino et al. (2009).
Swirl strength, λ, was defined by Zhou et al. (1999) as the imaginary part of the
complex eigenvalue of the local velocity gradient tensor. It is closely related to the
vorticity resulting from rotation, as opposed to pure shear. It was used in the present
context in a two-dimensional form, as explained in Volino et al. (2009) and Hutchins,
Hambleton & Marusic (2005). Prograde swirl, as used by Wu & Christensen (2006),
refers to vortices rotating in the direction of hairpin vortex heads, which is the
direction induced by the mean shear. The LSE result can be associated with the
hairpin packet surrounding the conditioning event. Figure 22 shows the LSE results
for case 2 at stations 1, 6, 9 and 12 at the ends of the ZPG development, FPG, ZPG
recovery and APG regions, respectively. Each vector is normalized for presentation
by its own magnitude to prevent those closest to the reference point from dominating
the field. The arrows, therefore, are all the same length and indicate only direction.
The conditioning event was at yref /δ = 0.4, and a clear clockwise (prograde) vortex
appears at this location. Areas of organized vectors indicate correlation with the
conditioning event, while regions with random appearing vectors are uncorrelated.
The fields at stations 1 and 9 are very similar to the canonical ZPG result in Volino
et al. (2009). A ‘crease’ extends both upstream and downstream from the reference

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

31
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.319


897 A2-28 R. J. Volino

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

Îx/∂

y/∂

y/∂

y/∂

y/∂

(a)

(b)

(c)

(d)

FIGURE 22. LSE conditioned on prograde swirl events at y/δ= 0.4 for case 2, (a) St. 1,
(b) St. 6, (c) St. 9, (d) St. 12.

point inclined at about 14◦ to the wall. Prograde rotations appear along the crease,
spaced roughly δ apart, suggesting other hairpins associated with the same packet.
Below the crease the vectors induced by the vortices generally point upstream and
toward the crease (Q2 motions), while above the crease they are directed downstream
and toward the crease (Q4 motions). The streamwise extent of the organized region is
about −1.2<1x/δ < 1.5, and the wall-normal range extends from the wall to about
y/δ = 1. The FPG clearly changes the LSE field, particularly below the reference
point. The inclination angle of the crease upstream of the reference point is reduced
to about 6◦. The correlated region below the reference point is longer and extends
beyond the field of view. Some of the increase in streamwise extent is due to the
reduction in the normalizing quantity δ, and some is due to a dimensional increase
in the size of the region. In the APG region, the streamwise length of the correlated
region is reduced somewhat relative to the ZPG result, particularly downstream of the
reference point. The inclination angle of the crease increases slightly to about 17◦.
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FIGURE 23. Contours of Ruu centred at y/δ = 0.4 for 12 stations of case 2, outermost
contour Ruu = 0.1, contour spacing 0.1.

In all regions, there is little change in the wall-normal extent of the correlated region.
The trends with pressure gradient are similar when other distances from the wall are
used as reference locations. The LSE results for case 1 were very similar to those
shown for case 2. With the weaker ramps of cases 3–8, the trends with pressure
gradient were similar, but less pronounced, as shown below.

Two-point correlations of the turbulence quantities were used to further quantify the
pressure gradient effects. In the x–y plane, the correlation, as explained in Volino et al.
(2007), is defined as

RAB(yref )=
A(x, yref )B(x+1x, yref +1y)

σA(yref )σB(yref +1y)
, (3.1)

where A and B are the quantities of interest at two locations separated in the
streamwise and wall-normal directions by 1x and 1y, and σA and σB are the standard
deviations of A and B at yref and yref + 1y, respectively. At every yref , the overbar
indicates the correlations were averaged among locations with the same 1x and
1y, and then time averaged over the 1000 vector fields acquired. Figure 23 shows
contours of the streamwise fluctuating velocity correlation, Ruu, with the correlation
centred at yref /δ = 0.4 for all stations of case 2. At station 1, the shape and extent
of the contours agree with the ZPG results in the literature, such as those in Volino
et al. (2007). The correlated region shown can be associated with the extent of a
hairpin packet. In the FPG region, the streamwise extent of the contours increases
and the inclination angle of the contours with respect to the wall is reduced, in
agreement with the LSE results of figure 22. In the recovery region the trends are
reversed, and the extent of the contours return to values similar to those at station 1.
In the APG region the streamwise extent of the contours is decreased somewhat, and
the inclination angle appears to increase. These trends are more clearly illustrated
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FIGURE 24. Streamwise slices through self-correlation point of Ruu of case 2, (a) centred
at y/δ = 0.15, St. 1–6, (b) y/δ = 0.15, St. 6–9, (c) y/δ = 0.15, St. 9–12, (d) y/δ = 0.4,
St. 1–6, (e) y/δ = 0.4, St. 6–9, ( f ) y/δ = 0.4, St. 9–12. Symbols from table 2.

in figure 24, which shows streamwise cuts through the self-correlation point for
yref /δ = 0.15 and 0.4. The increase in streamwise extent is clear in the FPG at both
distances from the wall, as is the reversal in the ZPG recovery. There is little change
in the APG region. Wall-normal cuts (not shown) through the centre of the Ruu
contours show little change with pressure gradient at either yref location and agree
with the ZPG results in Volino et al. (2007).

The inclination angle, θuu, of Ruu was determined, as in Volino et al. (2007) using a
least squares fit to a line through the points farthest, both upstream and downstream,
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FIGURE 25. Average inclination angle of Ruu contours, (a) FPG St. 1–6, (b) ZPG St. 6–9,
(c) APG St. 9–12. Symbols from table 1.

from the self-correlation peak on each of the Ruu= 0.5, 0.6, 0.7, 0.8 and 0.9 contours.
As in Volino et al. (2007), the angle showed little variation for yref /δ between 0.2
and 0.7 and is presented next as an average of the values determined between these
limits. Figure 25 shows the variation of θuu with streamwise location for all cases in
the format of figure 3. The inclination angle is about 12◦ in the ZPG, in agreement
with Volino et al. (2007) and other results in the literature. It drops toward about
7◦ in the FPG, progressing farther for the ramp 1 cases since these cases extend
farther in the streamwise direction toward the sink flow length. The ZPG recovery
is rapid, and the angle returns to 12◦. In the APG, the angle increases to about 15◦.
The angles obtained from Ruu agree well with those estimated from the LSE results
of figure 22. The increase in the inclination angle in the APG is consistent with the
results of Lee & Sung (2009), who reported an angle of about 18◦ in an equilibrium
APG with β = 1.68. At higher β the present angles are significantly lower than those
reported by Lee (2017) for equilibrium cases, possibly indicating that the angles of
the present cases might continue to increase if the streamwise development length
were longer.

The streamwise length, Lxuu, is defined as in Christensen & Wu (2005) as twice
the distance from the self-correlation peak to the most downstream location on the
Ruu = 0.5 contour. As with θuu, there was little variation between 0.2 < yref /δ < 0.7,
and the average for this range is presented for all cases as a function of streamwise
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FIGURE 26. Average streamwise extent of Ruu = 0.5 contour, (a) FPG St. 1–6, (b) ZPG
St. 6–9, (c) APG St. 9–12. Symbols from table 1.

position in figure 26. There is scatter in the results, which is most noticeable in the
APG region since the overall changes were small, but the trends for all cases agree
with the observations for case 2 in figures 23 and 24. The wall-normal length, Lyuu,
is defined as the wall-normal distance between the points closest and farthest from
the self-correlation point on the Ruu = 0.5 contour. In the strongest pressure gradient
cases it generally followed the same trends as Lxuu, but differed by only approximately
10 % from the ZPG value, as might be expected based on figure 23. The increased
streamwise length and decreased inclination of the structures in the FPG could be
interpreted to result from streamwise stretching caused by the acceleration. Another
possible explanation is the decreased outer region turbulence and the reduced impact
of Q4 events noted above. With less disturbance from above, coherent regions closer
to the wall may persist longer in the streamwise direction.

Examples of the correlations of other turbulence quantities are shown in figure 27.
Included are contours of Rvv and the cross-correlations Ruv, Rλu, and Rλv for stations 1,
6, 9 and 12 of case 2. The Rvv and Rλv correlations, which do not involve the
streamwise component of the velocity, showed some indication of an increase in
spatial extent in the FPG region and a reverse in the ZPG recovery, similar to Ruu,
but the trend was not strong and not consistent between cases. The Rvv contours
do not exhibit an inclination with respect to the wall, in contrast to Ruu. The Rλv
contours can be associated with the head of a hairpin vortex (prograde swirl) at
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FIGURE 27. Contours of correlations for case 2, (a) Rvv , innermost contour Rvv = 0.8,
contour spacing 0.2, (b) Ruv , innermost contour Ruv =−0.45, contour spacing 0.1, (c) Rλu,
outermost contours Rλu=±0.015, contour spacing 0.04, (d) Rλv , outermost contours Rλv =
±0.01, contour spacing 0.04.

the centre of the correlation. Fluid is pulled away from the wall on the upstream
side and directed toward the wall on the downstream side. One noticeable effect of
the pressure gradient on Rλv is the larger extent of the negatively correlated region
upstream and below the correlation point in the FPG. This would suggest a greater
impact of ejections (Q2) related to sweeps (Q4) in the FPG, in agreement with the
quadrant analysis results shown above.

The trends with pressure gradient were clearer for Ruv and Rλu, which do involve u′.
The Ruv contours were inclined at a negative angle with respect to the wall, as might
be expected for Q2 and Q4 events. The angle, θuv was quantified using a least squares
fit to define a line though the upstream and downstream points farthest from the centre
of the correlation on the −0.3 and −0.35 contours, and is shown in figure 28 in the
coordinates of figure 25. Similar to Ruu, the magnitude of the inclination angle was
reduced in the FPG, starting from an initial value of about −36◦ and approaching an
equilibrium of about −22◦ at (x− xf )/L= 0.25 in case 1. Although there is scatter in
the results, the trend is the same for all cases and the change in angle is lower for the
weaker K cases. The FPG was followed by a return to the ZPG value of approximately
−36◦ by the end of the recovery region, and a slight additional increase in magnitude
in the APG. The streamwise extent of the correlation, Lxuv, was defined as the distance
between the most upstream and downstream points on the Ruv =−0.3 contour. It also
followed the behaviour of Ruu, increasing in the FPG, dropping back to the original
value in the recovery, and dropping slightly more in the APG. The percentage change
in the length and the streamwise distance in which it occurred were essentially the
same as shown for θuv in figure 28. The wall-normal distance, Lyuv, which was also
based on the −0.3 contour, behaved similarly, but as with Ruu, the changes were small.

The correlation Rλu, as with Rλv, can be associated with the head of a hairpin vortex.
Fluid is directed downstream above the centre of the correlation and upstream below,
as shown in the LSE results of figure 22. The changes with pressure gradient are the
same as those of Ruu. The inclination of the line between the positively and negatively

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

31
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.319


897 A2-34 R. J. Volino

-0.05 0 0.05 0.10 0.15 0.20
(x - xa)/La

-0.1 0 0.1 0.2 0.3 0.4
(x - xf)/L

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
(x - xr)/L - xs/L

-20

-25

-30

-35

-20

-25

-30

-35

-40

-30

-35

-40

-45
œ u

√ 
(d

eg
.)

œ u
√ 
(d

eg
.)

(a) (b)

(c)

FIGURE 28. Average inclination angle of Ruv contours, (a) FPG St. 1–6, (b) ZPG St. 6–9,
(c) APG St. 9–12. Symbols from table 1.

correlated region of Rλu decreases with the FPG, and then increases in the recovery
and APG regions. The streamwise extent of the correlation, particularly between the
correlation centre and the wall, increases with the FPG and then drops in the following
regions. These results again agree with those of figure 22. The APG results are very
similar to the equilibrium APG DNS results of Lee & Sung (2009) and Lee (2017).
In particular, they noted the decreased extent of the negative Rλu contours downstream
and below the correlation centre, and attributed it to the increased sweep influence as
Q4 became larger relative to Q2.

3.7. Turbulence structure, x–z plane
The turbulence structure in the x–z plane, as shown in studies such as Volino et al.
(2007) and Hutchins et al. (2005) is characterized by high and low speed streaks. This
is illustrated in figure 29, which shows LSE results for station 9 of case 2 at y/δ=0.4.
Clockwise swirl, in the view of the figure, at any location in the plane was used as
the conditioning event. Streamwise, spanwise and time averaging were done among all
locations with the same 1x and 1z spacings. The conditioning event can be associated
with one leg of a hairpin vortex. Although cane vortices, consisting of only a single
leg as opposed to a fully formed hairpin, might be present in the instantaneous flow,
in the average that LSE shows, the leg of a hairpin should be accompanied by the
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FIGURE 29. LSE conditioned on clockwise swirl events at y/δ= 0.4 for St. 9 of case 2.

opposite leg. This is seen in figure 29 as oppositely rotating vortices spaced at about
1z/δ = ±0.5 from the conditioning vortex at the centre of the field. Between the
vortices are high and low speed streaks of positive and negative u′ induced by the
vortices. These streaks extend the full length of the field of view. All the LSE results
in the x–z plane were qualitatively similar, but the spanwise spacing of the vortices
varied. This spacing is shown as a function of streamwise position for all stations of
all cases in figure 30 for planes at y/δ=0.15 and 0.4. At y/δ=0.15 there is a trend of
increased spacing in the FPG and a return to the original ZPG value in the recovery,
but with the exception of station 6 in the ramp 1 cases, the changes are small relative
to the scatter in the data.

In the APG the decrease in the spacing continues. The vortex spacing is
approximately 30 % larger at y/δ = 0.4 than at y/δ = 0.15. In agreement with the
statistics shown above, the effect of the pressure gradient is stronger farther from the
wall, and at y/δ= 0.4 the changes in the vortex spacing are larger than at y/δ= 0.15.
The vortex spacing nearly doubles in the FPG for the ramp 1 cases and returns to
its original value in the recovery. It decreases another 20 % in the APG. Changes are
smaller for the ramp 2 and 3 cases, but the trends are the same.

Two-point correlations in the x–z plane are defined as

RAB =
A(x, z)B(x+1x, z+1z)

σAσB
, (3.2)

where A and B are the quantities of interest at two locations separated by 1x and
1z, and σA and σB are the standard deviations of A and B based on data in the full
measurement plane for the 1000 vector fields acquired. Streamwise, spanwise and time
averaging were done for all location pairs with the same 1x and 1z. Contours of the
correlations Ruu, Rww, Rλu and Rλw are shown in figure 31 for stations 1, 6, 9 and 12
of case 2 at y/δ = 0.4. In the FPG region, the correlated regions of all quantities
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FIGURE 30. Spacing between vortices identified using LSE in x–z plane (as in figure 29),
(a) at y/δ= 0.15, FPG St. 1–6, (b) y/δ= 0.15, ZPG St. 6–9, (c) y/δ= 0.15, APG St. 9–12,
(d) at y/δ = 0.4, FPG St. 1–6, (e) y/δ = 0.4, ZPG St. 6–9, ( f ) y/δ = 0.4, APG St. 9–12.
Symbols from table 1.

increase in size relative to δ in both the streamwise and spanwise directions. In the
recovery region, there is a rapid return to the original size. Little change is seen in
the APG region, indicating that the structures are growing proportionally with δ. The
changes are illustrated with cuts through the correlation contours. Streamwise cuts
through the centre of the Ruu correlation provide the same information and match

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

31
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.319


Non-equilibrium boundary layers with pressure gradients 897 A2-37

-2 0 2 -2 0 2 -2 0 2 -2 0 2

1

0

-1

1

0

-1

1

0

-1

1

0

-1

Îx/∂

Î
z/

∂
Î

z/
∂

Î
z/

∂
Î

z/
∂

Îx/∂ Îx/∂ Îx/∂

(a)

(b)

(c)

(d)

St. 1 St. 6 St. 9 St. 12

FIGURE 31. Contours of correlations for case 2 at y/δ= 0.4, (a) Ruu, innermost contour
Ruu = 0.9, contour spacing 0.1, (b) Rww, same contour levels as for Ruu, (c) Rλu, contour
level is 0 at centre of correlation, contour spacing 0.04, red positive, blue negative, (d) Rλw,
same contour levels as for Rλu.

the results from the x–y plane measurements in figure 24. Spanwise cuts are shown
in figure 32, showing negatively correlated regions that correspond to the oppositely
signed u′ streaks, on either side of the central peak. If the scale of the figure were
increased, additional alternating positive and negative peaks would appear at larger
1z/δ. This is shown in the Rλu contours of figure 31, which include as many as
8 low magnitude streamwise streaks of alternating sign extending across the entire
measurement span. A spanwise length scale, Lzuu, can be defined based on a particular
contour or the distance from the central peak to the nearest negative peak. This was
done for all cases, and the results were virtually identical to those of figure 30, since
the LSE results and Ruu are based on the same data.

The Rww correlation generally followed the same trends as Ruu, but like Rvv in the
x–y plane, the changes were small relative to the scatter in the results. Contours of
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FIGURE 32. Spanwise slices through self-correlation point of Ruu of case 2, (a) centred
at y/δ = 0.15, St. 1–6, (b) y/δ = 0.15, St. 6–9, (c) y/δ = 0.15, St. 9–12, (d) y/δ = 0.4,
St. 1–6, (e) y/δ = 0.4, St. 6–9, ( f ) y/δ = 0.4, St. 9–12. Symbols from table 2.

the Ruw correlation are shown in figure 33. The same contour pattern was shown for
ZPG boundary layers in Volino et al. (2007). The four peaks around the centre of
the correlation correspond to the expected signs for u′ and w′ induced by the counter
rotating hairpin vortex legs driving and on either side of a high or low speed streak.
The structures increase in size in both the spanwise and streamwise directions in
response to the FPG. This is followed by a rapid reversal in the recovery region and
little change in the APG. The shape of the contours is different at y/δ= 0.15 and 0.4.
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FIGURE 33. Contours of Ruw correlation for case 2, (a) y/δ= 0.15, (b) y/δ= 0.4. Contour
level is 0 at centre of correlation, contour spacing 0.04, red positive, blue negative.

As noted by Ganapathisubramani, Longmire & Marusic (2006), this may be due to
a different inclination angle of the vortex legs at different distances from the wall.
Closer to the wall where the inclination angle is presumably smaller, there is more
asymmetry between the upstream and downstream sides of the correlation. Farther
from the wall, where the leg is presumably more vertical, there is more symmetry.
The pressure gradient also has an effect on the asymmetry, and as noted above for the
statistics and the structures in the x–y plane, the pressure gradient effect is stronger
farther from the wall. At y/δ = 0.4 in the FPG region, the peaks become more
elongated in the streamwise direction on the upstream side of the correlation centre,
while the peaks expand more equally in the streamwise and spanwise directions on
the downstream side. The acceleration was shown above in figures 22, 23, 25 and 28
to reduce the inclination angle of structures with respect to the wall. A reduction of
the average inclination angle of the hairpin legs may be responsible for the asymmetry
in the same way the asymmetry at y/δ = 0.15 was attributed to a lower angle. A
reduction in the inclination angle of the hairpin and the accompanying elongation
in the streamwise direction is consistent with the increasing streamwise scales of all
quantities in the near-wall region in response to the FPG. The opposite is observed
in the APG, where the streamwise symmetry increases. This is presumably due to
the increased inclination angle observed in figure 25(c). The change is subtle, but
was seen consistently in the ramp 1 and 2 cases. For the weaker pressure gradient of
ramp 3, less change in the structure occurred. The locations of the peak magnitude
in Ruw in each direction from the centre of the correlation are shown for all stations
of case 2 in figure 34. At y/δ = 0.15 there is no clear progression of the peaks
in the streamwise direction, and the changes in the location are relatively small.
This indicates that the size of the structure scales with δ. At y/δ = 0.4 there is a
clear progression away from the centre of the correlation in the FPG in both the
streamwise and spanwise directions, with the streamwise increase noticeably larger
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FIGURE 34. Location of peak magnitude of Ruw in each quadrant of x–z plane for case 2.
Numbers plotted indicate streamwise station number. Red indicates y/δ = 0.15, black
y/δ = 0.4.

than the spanwise. In the ZPG recovery, there is a rapid reversal of the growth and
no distinguishable further change in the APG.

4. Conclusions
Experimental measurements have been presented from smooth-wall boundary layers

to document the non-equilibrium response of the turbulence statistics and structure to
changing pressure gradients. In each experimental case, the boundary layer was subject
to a ZPG development region followed by a FPG with a constant K, a ZPG recovery
region and an APG region with a constant K. Cases were documented over a range of
Reynolds numbers and with K ranging from 0.125× 10−6 to 2× 10−6 in the FPG and
from −0.0625×10−6 to −1×10−6 in the APG. Two component velocity profiles were
acquired at 12 streamwise stations along the spanwise centreline of the test section.
Velocity fields were acquired at the same streamwise stations using planar PIV in
streamwise–wall-normal planes at the spanwise centreline and streamwise–spanwise
planes at y/δ = 0.15 and 0.4.

In defect coordinates, the mean streamwise velocity profile was lowered by the FPG
toward a sink flow equilibrium. In cases with strong pressure gradients, there was an
overshoot of the sink flow profile. In wall coordinates the wake was suppressed by
the FPG and the profile rose above the canonical ZPG log law. In the ZPG recovery
region, the boundary layer returned to canonical ZPG conditions. The APG caused a
rise in the profile in defect coordinates and growth of the wake in wall coordinates.
The differences between the measured profiles and canonical ZPG profiles at the same
Reynolds numbers were shown as functions of streamwise location. A streamwise
scaling based on the sink flow length was found for each flow region that collapsed
the results for all cases of the present study. For the FPG, different collapses were
found for results from the literature, indicating a dependence on initial conditions.

The inner peak in the streamwise component of the Reynolds stress scaled with the
wall shear and was largely unchanged in magnitude and location at y+ = 15 in the
FPG and ZPG recovery regions. It exhibited growth in the APG when scaled with
the friction velocity, but remained at y+ = 15. Farther from the wall, in both inner
and outer scaling, all the Reynolds stresses were suppressed by the FPG, rapidly
returned to canonical ZPG conditions in the recovery region, and grew in the APG.
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The locations of the inner region peaks in the Reynolds stresses and higher-order
quantities did not vary significantly with pressure gradient when expressed in terms
of y+. Similarly, the location of the outer region peaks tended to remain at fixed
locations when expressed in terms of y/δ. Quadrant analysis of the Reynolds shear
stress showed a rise in the importance of ejections relative to sweeps in the FPG
region due to straining of the turbulence in the outer part of the boundary layer and
a subsequent reduction of the contribution from the sweeps. This was followed by a
return to ZPG conditions in the recovery and a reversal in the APG, where the drop in
the wall shear caused a reduction in the contribution from ejections. For all of these
changes in the Reynolds stresses, the differences from the canonical ZPG case were
shown as a function of streamwise location, and as with the mean velocity, a scaling
was found for each region to collapse the results. Spectra of the Reynolds stresses
increased and decreased in magnitude in response to pressure gradient changes,
but wavenumbers were largely invariant when inner scaling was used for v′2, and
mixed scaling was used for u′2 and u′v′. Triple products of the fluctuating velocity
components were shown and explained in terms of the wall-normal transport of the
Reynolds stresses. The changes with pressure gradient of the location and magnitude
of each peak in the profiles were related to the behaviour of the corresponding peaks
in the Reynolds stresses. The largest production terms in the budget equations of the
Reynolds stresses were also examined, and differences from the canonical ZPG case
were shown as a function of streamwise location. The same scaling used with other
turbulence quantities was found to collapse the results in each region of the flow.

The turbulence structure was examined using linear stochastic estimation and two
point correlations of the PIV data. Structures increased in size relative to the boundary
layer thickness in both the streamwise and spanwise directions in the FPG region, and
quickly returned to their original size in the ZPG recovery. The increase in streamwise
length in the FPG was particularly apparent close to the wall. Changes were smaller
in the APG region, indicating that the structures grew at the same rate as the boundary
layer thickness. In all regions, there was little change in the wall-normal extent of the
correlations relative to δ. Lengths and inclination angles of turbulent structures were
quantified and shown as functions of streamwise location. Using the same streamwise
scaling as with other quantities, the results from all cases were again collapsed in each
flow region.

The present results describe a particular type of pressure gradient involving fully
developed, canonical turbulent ZPG boundary layers that are then subject to an FPG
with constant K acceleration (sink flows moving toward equilibrium) or constant
K deceleration (non-equilibrium with continuously increasing β). The β values
ranged from −1 to 6 in the various cases, and the Reθ range was about 700–7000
(300 < Reτ < 1900). Some similarities to other pressure gradients (e.g. equilibrium
APG cases) have been shown, but differences from cases with other upstream
conditions or pressure gradient histories have also been noted. The scalings and
descriptions presented above appear to be useful for a range of flows of interest, but
not necessarily universal for all arbitrary pressure gradients or at higher Reynolds
numbers.
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FIGURE 35. Wake strength normalized on ZPG wake strength at same Reθ (a) FPG
St. 1–6, (b) ZPG St. 6–9, (c) APG St. 9–12. Symbols from table 1 for cases of present
study. Symbols for Jones (1998) results: ×, K = 0.539 × 10−6; +, K = 0.359 × 10−6;
∗, K = 0.270× 10−6.
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Appendix

A few additional quantities that are helpful for understanding the boundary layer
development are considered here, beginning with quantities determined from the mean
velocity profiles. The wake strength was defined in (2.3), and its suppression by the
FPG and rapid growth in the APG were shown in figure 2. Its streamwise development
is shown in figure 35 using the format of figure 3. The wake strength is normalized
using the corresponding value for the canonical ZPG case at the same Reθ . In the
FPG region, the wake strength drops rapidly at first. The cases that proceed farther
toward L appear to approach an equilibrium value, which is lower for the cases with
higher K. In figure 35(b), the data for all cases collapse onto the same curve, and
reach canonical ZPG values by the end of the recovery. Similar collapse is observed
in the APG region.
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FIGURE 36. Friction Reynolds versus Reθ . Symbols for present cases from table 1. Solid
line is fit to ZPG result from Volino (2020). (a) Present study, uncorrected (b) presented
study with (1 + β/10) correction, (c) uncorrected and including results of Harun et al.
(2013) (+) and Skåre & Krogstad (1994) (×), (d) corrected with (1+β/10) and including
Harun et al. (2013) and Skåre & Krogstad (1994) results.

In a canonical ZPG boundary layer, Reτ varies linearly with Reθ , as observed in the
DNS results of Jiménez et al. (2010) and Sillero et al. (2013), and shown in Volino
(2020). As shown in table 1 and figure 36(a), Reτ grew even as Reθ was decreasing
with a FPG, and in the APG, Reτ remained nearly constant in the ramp 1 and 2 cases
while Reθ was growing rapidly. The FPG suppresses the growth of both δ and θ , and
the thinner boundary layer increases the wall shear, causing uτ to rise relative to U∞.
This results in Reτ increasing more rapidly relative to Reθ than in the ZPG. In the
APG the effect is opposite, and more pronounced, as both δ and θ increase rapidly,
and the thicker boundary layer reduces the wall shear, causing uτ to drop relative
to U∞. The change in Reτ behaviour must be some function of the pressure gradient,
and a simple relationship would be a linear function of β. If Reτ is multiplied by a
correction factor of (1+ β/10), the data agree better with the ZPG result, as shown
in figure 36(b). The correction does little in the FPG where β is small and the data
rise above the ZPG line, but has a significant effect in the APG. The data of Skåre &
Krogstad (1994) and Harun et al. (2013) are added in figure 36(c,d) for comparison.
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FIGURE 37. Shape factor, H, normalized on H for ZPG case at same Reθ (a) as function
of β, (b) FPG St. 1–6, (c) ZPG St. 6–9, (d) APG St. 9–12. Symbols for present cases
from table 1, + for Harun et al. (2013), × for Skåre & Krogstad (1994).

Without correction, there is considerable variation between cases, but the (1+ β/10)
multiplier again collapses the data onto a single curve. The results agree with the ZPG
fit of Volino (2020) to approximately Reθ = 25 000, beyond which the slope increases.
This increase in slope is consistent with the high Reynolds number ZPG results of
Vincenti et al. (2013). The linear form of the correction and the constant 10 were
determined empirically, but the trend of the correction is expected, as explained above.
It applies to the cases in figure 36, which are near equilibrium or have monotonically
increasing β. It did not agree with data from cases with different pressure gradient
histories, such as those presented in Bobke et al. (2017).

The shape factor, H = δ∗/θ , provides another quantification of the development
of the boundary layer. Figure 37(a) shows H for each profile normalized on
the corresponding H for the canonical ZPG case at the same Reθ , plotted as a
function of β. All cases appear to follow the same curve of increasing H with β,
including those of Harun et al. (2013) and Skåre & Krogstad (1994). The streamwise
development of H is shown in figure 37(b–d) in the coordinates of figure 3. The
ratio H/HZPG appears to asymptote to a value of about 0.92 if given long enough
to develop in the FPG region. The common asymptote for all cases is consistent
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FIGURE 38. Wall-normal Reynolds normal stress profiles for case 2, (a) outer scaling for
St. 1–6, (b) outer scaling for St. 6–12, (c) inner scaling for St. 1–6, (d) inner scaling for
St. 6–12. Symbols from table 2. Lines: —— canonical ZPG comparison.

with the common sink flow profile in defect coordinates noted in § 3.1. The ratio
in all cases returns to 1 in the recovery, and then rises in the APG. Figures 37(a)
and 37(d) convey the same information since β was shown to be a function of
streamwise location in figure 5(a).

Considering turbulence quantities next, the v′2 profiles for case 2 are shown in
figure 38, and the streamwise development for all cases is shown in figure 39 in the
format of figure 8. The behaviour is virtually identical to that of −u′v′ in figures 10
and 11. The triple products also show great similarity to quantities above. Profiles of
u′2v′ are shown in figure 40 for case 2. The locations of the peaks and their response
to the pressure gradient are the same as shown for u′3 in figure 14. The signs of the
u′3 and u′2v′ peaks are opposite since u′ and v′ have opposite signs in Q2 and Q4
events, and u′3 has larger magnitude than u′2v′ since the average fluctuations in u′ are
larger than in v′. Otherwise, both quantities result from wall-normal transport of u′2
by ejections and sweeps and can be similarly explained. The same relationship exists
between u′v′2 of figure 41 and v′3 of figure 16. Both result from wall-normal transport
of v′2.
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FIGURE 39. Difference between ZPG and non-ZPG v′2/U2
∞

profiles at y/δ=0.4. ZPG and
non-ZPG compared at same Reθ . (a) FPG St. 1–6, (b) ZPG St. 6–9, (c) APG St. 9–12.
Symbols from table 1.
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FIGURE 40. The u′2v′ profiles for case 2, (a) St. 1–6, (b) St. 6–12. Symbols from
table 2. Lines: —— canonical ZPG comparison.
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table 2. Lines: —— canonical ZPG comparison.
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