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Abstract

Various host and parasite factors interact to determine the outcome of infection. We investi-
gated the effects of two factors on the within-host dynamics of malaria in mice: initial infectious
dose and co-infection with a helminth that limits the availability of red blood cells (RBCs).
Using a statistical, time-series approach to model the within-host ‘epidemiology’ of malaria,
we found that increasing initial dose reduced the time to peak cell-to-cell parasite propagation,
but also reduced its magnitude, while helminth co-infection delayed peak cell-to-cell propaga-
tion, except at the highest malaria doses. Using a mechanistic model of within-host infection
dynamics, we identified dose-dependence in parameters describing host responses to malaria
infection and uncovered a plausible explanation of the observed differences in single vs co-infec-
tions. Specifically, in co-infections, our model predicted a higher background death rate of
RBCs. However, at the highest dose, when intraspecific competition between malaria parasites
would be highest, these effects of co-infection were not observed. Such interactions between ini-
tial dose and co-infection, although difficult to predict a priori, are key to understanding vari-
ation in the severity of disease experienced by hosts and could inform studies of malaria
transmission dynamics in nature, where co-infection and low doses are the norm.

Introduction

The course that an infection takes – in terms of its within-host dynamics, disease severity and
the likelihood of onward transmission – can vary dramatically across hosts infected with the
same parasite species. This variation is the consequence of potentially many factors, including
influences of the environment (e.g. Nacher et al., 2001; Lazzaro and Little, 2009; Bichet et al.,
2014), the genetics of the host and/or parasite (e.g. Abel and Desseint, 1997; Miller et al., 2002)
and of general host health (e.g. Laishram et al., 2012; Aparecida et al., 2014). Two such factors
that have received considerable attention are the initial infectious dose and the presence of
co-infecting parasites.

Initial infectious dose plays a role in determining the likelihood of an infection establishing.
When an individual is exposed to the infectious stages of a parasite, the parasite will deploy
mechanisms to invade and establish within host tissues, whereas the host’s immune system
will work to combat these invasion mechanisms. Only some of the invading infectious stages
will successfully establish. If the individual infectious stages act independently, then the like-
lihood of infection will increase linearly with infectious dose, but if infectious stages work syn-
ergistically (e.g. by secreting immunomodulatory molecules that act systemically to weaken
host defenses), the relationship between infectious dose and infection may be non-linear
(Brunner et al., 2005; Schmid-Hempel and Frank, 2007; Zwart et al., 2011). Infectious dose
may also influence the virulence (or disease-induced damage) of the infection. For many dis-
eases, damage is related to the number of parasite stages using host resources: the higher the
infectious dose, the more parasite stages that are exploiting those host resources (McKenney
et al., 2016). Higher numbers of parasites can also impact the time it takes for a host to
mount an immune response, the type of immune response generated and the effectiveness
of that immune response (Marois et al., 2012). In combination, these impacts of infectious
dose can affect if – and how rapidly – the host is able to clear and recover from an infection.

Similarly, the presence of co-infecting parasites can alter the course of an infection in mul-
tiple ways. For example, co-infections may influence within-host dynamics via competition for
resources, or by changing the host immune response to infection (bottom-up and top-down
effects of co-infection, respectively; Pedersen and Fenton, 2007). These within-host changes
can in turn impact the health consequences of infection for the individual host, since host
morbidity and mortality are tied closely to the way and extent to which parasites use host
resources, the effectiveness of host immunity and the duration of infection (Cox, 2001).
Finally, these within-host consequences of co-infection can scale up to change between-host
parasite transmission by altering the number of infectious transmission stages produced by
an infected host and the duration of infectiousness (Ezenwa et al., 2010).
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The impacts of infectious dose and co-infection are unlikely to
work in isolation: the effects of dose on infection establishment,
virulence and host immune response may all be modulated by
the presence of a co-infecting parasite, with implications for indi-
vidual host health and onward transmission. We investigated the
within-host consequences of the interaction between initial infec-
tious dose and co-infection in a mouse malaria system.
Specifically, we looked at interactions between malaria parasites
and Nippostrongylus brasiliensis, a blood-feeding nematode of
rodents that limits host red blood cells (RBCs) at every stage of
its within-host life cycle (Bouchery et al., 2018), and thus competes
with malaria parasites (Plasmodium chabaudi chabaudi) for
resources. These two parasites also interact via the immune system,
since qualitatively different adaptive immune responses (especially
T-helper subsets) are required to combat helminths compared with
malaria parasites, and these immune responses are mutually inhibi-
tory (Cox, 2001; Peron et al., 2018). However, resource-mediated
competition is thought to be more important in governing malaria-
hookworm dynamics than immunomodulation in both murine
and human hosts (Griffiths et al., 2015; Budischak et al., 2018).
Indeed, even a small (<5%), transient reduction in RBCs due to hel-
minth infection appears to suppress the growth of malaria para-
sites, a somewhat surprising inference given that malaria
parasites themselves can reduce the host’s RBC population by
50% or more (Griffiths et al., 2015). Finally, the initial dose of mal-
aria parasites has also been shown to impact within-host malaria
dynamics by influencing the duration of infection, the timing of
peak parasite density and parasite clearance, and the strength of
host immune responses (Timms et al., 2001; Haydon et al., 2003;
Metcalf et al., 2011).

We analysed RBC count data from a previously published
dataset on dose-dependence of immune response during N. bra-
siliensis–P. chabaudi co-infection (Fairlie-Clarke et al., 2015)
using two different approaches. First, we used a statistical time-
series framework (Metcalf et al., 2011, 2012) to estimate several
metrics of within-host dynamics over the course of infection,
including the cell-to-cell propagation of malaria parasites and
host manipulation of RBC numbers. Although this approach is
agnostic about underlying mechanisms, it allowed us to test the
hypotheses that (1) within-host propagation would increase
with increasing infectious dose of malaria parasites, (2) the timing
of peak propagation would be expedited with increasing infec-
tious dose and (3) co-infection with anaemia-inducing helminths
would dampen the propagation of malaria parasites. Second, we
fitted a mathematical model of within-host infection dynamics,
which explicitly includes RBC production and immune responses
(similar to Kamiya et al., 2020), to the data in order to reveal the
processes that are plausibly governing the patterns observed in the
first analysis. The two approaches differ dramatically in model
complexity, strength and number of biological assumptions and
computational difficulty. Yet, the two approaches uncover similar
patterns in the data and offer complementary explanations with
different resolutions on the underlying processes that generate
those patterns. In addition to elucidating the combined effects
of co-infection and initial malaria dose on within-host malaria
infection dynamics, we discuss the value and utility of the two
approaches used here.

Methods

Data

The data analysed here were previously published as part of a
wider immunological investigation, for which the methods are
described in full (see Fairlie-Clarke et al., 2015). Briefly, specific
pathogen-free BALB/c mice were infected with P. chabaudi

chabaudi malaria parasites (clone AS) at varying doses (103,
104, 105 or 106), in isolation or in combination with hookworms
[N. brasiliensis; 200 third stage ‘L3’ larvae administered on the
same day (day 0) as malaria]. Daily measurements were then
taken over the course of 11 days for RBC density, body mass
and proportion of RBCs parasitized by malaria (Fairlie-Clarke
et al., 2015). Antibody titres were also measured on day 11.
Since time series of immune responses were not available, here
we focus our analyses on the available dynamics of RBCs and
infected RBCs. The original experiment included 16 mice per
treatment group, with seven mice excluded from the analyses
due to unsuccessful infection or substantial deviations in infection
dynamics (presumably due to realized doses that differed from
intended). We exclude those same time series here, so across
doses 103, 104, 105 and 106 the resulting samples sizes are 16,
15, 15 and 16 in single infections and 13, 16, 15 and 15 in
co-infections, for a total of 121 individual time series.

Statistical modelling approach

In a first analysis, we made as few assumptions as possible about
the processes governing infection dynamics. By focusing on daily
counts of RBC and infected cell densities and using a time-series
framework (Metcalf et al., 2011), we estimated the propagation of
infected cells through time. Specifically, the expected density of
infected RBCs at time t + 1 is given by

E[It+1] = Pe,tStIt (1)
where St and It are the susceptible and infected cell densities in the
previous time step, and Pe,t is the effective propagation number at
that time step. Pe,t is analogous to the transmission co-efficient in
between-host models of infection. Here, it represents within-host
transmission of parasites between RBCs and is the product of
burst size (i.e. the number of progeny parasites, or merozoites, pro-
duced from a given infected cell), contact rates between merozoites
and susceptible RBCs and the likelihood of invasion given a contact
(Metcalf et al., 2011). We note that this discrete-time framework is
appropriate for P. chabaudi, which bursts from infected cells
roughly synchronously, every 24 h. Log-transforming equation (1)
allowed us to use regression techniques to estimate Pe,t for each
treatment from our time-series measurements of St and It, as has
been done previously (Metcalf et al., 2011).

The maximum value of Pe,t (i.e. Pe,max) was taken as reflecting
peak cell-to-cell propagation of malaria parasites. From this quan-
tity, we could obtain an estimate of how many infected cells we
would expect in a given time step if parasites were maximally
propagating, given the availability of susceptible RBCs. Because
infected cells are lysed by the malaria parasites and are not
expected to survive to the next time-step, any deviation in the
observed number of infected cells indicates the effects of immun-
ity on malaria parasite population growth, or other changes in
parasite population growth rate that cannot be attributed to the
availability of target cells at the previous time step. This deviation
is captured in a survival term, pt, such that

It+1 = Pe,maxStItpt . (2)

Rearranging equation (2), the fraction of infected RBCs that
fail to survive immune responses can be expressed as 1− pt, where

1− pt = 1− It+1

Pe,maxStIt

( )
, (3)

and where these responses may include direct immune killing of
malaria parasites (both in infected RBCs or free merozoites), and
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RBC resistance to invasion. Put simply, when 1− pt is zero, para-
sites are propagating maximally, while if 1− pt approaches 1,
parasites are failing to propagate due to immune effects. We cal-
culated 1− pt separately for each host, using individual-level RBC
and infected cell densities and the treatment-level Pe,max estimates.

Finally, we estimated the change in RBCs that is not due to the
action of malaria parasites, bt, as

bt = St+1 + It+1 − St . (4)

This metric captures changes in the number of RBCs in circula-
tion – and therefore available to malaria parasites – due to host
responses, like splenic retention, changes to RBC production or
immune killing of infected and uninfected RBCs (Haydon et al.,
2003; Mideo et al., 2008a, 2011; Metcalf et al., 2012; Wale
et al., 2019). In the co-infected groups, alterations to bt might
also be driven by the helminth reducing the number of susceptible
cells available.

These analyses were performed in R version 3.5.0, with R
Studio, Version 1.1.456 – © 2009–2018 RStudio, Inc. An anno-
tated copy of our code is available in the Supplementary
materials.

Mechanistic modelling approach

In a second analysis, we refined a previously developed mechan-
istic model of within-host malaria infection dynamics (Kamiya
et al., 2020) and fit it to the data to identify plausible mechanisms
for explaining the patterns observed with our statistical approach.
We describe the model fully below, but briefly two key features
differentiate the version we use here from that which was previ-
ously published. First, we track dynamics in discrete, rather
than continuous, time for improved computational efficiency.
As a result, we assume that immune killing is fast relative to the
timescale of RBC demographic turnover. Second, we capture
immune killing as rates rather than proportional activity for
ease of interpretation.

The model tracks the dynamics of uninfected, R, and infected,
I, RBCs. [We retain the nomenclature of the studies from which
our work builds (Metcalf et al., 2011; Kamiya et al., 2020), so
some variable names differ between approaches despite represent-
ing the same measure.] Two additional variables, N1 and N2, cap-
ture the rate of killing activity of host immune responses that
target, respectively, all RBCs indiscriminately or infected RBCs
specifically. We use t to track time as fractions of a day, thus
immune responses are active from 0 < t≤ 1, while turnover of
RBCs, bursting of infected cells and reinvasion by parasites hap-
pens at midnight, t = 1.

The change in the activity of immune responses is governed by

dNi(t)
dt

= ci
I

Imax
− Ni(t)

fi
, (5)

assuming that parasites stimulate immune responses, and that
maximum stimulation occurs for the maximum infected cell
density observed for any individual in the dataset (Imax =
1.223 × 106 cells μL−1 of blood). Immune response activation is
determined by a scaling factor, ψi, and decay occurs with a half-
life of ϕi, similarly to Kochin et al. (2010). Here, we employ a sep-
aration of timescales, by assuming that I = It=0 and is constant
during the time scale of immune activity. This allows us to
solve equation (5), which gives

Ni(t) = ci
I

Imax i
fi + e−(t/fi) −ci

I
Imax i

fi + Ni(0)

( )
. (6)

At midnight (t = 1), RBC turnover and invasion by parasites
occurs. Prior to invasion by parasites, the densities of uninfected
and infected RBCs are

Rt=1 = Rt=0e
−(m′

R+N1,t=1) + Rc(1− e−mR )

+ r(Rc − (Rd−2 + Id−2)) (7)

It=1 = It=0e
−(m′

R+N1,t=1+N2,t=1e−k(It=0/Imax)). (8)

The first terms in equations (7) and (8) capture losses of RBCs.
All cells, regardless of infection status, die at a background rate,
m′
R. The prime captures the fact that while a strong prior on back-

ground death of RBCs exists for uninfected mice (μR; Van Putten
and Croon, 1958; Foster et al., 2014), we allow this rate to vary –
independently of parasite densities – in infections. Indiscriminate
killing of RBCs occurs at a daily rate, N1,t=1, while targeted
immune killing of infected cells happens at a daily rate, N2,t=1.
We assume that the strength of targeted killing declines with
increasing infected RBC densities and the magnitude of this
decline is governed by κ, akin to a handling time. The second
and third terms of equation (7) track new RBC production. In
the absence of infection, hosts replenish cells lost due to natural
mortality, which is captured by the term Rc(1− e−mR ), where Rc
is the homoeostatic equilibrium RBC density (set to the RBC
density at day 0 for individual mice). Finally, the third term allows
for increased production as total RBC density deviates from Rc
due to infection and immune killing. We assume that the host
can replenish a fraction, ρ, of this deviation per day and that
new RBCs take two days to mature before entering the blood-
stream (hence, the deviation is measured at d− 2; Savill et al.,
2009).

Following demographic turnover of RBCs, we assume that para-
site bursting out of infected cells and new RBC invasion occur
instantaneously. Assuming β new merozoites are produced, on
average, by each infected cell (i.e. the burst size), then the density
of merozoites, M, released into the bloodstream at midnight is
βIt=1. Upon release, each merozoite will either infect an uninfected
RBC at per capita rate, v, or die in the bloodstream at per capita rate
μM. Ignoring the possibility of multiple infection of a single RBC,
the probability that a merozoite successfully invades an RBC is

vRt=1

vRt=1 + mM
(9)

and the average number of invading merozoites per uninfected
RBC is

l = M
Rt=1 + v

, (10)

where ω = μM/v. We assume that the probability of invasion by
merozoites is Poisson-distributed with parameter λ (Miller et al.,
2010; Mideo et al., 2011). An uninfected RBC will therefore escape
invasion with a probability e−λ, while invasion with exactly one
merozoite occurs with a probability λe−λ. Again ignoring multiple
infections of individual cells, the densities of uninfected and
infected RBCs following bursting and invasion (denoted by the
asterisks) are given by

R∗
t=1=Rt=1e−l (11)

I∗t=1=It=1le
−l. (12)
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We allow eight model parameters to be, potentially, dose-
dependent: the activation scaling factors (ψ1, ψ2) and half-life (ϕ1,
ϕ2) of the two immune responses, the handling time of the targeted
immune response (κ), the background RBC mortality during infec-
tions (m′

R), the fraction of any RBC deficit that is made up in a day
(ρ) and the parasite burst size (β). We refer to this parameter set as
θ. We envision dose as an environmental gradient that can be cap-
tured by a linear reaction norm (Kamiya et al., 2020): for each par-
ameter, θj, we estimate an intercept, ûj, and a slope, d̂j, describing
the reaction norm with respect to dose. We allow for individual
variation among mice within a dose (and single or co-infection)
treatment through partial pooling. Individual-level parameters are,
therefore, chosen from a common distribution with a given mean
(i.e. ûj and d̂j for the intercept and slope of a given parameter),
but with individual deviations from these means given by uj,i and
vj,i. These deviations are samples from a normal distribution with
standard deviations, σu,j and σv,j, that are estimated from the data.
In sum, individual-level parameters can be expressed as

u j,i = ûj + u j,i + (d̂j + v j,i)× Dosei. (13)

We arbitrarily choose 105 as the centre or intercept of our reaction
norm, and code Dose as {−2, 1, 0, 1}. Nothing in the above model
explicitly captures the activity of the worm, but by allowing the
parameters to change across treatments, the model may reveal pro-
cesses that are influenced by this activity.

We fit our within-host infection model to the corresponding
longitudinal data of 121 mice using a Bayesian statistical
approach. Initial fits produced poorly behaved residuals – early
time points fit well at the expense of capturing later dynamics.
Using our estimates of effective propagation, we calculated
expected values of effective reproduction (i.e. the average number
of new infected cells produced per infected cell; Metcalf et al.,
2011). Given that the maximum value of this quantity (averaged
within a treatment) was around 12, we decided to exclude individ-
ual data points from the fitting routine if the infected RBC density
one day later increased by more than 12-fold. This resulted in
dropping 39 data points (i.e. single days of RBC and infected
RBC data; <3% of the total dataset), spread across 37 individual
time series. We simultaneously fit the model to single and
co-infection data, but allow parameters for each treatment to be
estimated independently [while uj,i, vj,i and measurement error
terms (below) are estimated jointly]. Our model was written in
Stan 2.18.2 and fitted through the RStan interface (Carpenter
et al., 2017; Stan Development Team. RStan: the R interface to
Stan, Version 2.18.2; 2019; http://mc-stan.org). Estimates for
fixed parameters and prior distributions for fitted parameters
are provided in Table 1. We adopt a previously developed
log-likelihood function, which assumes the measurement error
for the total density of RBCs (i.e. sum of uninfected and infected
RBCs) and infected RBCs are distributed normally and log10 nor-
mally, respectively (Mideo et al., 2008a, 2011). We ran four inde-
pendent chains in parallel, each with 4000 sampled iterations and
1000 warm-up iterations. For diagnostics, we confirmed over 400
effective samples and ensured convergence of independent chains
using the R̂ metric (values below 1.1 indicate multi-chain conver-
gence) for all parameters (Stan Development Team, Stan
Modelling Language User’s Guide and Reference Manual,
Version 2.18.0; 2018. Available from: http://mc-stan.org/). To
assess whether the estimated intercept, ûj, and slope, d̂j, of each
parameter differs between co-infection and single infection, we
compute a 95% highest posterior interval of the difference, i.e.
ûj,co-infection − ûj,single and d̂j,co-infection − d̂j,single. The difference is
considered statistically significant where the interval does not
cross zero. In most of the plots presented, we thin the posterior

parameter distributions to 1000 points for computational ease.
These analyses were performed in R version 3.5.3, with R
Studio, Version 1.1.463 – © 2009–2018 RStudio, Inc. An anno-
tated copy of our code is available in the Supplementary materials.

Results

Inferences from statistical model

The highest peak effective propagation rates (Pe) were observed at
the lowest doses of malaria (Fig. 1). For both singly and
co-infected mice, higher initial doses sped up the pace of infec-
tion, resulting in earlier peak Pe (Fig. 1) and earlier activation
of immune responses (1− pt; Fig. 2a). Our metric of change in
the availability of RBCs, bt, showed decreased RBC numbers
two to three days after the peak Pe, after which estimates of bt rap-
idly rebounded (Fig. 2b). For example, for mice singly infected
with 106 malaria parasites, peak Pe occurred on day 3 and the
host-induced trough in RBCs (lowest bt estimate) occurred on
days 6 to 7, but hosts had increased circulating RBCs (i.e. bt >
0) again by day 9.

Co-infection with N. brasiliensis had no systematic effect on
the magnitude of peak effective propagation of P. chabaudi cha-
baudi compared with singly infected groups (Fig. 1), but did
slow the growth of parasites. Across all doses except for the high-
est (106), peak Pe was reached 1 day later in co-infections (Fig. 1).
Figures 2 and 3 reveal considerable variation among individual
trajectories within some treatment groups and no striking overall
effect of N. brasiliensis co-infection on susceptible RBC availabil-
ity or immune responses (see also plots of average measures in
Fig. S1). This analysis suggests that dose and co-infection interact
in subtle ways to alter the timing of within-host dynamics and
parasite growth, but only at low doses, and motivate our use of
mechanistic models that can account for individual variation
and further dissect the subtleties of the processes underlying
infection dynamics.

Inferences from mechanistic model

The mechanistic model does a good job of capturing the dynamics
of RBC and infected RBC densities over time (Figs S2 and S3; and
the residuals are well-behaved, Fig. S4). As with a previous analysis
of a different dataset (single infections in a different host genetic
background; Kamiya et al., 2020), we found evidence of dose-
dependence in a number of processes governing within-host inter-
actions (Fig. 3). In particular, with increasing doses, immune
responses targeting either infected RBCs or all RBCs indiscrimin-
ately are activated more strongly (increasing cN1

, cN2
), but these

responses tend to decay more quickly (in particular, indiscriminate
responses; fN1

). There is some evidence for negative dose-
dependence in immune system handling time (κ) in single (but
not co-) infections, and in the background rate of RBC mortality
(m′

R) in co- (but not single) infections. In both cases, the non-
significant slope trends in the same direction. Importantly, the
only difference in parameter intercepts between single and
co-infections is observed in m′

R, indicating a significantly greater
loss of RBCs due to background mortality (i.e. unrelated to malaria
parasite density) in co-infections, although this difference is sub-
stantially reduced at the highest malaria dose. Posterior parameter
distributions (along with their priors) are shown in Figure S5.

Plotting median host responses as a function of time and treat-
ment (Fig. 4), we find that our mechanistic model recapitulates
key results of the statistical model. In particular, host immune
responses are activated earlier in higher dose infections (Fig. 4a
and b). We note that the estimate of immune activity from the
statistical model (1− pt; Fig. 2a) captures the overall outcome of
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targeted and indiscriminate killing on specifically infected RBCs,
so is a composite of all the immune activity plotted in Figure 4b
plus a fraction of the activity plotted in Figure 4a. Figure 4c reveals
a difference between single and co-infections in the number of
new RBCs produced early on in infections, at all doses except
for 106. Given the higher background mortality rate (Fig. 3),
this increased production would be a natural consequence, in
the model, of a greater deviation from homoeostatic equilibrium
RBC densities (equation (7)). The net effect, therefore, is not
observed change in RBC densities (Fig. 4; compare with
Fig. 2b) across many of the days where higher erythropoietic pro-
duction in co-infections is predicted (e.g. days 3–6; lighter blue in
Fig. 4c).

Discussion

We used two different approaches to investigate the effects of, and
interactions between, inoculum dose and co-infection with an
anaemia-inducing helminth on the within-host dynamics of
rodent malaria infections. Our statistical analysis revealed two

major findings: (1) maximum cell-to-cell propagation generally
declined with initial dose, and (2) co-infection with helminths
slowed the timing of malaria infection dynamics, but only when
interacting with certain doses of malaria parasites. This effect of
co-infection is largely in line with previous study indicating that
blood-feeding helminths tend to dampen within-host malaria
parasite growth (Griffiths et al., 2015; Budischak et al., 2018),
although our results suggest the effect is a delay rather than a
reduction in magnitude (i.e. peak effective propagation across sin-
gle and co-infections is similar). Our analysis also suggests that
the timing of host responses varies dramatically across initial
doses, perhaps underlying the dose-dependent variation in peak
propagation, but offers few obvious clues about the processes
that govern the differences in timing of dynamics between single
and co-infections. Although the level at which those processes are
described in this statistical approach may be too coarse to capture
underlying changes with conflicting or balancing effects, we con-
tend that the approach offers considerable value since the out-
come of those unobserved changes may be still be revealed (e.g.
the changes in peak effective propagation seen here) and, for

Table 1. Descriptions of model parameters and their fixed values or prior distributions used in Bayesian statistical inference

Symbol Description Fixed value or prior Sources

ρ *Proportion of deviation from Rc restored per day 0.25 × exp(N(0, 0.5)) Miller et al. (2010)

ψi *Activation strength of Ni exp(N(ln(1) + 2.5, 2.5)

ϕi *Half-life of Ni exp(N(ln(1) + 2.5, 2.5) day

κ *iRBC density-dependent rate of loss of immune
killing strength

exp(N(ln(1) + 2.5, 2.5)

Imax Maximum iRBC density observed 1.223 × 106 cells μL−1 Fairlie-Clarke et al. (2015)

Rc RBC density at homoeostatic equilibrium Varies by mouse; observed RBC density at day 0
post-infection (range: 7.444–9.827 × 106 cells μL−1)

Fairlie-Clarke et al. (2015)

μR Daily background RBC mortality rate 0.025 Miller et al. (2010)

m′
R *Daily background RBC mortality rate during

infection experiment
0.025 × exp(N(0, 0.5)) Miller et al. (2010)

β *Parasite burst size 7 × exp(N(0, 0.5)) Miller et al. (2010)

v Merozoite invasion rate 1.5 × 10−5 per day Mideo et al. (2011)

μM Merozoite invasion rate 48 per day McAlister (1977)

σRBC *Standard deviations for total RBC density N(5 × 105, 5 × 105/10) Miller et al. (2010)

σiRBC *Standard deviations for log10 iRBC density N(0.2, 0.2/10) Mideo et al. (2008a)

Estimated parameters are denoted by an asterisk in the description. Specific prior information from previous studies exists for erythropoiesis upregulation, ρ, background RBC mortality
during infection, m′

R , burst size, β, and standard deviations of log10 RBC and infected RBC (iRBC) density, σRBC and σiRBC; all other estimated parameters were assigned a generic, weakly
informative prior.

Fig. 1. Mean effective propagation number (Pe) over the course of infection for different initial doses of Plasmodium chabaudi chabaudi AS (from left to right: 103,
104, 105, 106) in single infections (orange lines and circles) or in co-infections with Nippostrongylus brasiliensis (blue lines triangles). Displayed as the mean ± the
standard error, n = 13–16 mice/group.
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many systems, sufficient understanding to develop more mechan-
istic models will be lacking.

Rodent malaria is a uniquely well-studied system, both experi-
mentally and theoretically. By capitalizing on mechanistic under-
standing of infection dynamics, refining an existing mathematical
model of those dynamics (Kamiya et al., 2020), and fitting that
model to the available data, our second approach provided a
plausible explanation of the differences in dynamics observed
between single and co-infections. The only model parameter
that systematically varied between these treatments was the back-
ground RBC mortality rate (m′

R). This parameter allows for the
possibility that background RBC death – independent of malaria
parasite density – may differ in healthy mice, malaria-infected
mice and malaria–helminth co-infected mice. The model also
allows for malaria parasite density-dependent background mor-
tality, which is captured by the variable N1, and did not differ
between single and co-infections (see Figs 3 and 4a). Malaria
parasite density-independent background RBC death that is
higher than expected in a healthy mouse (see Fig. 3) could reflect

a constitutive host response to infection, while the even higher
estimate for m′

R in co-infections suggests that this parameter is
capturing key activity of N. brasiliensis. Despite the fact that inter-
actions between the host and the helminth are not explicitly
accounted for in our model of malaria infection dynamics, allow-
ing background RBC mortality to differ across treatment groups
could, in effect, capture several of the expected impacts of the hel-
minth, including haemorrhaging, direct RBC consumption, glo-
bin digestion and haem detoxification (Bouchery et al., 2018).

An explanation is required for the fact that estimates of the
background RBC mortality rate (m′

R) decrease with malaria
dose, although this effect is only statistically significant in
co-infections. We suggest two possibilities. First, if the higher
background RBC death rate in co-infections is driven by the
action of the helminth, then that action must be diminished in
the presence of a higher dose of malaria. This seems plausible
since the original study, from which these data came, found
that higher doses of malaria led to cross-reactive antibodies hav-
ing higher avidity (binding strength) to antigens of N. brasiliensis

Fig. 2. Time profiles of (a) immune effects on malaria population growth (1 − pt), and (b) change in RBCs not directly attributable to malaria (bt) over the course of
infection for different initial doses of P. chabaudi chabaudi AS. In each subplot, the top row shows results for single infections (orange lines) and the bottom row
shows results when in co-infections with N. brasiliensis (blue lines). Each line represents a different individual host. In (b), values above the dotted line at bt = 0
indicate an increase in RBCs (due to erythropoiesis or release from the spleen); values below the dotted line indicate removal of uninfected RBCs (via splenic
retention or immune killing on the part of the host, or haemorrhaging induced by the helminth).
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(Fairlie-Clarke et al., 2015), potentially diminishing the activity
and impact of the helminth. More generally, the impact and rele-
vance of interspecific competition may be reduced when intraspe-
cific competition is stronger (i.e. at the highest malaria doses).
Second, if higher m′

R in co-infections reflects both the action of
the worm and greater host responsiveness (e.g. RBC filtering by
the spleen), then some of the negative dose-dependence in m′

R
could be due to host response machinery becoming overwhelmed
at higher doses (Schmidt et al., 2014). Since the overall back-
ground RBC death rate is higher in co-infections (i.e. there are

significant differences in the intercepts of the reaction norms)
and the observed negative dose-dependence is stronger in
co-infections, relatively little difference between m′

R in single
and co-infections is observed at a malaria dose of 106. For both
of these possible explanations, it would be useful to have informa-
tion on the precise timing of different immune responses. In this
case, however, because antibodies were only measured on day 11,
and not on a daily basis, we do not have information on precisely
when humoral immunity (or any other type of immunity) was
mounted, and so further studies would be required to pinpoint

Fig. 3. Model-predicted reaction norms for single (orange) and co-infections (blue). For each parameter, j, lines represent the median ûj + d̂j × Dose from the full
(16 000 points) posterior parameter distributions, while bands represent the 95% predictive intervals. Solid (compared to dashed) lines indicate evidence of sig-
nificant dose dependence, while the asterisk denotes a significant difference in intercepts (ûj ) between single and co-infections. At higher doses, immune responses
are activated more strongly (cN1

, cN2
), but indiscriminate responses in particular tend to decay at faster rates (shorter half-lives; fN1

). Fitting our mechanistic model
to data reveals that only background RBC mortality (m′

R) differs between single and co-infections, and this difference decreases at higher doses. The dotted line in
the top left plot indicates the RBC mortality rate expected in the absence of infection (μR).

Fig. 4. Median host responses predicted from mechanistic model. Shown are the (a) rate of general RBC clearance, N1 (equation (6), i = 1), (b) rate of targeted
infected RBC clearance, N2 (equation (6), i = 2) and (c) log10 total number of new RBC produced (the sum of the last two terms in equation (7)) over time
(x-axis) for different doses of malaria ( y-axis). Top row shows single infections and bottom row shows co-infections with N. brasiliensis. Values are obtained by
simulating infection dynamics for individual mice using the thinned posterior parameter distributions (1000 trajectories per mouse) and taking the median across
all mice in a given treatment.
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the timing of immunity of the different immune mechanisms that
govern the outcome of malaria–helminth co-infections.

Thus, the picture that emerges from the mechanistic model is
one of increased turnover of RBCs in co-infections due to, poten-
tially, the combined effect of exploitation by the helminth,
increased filtering of RBCs by the host and increased production
of new RBCs (Fig. 4c), across all initial doses of malaria parasites
except for 106. From the perspective of the host, these processes
essentially balance out: prior to the substantial loss of RBCs due
to exploitation by malaria parasites, there is no discernable differ-
ence between single and co-infections in our estimate of RBC
availability using either our statistical approach (Fig. 3 and
Fig. S1) or our mechanistic approach (Fig. 5). From the perspec-
tive of the malaria parasites, however, these environments may be
qualitatively different. Using another modelling approach, Wale
et al. (2019) showed that increasing turnover (or ‘juvenilization’)
of RBCs can hamper proliferation of reticulocyte-averse genotypes
of malaria parasites, an effect we see as a delay in peak effective
propagation in co-infections relative to single infections (Fig. 1).
Many species of malaria show a preference for different age-
classes of RBCs – P. chabaudi, the species used here, is capable
of infecting both young (reticulocytes) and mature (normocytes)
RBCs, but has a preference for normocytes (Stephens et al., 2015),
so it makes sense that increased turnover and resultant juveniliza-
tion of RBCs would impact within-host malaria proliferation.

The approach used by Wale et al. (2019) was a semi-
mechanistic model that, like our statistical approach, estimated
the contribution of host and parasite factors to infection dynamics
by projecting expected densities of parasites and RBCs one time-
step ahead, given the experimentally observed densities each day.
Like our mechanistic modelling approach, Wale et al. (2019)
decompose host immune responses into those that kill RBCs indis-
criminately and those that target infected cells, although unlike our
approach, those responses are not intrinsically tied to within-host
cues and are free to account for any deviations from expected
densities (with some constraints from trajectory smoothing).
Thus, the model of Wale et al. (2019) offers a third, unique
approach to dissecting ecological interactions within malaria

infections, from which they infer that the simultaneous increase
in supply of new RBCs and increase in indiscriminate killing, post-
peak infection, can restrict parasite growth in single infections with
malaria. In our analyses, it was only through the mechanistic
model that the increased turnover of RBCs early on in
co-infections was revealed, since in the statistical model changes
in RBCs not due to the malaria parasites are captured by bt,
which combines the effects of indiscriminate killing, background
RBC mortality and new RBC production. Yet, the consequences
of that increased turnover (slowed cell-to-cell parasite propagation)
could be inferred from that simpler, statistical model.

The two approaches we used vary dramatically in complexity,
requisite knowledge about the system being modelled and compu-
tational intensity. Key advantages of the statistical approach are that
it offers an extremely flexible model – one that is minimally con-
strained by biological assumptions – that can be fitted to data
with minimal computational effort, while also avoiding risks inher-
ent in fitting more complicated models (e.g. constraints imposed by
specifying priors or bounds on parameters, parameter non-
identifiability, overfitting; see e.g. Ginzburg and Jensen, 2004).
Depending on the question at hand, such an approach that reveals
phenomenological patterns (e.g. the action of immunity, 1− pt, or
availability of RBCs, bt, over time) and their consequences (e.g.
impacts on Pe) will be sufficient and beneficial. We note that our
mechanistic model still side-steps much of the detail of immune
responses, e.g. which molecules interact with which cells, and
again captures the outcome of these interactions – killing rates
over time. In part, this is out of necessity: data to inform these pro-
cesses were not available. In general, with myriad signalling and
effector cells (Stevenson and Riley, 2004; Gazzinelli et al., 2014) it
is non-trivial to measure every relevant component, with fine
enough resolution for model fitting, over the course of infections.
However, our mechanistic model incorporates another level of bio-
logical details with the assumption that immune responses are trig-
gered by pathogen-associated molecular pathways (Gazzinelli et al.,
2014; Stephens et al., 2015) and thus are explicitly dependent on
the density of infected RBCs. By characterizing the nature of this
dependence, and how it varies with infectious dose, the mechanistic

Fig. 5. Net change in RBCs predicted by the mechanistic model. Each line represents median outcome for an individual mouse (of 1000 simulations from thinned
posterior parameter distributions), taking the difference between new RBC production and all RBCs killed by indiscriminate or targeted immune responses. Top
row (orange lines) indicates single infections and bottom row (blue lines) indicate co-infections. Values above the dotted line indicate net gain in RBCs, while values
below the dotted line indicate net loss. The qualitative patterns observed here match well with estimates of bt from the experimental data and statistical approach
(Fig. 2b).
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model – unlike the statistical model or the semi-mechanistic
approach of Wale et al. (2019) – provides a quantitative framework
for predicting the influence of perturbations, outside of those
already explored, on disease dynamics and outcomes.

Our mechanistic model did not explicitly capture the action of
the helminth, thus we could not, for example, use it to predict the
quantitative impacts of different doses of worms. Instead, we used a
model of malaria infection dynamics alone to ask the data whether
alterations to resource availability or immune responses are likely to
explain the interactions between helminths and malaria parasites.
Despite the wealth of research seeking to elucidate the mechanisms
driving dynamics in single infections, and in particular malaria
infections in mice (Mideo et al., 2008b), there is a dearth of math-
ematical models fitted to data of the within-host dynamics of
multi-species infections (although there are abundant within-host
co-infection models that are not fitted to data, e.g.; Fenton and
Perkins, 2010; Eswarappa et al., 2012). For malaria and helminth
co-infections, specifically, there is considerable variation in the con-
sequences for hosts of within-host interactions across different
pairs interacting parasite species (Knowles, 2011), which is ripe
for further theoretical exploration. More broadly, there is a growing
appreciation in the field of disease ecology that many hosts are sim-
ultaneously infected by more than one parasite (e.g. Pedersen and
Fenton, 2007), and that their interactions are hard to infer from
host population-level data (Fenton et al., 2014) although new
approaches are being developed (e.g. Park and Ezenwa, 2020).
Combining experimental data with mathematical models of within-
host dynamics – regardless of the specific approach taken – offers
an opportunity to generate knowledge of co-infection interactions,
which is key to understanding disease in natural systems.

Many interacting factors are involved in determining infection
dynamics and outcomes, with implications for both individual
hosts (disease severity) and populations (transmission). These
include host factors (e.g. genetic make-up, physiological and
immune status, infection history, behaviour and the presence of
co-infections) and parasite factors (e.g. genetic strain and infec-
tious dose). In this study, we investigated the interaction between
two of these factors – infectious dose and the presence of a com-
petitive co-infection. We found evidence that these factors affect
the timing and magnitude of within-host propagation of mouse
malaria, both independently and by way of interactions. The
applied significance of this work is that co-infections between
malaria parasites and helminths are widespread (e.g. Tshikuka
et al., 1996; Ravindran et al., 1998) and treating one of those
infections is likely to have knock-on consequences for the dynam-
ics and severity of the other infection (e.g. de-worming resulted in
higher within-host loads of malaria parasites in humans;
Budischak et al., 2018). Our results suggest that the off-target con-
sequences of treatment will depend on precisely when, over the
course of an infection, that treatment is applied, since dose and
hence the timing of dynamics, influence the impact of
co-infection. The two modelling frameworks used here provide
useful and flexible tools for dissecting, to different resolutions,
the ecological interactions between various host and parasite fac-
tors underlying within-host disease dynamics.
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