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Iterative monads were introduced by Calvin Elgot in the 1970’s and are those ideal monads

in which every guarded system of recursive equations has a unique solution. We prove that

every ideal monad � has an iterative reflection, that is, an embedding into an iterative

monad with the expected universal property. We also introduce the concept of iterativity for

algebras for the monad �, following in the footsteps of Evelyn Nelson and Jerzy Tiuryn,

and prove that � is iterative if and only if all free algebras for � are iterative algebras.

1. Introduction

At first sight it may seem as if there are few examples in the realm of Calvin Elgot’s

iterative algebraic theories (Elgot 1975): the free iterative theories (of rational Σ-trees)

were described in the work of Elgot and his collaborators, see Elgot et al. (1978), together

with a treatment of the motivating example of the theory of sequacious functions, but not

much else; also, Stephen Bloom and Zoltán Ésik’s monograph Bloom and Ésik (1993)

did not provide many additional examples. In the current paper we prove that, despite

this, iterative theories are in fact abundant: every ideal algebraic theory (for example,

semigroups, unary algebras, algebras with a commutative binary operation, and so on)

has an iterative reflection. That is, a free ‘completion’ into an iterative theory.

The concept of an iterative theory is based on the idea that, given a signature Σ, we

study systems of recursive equations of the form

x1 ≈ t1(x1, . . . , xm, a1, . . . , ak)

... (1.1)

xm ≈ tm(x1, . . . , xm, a1, . . . , ak)

whose right-hand sides are finite Σ-trees (or Σ-terms) in the given variables xi and the

given parameters a1, . . . , ak in a Σ-algebra A. The system (1.1) is ideal if none of the trees

ti is either a single variable or a single parameter.
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We are interested in solutions , which means that to every variable xi an element xi
† of

A is assigned in such a way that the formal equations above become actual identities

xi
† = tAi (x1

†, . . . , xm
†, a1, . . . , ak) i = 1, . . . , m. (1.2)

A Σ-algebra A is said to be iterative, a concept developed by Evelyn Nelson (Nelson

1983) and Jerzy Tiuryn (Tiuryn 1980), if every ideal system of equations (1.1) has a unique

solution. We need to restrict consideration to ideal systems in order to avoid trivial

equations such as x ≈ x; these ideal systems are equivalent to the guarded systems used

in Adámek et al. (2006) – see Appendix B.

In the present paper we combine this idea of iterativity with that of equational

presentation: given a variety, we study algebras in that variety that are iterative. To

explain what this means, consider the system (1.1) as a morphism

e : X −→ FΣ(X + A) (X finite)

where X is the set of variables and FΣ is the (underlying functor of the) monad of free

Σ-algebras assigning to every set the set of all finite Σ-terms on it. Now varieties can be

expressed by Lawvere’s algebraic theories or, equivalently, by finitary monads � in Set.

Recall that a monad � = (M, η, μ) consists of an endofunctor M, a natural transformation

μ : MM −→ M (multiplication) that is associative and a natural transformation η : Id −→
M that is a unit for μ. An example is the monad �Σ above consisting of FΣ, the inclusion

of variables ηX : X −→ FΣX and the obvious substitution map μX : FΣ(FΣX) −→ FΣX.

We then consider Eilenberg–Moore algebras for the monad �, which are those algebras

a : MA −→ A for which a · ηA = idA and a · Ma = a · μA. (For example, Σ-algebras are

precisely the Eilenberg–Moore algebras for the monad �Σ.) As a generalisation of the

systems (1.1), consider the equation morphisms

e : X −→ M(X + A) (X finite)

in a given Eilenberg–Moore algebra a : MA −→ A.

Calvin Elgot worked with properties of algebraic theories rather than algebras. In

order to express the concept of an ideal system of equations, Elgot just considered ideal

algebraic theories , which are those (Lawvere) theories in which coproduct injections are

right cancellative (that is, whenever u · v is a coproduct injection, so is v). In the language

of finitary monads, a monad (M, η, μ) is ideal if its unit η : Id −→ M is a coproduct

injection of a coproduct

M = M ′ + Id

and its multiplication μ : MM −→ M has a domain–codomain restriction μ′ : M ′M −→
M ′. See Aczel et al. (2003) for a proof that this is equivalent to Elgot’s concept. Examples

of ideal monads include, beside �Σ, the monads of semigroups, or algebras with a

commutative binary operation. On the other hand, the monad of groups is not ideal.

Given an ideal monad �, the equation morphism e : X −→ M(X + A) is said to be

ideal if it factors through the summand M ′(X + A) ↪−→ M(X + A). An ideal monad �
is iterative if every ideal equation morphism e : X −→ M(X + A) has a unique solution ,

https://doi.org/10.1017/S0960129509990326 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990326


Iterative reflections of monads 421

that is, a unique morphism e† : X −→ MA such that the square

X
e†

��

e

��

MA

M(X + A)
M[e† ,ηA]

�� MMA

μA

��

(1.3)

commutes.

We are going to prove that every ideal monad � has an iterative reflection, which

means an ideal extension

� ↪−→ �̂

with the universal property that every ideal monad morphism from � to an iterative

monad � can be uniquely extended to an ideal monad morphism from �̂ to �.

For example, given a finitary endofunctor H , Michael Barr (Barr 1970) proved that H

generates a free monad � = (F, η, μ); moreover, this monad is always ideal due to the

canonical isomorphism F ∼= HF + Id. An iterative reflection �̂ is the rational monad � of

H that was studied in Adámek et al. (2006) and characterised as a free iterative monad

on H . In particular, let H = HΣ be the polynomial endofunctor of Set for a given signature

Σ = (Σn)n∈�:

HΣZ = Σ0 + Σ1 × Z + Σ2 × Z2 + . . . (1.4)

Then �, denoted by �Σ, is the above monad of finite Σ-trees (or Σ-terms) and �, denoted

by �Σ, is Susanna Ginali’s monad of rational-trees (Ginali 1979): to every set Z it assigns

the algebra RΣZ of all Σ-trees on Z that are rational , that is, have only finitely many

subtrees up to isomorphism.

A surprising example is given by the fact that for the ideal monad of semigroups

MZ = Z+ (the free semigroup on Z),

all infinite ‘rational polynomials’ collapse to a single absorbing (zero) element. More

precisely, an iterative reflection �̂ is given on objects by

M̂Z = Z+ + {0} (0 absorbing).

In other words, if Σ2 is the signature of one binary operation, then, whereas the iterative

reflection of � (the monad of finite binary trees) is the monad � (of rational binary trees),

the associative law makes all the infinite rational trees equal.

In contrast, the commutative law does not collapse anything ‘unexpected’: here we

consider the endofunctor of Set given by

HZ = all unordered pairs in Z ,

or, equivalently, the monad � of all finite, binary unordered trees. As proved in Adámek

and Milius (2006), the rational monad � is the monad of all rational, binary unordered

trees.

However, commutativity can also be ‘devastating’, as demonstrated by the following

example due to Bruno Courcelle (private communication). Consider the signature of two
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unary operations a, b. Here HZ = Z + Z and the corresponding free monad is

FZ = {a, b}∗ × Z.

Its iterative reflection is the monad of rational trees, which in the present case has the

simple form

RZ = {a, b}∗ × Z + {a, b}@

where the right-hand summand is the set of all infinite words on {a, b} that are eventually

periodic:

{a, b}@ = {uvvv . . . | u ∈ {a, b}∗ and v ∈ {a, b}+}.
Now impose the commutative law:

a(b(z)) = b(a(z)).

The corresponding ideal monad is

MZ = {a}∗ × {b}∗ × Z.

Its iterative reflection is, surprisingly, the collapse of all eventually periodic words to a

joint fixed point of a and b:

M̂Z = {a}∗ × {b}∗ × Z + {0} with a(0) = 0 = b(0).

These examples of iterative reflections are based on the concept of an iterative algebra

for an arbitrary ideal monad �: it is an Eilenberg–Moore algebra a : MA −→ A such that

every ideal equation morphism e : X −→ M(X +A) has a unique solution e† : X −→ A in

the algebra , which means a unique morphism such that the square

X
e†

��

e

��

A

M(X + A)
M[e† ,A]

�� MA

a

��

commutes. For the case of a free monad � = �Σ on HΣ this is precisely (1.2) above. We

prove that for every ideal monad �:

(a) � is iterative if and only if every free �-algebra is iterative.

(b) Every object Z generates a free iterative algebra M̂Z for the monad �.

As a consequence, we obtain a new monad: the monad �̂ of free iterative algebras for

�. The above examples of iterative reflections are based on the following fact:

(c) The monad of free iterative algebras is an iterative reflection of �.

Unfortunately, we have not been able to prove (c) in the same generality as (a) and (b)

are proved below. In fact, to date we only have a (rather technically involved) proof

of (c) for set-like categories: we need all epimorphisms to split. For this reason, the

current paper only gives proofs for (a) and (b), which hold in all extensive, locally finitely

presentable categories; the proof of (c) will be given in a subsequent publication – , see

Adámek et al. (2009b) for an extended abstract.
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The result showing that iterative reflections exist is presented in Section 2, with the

proof given in Appendix A. Statements (a) and (b) are proved in Section 3. Finally,

in Appendix B, we prove that ‘ideal’ systems of Calvin Elgot’s recursive equations are

equivalent to the ‘guarded’ systems we have used previously, for example, in Aczel

et al. (2003).

2. Iterative monads

Assumption 2.1. Throughout this paper we work with finitary monads on an extensive,

locally finitely presentable category A.

Recall that a functor is said to be finitary if it preserves filtered colimits, and a monad

is finitary if its underlying functor is. An object X whose hom-functor A(X,−) is finitary

is said to be finitely presentable.

Recall from Carboni et al. (1993) that a category is extensive if it has universal and

disjoint finite coproducts. We will, in particular, use the following facts that hold in

extensive categories:

(a) Coproduct injections inl : A −→ A + B and inr : B −→ A + B are monomorphisms.

(b) For every morphism f : A −→ B1 +B2 there exists an essentially unique decomposition

f = f1 + f2 for morphisms fi : Ai −→ Bi with A = A1 + A2.

Finally, recall that a category A is said to be locally finitely presentable in the sense

of Peter Gabriel and Friedrich Ulmer (Gabriel and Ulmer 1971), see also Adámek and

Rosický (1994), provided that:

(1) A is cocomplete; and

(2) A has a set Afp of finitely presentable objects whose closure under filtered colimits is

all of A.

Examples of extensive, locally finitely presentable categories are sets, posets, graphs and

unary algebras. For every extensive, locally finitely presentable category A, all functor

categories [C,A], with C small, and the category FE(A) of all finitary endofunctors of

A, are also extensive and locally finitely presentable.

Calvin Elgot’s concept of an iterative theory (Elgot 1975) has the following categorical

form, as shown in Aczel et al. (2003).

Definition 2.2. A monad � = (M, η, μ) is ideal provided that:

(1) its unit η : Id −→ M is a coproduct injection of a coproduct

M = M ′ + Id with injections σ : M ′ −→ M and η : Id −→ M

where M ′ is a finitary functor (called the ideal of �); and

(2) the multiplication μ has a restriction to a natural transformation

μ′ : M ′M −→ M ′ with σ · μ′ = μ · σM. (2.1)

Remark 2.3. Since the category FE(A) of finitary endofunctors of A is extensive, the fact

that η is a coproduct injection thus determines the ‘complementary’ coproduct injection

σ : M ′ −→ M uniquely up to natural isomorphism. Also, μ′ is determined uniquely

by (2.1) since σ is pointwise a monomorphism.
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In non-extensive categories, an ideal monad is a structure rather than a property:

we have to consider the whole sixtuple (M, η, μ,M ′, σ, μ′). The original definition of

ideal theory in Elgot (1975) is different from but equivalent to ours, see Aczel et al.

(2003, 4.6).

Example 2.4.

(1) The category Set is extensive and locally finitely presentable. A finitary monad � is a

presentation of an equational specification (with MX denoting the free algebra of that

specification generated by the set X). To be ideal means that for every term t(x1, . . . , xn)

and every substitution yi/xi (i = 1, . . . , n), whenever t(y1, . . . , yn) is congruent to some

yi, we have t(x1, . . . , xn) is congruent to some xj . For example, semigroups, MX = X+,

monoids, MX = X∗, unary algebras, MX = � ×X, and commutative binary algebras

are examples of ideal monads. In contrast, groups do not form an ideal monad: in

fact, if we define M ′X = MX \ η[X] for the free-group functor MX, then M ′ is not a

subfunctor of M. Consider x 	= y in X and a map f : X −→ Z with f(x) = f(y) = z.

Then the image under Mf for the term (x · y−1) · x ∈ M ′X is z ∈ η[Z].

(2) Let F denote the category of finite sets and functions. The presheaf category

A = [F,Set]

can be interpreted as the category of ‘sets in context’ – see Fiore et al. (1999). This is

used for the semantics of untyped λ-calculus. The category A is extensive and locally

finitely presentable. The functor

HX = X × X + XV (for the embedding V : F −→ Set)

expressing the algebra of λ-terms as an initial H-monoid defines a free monad that is

ideal. An iterative reflection of this monad is, as proved in Adámek et al. (2009b), the

monad of rational λ-terms used for the semantics of recursive program schemes.

(3) Every finitary endofunctor H of A generates a free monad � given on objects Z by

FZ = a free H-algebra on Z .

The Eilenberg–Moore category of � is the category of H-algebras. This was proved

by Michael Barr in Barr (1970).

If ηZ : Z −→ FZ denotes the universal arrow and σZ : HFZ −→ FZ the structure of

the free H-algebra, then

FZ = HFZ + Z with injections σZ , ηZ . (2.2)

Therefore, � is always an ideal monad with the ideal F ′ = HF . The universal arrow

of the free monad is κ = σ · Hη : H −→ F .

Definition 2.5. Let � be an ideal monad.
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(1) A (finitary) equation morphism is a morphism e : X −→ M(X + A), where X is a

finitely presentable object ‘of variables’ and A is an arbitrary object ‘of parameters’.

The equation morphism is said to be guarded if it factors through M ′(X + A) + A:

X
e ��

��

M(X + A)

M ′(X + A) + A

[σX+A,ηX+A·inr]

��

(2) The monad � is said to be iterative if every guarded equation morphism e : X −→
M(X +A) has a unique solution , which means that a unique morphism e† : X −→ MA

such that

X
e†

��

e

��

MA

M(X + A)
M[e† ,ηA]

�� MMA

μA

��

(2.3)

commutes.

Remark 2.6.

(1) We could have added the requirement that A be finitely presentable in part (1) of

this definition, but it would make no difference, as we prove in Proposition B.1 in

Appendix B.

(2) Also, in lieu of guarded equation morphisms, we can work with ideal ones, that is,

those that factor through M ′(X + A):

X
e ��

e′
��

M(X + A)

M ′(X + A)

σX+A

��

(2.4)

In fact, we prove in Appendix B that every monad that has unique solutions of all ideal

equation morphisms is iterative: the assumption that the base category is extensive

plays an important role in proving this result.

(3) For ideal equation morphisms, we can fully work with M ′ in lieu of M – see the

following lemma.

Lemma 2.7. An ideal equation morphism (2.4) has a unique solution if and only if there

exists a unique morphism e‡ : X −→ M ′A such that the square

X
e‡

��

e′

��

M ′A

M ′(X + A)
M ′[σA·e‡ ,ηA]

�� M ′MA

μ′
A

��

(2.5)

commutes.
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Proof.

(1) Let e‡ exist uniquely. We will obtain a solution σA · e‡ of e: in fact, in the

following diagram the upper left-hand part commutes by (2.5), the lower left-hand part

commutes by the naturality of σ and the right-hand part commutes by

(2.1):

X
e‡

��

e′

��

M ′A
σA �� MA

M ′(X + A)
M ′[σA·e‡ ,ηA]

��

σX+A

��

M ′MA

μ′
A

��

σMA

���������������

M(X + A)
M[σA·e‡ ,ηA]

�� MMA

μA

��

The uniqueness of e† is clear: suppose e† : X −→ MA is a solution of e and define a

morphism e‡ : X −→ M ′A to be e‡ = μ′
A · M ′[e†, ηA] · e′. Then we obtain

e† = σA · e‡

from the commutativity of the following diagram:

X
e†

��

e′

��

e‡

��

MA

M ′A

σA

�����������

M ′(X + A)

σX+A

��

M ′[e† ,ηA]
�� M ′MA

μ′
A

��

σMA

		����������

M(X + A)
M[e† ,ηA]

�� MMA

μA

��

In fact, since all inner parts apart from the upper triangle commute, and the outer

part also commutes, we get that the upper triangle must commute too. This implies

that the middle left-hand part commutes when extended by the monomorphism

σA, so (2.5) commutes for e‡ as defined above. Since e‡ is uniquely determined

by hypothesis, the equation e† = σA · e‡ implies that e† is uniquely determined

also.

(2) Let e† exist uniquely. Then, arguing as above, we get that

e‡ = μ′
A · M ′[e†, ηA] · e′

is the unique morphism such that (2.5) commutes.
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Example 2.8.

(1) The free monad �Σ on a polynomial functor HΣ, see (1.4), is given on objects Z by

FΣZ = all finite Σ-trees on Z .

Recall that a Σ-tree on Z is a rooted, ordered tree labelled in Σ + Z so that leaves

are labelled in Σ0 + Z and nodes with n > 0 children are labelled in Σn. All trees are

considered up to isomorphism throughout this paper.

An equation morphism e : X −→ FΣ(X +A) with X = {x1, . . . , xm} can be viewed as a

system (1.1) whose right-hand sides are Σ-trees (or Σ-terms) over the given variables

xi and the given parameters a1, . . . , ak in A. Such a system is ideal if none of the trees

ti is a single variable or a single parameter. It is guarded if parameters are allowed as

a right-hand side, but variables are not.

A solution of (1.1) is a function e† : X −→ FΣA representing a substitution of

variables xi by terms xi
† for i = 1, . . . , m such that the formal equations (1.1) become

identities (1.2).

The reason �Σ is not iterative is that the ‘obvious solution’ obtained by tree expansions

of (1.1) often leads to infinite trees.

(2) By dropping the finiteness requirement of the previous example, we can define a monad

�Σ of Σ-trees with

TΣZ = all Σ-trees on Z .

This is indeed a monad, as observed by Eric Badouel (Badouel 1989). However, this is

not a finitary monad. A finitary submonad �Σ of �Σ is given by

RΣZ = all rational Σ-trees on Z ,

where a tree is rational if it only has finitely many subtrees (up to isomorphism) – see

Ginali (1979).

The monad �Σ is ideal since, analogously to (2.2) above,

RΣ = HΣRΣ + Id.

Moreover, �Σ is iterative: given an equation system (1.1) where ti are now rational

trees, and assuming guardedness (no ti is a single variable), we have an obvious tree

expansion si of the variable xi for i = 1, . . . , m, so si is a rational tree also. This is the

unique solution in RΣZ .

For example, if Σ2 denotes the signature of one binary operation ∗, the equation

system

x1 ≈ x2 ∗ a x2 ≈ x1 ∗ a′ (2.6)

https://doi.org/10.1017/S0960129509990326 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990326
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has the unique solution given by the rational trees

s1 =

∗

∗

∗

∗

a′

a

a′

a

�����

�����

�����

������

�����

�����

������

and s2 =

∗

∗

∗

∗

a

a′

a

a′

�����

������

�����

�����

�����

������

�����

(3) Let H be the endofunctor of Set whose algebras are commutative binary algebras:

HZ = all unordered pairs in Z .

A free monad � on H can be described by

FZ = all finite unordered binary trees on Z

(where an unordered tree has no order on the two children of a given node). Adámek

and Milius (2006) described a free iterative monad � on H: it is given on objects by

RZ = all rational unordered binary trees on Z .

For example, the solution of (2.6) is given by the above trees s1 and s2, which are

unordered, so s1 can also be represented by

∗

∗

∗

∗

a′

a

a′

a

�����
�����

�����
������

�����
�����

������

Definition 2.9. Let � = (M, η, μ) and � = (M, η, μ) be ideal monads with

M = M ′ + Id and M = M ′ + Id.

A monad morphism h : � −→ � is said to be ideal if it has the form h = h′ + id for a

(uniquely determined) natural transformation h′ : M ′ −→ M ′.

Example 2.10. All the ‘usual’ monad morphisms are ideal. For example, given a nat-

ural transformation between endofunctors, the unique extension to free monads (see

Example 2.4(3)) is ideal.
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On the other hand, for the monad X∗ of free monoids, the monad (endo-)morphism

given by hX : X∗ −→ X∗ defined by hX(ε) = ε and hX(x1 . . . xn) = x1 is not ideal.

Remark 2.11. It follows that h′ in Definition 2.9 fulfills

h′ · μ′ = μ′ · M ′h · h′M.

In fact, we will now prove that the following diagram commutes:

M ′M
h′M ��

σM



���������

μ′

��

M ′M
M ′h ��

σM

��

M ′M
σM

����������

μ′

��

MM
hM ��

μ

��

MM
Mh �� MM

μ

��

M
h

�� M

M ′
h′

��

σ

�����������
M ′

σ



���������

The middle square commutes since h is a monad morphism, the left- and right-hand parts

commute by (2.1), the upper left-hand and the lower part commute by the definition of

an ideal monad morphism, and the remaining upper right-hand part trivially commutes.

So, since σ is componentwise a monomorphism (see Assumption 2.1(a)), the outer square

commutes as desired.

Remark 2.12. We are going to prove that every ideal monad � has an iterative reflection,

that is, an ideal monad morphism � −→ �̂ to an iterative monad �̂ with the universal

property that every ideal monad morphism from � to an iterative monad has a unique

ideal extension to �̂.

Notation 2.13. We use

FMid(A)

to denote the category of all ideal monads on A and ideal monad morphisms, and

IFMid(A)

to denote its full subcategory of iterative monads.

Theorem 2.14. Every ideal monad has an iterative reflection. That is, the full embedding

IFMid(A) −→ FMid(A) has a left adjoint.

Remark 2.15. The full proof of the theorem is postponed to Appendix A. For the category

Set (and any other where all epimorphisms split) there is a shorter proof based on an

idea suggested by one of the referees.

Proof for the case in which epimorphisms split in A.

(a) The category FMid(A) is complete, and iterative monads are closed under limits in it –

see (b2) in Appendix A.
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(b) The theorem can then be proved using the Adjont Functor Theorem: for every ideal

monad � = (M, ηM, μM) we need a set of ideal monad morphisms h : � −→ �,

with � iterative, through which all other morphisms factorise. To find such a set, let

� = (R, ηR, μR) be a free iterative monad on the functor M with the universal arrow

i : M −→ R. Since M is finitary, � exists (Adámek et al. 2006).

Every ideal morphism h : � −→ � with � iterative extends to a unique ideal monad

morphism h : � −→ � with h·i = h and we can factorise hA = mA·h∗
A as an epimorphism

h∗
A : RA −→ S∗A followed by a (strong) monomorphism mA : S∗A −→ SA. It is well

known that S∗ carries a unique structure of a monad �∗ such that h∗ : � −→ �∗

and m : �∗ −→ � are monad morphisms. It is also easy to verify that �∗ is ideal,

as are h∗ and m. Thus, to conclude the proof, we only need to verify below that �∗

is an iterative monad, since then all the morphisms h∗ form the desired solution set

(because, due to the finitarity of M, they are determined by their components h∗
A with

A finitely presentable, thus, they essentially form a set).

(c) Every ideal equation morphism e : X −→ S∗(X + Y ) with X finitely presentable has a

solution. To prove this, choose a splitting

r : S∗(X + Y ) −→ R(X + Y )

of the epimorphism h∗
X+Y , that is h∗

X+Y · r = id. It is easy to see that the morphism

f = r · e : X −→ R(X +Y ) is ideal. Thus, it has a solution e† : X −→ RY with respect

to �. A simple computation then shows that h∗
Y · e† : X −→ S∗Y is a solution with

respect to �∗.

(d) The uniqueness of solutions e† of e with respect to � follows from the fact that

mX+Y · e : X −→ S(X + Y ) is ideal with respect to �. Then a simple computation

shows that mY ·e† : X −→ SY is a solution with respect to �. Since mY is monomorphic,

e† is unique.

3. Iterative algebras

It is often easier and more intuitive to work with the concept of iterativity for algebras

rather than monads. In the classical case of Σ-algebras in Set, this has already been

observed by Evelyn Nelson (Nelson 1983) and Jerzy Tiuryn (Tiuryn 1980). We prove that

a monad is iterative if and only if each free Eilenberg–Moore algebra for that monad is

iterative.

Recall that an Eilenberg–Moore algebra for a monad � = (M, η, μ) is an M-algebra

a : MA −→ A satisfying

a · ηA = idA and a · μA = a · Ma.

We use A� to denote the category of all Eilenberg–Moore algebras and homomorphisms.

Definition 3.1. Let � be an ideal monad. An �-algebra a : MA −→ A is said to be

iterative if for every guarded equation morphism e : X −→ M(X+A) there exists a unique
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solution in A, which means a unique morphism e† : X −→ A such that the square

X
e†

��

e

��

A

M(X + A)
M[e† ,A]

�� MA

a

��

commutes.

Remark 3.2. We can use ‘ideal’ instead of ‘guarded’ in the above definition – see

Proposition B.1 in Appendix B.

Example 3.3. If � is a free monad on a finitary endofunctor H , see Example 2.4(3), we

can work with H-algebras a : HA −→ A instead of monadic �-algebras. We proved in

Adámek et al. (2006) that an H-algebra is iterative if and only if for every flat equation

morphism , that is, a morphism e : X −→ HX + A with X finitely presentable, there exists

a unique solution defined by the commutativity of the diagram

X
e†

��

e

��

A

HX + A
He†+A

�� HA + A

[a,A]

��

(1) For H = HΣ and A = Set, the above concept is the concept of an iterative Σ-algebra

A given in the Introduction: in fact, every ideal system (1.1) has a unique solution if

and only if every flat system (one, where the right-hand sides ti are either elements

of A or flat terms σ(xi1 , . . . , xik ) for a k-ary operation σ) has a unique solution. See

Nelson (1983).

(2) In particular, a unary algebra a : A −→ A is iterative if and only if its operation a has

a fixed point, which is the unique cycle of a (Adámek et al. 2006).

(3) Analogously, for algebras on two unary operations, a and b, an algebra is iterative if

and only if for every non-empty word on {a, b} the corresponding derived operation

has a unique fixed point (Adámek et al. 2006).

Example 3.4 (Bruno Courcelle, private communication). Consider the case of two unary

operations a and b that commute:

a · b = b · a.

The corresponding free-algebra monad � on Set can be described on objects Z by

MZ = {a}∗ × {b}∗ × Z.

Every iterative �-algebra (A, a, b) has a joint fixed point of a and b. In fact, the recursive

equation x ≈ a(x) for a fixed point of a is represented by the ideal equation morphism

e : {x} −→ {a}∗ × {b}∗ × ({x} + A), e(x) = (a, ε, x).
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Its solution e† : {x} −→ A is an element t = e†(x), which is also a fixed point of b. To

verify this, all we need to show is that b(t) is a fixed point of a, and then t = b(t) follows

from the uniqueness of e†. We have

b(t) = b(a(t)) = a(b(t)).

Consequently, t is the unique fixed point of each an · bk . This shows that commutativity

of unary operations trivialises iterativity.

Example 3.5. In contrast, commutativity of one binary operation ∗, that is, the law

x ∗ y = y ∗ x,

does not make iterativity trivial. This follows from Example 3.3: take the functor of

unordered pairs as H and use Example 2.8(3).

Example 3.6. Unfortunately, the associativity of a binary operation

x ∗ (y ∗ z) = (x ∗ y) ∗ z

does trivialise iterativity. Here we take the monad

MZ = Z+ (free semigroup on Z).

For every semigroup A that is iterative with respect to �, there exists an absorbing

element 0 ∈ A:

0 ∗ x = 0 = x ∗ 0 for all x.

In fact, since A is an iterative semigroup, the unique idempotent 0 (the unique solution of

x ≈ x ∗ x) fulfills

0 ∗ s = 0 for all s ∈ A.

To prove this, using s to denote the unique solution of x ≈ x ∗ s, we have s ∗ s is also a

solution:

(s ∗ s) ∗ s = s ∗ (s ∗ s) = s ∗ s.

Since solutions are unique, s∗s = s; and since idempotents are unique, s = 0. Analogously,

s ∗ 0 = 0 for all s ∈ A.

Remark 3.7. Notice that the existence of a unique idempotent element that is absorbing

is a necessary but not a sufficient condition for iterativity of semigroups. In fact, consider

the semigroup of all 2 by 2 matrices with entries from � whose determinant is 0, with

matrix multiplication as the operation. The zero matrix is the unique idempotent in this

semigroup, and it is absorbing. However, the formal equation x ≈ a ∗ x ∗ b has for

a =

(
0 0

0 1

)
b =

(
1 0

0 0

)
two different solutions: (

0 0

0 0

)
and

(
0 0

1 0

)
.
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The situation is simpler for a single binary associative and commutative operation.

Evelyn Nelson (Nelson 1983) observed that among commutative semigroups, the iterative

ones are precisely those with a unique idempotent element that is, moreover, absorbing.

Convention 3.8. Given an equation morphism e : X −→ M(X + A), then for every

morphism h : A −→ B, we obtain a new equation morphism:

h • e ≡ X
e ��M(X + A)

M(X+h)
��M(X + B) .

If e is guarded, so is h • e. In fact, in the following diagram, the left-hand triangle

commutes, since e is guarded, and the right-hand square commutes by the naturality of σ

and η:

X
e ��

��

M(X + A)
M(X+h)

�� M(X + B)

M ′(X + A) + A

[σX+A,ηX+A·inr]

��

M ′(X+h)+h

�� M ′(X + B) + B

[σX+B ,ηX+B ·inr]

��

Proposition 3.9 (Solution-preserving morphisms = homomorphisms). Given iterative al-

gebras (A, a) and (B, b), a morphism h : A −→ B of A is a homomorphism if and only

if for every guarded equation morphism e : X −→ M(X + A) the composite h · e† is a

solution of h • e in B:

X

e†

��		
		

		
	

(h • e)†

��














A
h

�� B

Proof. If h is a homomorphism, we see that h · e† solves h • e:

X
e†

��

e

��

��

��

h • e

��

A
h �� B

M(X + A)
M[e† ,A]

��

M(X+h)

��

MA

a

��

Mh

����
��

��
��

�

M(X + B)
M[h·e† ,B]

�� MB

b

��

The uniqueness of solutions means the desired triangle commutes.

Conversely, assuming that h preserves solutions, we prove that h is a homomorphism.

Recall that M is a finitary functor and, since the base category is locally finitely

presentable, A is a filtered colimit of the comma-catgegory Afp/A of all morphisms

q : X −→ A where X is a finitely presentable object of A. It then follows that MA is a

filtered colimit with the colimit cocone Mq : MX −→ MA. Therefore, for every morphism

p : P −→ MA
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in Afp/MA, there exists a factorisation through Mq for some q : X −→ A in Afp/A:

P
p

��

p0
����

��
��

��
MA

MX

Mq

��
(3.1)

To prove that h is a homomorphism, that is, h · a = b · Mh, it is sufficient to verify that

for every p in Afp/MA, we have

h · a · p = b · Mh · p. (3.2)

Define an equation morphism e : P + X −→ M(P + X + A) to have components

e · inr ≡ X
q

�� A
inr �� P + X + A

ηP+X+A
�� M(P + X + A)

e · inl ≡ P
p0 �� MX

[σ,η]−1

�� M ′X + X
M ′inr+q

��

M ′(P + X) + A
[σ·M ′inl,η·inr]

�� M(P + X + A),

which is obviously guarded. We prove that e† = [a · p, q], in other words, that the square

P + X
[a·p,q]

��

e

��

A

M(P + X + A)
M[a·p,q,A]

�� MA

a

��

(3.3)

commutes. To see this, consider the components of P + X separately. The right-hand

component of diagram (3.3) is the outer shape of the diagram

X
q

��

q

��

��

��
e·inr

��

A

A

η·inr

��

η

�����������������





































M(P + X + A)
M[a·p,q,A]

�� MA

a

��

Its lower triangle commutes because of the naturality of η, the right-hand triangle is the

unit law for the algebra a, and the remaining two parts are obvious.
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For the left-hand component of diagram (3.3), we obtain a commutative diagram:

P��

��

e·inl

��

p0

��

a·p
��

p

����������������� A

MX

[σ,η]−1

��

Mq
�� MA

a

������������

M ′X + X
M ′q+q

��

σ+q
��������������

M ′inr+q

��

M ′A + A

[σ,η]

��

[σ,η]

��
��

��
��

��
��

��
��

��
�

M ′(P + X) + A

[σ·M ′inl,η·inr]

��

MX + A

(i)

[Mq,η]
		����������

[Minm,η·inr]��������������

M(P + X + A)
M[a·p,q,A]

�� MA

a

��

The left-hand part is the definition of e, and the right-hand and uppermost parts are

obvious. The upper middle triangle is (3.1). Part (i), the square above it, and the two

triangles below it commute because of the naturality of σ and η, respectively. This proves

that diagram (3.3) commutes.

Since h preserves solutions, we have

(h • e)† = h · e† = h · [a · p, q] = [h · a · p, h · q] . (3.4)

Equation (3.2) follows from (3.4) and the equation

(h • e)† = [b · Mh · p, h · q] : P + X −→ MA, (3.5)

which we prove by verifying that [h ·a ·p, h ·q] is a solution of h • e. To do this, consider the

components of P + X separately again. From equation (3.4), the right-hand component,

h ·q, is indeed the right-hand component of (h • e)†. For the left-hand component b ·Mh ·p,
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it is sufficient to verify the commutativity of the diagram

P��

��

(h • e)·inl

��

b·Mh·p
��

p

��������������

p0

��

B

MX
Mq

��

[σ,η]−1

��

MA
Mh �� MB

b

������������

M ′X + X
M ′(h·q)+h·q

��

M ′inr+q

��

M ′B + B

[σ,η]

��

[σ,η]

��
��

��
��

��
��

��
��

��
��

��
��

��

M ′(P + X) + A
M ′[b·Mh·p,h·q]+h

��������������������

[σ·M ′inl,η·inr]

��

M(P + X + A)
M[b·Mh·p,h·q,h]

�������������������������������

M(P+X+h)

��

M(P + X + B)
M[b·Mh·p,h·q,B]

�� MB

b

��

The left-hand part commutes from the definition of e and h • e. The right-most and upper

right-hand parts are trivial. The upper left-hand triangle is (3.1). The square below it

commutes by the naturality of σ and η, as does the big middle part. The remaining two

triangles are obvious, which proves equation (3.2).

Remark 3.10.

(1) The above proposition shows that the ‘correct’ concept of morphism for iterative

algebras is the ordinary homomorphism.

(2) The relationship between iterativity of algebras and that of monads has the expected

form, as shown by the following theorem.

Theorem 3.11. An ideal monad is iterative if and only if every free Eilenberg–Moore

algebra is iterative.

Proof.

(1) Let � be an iterative monad. We wish to prove the iterativity of (MY , μY ) for every

object Y . Let

X
e ��

e0
��

M(X + MY )

M ′(X + MY )

σX+MY

��

be an ideal equation morphism. We form the equation morphism e : X −→ M(X +Y )

as follows:

X
e �� M(X + MY )

M(ηX+MY )
�� M(MX + MY )

Mcan ��

MM(X + Y )
μX+Y

�� M(X + Y ).
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It is easy to prove that e is ideal using the fact that e is. It is thus sufficient to prove

that solutions of e in the algebra (MY , μY ) are precisely the solutions of e with respect

to the monad �. To this end, consider the diagram

X
s ��

e

��

e
����������������� MY

M(X + Y )
M[s,ηY ]

�� MMY

μY

������������

MM(X + Y )

μX+Y

��

MM[s,ηY ]
�� MMMY

μMY

��

MμY

��
��

��
��

��
��

��
��

��
�

M(MX + MY )

Mcan

��

M[Ms,MηY ]

������������������

M(X + MY )
M[s,MY ]

��

M(ηX+MY )
��














MMY

μY

��

Suppose s is a solution of e. Then the upper part of the above diagram commutes, and

all the other inner parts commute also: the left-hand part commutes by the definition

of e; the right-hand part commutes by the monad laws of the monad �; the middle

square commutes by the naturality of μ; the triangle below it trivially commutes; and,

finally, to see the commutativity of the lower part, remove M and consider the two

components of X + MY separately. So the outer square commutes, which means that

s solves e in the free algebra (MY , μY ).

Conversely, if s is a solution of e, the outer square commutes, and since all the inner

parts except for the upper square commute, the upper square also commutes. So s is

a solution of e†.

Thus, since e has a unique solution, we conclude that e does too.

(2) Let all algebras (MY , μY ) be iterative. For every ideal equation morphism e : X −→
M(X + Y ) with respect to M, the equation morphism ηY • e (see Convention 3.8) has

a unique solution e† in the free algebra (MY , μY ):

X
e†

��

e

��

MY

M(X + Y )

M(X+ηY )

��

M[e† ,ηY ]

��

M(X + MY )
M[e† ,MY ]

�� MMY

μY

��

Since M[e†, ηY ] = M[e†,MY ] · M(X + ηY ), this shows precisely that � is an iterative

monad.

Proposition 3.12. A limit or a filtered colimit of iterative algebras in A� is iterative.
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The proof is completely analogous to the proof of Adámek et al. (2006, Proposition 2.15),

so we omit it here.

Corollary 3.13. Every algebra has an iterative reflection (that is, the full subcategory of

A� formed by iterative algebras is reflective). In particular, every object Y of A generates

a free iterative algebra

M̂Y ,

which is a reflection of the free algebra MY .

Proof. The statement follows from Adámek and Rosický (1994, 2.48 and 2.78).

Example 3.14.

(1) For the monad �Σ of finite Σ-trees, in other words, for classical Σ-algebras, a free

iterative algebra on A is the algebra of rational Σ-trees on A (Nelson 1983).

In particular, if

MA = finite binary trees on A

(the case of a single binary operation), we have a free iterative algebra on A given by

M̂A = rational binary trees on A.

(2) Analogously, for a single commutative binary operation, a free iterative algebra is the

algebra of all rational binary unordered trees of Example 2.8(3).

(3) For a single associative binary operation (semigroups),

MA = A+,

we have a free iterative algebra on A given by

M̂A = A+ + {0}, 0 absorbing.

In fact, in view of Example 3.6, all we have to prove is that the algebra A+ + {0} is

iterative. Let

e : X −→ (X + A)+

be an ideal equation morphism. One solution is the following function e† : X −→
A+ + {0}:
(a) For all variables x0 in X0 = e−1(A+), put e†(x0) = e(x0). For all variables x1 in

X1 = e−1(X0 + A)+,

let e†(x1) be the word obtained from e(x1) by substituting every variable y ∈ X0

with e†(y) above, and analogously for all Xn (n ∈ �), where

Xn+1 = e−1(Xn + A)+.

(b) For all variables x in X \
⋃

n∈� Xn, put e†(x) = 0.

To verify uniqueness, let f : X −→ A+ + {0} be a solution of e. It is easy to see by

induction on n that f(x) is equal to e†(x) for all x ∈ Xn. It then remains to prove that

f(x0) = 0 for all x0 ∈ X \
⋃

n∈� Xn.
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In order to show a contradiction, we assume, to the contrary, that there exists x0 ∈
X \

⋃
n∈� Xn with f(x0) ∈ A+.

The word e(x0) in (X + A)+ contains at least one variable x1 ∈ X \
⋃

n∈� Xn (in fact,

if all variables in e(x0) lay in Xn, we would have x0 ∈ Xn+1). Since f(x0) ∈ A+, it is

clear that f(x1) 	= 0. Consequently, f(x1) ∈ A+ and the length of the word f(x0) is

bigger than that of f(x1): recall that e(x0) 	= x1 since e is ideal, and the word f(x1)

is a subword of f(x0). Analogously, for x1, the word e(x1) contains x2 ∈ X \
⋃

n∈� Xn,

and the length of f(x1) is bigger than that of f(x2), and so on. Since X is a finite set,

we obtain a cycle, which contradicts the above growing length of words.

(4) For the monad

MA = {a}∗ × {b}∗ × A

of two commuting unary operations, the free iterative algebras are given by

M̂A = {a}∗ × {b}∗ × A + {0} with a(0) = 0 = b(0).

In fact, in view of Example 3.4, all we need to prove is that the algebra M̂A is iterative.

The argument is entirely analogous to that of part (3). Let

e : X −→ {a}∗ × {b}∗ × (X + A) + {0}

be an ideal equation morphism. One solution is the function

e† : X −→ {a}∗ × {b}∗ × A + {0}

defined by:

(a) For all variables x0 in X0 = e−1({a}∗ × {b}∗ × A), put e†(x0) = e(x0), and for all

variables in

X1 = e−1({a}∗ × {b}∗ × (X0 + A)),

let e†(x1) be the element of {a}∗ × {b}∗ ×A obtained from e(x1) by substituting the

variable x0 ∈ X0 (if any) by the already given e†(x0), and so on.

(b) For all variables x in X \
⋃

n∈� Xn, put e†(x) = 0.

The verification of uniqueness is analogous to that given for part (3).

4. Conclusions and future research

The aim of this paper has been to prove that all ideal algebraic theories in Set can be

freely completed to iterative theories of Calvin Elgot, and, more generally, to show that

given an extensive, locally finitely presentable category, all ideal finitary monads on it

have iterative reflections.

We have also extended the result of Evelyn Nelson (Nelson 1983) and Jerzy Tiuryn

(Tiuryn 1980) characterising iterativity of theories by means of the iterativity of algebras

for theories by showing that what they achieved for the classical Σ-algebras in fact holds

for algebras for an arbitrary ideal monad.

There is an obvious missing step connecting our two results: the proof that for every

ideal algebraic theory �, the theory of free iterative �-algebras is an iterative reflection
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of �. We have not presented such a proof here because we do not yet know one that

would work in the present generality. However, we do have a proof that the above result

holds for ideal algebraic theories in Set, see Adámek et al. (2009b).

We have given several examples of ideal monads � (for example, the finite-list monad

or the monad of two commuting unary operations) for which the iterative reflection is

trivial: one just adds a single element. How one might be able to see directly that an ideal

monad has a trivial iterative reflection remains an open problem.

Appendix A. Proof of the Reflection theorem (Theorem 2.14)

Notation A.1.

(1) We use

FE(A)

to denote the category of all finitary endofunctors of A and

V : FMid(A) −→ FE(A)

to denote the functor assigning the endofunctor M ′ to an ideal monad M = M ′ + Id.

(2) For two natural transformations m : M1 −→ M2 and n : N1 −→ N2, we write

m ∗ n : M1N1 −→ M2N2 for the parallel composition defined by

m ∗ n = mN2 · M1n = M2n · mN1.

Recall that for natural transformations m, n, p, q with appropriate domains and

codomains, we have the interchange law

(m ∗ n) · (p ∗ q) = (m · p) ∗ (n · p). (A.1)

Proof of Theorem 2.14. We will prove:

(a) FMid(A) is a locally finitely presentable category.

(b) IFMid(A) is closed in it under limits and filtered colimits. The theorem then follows

from the Reflection Theorem of Adámek and Rosický (1994).

Proof of part (a). This part of the proof is divided into showing that V :

(a1) has a left adjoint;

(a2) creates coequalisers of V -split pairs;

(a3) is finitary.

Beck’s Theorem, see Mac Lane (1998), then tells us that V is monadic. Since FE(A) is

locally finitely presentable by Adámek and Rosický (1994, 1.45 and 1.46), we conclude by

Adámek and Rosický (1994, 2.78) that FMid(A) is also.

(a1) V has a left adjoint.

This follows from Barr’s result, see Example 2.8(3), that if we are given an ideal

monad � with S = S ′ + Id and a natural transformation λ : H −→ S that factors

through the coproduct injection σS : S ′ −→ S as shown by

λ ≡ H
λ′

�� S ′ σS
�� S, (A.2)
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then we have the unique monad morphism λ : � −→ � with

λ = λ · κ . (A.3)

We will show that the diagram

H
Hη

��

λ′

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
� HF

σ ��

λ′∗λ

��

κF

����
��

��
��

F
������

κ

λ

��

FF

μ
����������

λ∗λ

��

S ′S
σSS

����
��

��
��

μ′S

��

SS

μS

��
��

��
��

��
��

��
��

S ′

σS

������������������

S

��
��

λ
(A.4)

commutes, where κ = σ · Hη : H −→ F denotes the universal natural transformation

of the free monad � on H , see Example 2.8(3).

In fact, the outer part commutes by definition of λ, the upper part is the definition of

κ, and the lower left-hand part commutes by (A.2). The right-hand square commutes

since λ is a monad morphism. The lower part commutes since � is an ideal monad.

The upper middle square commutes because of the interchange law (A.1) and

equations (A.3) and (A.2). For the upper left-hand triangle, we use the interchange

law again, together with the equations λ · η = ηS and μ′S · S ′ηS = idS ′ .

Finally, we prove that the upper right-hand triangle commutes. To do this, consider

the diagram

HF
HηF

��

��������

�������� HFF
σF ��

Hμ

��

FF

μ

��

������
κF

HF σ
�� F

The upper part commutes by the definition of κ, and the left-hand triangle by

the unit laws of the monad �. The right-hand square commutes since the monad

multiplication μ arises componentwise as an H-algebra homomorphism from the

universal property of the free H-algebra FFX, for any object X (cf. Example 2.8(3)).
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All we need to prove now is that λ is an ideal monad morphism. In fact, the natural

transformation

λ′ ≡ HF
λ′∗λ �� S ′S

μ′S
�� S ′

is the desired restriction of λ to the ideals of F (which is HF , see Example 2.4(3))

and S , which follows from the commutativity of diagram (A.4).

(a2) V creates coequalisers of V -split pairs.

Let

S
f

��

g
�� T

be a pair of ideal monad morphisms that is V -split. This means that we have a

diagram

S ′

f′
��

g′
�� T ′

c′
��

t′��
C ′s′

��

in FE(A) such that c′f′ = c′g′, c′s′ = idC ′ , s′c′ = g′t′ and f′t′ = idT ′ . We apply the

endofunctor (−) + Id to this diagram and obtain the split coequaliser

S

f
��

g
�� T

c ��

t��

Cs��

where C = C ′ + Id, c = c′ + id, s = s′ + id and t = t′ + id.

The functor U : FM(A) −→ FE(A) assigning to every finitary monad (M, η, μ) the

functor M is monadic. This follows from Barr (1970) by an easy application of Beck’s

Theorem (Mac Lane 1998). Thus, there exists a unique structure of a finitary monad

on C such that c : T −→ C is a coequaliser of f and g in FM(A).

We now only need to prove that C is an ideal monad and that c is a coequaliser of

f and g in FMid(A). The latter is clear: in fact, we observe that for any ideal monad

D and an ideal monad morphism d : T −→ D with df = dg, because cs = id, the

unique induced monad morphism h : C −→ D with hc = d is given by h = ds. So,

since d = d′ + id is an ideal monad morphism, we have h = d′s′ + id. Therefore, h is

a morphism of FMid(A). To prove that C is an ideal monad, we again use cs = id to

conclude that the multiplication μC : CC −→ C is obtained as follows:

μC ≡ CC
s∗s �� TT

μT
�� T

c �� C.

Now consider

μ′C ≡ C ′C
s′∗s �� T ′T

μ′T
�� T ′ c′

�� C ′.
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This is the required restriction of μC , that is, the diagram

C ′C
s′∗s ��

σCC

��

T ′T
μ′T

��

σTT

��

T ′ c′
��

σT

��

C ′

σC

��

������
μ′C

CC
s∗s

�� TT
μT

�� T c
�� C�	����

μC

commutes: in fact, the right-hand square commutes since c = c′ + id, the middle one

does since T is an ideal monad, and for the left-hand square, we use the interchange

law (A.1) and the fact that s = s′ + id.

(a3) V is finitary.

In fact, the above forgetful functor U : FM(A) −→ FE(A) is clearly finitary. Moreover,

FE(A) is closed under colimits in the functor category [A,A], so filtered colimits are

formed pointwise in FM(A). Since (filtered) colimits commute with finite coproducts,

we conclude that filtered colimits are formed pointwise in FMid(A) also: given a

filtered diagram D : T −→ FMid(A), it has the form D = D′ + Id and its poinwise

colimit colimD has the form colimD′ +Id. Therefore, FMid(A) is closed under filtered

colimits in FM(A) and V : FMid(A) −→ FE(A) preserves filtered colimits.

Proof of part (b). We proceed in two steps:

(b1) IFMid(A) is closed under filtered colimits in FMid(A).

Let D : T −→ IFMid(A) be a filtered diagram with objects Dt = �t = (Mt, ηt, μt)

where Mt = M ′
t + Id. Let

mt : �t −→ � with � = (M, η, μ)

be a colimit cocone in FMid(A) with M = M ′ +Id and mt = m′
t +id. Recall from (a3)

that M ′ = colimM ′
t , so M ′Y = colimM ′

tY for finitely presentable objects Y .

We will prove that � is iterative using the formulation of Lemma 2.7. Let a morphism

e′ : X −→ M ′(X + A) with X finitely presentable

be given. We prove that there exists a unique morphism e‡ such that diagram (2.5)

commutes. Since X is finitely presentable and e′ is a morphism into a filtered colimit

M ′(X + A) = colimM ′
t(X + A), e′ factors through one of the colimit morphisms,

(m′
t)X+A : M ′

t(X + A) −→ M ′(X + A). More precisely, there exists a morphism

e : X −→ M ′
t(X + A) with e′ = (m′

t)X+A · e.

Since �t is an iterative monad, we have a unique morphism

e‡ : X −→ M ′
tA
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such that the square

X
e‡

��

e

��

M ′
tA

M ′
t(X + A)

M ′
t[(σt)A·e‡ ,(ηt)A]

�� M ′
tMtA

(μ′
t)A

��

(A.5)

commutes. It follows that e′ has a solution with respect to �: the morphism

e‡ ≡ X
e‡

�� M ′
tA

(m′
t)A �� M ′A

makes the diagram

X
e‡

��

e

��

M ′
tA

(m′
t)A �� M ′A

M ′
t(X + A)

M ′
t[(σt)A·e‡ ,(ηt)A]

��

(mt)
′
X+A

��

M ′
tMtA

(μ′
t)A

��

(m′
t)MtA

  ���������

M ′MtA

M ′(mt)A

  ����������

M ′(X + A)
M ′[σA·(m′

t)A·e‡ ,ηA]

��

M ′[σt·e‡ ,ηA]

!!��������������������������������
��

��

e′

M ′MA

μ′
A

��

(A.6)

commute – the upper left-hand square is (A.5); the middle part is the naturality of

m′
t; the lower triangle follows from mt being an ideal monad morphism (mt · ηt = η

and mt · σt = σ · m′
t) and the right-hand square commutes by Remark 2.11.

To prove uniqueness, let a morphism

e‡ : X −→ M ′A with e‡ = (μ′)A · M ′[σA · e‡, ηA] · e′ (A.7)

be given. Since M ′A = colimM ′
tA is a filtered colimit and X is finitely presentable,

we know that e‡ factors through one of the colimit maps (m′
t)A – and without loss

of generality, we can assume that this index t is the same as the one we used above.

Given

e‡ = (m′
t)A · g for g : X −→ M ′

tA,

consider the above diagram (A.6) in which all occurences of e‡ are substituted by g.

Then all inner parts commute as before, with the exception of the upper square

X
g

��

e

��

M ′
tA

M ′
t(X + A)

M ′
t[(σt)A·g,(ηt)A]

�� M ′
tMtA

(μ′
t)A

��

(A.8)

Now, since the outer square in the above diagram is known to commute, we conclude

that (mt)
′
A merges the sides of the square (A.8). From the fact that (m′

t)A is a colimit

https://doi.org/10.1017/S0960129509990326 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990326


Iterative reflections of monads 445

map of the filtered colimit M ′A = colim(M ′
tA) and that X is finitely presentable, we

deduce that the two sides of (A.8) are also merged by some connecting morphism

h′
A : M ′

tA −→ M ′
sA of the diagram. But h′

A also merges the two sides of (A.5) because

of the commutative diagram

X
e‡

��

e

��

M ′
tA

h′
A �� M ′

sA

M ′
t(X + A)

M ′
t[(σt)A·e‡ ,(ηt)A]

��

h′
X+A

��

M ′
tMtA

(μ′
t)A

��

h′
MtA

  ���������

M ′
sMtA

M ′
shA

  ���������

M ′
s(X + A)

M ′
s[(σs)A·h′

A·e‡ ,(ηs)A]

��

M ′
s[(σt)A·e‡ ,(ηt)A]

!!��������������������������������
��

��

e′

M ′
sMsA

(μ′
s)A

��

We conclude that h′
A · g = h′

A · e‡.

Consequently, e‡ is determined uniquely, since h′ is a connecting morphism, we get

m′
t = m′

s · h′, and thus

e‡ = (m′
t)A · g = (m′

s)A · h′
A · g = (m′

s)A · h′
A · e‡ = (m′

t)A · e‡.

(b2) IFMid(A) is closed under limits in FMid(A).

First recall from part (a) that V : FMid(A) −→ FE(A) preserves limits. The category

FE(A) is coreflective in the functor category [A,A]: given a functor H , its finitary

coreflection is obtained from its domain restriction H0 to the full subcategory Afp

of all finitely presentable objects by a left Kan extension of H0 along the inclusion

functor Afp ↪−→ A. Consequently, limits in FE(A) are computed pointwise when

evaluation takes place at a finitely presentable object. We conclude that for a diagram

D : T −→ IFMid(A)

with objects Dt = �t (notation as in (b1)) and its limit cone mt : � −→ �t in

FMid(A) where � = (M, η, μ) and mt = m′
t + id, we have

M ′Y = limM ′
tY for finitely presentable Y .

We now prove that � is iterative by applying the condition of Lemma 2.7.

Thus, let a morphism

e′ : X −→ M ′(X + A) with X finitely presentable

be given. For every t, the morphism

e′
t ≡ X

e′
�� M ′(X + A)

(mt)
′
X+A

�� M ′
t(X + A)
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allows for a unique e
‡
t : X −→ M ′

tA with a commutative square

X
e

‡
t ��

e′
t

��

M ′
tA

M ′
t(X + A)

M ′
t[(σt)A·e‡

t ,(ηt)A]

�� M ′
tMtA

(μ′
t)A

��

(A.9)

The cone of all e‡
t is compatible – if h : �t −→ �s is a connecting morphism of the

diagram D with h = h′ + id, we are going to prove that

e‡
s = h′

A · e‡
t : X −→ M ′

sA

by verifying that the right-hand side has the property (2.5) characterising e‡
s :

X
e

‡
t ��

e

��

M ′
tA

h′
A �� M ′

sA

M ′(X + A)

(m′
t)X+A

��

M ′
t(X + A)

M ′
t[(σt)A·e‡

t ,(ηt)A]

��

h′
X+A

��

M ′
tMtA

(μ′
t)A

��

h′
MtA

  ���������

M ′
sMtA

M ′
shA

  ���������

M ′
s(X + A)

M ′
s[(σs)A·h′

A·e‡
t ,(ηs)A]

��

M ′
s[(σt)A·e‡

t ,(ηt)A]

!!��������������������������������
��

��

(ms)
′
X+A

M ′
sMsA

(μ′
s)A

��

In fact, the lower triangle commutes: delete M ′
s and consider the components of

X +A separately. The right-hand part follows from h · ηt = ηs, and the left-hand part

follows from h · σt = σs · h′ (recall that h : �t −→ �s is an ideal monad morphism).

All the other parts are obvious (in fact, we can use similar arguments to those we

used in the verification of the commutativity of (A.6)). We know that M ′A = limM ′
tA

and can define e‡ : X −→ M ′A by

(mt)
′
A · e‡ = e

‡
t for all t in T. (A.10)
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We now verify that e‡ has the desired property that the upper left-hand square in the

diagram

X
e‡

��

e

��

M ′A
(mt)

′
A �� M ′

tA

M ′(X + A)
M ′[σA·e‡ ,ηA]

��

(mt)
′
X+A

��

M ′MA

μ′
A

��

(mt)
′
MtA

		���������

M ′
tMA

M ′
t(mt)A

		���������

M ′
t(X + A)

M ′
t[(σt)A·e‡

t ,(ηt)A]

��

M ′
s[σA·e‡ ,ηA]

!!������������������������������
M ′

tMtA

(μ′
t)A

��

commutes. In fact, the whole diagram commutes: its outer square commutes because

of (A.9) and (A.10), and, apart from the (desired) upper square, the inner parts also

clearly commute. The cone of all

(m′
t)A : M ′A −→ M ′

tA

is a limit cone, and thus a monocone. Consequently, the desired square also commutes.

To prove the uniqueness of e‡, suppose that in the above diagram we know that

the upper left-hand square commutes for some morphism e‡ : X −→ M ′A. Then the

whole diagram commutes, which shows that (m′
t)A · e‡ : X −→ M ′

tA has the property

characterising e
‡
t . This proves that

(m′
t)A · e‡ = e

‡
t for all t in T,

and this determines e‡, since (m′
t)A is a monocone.

Appendix B. Ideal and guarded equation morphisms

In this appendix we clarify the relationship between ideal equation morphisms, as used by

Calvin Elgot, and guarded ones – see Remark 2.6. We still assume that the base category

A is locally finitely presentable and extensive.

Proposition B.1. For every ideal monad � the following conditions are equivalent:

(1) all guarded equation morphisms e : Z −→ M(Z + A), with A arbitrary, have unique

solutions;

(2) all ideal equation morphisms e : Z −→ M(Z + A), with A finitely presentable, have

unique solutions.
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Proof. Assuming (2), we prove (1). Let

Z
e ��

e0
������������������ M(Z + A)

M ′(Z + A) + A

[σZ+A,ηZ+A·inr]

��

be a guarded equation morphism. Since the base category is extensive, we have a

decomposition

Z = X + Y and e0 = f0 + g0

for some morphisms f0 : X −→ M ′(Z + A) and g0 : Y −→ A.

(a) Assume that A is a finitely presentable object. The ideal equation morphism

f ≡ X
f0 �� M ′(Z + A) = M ′(X + Y + A)

M ′(X+[g0 ,A])
��

M ′(X + A)
σX+A

�� M(X + A)

has a unique solution f† : X −→ MA. We prove now that the morphism

e† = [f†, ηA · g0] : Z −→ MA

is a solution of e. To this end, consider the diagram

X + Y = Z
[f† ,ηA·g0] ��

f0+g0

��

MA

M ′(Z + A) + A

[σZ+A,ηZ+A·inr]

��

M(Z + A) = M(X + Y + A)
M[f† ,ηA·g0 ,ηA]

�� MMA

μA

��

In fact, we will analyse the two components of X + Y separately. The right-hand

component clearly yields ηA · g0 on both sides (since μA · MηA = id). The left-hand
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component commutes because in the diagram

X
f†

��

f0

��

MA

M ′(Z + A)

σZ+A

��

M ′(X+[g0 ,A])

��������������

M ′(X + A)

σX+A

�������������

M(X + A)
M[f† ,ηA]

�� MMA

����������

����������

μA

""                        

M(X + Y + A)
M[f† ,ηA·g0 ,ηA]

��

M(X+[g0 ,A])

##!!!!!!!!!!!!!!!!!!!!!!
MMA

μA

��

the upper part commutes by the definition of f†, the left-hand triangle commutes by

the naturality of σ, the right-hand triangle is obvious and the lower square trivially

commutes: delete M and consider the components of X + Y + A separately.

To prove uniqueness, let e† : X + Y −→ MA be a solution of e. We will verify

e† = [f†, ηA · g0] componentwise. For the right-hand component, consider the diagram

Z = X + Y
e†

��

f0+g0

��

MA

Y

inr

$$�������������

g0

��

M ′(Z + A) + A

[σZ+A,ηZ+A·inr]

��

A
inr��

ηA



��
��

��
��

��

inr

��

Z + A
[e† ,ηA]

��

ηZ+A

��"""""""""""
MA

ηMA



#########

$$$$$$$$$$$$$$$$$$$$$$$

$$$$$$$$$$$$$$$$$$$$$$$

M(Z + A)
M[e† ,ηA]

�� MMA

μA

��

The outer square commutes because e† is a solution of e, and since all other inner

parts clearly commute, so does the upper right-hand part, as desired.

https://doi.org/10.1017/S0960129509990326 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990326
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For the left-hand component it suffices to prove that e† · inl is a solution of f:

X
inl ��

f0

��

X + Y
e†

��

f0+g0

��

MA

M ′(X + Y + A)
inl ��

M ′(X+[g0 ,A])

��

σX+Y +A

��%%%%%%%%%%%%%%% M ′(X + Y + A) + A

[σX+Y +A,ηX+Y +A·inr]

��

M ′(X + A)

σX+A

��

M(X + Y + A)
M[e† ,ηA]

��

M(X+[g0 ,A])
%%&&&&&&&&&&&&&&&

MMA

μA

&&'''''''''''''''''

����������

����������

M(X + A)
M[e†·inl,ηA]

�� MMA

μA

��

In the above diagram, all inner parts commute: the upper left-hand square and the

triangle below it trivially commute; the lower left-hand triangle commutes by the

naturality of σ; for the lower square, delete M and consider the components separately

using the already established equation e† · inr = ηA · g0; and for the upper right-hand

part, recall that e = [σZ+A, ηZ+A · inr] · e0 and e0 = f0 + g0.

(b) Let A be arbitrary. We can express A as a filtered colimit

A = colim
t∈T

At with a colimit cocone at : At −→ A, t ∈ T ,

of finitely presentable objects At. Then Z +A is a filtered colimit of Z +At, and since

the functor M ′ is finitary, we conclude that

M ′(Z + A) + A = colimM ′(Z + At) + At with a colimit cocone M ′(Z + at) + at.

Consequently, the morphism e0 : Z −→ M ′(Z + A) + A factors through one of the

colimit morphisms:

Z
e ��

e0
������������������

e1

��(((
(((

(((
(((

((
(((

(((
(( M(Z + A)

M ′(Z + A) + A

[σZ+A,ηA·inr]

��

M ′(Z + At) + At

M ′(Z+at)+at

��

The equation morphism

f ≡ Z
e1 ��M ′(Z + At) + At

[σZ+At ,ηAt ·inr]
��M(Z + At)

is guarded, so, by part (a), it has a unique solution f† : Z −→ MAt.
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To verify that Mat · f† is a solution of e, consider the diagram

Z
f†

��

e1

��

MAt
Mat �� MA

M ′(Z + At) + At

M ′(Z+at)+at

��

[σZ+At ,ηZ+At ·inr]

���������������

M(Z + At)
M[f† ,ηAt ] ��

M(Z+at)

''))
)))

)))
))

)))
)))

)))
))

MMAt

μAt

��

MMat

((
**

**
**

**
**

**
**

**
*

M ′(Z + A) + A

[σZ+A,ηZ+A·inr]

��

M(Z + A)
M[Mat·f† ,ηA]

�� MMA

μA

��

(B.11)

The upper left-hand part commutes because f† solves f; the lower left-hand triangle

commutes by the naturality of σ and η; and the right-hand part commutes by the

naturality of μ. Finally, to see that the lower part is commutative, remove M and

consider the coproduct components separately: it is obvious that the left-hand one

commutes and the right-hand one commutes by the naturality of η.

To prove the uniqueness of solutions, let e† : Z −→ MA be a solution of e. Since

MA = colimMAt, the morphism e† factors through the colimit map Mat for some

index t – without loss of generality, we can assume that this is the same index as we

used above. We thus have

e† = Mat · g for some g : Z −→ MAt.

In the above diagram, substitute g for f†: all parts of the resulting diagram are

commutative apart from, possibly, the upper square

Z
g

��

e1

��

MAt

M ′(Z + At) + At

[σZ+At ,ηZ+At ·inr]

��

M(Z + At)
M[g,ηAt ]

�� MMAt

μAt

��

and since the outer part of (B.11) now commutes, we conclude that Mat merges

the two sides of the last square. The rest of the proof is completely analogous to

the end of the proof of (b1) in Theorem 2.14: we find a connecting morphism

h : At −→ As such that Mh merges the two sides of the above square and conclude

that

e† = Mas · Mh · f† = Mat · f†.
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Remark B.2. Proposition B.1 also holds ‘locally’: for a given algebra (A, a) and an ideal

monad �, the following conditions are equivalent:

(1) The algebra (A, a) is iterative.

(2) Every ideal equation morphism e : X −→ M(X + A) has a unique solution in A.

The proof is similar to that of B.1.
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