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The stability of the flow around a rotating cylinder in a fluid linearly stratified along
the cylinder axis is studied numerically and experimentally for moderate Reynolds
numbers. The flow is assumed potential and axisymmetric with an angular velocity
profile Ω = 1/r2, where r is the radial coordinate. Neglecting density diffusion and
non-Boussinesq effects, the properties of the linear normal modes are first provided. A
comprehensive stability diagram is then obtained for Froude numbers between 0 and 3
and Reynolds numbers below 1000. The main result is that the potential flow, which is
stable for a homogeneous fluid, becomes unstable for Froude number close to one and
for Reynolds numbers larger than 360. The numerical results are then compared with
experimental results obtained using shadowgraph and synthetic Schlieren techniques.
Two symmetrical helical modes are found to be simultaneously unstable. We show
that these modes exhibit an internal gravity wave structure extending far from the
cylinder in agreement with the theory. Their wavelength and frequency are shown to
be in good agreement with the numerical predictions for a large range of Froude and
Reynolds numbers. These experimental results are the first indisputable evidence of
the radiative instability.
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1. Introduction
Stratified and rotating flows are widely studied, mostly for their geophysical

relevance. The potential flow around a rotating cylinder, as it is the simplest of these
flows, is fundamentally very interesting. Here, we numerically analyse its stability in the
presence of viscosity and provide the first experimental evidence of its destabilisation.

The stability of rotating flows has been widely studied for Taylor–Couette systems.
The effect of the stratification on the well-known Taylor–Couette instability leading to
the appearance of axisymmetrical rolls was first shown to be stabilising (Ooyama 1966;
Thorpe 1966; Withjack & Chen 1974, 1975; Boubnov, Gledzer & Hopfinger 1995;
Caton, Janiaud & Hopfinger 2000; Billant & Gallaire 2005). Then, it was demonstrated
that a stratified Taylor–Couette system could become unstable with respect to non-
axisymmetric modes even when the Rayleigh criterion for centrifugal instability
was not satisfied (Molemaker, McWilliams & Yavneh 2001; Yavneh, McWilliams
& Molemaker 2001; Shalybkov & Rüdiger 2005; Le Bars & Le Gal 2007). This
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Stability of a stratified potential flow 131

instability is now called the strato-rotational instability or SRI (Dubrulle et al. 2005).
As shown by Yavneh et al. (2001) and Le Dizès & Riedinger (2010), the destabilisation
results from a resonance between two waves localised near each cylinder. When the
outer cylinder is removed, no resonance is possible any more but an inviscid instability
is still present (Le Dizès & Riedinger 2010). This instability, which is associated with
the spontaneous emission of internal gravity waves (Le Dizès & Billant 2009), is the
subject of this paper. Although this instability could also be termed SRI, we think
that it is more adequate to call it ‘radiative instability’ as for a vortex (Le Dizès &
Billant 2009).

In the geophysical community, this instability has often been associated with
negative energy waves (Schecter & Montgomery 2004; Schecter 2008) and over-
reflection (Lindzen & Barker 1985). For stratified vortices, the instability mechanism
has been recently rediscussed in the framework of a large wavenumber Wentzel–
Kramers–Brillouin–Jeffreys (WKBJ) approach (Billant & Le Dizès 2009; Le Dizès
& Billant 2009). In these articles, the dual role of the critical points has also been
pointed out. The dependence of the instability with respect to the Froude and
Reynolds numbers has been analysed by Riedinger, Le Dizès & Meunier (2010a) for
a Lamb–Oseen vortex. Experimental results for this vortex have been obtained by
Riedinger, Meunier & Le Dizès (2010b). Here, the stability properties of the potential
flow will be compared with those of the Lamb–Oseen vortex and several differences
will be pointed out. Le Dizès & Riedinger (2010) have analysed the stability of the
rotating potential flow in an inviscid framework. In the present study, we address
the stability of the flow for relatively low Reynolds numbers (Re < 1000) and provide
the first experimental evidence of the instability.

The radiative instability is known in other physical contexts. It is present in
compressible flows subject to acoustic radiation (Broadbent & Moore 1979; Luo
& Sandham 1997; Parras & Le Dizès 2010) and in shallow-water flows radiating
surface gravity waves (Satomura 1981; Hayashi & Young 1987; Ford 1994; Knessl &
Keller 1995; Balmforth 1999). It has also been discussed in the context of superfluids
(Roberts 2003) and astrophysical objects (Narayan, Goldreich & Goodman 1987).

The radiative instability is different from the centrifugal instability (Billant &
Gallaire 2005), the elliptic instability (Guimbard et al. 2010), the zigzag instability
(Billant & Chomaz 2000) and the tilt-induced instability (Boulanger, Meunier &
Le Dizès 2008), which can all be present in a rotating stratified flow.

The paper is organised as follows. Section 2 provides the theoretical framework
of the analysis. The base flow characteristics, the perturbation equations and the
numerical technique are presented. Section 3 summarizes the numerical results.
Growth rate, wavelength and frequency of the most unstable mode are obtained for
a large range of Reynolds and Froude numbers. Its spatial structure is also provided.
The differences with respect to the stability results of the Lamb–Oseen vortex are
also emphasized in this section. In § 4, the main results of an experimental study are
provided. The experimental set-up is first presented together with the visualisation
techniques. Experimental estimates for the frequency and the wavelength of the
observed unstable mode are then given and compared with the numerical predictions.
A brief conclusion is finally made in the last section.

2. Framework
2.1. Base flow, perturbation equations and numerical approach

We consider the axisymmetric flow around a vertical cylinder of radius R0 and infinite
length, rotating at angular velocity Ω0 in a viscous fluid of kinematic viscosity ν,
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stably stratified along the cylinder axis. The stratification is assumed to be linear with
a constant Brunt–Väisälä frequency N =

√
−g∂zρ/ρ0. The base flow is potential and

satisfies the Navier–Stokes equations under the Boussinesq approximation (Boulanger,
Meunier & Le Dizès 2007). It is defined by two parameters, the Reynolds number Re

and the Froude number F given, respectively, by

Re =
Ω0R

2
0

ν
, (2.1a)

F =
Ω0

N
. (2.1b)

The diffusion of the density is neglected. Using R0 and 1/Ω0 as characteristic spatial
and temporal scales, the angular velocity profile of the flow can be written as

Ω(r) =
1

r2
, (2.2)

where r is the radial coordinate.
Infinitesimal disturbances of the velocity, pressure and density fields are considered

in the form of normal modes

(u′, v′, w′, p′, ρ ′) = [u(r), v(r), w(r), p(r), ρ(r)] exp(ikz + imθ − iωt), (2.3)

where u′, v′ and w′ are the radial, azimuthal and axial velocities respectively, k and
m are the axial and azimuthal wavenumbers, and ω is the complex frequency. The
normal-mode amplitudes satisfy the following equations obtained by linearising the
Navier–Stokes equations under the Boussinesq approximation around the base flow
defined by (2.2):

iΦu − 2Ωv = −dp

dr
+

1

Re

(
�u − u

r2
− 2im

r2
v

)
, (2.4a)

iΦv = − imp

r
+

1

Re

(
�v − v

r2
+

2im

r2
u

)
, (2.4b)

iΦw = −ikp − 1

F 2
ρ +

1

Re
�w, (2.4c)

iΦρ = w, (2.4d)

1

r

d(ru)

dr
+

imv

r
+ ikw = 0, (2.4e)

where

∆ =
∂2

∂r2
+

1

r

∂

∂r
− k2 − m2

r2
(2.5)

is the Laplacian operator written in cylindrical coordinates and

Φ = −ω + mΩ. (2.6)

This system can be further reduced by eliminating pressure and axial velocity to
obtain a third-order system of the form ωA f =B f , for f = [u(r), v(r), ρ(r)]. The
fields u, v and ρ must also satisfy boundary conditions: on the cylinder

u(r = 1) = v(r = 1) =
du

dr
(r = 1) = 0, (2.7)

and at infinity, u, v and ρ must either vanish or be an outward wave. The reduced
system, together with the above boundary conditions, defines a generalized eigenvalue
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problem for the frequency ω, for fixed base flow parameters (Re, F ) and fixed real
axial wavenumber k and azimuthal wavenumber m.

The two symmetries of the equations (m, ω, k, u, v, w, ρ, p) → (m, ω, −k, u, v, −w,

−ρ, p) and (m, ω, k, u, v, w, ρ, p) → (−m, −ω̄, k, ū, v̄, −w̄, −ρ̄, p̄) allow us to limit the
study to positive values of the axial wavenumber, k, and the azimuthal wavenumber,
m. The objective is to determine the unstable eigenmodes, that is, those with a
positive growth rate ωi = Im m(ω), when the four parameters Re, F , k and m are
varied. Because we want to provide the marginal curves of the unstable modes,
neutral and weakly damped eigenfrequencies are also considered.

The numerical code is a Chebychev spectral collocation code. It is similar to the
code used by Fabre, Sipp & Jacquin (2006) for a homogeneous vortex and adapted
by Riedinger et al. (2010a) for a stratified vortex. As explained by Riedinger et al.
(2010a), the condition of radiation is applied to the modes by considering a complex
integration path. This allows us to obtain eigenvalues for modes which are not
necessarily bounded in the physical space and thus to consider neutral and weakly
damped modes. For the present flow, we have used the following mapping between
the Chebychev variable ξ and the complex radial coordinate:

r = 1 + L
1 + ξ

1 − ξ
eiπ/10, (2.8)

where L is a parameter modifying the coordinate of the last collocation point before
infinity. Typically, we have used Np = 120 collocation points and L =3.43, such that
rmax � 20 000 eiπ/10.

3. Numerical results
The inviscid stability properties of the stratified potential flow have been considered

in Le Dizès & Riedinger (2010). It was shown that for Re = ∞ there exists an infinity
of unstable modes for any non-zero azimuthal wavenumber m. The most unstable
inviscid modes have been found to be obtained for large values of m and to be
localised near the rotating cylinder. Moreover, it was also shown that the inviscid
instability is maximal in the limit of small F . In this limit, the maximum growth rate
converges to a constant value and the wavenumber of the fastest-growing mode scales
as m/F . The instability does not disappear for large F but both the wavelength and
the growth rate of the unstable modes scale as 1/F for large F .

When viscosity is introduced, high wavenumbers are stabilized, which damps the
instability at low Froude number. This substantially modifies the characteristics of
the instability for moderate Froude numbers. For example, for F =0.5, the critical
Reynolds number below which the modes m = 10, 5, 2 and 1 are stabilized are
Re =47 000, 11 000, 2200 and 1015, respectively. For the Reynolds numbers of the
experiment described below, only helical modes m =1 are unstable. In figure 1,
we have plotted the characteristics of the first helical modes for a fixed Froude
number F = 1.25, and two Reynolds numbers. The frequency of these modes satisfies
max(0, 1 − 1/F ) <ωr < 1. For Re = ∞, only the first three branches have been plotted.
Note that all these inviscid modes are unstable in an infinite band of wavenumbers. As
explained by Le Dizès & Riedinger (2010), these modes are discretized by the number
of oscillations of their radial structure in the region localised between the cylinder
and the turning point rc =

√
m/ω, where the local inertial frequency ω − mΩ(r) of the

mode vanishes. These modes also possess a radiative structure far from the cylinder,
which is responsible for their unstable character (Le Dizès & Billant 2009; Le Dizès
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Figure 1. Dispersion relations of the helical modes (m= 1) of the rotating potential flow
for F = 1.25, for Re = ∞ (solid line, first three modes only) and for Re = 1000 (dashed line).
(a) Frequency ωr = Re e(ω) versus kF , (b) growth rate ωi =Im m(ω) versus kF .
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Figure 2. Structure of the most unstable mode (corresponding to k ≈ 5.8, ω ≈ 0.478+i0.0147)
for Re = 1000 and F = 1.25. (a) Vorticity contours and velocity vector field (indicated by
arrows), (b) density contours.

& Riedinger 2010). Both the radiative structure and the mode discretization are not
affected by viscosity. This can be seen in figure 2, which shows the vorticity and
density fields of the most unstable mode obtained for Re = 1000 and F =1.25. Both
the localisation near the cylinder and the fact that there is a single half oscillation
between the cylinder and the turning point rc ≈ 1.45 (as expected for the first mode)
are visible on the vorticity plot (figure 2a). The radiative zone extending far from the
cylinder is by contrast visible on the density plot (figure 2b). It leads to a density
pattern, in a longitudinal plane containing the cylinder axis, of the form illustrated in
figure 3.

Viscosity mainly affects the growth rate of the modes. As seen in figure 1, only
the first branch remains unstable in a small wavenumber interval for Re =1000. The
maximum growth rate has decreased by a factor 3 compared with the inviscid case,
but the frequency has varied very little. For each value of Re and F , a maximal
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Figure 3. Vertical density gradient pattern associated with the most unstable mode for
Re = 1000 and F = 1.25. Only the mode propagating upwards has been represented. A
symmetrical mode propagating downwards with the same growth rate exists.

growth rate with respect to k can be obtained. The maximal growth rate contours
when both F and Re are varied are displayed in figure 4(a). The region of stability
corresponds to the white region of this figure, where the maximum growth rate is
negative. At a given Reynolds number, the potential flow is unstable in a band of
Froude numbers around 1. The unstable band of Froude numbers diminishes when the
Reynolds number decreases and ultimately disappears at a critical Reynolds number
Rec ≈ 360, below which the potential flow is stable whatever the Froude number. The
axial wavenumber and frequency corresponding to the maximum growth rate are
shown in figures 4(b) and 4(c), respectively. The frequency is fairly constant and only
increases from 0.28 to 0.5 when the Froude and Reynolds numbers increase on the
range studied here. The axial wavenumber increases by a factor 2 when the Froude
number decreases (as can be deduced from inviscid results) and the Reynolds number
increases.

As shown by Le Dizès & Billant (2009) and Riedinger et al. (2010a), the instability
of the flow around a rotating cylinder is also present in vortices such as the Lamb–
Oseen vortex. There are however some differences which are worth pointing out. First,
note that the Lamb–Oseen vortex as well as any other free vortex possesses an unstable
mode which is not present in the rotating potential flow. This mode is a helical mode
which is unstable for a small wavenumber only (even in the inviscid limit). It has been
termed ‘displacement mode’ as it corresponds to a global displacement of the vortex
in the limit k = 0. This mode is not present in the case of the potential flow because
the rotating cylinder generating the potential flow cannot be moved. For the Lamb–
Oseen vortex, this mode is almost always the most unstable mode (Riedinger et al.
2010a). The exception is for large Froude and Reynolds numbers. In contrast with
the unstable modes of the flow around the rotating cylinder, this displacement mode
can be unstable whatever the Reynolds number, which means that the Lamb–Oseen
vortex has no critical Reynolds number.

Second, the Lamb–Oseen vortex possesses other unstable modes which resemble the
unstable modes of the rotating potential flow. These modes have been termed ‘ring
modes’ (Le Dizès & Billant 2009). As shown by Le Dizès & Billant (2009), they are
well-described by a WKBJ analysis in the limit of large axial wavenumbers in which
they are discretized by the number of oscillations of their radial structure between
two turning points. As for the helical modes of the rotating potential flow, they
also possess a radiative structure which is responsible for their unstable character.
Although they are qualitatively similar, the modes of the potential flow are much
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Figure 4. Characteristics of the most unstable mode (first helical mode) for fixed Re and F .
(a) Isocontours of the growth rate ωi . (b) Isocontours of the frequency ωr . (c) Isocontours
of the axial wavenumber k. In (b) and (c) the black line indicates the limit of the stability
domain.

more unstable. Their maximum inviscid growth rate is 20 times larger and is reached
for a smaller wavenumber. Their frequency is also larger.

4. Experimental results
4.1. Experimental set-up and visualisations

The experiment is performed in a tank of dimension L × l × h = 240 × 74 × 48 cm3.
The fluid is linearly stratified with salted water on a depth of 45 cm. The stratified
medium is obtained using the classical filling method using two tanks, one with pure
water and the other with salted water. The same filled tank was used for several
experiments during one month. During this period, we checked that the stratification
in the middle part of the tank (between 10 and 30 cm) did not change and remained
uniform with a constant Brunt–Väisälä frequency N ≈ 1.63 ± 0.03 rad s−1. However,
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Figure 5. Density (kg dm−3) as a function of height (cm) for the first experiment (dashed line)
and after one month of experiments (solid line). Here, the mean Brunt–Väisälä frequency is
N =1.6 rad s−1.

we did observe that the stratification at the top (35–45 cm) and the bottom (0–10 cm)
does vary because of salt diffusivity, turbulent mixing and evaporation. This effect
can be seen in figure 5, where the density is plotted versus the depth for the first
experiment and after one month of experiments. Mixing and diffusion tend to decrease
the Brunt–Väisälä frequency near the top and bottom of the tank. This effect will
explain some of the observations presented below. During the month of experiments,
we also regularly checked the temperature of the fluid.

The flow is created by rotating a vertical stainless steel cylinder in the tank. Three
cylinders of radius R0 = 20, 15, 12.5mm have been used. For each experiment, the
cylinder was progressively accelerated during 30 000 rad (i.e. 4774 rounds) with an
angular velocity law given by

θ̇ = Ω0

(
θ

30 000

)1/5

, (4.1)

then kept at constant angular velocity Ω0. Video recording and measurements were
made after having reached a permanent regime, which was usually obtained after
a rotation of 50 000 rad. During the transient stage, which could last several hours,
strong m =0 and m =1 centrifugal modes were observed. These transitory instabilities
induce a convective transfer of momentum which speeds up the formation of the
potential flow.

The velocity field obtained after the transient phase has been measured by particle
image velocimetry (PIV) in a horizontal plane in the middle of the tank to check the
quality of the base flow. This was achieved by injecting small particles in the fluid,
and illuminating them from the side with a pulsed YaG laser. Images were recorded
and treated with the cross-correlation algorithm developed at IRPHE (Meunier &
Leweke 2003). A typical illustration of the velocity vector field obtained by PIV is
shown in figure 6(a). A few wrong vectors are visible around the cylinder and on the
right of the cylinder between the two dashed lines, due to the shade of the cylinder
in the laser sheet. By averaging on circles (excluding the region between the two
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Figure 6. Base flow measurement by PIV. (a) Velocity vector field in a plane perpendicular
to the cylinder axis. (b) Mean azimuthal velocity profile for a stable configuration (triangles,
Re = 279, F = 0.59) and an unstable configuration (circles, Re = 405, F = 0.88). The potential
flow profile vθ = 1/r is plotted by the solid line.

dotted lines), we obtain a mean angular velocity field, which can be compared with
(2.2). In figure 6(b), the mean azimuthal velocity profiles obtained for both a stable
and unstable case have been plotted. We can see that in both cases the azimuthal
velocity field is well approximated by the potential flow profile, although the velocity
is slightly smaller, which is a remnant of the transient stage. Note however that the
unstable configuration is slightly closer to the potential flow than the stable one.

Three different visualisation techniques have been used to observe and analyse the
instability.

(i) Shadowgraph with a screen of tracing paper on the back of the tank for a large
field of view.

(ii) Shadowgraph without tracing paper but through a 30 cm large lens for
contrasted images on a smaller field of view.

(iii) Synthetic Schlieren for enhanced contrast far from the cylinder.
A comparison between the two shadowgraph techniques is provided in figure 7.

While the shadowgraph with a screen of tracing paper shows the whole tank, it
has a much lower sensitivity than the shadowgraph with the lens. Therefore, the
shadowgraph with the tracing paper can be used to observe the development of the
instability and boundary effects. On the other hand, using the lens results in images
with a much higher contrast but only in a smaller section of the tank. The case
shown in figure 7 corresponds to an unstable configuration. An internal gravity wave
with an upward arrow shape rising and winding around the cylinder is visible. A thin
structure attached to the cylinder which rises with the internal wave is also seen. These
structures are antisymmetric with respect to the cylinder axis. The whole structure
forms a helical structure with an m = 1 azimuthal symmetry. This is in agreement with
the numerical results, which predict a most unstable mode with the same azimuthal
wavenumber for these parameters.

Structures can be seen close to the cylinder along its entire height. Note, however,
that the top and bottom regions are much more perturbed. This is probably not only
due to the change of stratification in these layers (as mentioned above), but also
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(b)(a)

Figure 7. Typical shadowgraph visualisations (a) through a sheet of tracing paper and
(b) through a lens. Here Re = 715 and F = 2.05.

due to the presence of the support of the cylinder which tends to produce horizontal
vorticity. When the flow is stable, no density fluctuations are visible around the central
part of the cylinder.

The shadowgraph with a lens is a more sensitive technique and has been used to
measure the threshold of the instability with a good precision (figure 7b). Most of
the measurements of wavelength and period of internal waves were done using this
technique. In most cases, as in figure 7(b), two series of waves are seen with this
visualisation technique, one oriented downwards and the other upwards. This is in
agreement with the symmetry k → −k mentioned above, which guarantees that both
upward and downward waves are simultaneously unstable with the same growth rate.
This makes the undulating structures close to the cylinder pulsating rather than rising
upwards. Nevertheless, in a few cases, we observed that one of the two waves can be
dominant.

Quantitative data can be obtained from these visualisations by making a spatio-
temporal diagram obtained by extracting a vertical line from each video frame
located close to the cylinder over a duration of 180 s and showing the sequence
of these lines. Figure 8 presents the spatio-temporal diagram corresponding to the
experiment shown in figure 7. The pulsating structures, characteristic of standing
waves, are clearly visible as alternating bright and dark patches at the same location
(i.e. on a vertical line). They reveal the presence of two upward and downward waves
which propagate along inclined paths parallel to the two grey lines. The period of the
waves can be read on the vertical, their wavelengths on the horizontal. The angle of
the grey lines gives the axial phase velocity of the waves Vφ . In practice, we measured
the frequencies and the phase velocities, and we deduced the wavenumbers from
k = ω/Vφ . We can see that there is a difference between the frequencies of the two
opposite waves since similar patches are not aligned on vertical lines but slowly drift
towards the top. The smooth angle (�25◦ in this figure) indicates the difference of
frequency.

The third visualisation technique, the synthetic Schlieren, has been used to obtain
visualisations as the one shown in figure 9(a). This technique is less precise than
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Top

Bottom

180 s

10 cm

Trace of
 the upward
 wave

Trace of
 the downward
 wave

Figure 8. Typical spatio-temporal diagram obtained from the shadowgraph. Here for
Re = 715 and F = 2.05.

the shadowgraph for wavelength measurements but it provides clearer pictures of the
internal wave pattern in the far field. Synthetic Schlieren can provide either the
vertical or the horizontal density gradient averaged along the depth of the tank. As
we are looking at the perturbations of a cylindrical flow integrated along its depth,
we a priori get a qualitative and not quantitative information on these perturbations.
Nevertheless, we have been able to check that the theoretical relation cos Φ = ω/N

between the wave frequency and the wave pattern angle in the far field was satisfied.
Figure 9(a) shows an array of dark and bright patches, which once again reveal
the presence of the upward and downward waves simultaneously excited. Note
however that the downward wave is predominant at the top and the upward wave is
predominant at the bottom.

Figure 9(b) is the pattern obtained by the superposition with the same amplitude
of the two upward and downward most unstable linear modes computed for the
experimental parameters. The dimensions of the pictures are identical: 40 × 27 cm2.
The similarity between the two figures is striking. A supplementary movie from which
figure 9(a) is taken is available at journals.cambridge.org/flm.

The very good agreement between the numerical results and the experiments has
been confirmed by other experiments. In particular, we have observed that the wave
pattern becomes more vertical for larger Froude numbers, as expected from the
theory.
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(a)

(b)

Figure 9. Vertical density gradient pattern associated with the instability for Re = 343 and
F = 1.01. The grey vertical rectangle corresponds to the cylinder (of radius R0 = 15mm).
(a) Experimental results obtained with synthetic Schlieren. (b) Numerical results obtained
by the superimposition of both upward and downward most unstable waves with the same
amplitude.

4.2. Stability domains

In figure 10, we present the comparison between the instability domain found
numerically and the results of the different experiments. Circles correspond to unstable
experiments and crosses to stable ones. We can see that the experimental instability
domain exhibits the same shape as the numerical instability domain although it is
slightly larger. The smallest unstable experimental Reynolds number Remin � 240 is
obtained for Froude numbers around 1.25. No instability was observed for small
Froude numbers (Re =325, F = 0.90 and Re = 396, F = 0.63) and for large Froude
numbers (Re = 590, F = 2.5 and Re = 506, F = 2.12). This clearly demonstrates that
the instability is triggered by the stratification and is thus different from the centrifugal
instability. In this figure, the values of the Reynolds and Froude numbers for each
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Re

F
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0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 10. Comparison between numerical and experimental stability results. Symbols and
lines: solid line, numerical prediction for the limit of the domain of instability; circles, unstable
experiments where an internal wave pattern is visible; squares, unstable experiments but
without a well-defined wave pattern; crosses, stable experiments; horizontal lines, the variations
of the Reynolds number between the top and bottom of the tank due to its dependence with
respect to the mean density. The three colours correspond to experiments with three different
cylinder radii (grey, R0 = 20 mm; black, R0 = 15 mm; white, R0 = 12.5 mm). The colour code is
also used to differentiate the data which are reported in figure 11.

experiment are obtained using the characteristics of the flow at middle height of the
cylinder. At the top of the tank the Reynolds number is larger and at the bottom
it is smaller. This variation comes from the dependence of viscosity with salinity.
This variation of the Reynolds number is indicated in figure 10 by the horizontal
error bars. We can see that if we consider the extreme parts of the parameters,
the experimental threshold is close to the numerical curve. The critical Reynolds
number obtained numerically is Rec ≈ 360 and the experimental one is between 295
and 325.

We have also seen that the Brunt–Väisälä frequency is smaller at the top and bottom
of the tank, which means that the Froude number is larger in these regions. This
effect together with the boundary effect itself could explain the differences between
the experimental and numerical stability domains. In particular, we have observed
that the boundary effects become more and more important as the Reynolds number
increases. The unstable configurations which are indicated by square symbols in
figure 10 are dominated by boundary effects: thick turbulent regions near the top
and bottom of the cylinder are observed instead of the typical internal wave structure
observed in the other configurations.

It is also important to mention that the theory does consider neither nonlinearity
nor transient, which are both present in the experiments. Nonlinear effects could
be destabilizing. This means that if the instability bifurcation was subcritical, we
would expect a smaller instability threshold than that predicted by the linear theory.
Note also that in the experiment, we cannot control the time at which the instability
develops. If the instability starts while the potential base flow is not fully established,
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Figure 11. Comparison between numerical (lines with circles) and experimental (triangles)
results for the unstable configurations shown in figure 10. (a) Frequency; (b) wavenumber.
Upward triangle, experimental measurement for the upward wave; downward triangle,
experimental measurement for the downward wave. The grey triangles correspond to
R0 = 20 mm and should be compared with the grey line. The black triangles correspond
to R0 = 15 mm and should be compared with the black line. The white (open) triangles
correspond to R0 = 12.5 mm and should be compared with the dashed line.

it is not impossible that it is boosted by the weak negative background vorticity which
is still present.

4.3. Comparison frequencies and wavelengths of the modes

Wavelength and frequency measurements for the unstable configurations of figure 10
have been reported in figure 11.
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They are represented with an upward (respectively downward) triangle for the
upward (respectively downward) wave. They are compared with the numerical
predictions obtained for the most unstable mode (or for the least stable mode)
for the parameters of the experiment. The data have been plotted as a function of the
Reynolds number with the colour code used in figure 10. For each set of experiments
(given colour), the frequency of the instability mode is found to increase with the
Reynolds number while its wavenumber is approximately constant. These trends are
in agreement with the numerical results. Numerical predictions and experimental
measurements are also found to be in good agreement quantitatively. We have
obtained that the mean relative difference is 9.6 % for the frequencies and 9.5 % for
the wavelengths. Yet, a better agreement has been systematically obtained for the
wave propagating downwards. The frequency and the wavenumber of the upward
wave were generally found to be smaller than those of the downward wave and the
numerical prediction.

Some of these observations can be partly explained. First, we have already
mentioned that the Reynolds number was slightly higher at the top of the tank
than at its bottom. From figure 4(b, c), we also know that both the frequency and
the wavenumber of the most unstable mode increase with the Reynolds number. We
therefore expect the downward wave which is mainly excited close to the top to have
larger frequency and wavelength than the upward wave which is mainly excited from
the bottom. Moreover, we suspect, especially for the small Froude number cases (grey
symbols), that the upward wave is forced by the cylinder support which is placed at
the bottom of cylinder. This could explain why this wave is observed while the flow
is in weakly stable configuration.

Finally, some of the discrepancies could also be associated with nonlinear effects
which are systematically present in the experiments but not taken into account in the
numerical computations.

5. Conclusion
The stability of the stationary flow generated by a rotating cylinder in a viscous

stratified fluid has been examined. Assuming a potential flow profile Ω = 1/r2 for
the angular velocity, we have first shown that the flow is a priori unstable with
respect to the radiative instability for moderate Reynolds numbers. The complete
numerical stability diagram has been obtained for Reynolds numbers Re < 1000
and Froude numbers F < 3. The most unstable mode has been shown to be a 3D
helical mode (m = 1) with a radiative structure and its wavenumber and frequency
have been computed. Experimental results have also been reported and the instability
predicted by the theory has been observed. Frequency and wavenumber measurements
of the instability mode have been made using shadowgraph and synthetic Schlieren
techniques, and compared with the numerical predictions. A good agreement has been
demonstrated.

The radiative instability had been previously observed in a free Lamb–Oseen-like
vortex (Riedinger et al. 2010b). However, for such a vortex, the most unstable was
a ‘displacement mode’ (see Riedinger et al. 2010a), which is not present in our
configuration. In that experiment, owing to the viscous diffusion of the vortex, it had
not been possible to provide good quantitative comparisons with numerical stability
results. Moreover, the displacement mode is also the main ingredient of the zigzag
instability (Billant & Chomaz 2000), which is active when a vortex interacts with
neighbouring vortices. For this reason, it was difficult to be sure that the instability
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mode observed in Riedinger et al. (2010b) was not boosted by an interaction with
the weak vorticity background which was minimized but not completely suppressed.

In the present experimental study, these two difficulties are absent as the base
flow is stationary and does not possess the displacement mode. We are therefore
very confident of our experimental results. We think that they constitute the first
indisputable evidence of the radiative instability.

Supplementary movie is available at journals.cambridge.org/flm.
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