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Abstract

Macroalgae play important ecological roles, including as hosts for a wide range of epifauna.
However, the diversity relationships between macroalgae and epifauna are poorly understood
for most tropical host species and algal morphologies. This study aims to characterize and
analyse the diversity of invertebrates present amongst macroalgae with three distinct morph-
ologies (three-dimensional, filamentous and foliose) across different tropical intertidal sites in
Singapore. Morphological and DNA barcoding tools were employed for epifaunal species
identification, and ordination statistics and multiple linear regression were used to test the
effects of algal morphology, species and site on community structure and diversity of epi-
phytic invertebrates. Overall, epifaunal communities were distinct among sites and algal
morphologies, and diversity was affected significantly by algal morphology. In particular, fila-
mentous macroalgae hosted the highest abundance of epifauna dominated mainly by amphi-
pods, which were able to take advantage of the high surface area to volume ratio in
filamentous algal mats as a consequence of their thinner forms. Foliose species showed a sig-
nificantly negative effect on invertebrate diversity. Our findings highlight the diverse associa-
tions between intertidal macroalgae and invertebrates with high turnover between algal
morphology and sites that contribute to the high biodiversity of tropical shores. Future studies
should consider the effects of the host habitat, seasonality and more algal species on epifaunal
diversity.

Introduction

Macroalgae or seaweeds are ubiquitous in the marine environment, particularly in shallow
waters where they occur in a variety of forms (Littler et al., 1983; Doi et al., 2009). Along tem-
perate coasts, they can dominate entire ecosystems such as on rocky shores and subtidal reefs
where they contribute immense production, biomass and diversity (Underwood & Kennelly,
1990; Little & Kitching, 1996; Kraufvelin et al., 2010). As global sea temperatures rise, temper-
ate macroalgal communities are being driven poleward as they face increased competition and
herbivory from range-expanding subtropical and tropical organisms including corals and her-
bivores (Wernberg et al., 2011, 2016; Vergés et al., 2014; Pecl et al., 2017).

In tropical and subtropical waters, macroalgae are often perceived to have negative effects
on ecosystems due to their role in driving coral-algal phase shifts, during which macroalgae
compete for space with, and ultimately replace, hard corals on reefs after major disturbances
(McManus & Polsenberg, 2004; Hughes et al., 2010; Lee et al., 2012a). They have been
observed to impede recruitment and cause mortality in corals (Kuffner et al., 2006; Smith
et al., 2006; Hughes et al., 2007; Hoey & Bellwood, 2011). Nevertheless, macroalgae also
have positive roles in marine ecosystems. They help dampen wave-induced physical damage
on reefs and also provide food and shelter against predators in shallow coastal areas (Dean
& Connell, 1987).

Hence, macroalgae can greatly affect the distribution, diversity and abundance of fauna in
various marine ecosystems. In the absence or depletion of coral cover, for instance, macroalgae
can quickly recruit various organisms and even act as nurseries by providing food and shelter
for reef fishes, amphipods and crabs (Wilson et al., 1990; Paddack & Sponaugle, 2008; Duarte
et al., 2009). In a comparison between macroalgae and seagrasses, the former were found to
contribute a larger proportion of gastropod diets in terms of nitrogen and carbon content
(Doi et al., 2009). Overall, macroalgae account for a considerable part of marine food webs
and, more generally, are responsible for the functioning of many marine ecosystems (Bruno
et al., 2005).

Apart from the important roles played by seaweeds in primary production and ecosystem
functioning, their structural composition, complexity and size enable them to house a diverse
array of epiphytic decomposers and herbivores (Dudley et al., 1986; Gee & Warwick, 1994a,
1994b; Christie et al., 2009; Nyberg et al., 2009). Epifauna living amongst macroalgae utilize
their hosts in a wide variety of ways. Hosts may be used directly as surface area for attachment
by sedentary animals, as permanent or transient shelter, or as sources of food and sediment for
algal browsers and detritivores respectively (Hayward, 1980; Seed & O’Connor, 1981). Sessile
epifauna have also been found to assimilate dissolved organic carbon in the form of exudates
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from the host macroalgae (De Burgh & Fankboner, 1978).
Competition for space and food can be intense and is character-
istic amongst epifaunal species (Buss, 1979). Biotic interactions
such as competition and predation also interact with habitat com-
plexity – which has been found to lower predation on a dominant
competitor – to influence epifaunal establishment (Russ, 1980).

More generally, algal habitat structural complexity has been
linked to the diversity and abundance of macroalgal epifauna
(Gee & Warwick, 1994a, 1994b; Veiga et al., 2014), and there
are also indications that the surrounding physical environment
and chemical composition of a macroalga can affect the diversity
of its associates (Hull, 1997; Downes et al., 2000; Nyberg et al.,
2009). Studies have often shown that macroalgae with higher
structural complexity host more invertebrate species, individuals
and biomass than structurally simpler habitats (Gee & Warwick,
1994a, 1994b; Veiga et al., 2014). To various extents, structural
complexity is associated with greater abundance of ecological
niches, protection from the physical environment, curbing of pre-
dation, as well as higher water retention capacity that reduces des-
iccation of epifauna during low tide (Davenport et al., 1999;
Hooper & Davenport, 2006). Epifaunal species are also typically
not host specific (Schneider & Mann, 1991; Taylor & Cole,
1994; but see Gestoso et al., 2014).

These patterns remain tentative as few habitats and macroalgal
species have been characterized for the associated epifauna
(Christie et al., 2009). Nevertheless, research performed mostly
on temperate macroalgae has thus far suggested that certain asso-
ciations are crucial for mediating the dominance of any one spe-
cies, such as the invertebrate epifauna which regulate the
proliferation of the filamentous green alga Cladophora columbi-
ana (Bracken et al., 2007). Macroalgae are also known to serve
as refugia for a wide variety of organisms, particularly in rocky
shore communities which experience more variable physical con-
ditions (Lee et al., 1977; Gestoso et al., 2012), with epifaunal
diversity and abundance influenced strongly by wave exposure
and algal morphology (Hacker & Steneck, 1990; Norderhaug
et al., 2012, 2014). Even the invasive macroalga, Caulerpa taxifo-
lia, has been observed to recruit native organisms in New South
Wales, Australia (Gibben & Wright, 2006). More fundamentally,
there remains a need to understand how macroalgal morphology
and environmental factors drive epifaunal diversity, especially in
tropical ecosystems.

Past studies of macroalgal–invertebrate associations typically
use conventional sorting and painstaking taxonomic methods to
establish host identity and estimate epifaunal diversity, primarily
by morphological sorting to the lowest taxonomic level using
field guides and keys, primary literature, or assistance from taxo-
nomic experts (e.g. Colman, 1940; Hagerman, 1966; Dommasnes,
1969; Jones, 1971; Moore, 1973; Edwards, 1980; Schultze et al.,
1990; Edgar, 1991; Christie et al., 2003; Norderhaug, 2004;
Pereira et al., 2006). DNA barcoding aided by high-throughput
sequencing can potentially expedite this process and increase
the accuracy of estimates without heavy involvement of taxon-
specific experts (Hajibabaei et al., 2007; Lahaye et al., 2008;
Nagy et al., 2012). Using this method, samples are sorted into
morphological groups before selecting representatives from each
group for amplification and sequencing of a short, standardized
gene locus (Hebert et al., 2003a, 2003b, 2010). The sequence, or
DNA barcode, is then compared to a reference database (e.g.
GenBank) and identified successfully if it meets a similarity
threshold relative to a taxon-identified barcode in the library, or
deemed a new sequence record entirely if there are no similar
matches (Hajibabaei et al., 2007). It is important to note that
the accuracy of this method depends critically on the species iden-
tification of the database sequences against which the query is
being matched (Will & Rubinoff, 2004; Nilsson et al., 2006),

and its precision is heavily reliant on the taxonomic resolution
and coverage of sequences which are closely related to the
query sequence (Kwong et al., 2012; Kvist, 2013). This approach
needs to be tested for its potential to help estimate diversity more
accurately and cheaply for specimen-rich samples such as
macroalgal-associated epifauna (see Meier et al., 2016; Wang
et al., 2018).

The main objective of this study is to examine the community
structure and diversity of macroalgal epifauna on hosts of varying
morphologies among intertidal sites in Singapore by incorporat-
ing DNA barcoding techniques. Macroalgae can be found along
most of Singapore’s coastal areas, including coral reefs, rocky
and sandy shores, as well as mangrove forests (Teo & Wee,
1983). Despite the high diversity and abundance of macroalgae
here (e.g. Lee et al., 2009, 2015; Noiraksar et al., 2012; Yip
et al., 2018), studies on their epifaunal assemblages are surpris-
ingly rare and usually result from opportunistic sampling (e.g.
Low et al., 1997; Jensen, 2015). Specifically, we examine three
algal morphologies – three-dimensional (3D), filamentous and
foliose structures (Steneck & Dethier, 1994) – in relation to
their epifaunal communities. Due to the simple tissue organiza-
tion, phenotypic plasticity and complex evolutionary histories of
marine macroalgae (Du et al., 2014), differentiating between spe-
cies can be extremely difficult. For the invertebrate epifauna, lack
of barcode data for most lineages means that a vast majority of
organisms may not be easily assigned to species using DNA
sequences alone (Schander & Willassen, 2005). Therefore, this
study integrates molecular and morphological approaches to test
for differences in epifaunal community structure and diversity
among macroalgal host species along a gradient of algal structural
complexity at various localities.

Materials and methods

Sample collection and processing

Macroalgal samples were collected from the intertidal environ-
ment at five sites in Singapore – Changi Beach (CHB), Cyrene
Reefs (CYR), East Coast Park (ECP), Big Sisters’ Island (SIS)
and Pulau Semakau (SMK) – during low spring tides between
June and November 2017 (Figure 1). Each site was sampled
once from June to July 2017, with Big Sisters’ Island resampled
twice in July and August 2017, and Pulau Semakau resampled
once in November 2017. Changi Beach is an easily accessible
shore in north-eastern mainland Singapore, comprising primarily
a seagrass habitat dominated by Halophila ovalis (Lee et al.,
2012b), as well as the abundant Bryopsis sp. 2. Cyrene Reefs are
a group of patch reefs comprising an extensive 14-ha seagrass
bed home to eight of Singapore’s 12 seagrass species (Yaakub
et al., 2013; McKenzie et al., 2016), with high abundances of
Caulerpa lentillifera, Bryopsis sp. 1 and Halymenia sp. 1. East
Coast Park contains seawalls with a narrow rocky shore character-
ized by strong waves, and is lined by a subtidal coral community
with moderate growths of red and brown macroalgae. Big Sisters’
Island is part of Singapore’s first marine park with two intertidal
lagoons bounded by seawalls and fringed by a diverse coral reef
(Jaafar et al., 2018; Wong et al., 2018), and contains numerous
forms of red, green and brown macroalgae. Pulau Semakau is
Singapore’s offshore landfill site and the largest multi-habitat
intertidal zone south of mainland Singapore (Jaafar et al.,
2018). It has a large 13.7-ha seagrass meadow dominated by
Enhalus acoroides, Cymodocea serrulata and Thalassia hemprichii
(Lee et al., 2012b; Yaakub et al., 2013), and the seaward coral reef
habitat contains a high diversity of red, green and brown macro-
algae but is limited in the filamentous forms.
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A total of 43 samples were collected, each from an algal patch
between 20 × 20 cm and 50 × 50 cm in size that was at least 5 m
from its nearest sampled patch. The sample size for each species
and morphological group varied due to site differences in algal
community composition and abundances, but these were factored
into the linear regression modelling below. Macroalgae were col-
lected by hand, using plastic Petri dishes 9 cm diameter by 1.4 cm
height to standardize the amount of algae collected. The Petri dish
was filled to the brim and covered with the same type of lid with-
out applying additional pressure. Rather than standardizing by
weight or displacement volume, this method ensured that the
alga rested naturally within the Petri dish to yield an equivalent
and comparable habitat volume. Specimens were immediately
transferred into separate bags to be transported to the laboratory.

Algal samples were processed within 24 h, or fixed in 100%
ethanol to be processed later. Invertebrates present in the macro-
algae were isolated, sorted, counted and imaged live under a Leica
MC190 HD camera mounted on a Leica M205C stereo micro-
scope. Specimens were sorted by observable morphological char-
acteristics to species, subsampled for DNA extraction in 100%
ethanol and the remainder of each specimen preserved in 70%
ethanol for future taxonomic study. Morphotypes represented
by only one specimen were preserved in 70% ethanol and not
sequenced as they were used for morphological identification.

Macroalgae were identified by morphology to their lowest
taxonomic level according to Lee et al. (2015) and sorted into
three morphological groups – 3D, filamentous and foliose
(Table 1) – following the criteria by Steneck & Dethier (1994).
Filamentous algae were uniseriate and foliose algae were in layers
(single layer or corticated), while 3D macroalgae had complex
shapes and branches under the functional groups of corticated
and leathery macrophytes (Steneck & Dethier, 1994; see also
Littler et al., 1983; Littler & Littler, 1984). Bryopsis and
Ceramiaceae had filamentous uniaxial thalli that were up to
10 cm in height with short side branches, the former forming

large patches (≥50 × 50 cm) and the latter in small clumps
(≤20 × 20 cm) attached to larger macroalgae. Among the foliose
macroalgae, Halymenia and Ulva had flattened, sheet-like thalli
that were irregularly foliose and sinuate, reaching ≥10 cm in
height; Padina had large, fan-shaped thalli about 6 cm in height
that were very lightly calcified; and Turbinaria bore thick, stiff
thalli about 10 cm in height. For the 3D group, Caulerpa con-
sisted of horizontal stolons anchored to the substrate with fronds
bearing spherical branchlets, attaining heights of ≥10 cm;
Gracilaria erect, cylindrical and branching with constrictions at
base of axes, reaching ≥10 cm in height; and Sargassum grew
from the substrate as tall, upright thalli up to about 30 cm in
height (non-bloom), bearing leaf-like, spatulate blades with den-
ticulate margins and spherical vesicles.

DNA extraction and amplification

Between one and 10 samples from each epifaunal morphotype
were targeted for DNA barcoding. Tissue from each invertebrate
specimen was subsampled, pulverized and dried for DNA extrac-
tion using QuickExtract (Lucigen, WI) following the manufac-
turer’s protocol.

Mitochondrial cytochrome c oxidase subunit I (COI) was uti-
lized to identify invertebrates (Hebert et al., 2003a, 2003b; Bucklin
et al., 2011). Two different pairs of metazoan barcoding primers
were used to target two lengths of the COI gene. Epifaunal sam-
ples were amplified for a 313-bp fragment using mlCO1intF (5′–
GGW ACW GGW TGA ACW GTW TAY CCY CC–3′; Leray
et al., 2013) and modified jgHCO2198 (5′–TAA ACY TCA
GGR TGC CCR AAR AAY CA–3′; Geller et al., 2013; Meier
et al., 2016) each with a 9-bp tag, or a 658-bp fragment using
LCO1490 (5′–GGT CAA CAA ATC ATA AAG ATA TTG G–
3′) and HCO2198 (5′–TAA ACT TCA GGG TGA CCA AAA
AAT CA–3′) (Folmer et al., 1994). Amplicons produced from
the former tagged primers were designated for Illumina

Fig. 1. Map showing sampling sites in Singapore. CHB, CYR, ECP, SIS and SMK represent Changi Beach, Cyrene Reefs, East Coast Park, Big Sisters’ Island and Pulau
Semakau, respectively.
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sequencing, while those from the latter primer set were sequenced
using the Sanger method.

Each polymerase chain reaction (PCR) contained 2 µl of 10×
diluted DNA extract, 2.5 µl of 10× buffer, 2 µl of 10 µM total
dNTP, 1 µl of each 10 µM primer, 0.2 µl of 5 U µl−1 BioReady
rTaq polymerase (BioReady rTaq, BioFlux), and topped up with
water for a 10 µl reaction mix. PCR products were visualized
using a 1% gel, and successful amplicons were purified using
Sera-Mag Magnetic Particles (GE Healthcare) in 18% PEG buffer,
with a modified size-selection protocol based on Tay et al. (2016).
For the selection of fragments longer than 500 bp, a bead-PEG
suspension to PCR product ratio of 0.67 was used (i.e. 6.7 µl of
bead-PEG suspension to 10 µl of PCR product). To select for
fragments ∼300 bp in length, a ratio of 1.5 was used.

DNA sequencing

For Sanger sequencing of the 658-bp COI fragment, products
underwent cycle sequencing using the BigDye Terminator
Purification Kit (ThermoFisher Scientific) following manufac-
turer’s protocol. BigDye Terminator removal was carried out
using PureSEQ-MP (ALINE Biosciences) following manufac-
turer’s protocol, and products were sequenced on a 3730XL
DNA Analyser (Applied Biosystems). Sequence data were checked
for quality, trimmed and assembled using Geneious v11.0.2
(Kearse et al., 2012). Possible contamination was checked using
BLAST (Altschul et al., 1990) against the GenBank database.

Epifaunal samples amplified for the 313-bp COI fragment
were sequenced using the 250-bp paired-end chemistry on
Illumina MiSeq and HiSeq 2500. Sequences were processed fol-
lowing the pipeline by Meier et al. (2016). Briefly, paired-end
reads were merged using the Paired-End reAd mergeR (PEAR)
v0.9.10 (Zhang et al., 2014), demultiplexed, and the dominant
reads of each sample identified. These reads were filtered for
count >50 and a maximum ratio of 0.2 between the second-
dominant and dominant reads. Quality-filtered sequences were
trimmed to 313 bp using Geneious v11.0.2 (Kearse et al., 2012).

COI barcodes from both Sanger and Illumina sequencing were
consolidated, aligned using MUSCLE v3.8.425 (Edgar, 2004), and
checked for stop codons. Sequences were grouped by pairwise
sequence similarity using the objective clustering method
(Meier et al., 2006, 2016) at 3–5% mismatch thresholds. They
were searched again on the GenBank database via BLAST to iden-
tify potential contamination by crosschecking with the expected
morphotype, as well as for taxon identification to the lowest taxo-
nomic rank. The pipeline readsidentifier v1.0 was used to facilitate
extraction of taxonomic identities from the BLAST searches
(Srivathsan et al., 2015). Sequences were also searched against
barcode records at the Barcode of Life Data (BOLD) System.
Species identification was determined based on ≥97% match to
a known sequence. Matches at ≥90% were identified minimally
to order level, and matches <90% were recognized at phylum
level and identified to order where possible based on morphology.

From the epifaunal morphotypes and COI barcodes, species
were recognized based on three criteria: (1) morphotypes initially
sorted as the same species were supported by pairwise COI simi-
larity of ≥97%; (2) morphotypes initially sorted as the same spe-
cies were separated into two or more distinct species if barcode
data showed them to be distinct (<97% pairwise similarity); and
(3) morphotypes initially sorted as different species were com-
bined as a single species if they had pairwise COI similarity of
≥97%. All sequence and community data generated are available
at Zenodo (http://dx.doi.org/10.5281/zenodo.2528457).

Statistical analyses

The epifaunal community data were analysed to compare com-
munity structure and diversity among host algal morphologies,
species and sites. Dissimilarities in the assemblage hosted by
each macroalgal sample among different morphologies and sites
were represented by the Bray–Curtis dissimilarity index (Bray &
Curtis, 1957) and visualized with non-metric multidimensional
scaling (NMDS). Analysis of similarities (ANOSIM) was con-
ducted to test for differences in community structure among
algal morphologies and sampling sites. Analyses were carried
out using the ‘vegan’ package (Oksanen et al., 2017) in R (R
Core Team, 2017).

The effects of algal morphology, algal species and sampling
site on the diversity of macroalgal-associated epifauna were exam-
ined using a multiple linear regression model. The Shannon–
Wiener diversity index was computed for the epifaunal commu-
nity in each macroalgal sample to quantify diversity, the response
variable. Data were checked for normality and heteroscedasticity.
A full model with the above effects and their interactions was fit-
ted. By stepwise simplification, the model with the lowest score
based on the Akaike information criterion with a correction for
small sample sizes (AICc) was chosen using the ‘MuMIn’ package
in R (R Core Team, 2017).

Results

Five 3D, three filamentous and six foliose algal species, repre-
sented respectively by 16, 13 and 14 samples, were collected

Table 1. Macroalgal taxa analysed for each morphological group. CHB, CYR,
ECP, SIS and SMK represent Changi Beach, Cyrene Reefs, East Coast Park, Big
Sisters’ Island and Pulau Semakau, respectively

Species Sites
No. of
samples

3D

Caulerpa lentillifera SIS, CYR,
SMK

7

Caulerpa racemosa var.
turbinataa

SMK, ECP 3

Caulerpa racemosaa SMK 3

Gracilaria sp. SMK 2

Sargassum ilicifolium ECP 1

Filamentous

Bryopsis sp. 1b SIS, CYR 10

Bryopsis sp. 2b SIS, CHB 2

Ceramiaceae sp. ECP 1

Foliose

Halymenia sp. 1c SMK, CYR 4

Halymenia sp. 2c SIS 2

Halymenia sp. 3c SIS 2

Padina sp. SMK, ECP 2

Ulva sp. ECP, CHB 3

Turbinaria sp. SIS 1

aCaulerpa racemosa var. turbinata and Caulerpa racemosa were considered distinct species
according to Belton et al. (2014).
bBryopsis sp. 1 and Bryopsis sp. 2 were considered different species due to distinct
morphologies – the former had long, individual strands from a single point, while the latter
was distributed in fronds.
cHalymenia sp. 1, 2 and 3 were considered different species due to structural differences.
Halymenia sp. 2 had higher occurrences of jagged edges compared with sp. 1, while sp. 3
was distinctly yellow-red coloured.
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and examined (Table 1). A total of 2061 epifaunal specimens were
obtained from the 43 algal samples. Overall, arthropods (68.8%)
were the most abundant taxa, followed by molluscs (17.7%) and
annelids (12.7%) (Figure 2). Other phyla were present at <1% of
total abundance. Arthropods, molluscs and annelids were roughly
even in abundance among 3D macroalgae, while arthropods
dominated both filamentous and foliose algae (Figures 2, 3). 3D
macroalgae had the lowest abundance of epifauna (515 indivi-
duals; ∼32 per algal sample), with slightly more animals found
in foliose algae (519 individuals; ∼37 per algal sample), while fila-
mentous macroalgae had much higher epifaunal abundance (1027
individuals; ∼79 per algal sample). Among different algal morph-
ologies, the abundances of isopods, amphipods and Placida sp.
were greatest in filamentous algae; the highest number of panto-
pods (pycnogonids) were observed in foliose algae; and the high-
est abundances of Berthelinia sp. and Volvatella sp. were in 3D
algae (Figure 3).

After sorting by morphology, a total of 136 metazoan morpho-
types were delimited initially from all 43 algal samples. COI bar-
coding was performed on 634 of the 2061 animals sampled, with
56.2% successfully amplified and sequenced. From the 356
sequences obtained, objective clustering grouped sequences into
85 molecular operational taxonomic units (MOTUs), or putative
species (Supplementary Figure 1). Dissimilarity thresholds
between 3% and 5% gave consistent numbers of MOTUs, which
were checked against the 136 morphotypes. Based on the 97%
similarity threshold, 11 of the morphotypes were found to be
indistinguishable from other morphotypes while 47 additional
species were detected. Consequently, a total of 172 invertebrate
species were found to be present among all macroalgal samples.

Non-metric multidimensional scaling (NMDS) showed that epi-
faunal community structure was dissimilar among algal morpholo-
gies and sampling sites (Figure 4). ANOSIM confirmed these
results, showing that communities on different algal morphologies
were significantly different from one another (R = 0.186, P = 0.001),
with foliose algae hosting the most distinct epifauna. Communities
were also significantly different among sites (R = 0.264, P = 0.001),
with East Coast Park epifauna clearly distinguished from other
sites.

The best linear model of epifaunal diversity contained the
factor algal morphology (ΔAICc of second-best model = 8.56;
Table 2). The full model with the factors algal morphology,

Fig. 2. Mean abundances of different phyla observed for
each algal morphology. Error bars represent standard
deviation.

Fig. 3. Mean abundances of the most dominant taxa for each algal morphology:
(A) Annelida; (B) Arthropoda; (C) Mollusca. Error bars represent standard deviation.
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algal species and sampling site was suboptimal (ΔAICc = 29.93).
No difference in Shannon–Wiener diversity index was detected
among sites (Figure 5). Diversity of epifauna on foliose algae
was generally lower than on 3D and filamentous algae, but only
the difference between 3D and foliose algae was significant (P =
0.002; Table 2). Foliose macroalgae were observed to host the
least number of epifaunal species, while 3D macroalgae contained
the highest richness (Supplementary Figure 2) despite the low epi-
faunal abundance (Figures 2 & 3). Less than 10% of the epifaunal
species were shared among all three algal morphologies.

Discussion

Our study found 172 species of invertebrates associated with 14
species of macroalgae comprising 3D, filamentous and foliose
morphologies (Table 1). Arthropods constituted the most abun-
dant (1417 individuals) and species-rich (85 spp.) group, followed
by molluscs (364 individuals, 41 spp.) and annelids (260 indivi-
duals, 37 spp.) (Figure 2). DNA barcoding was able to distinguish
among 85 MOTUs (Supplementary Figure 1), but the reference
database was not sufficiently informative for identifying the vast
majority of species – only 15 barcodes could be identified to spe-
cies level. Analyses showed that macroalgal-associated epifaunal
community structure differed significantly among algal morph-
ologies and sampling sites (Figure 4), and that algal morphology
had a significant effect on epifaunal diversity (Figure 5).

Algal locality affected the community structure of associated
epifauna, likely due to the different habitats in which the macro-
algae were found. Cyrene Reefs and Changi Beach consisted pri-
marily of seagrass meadows, Pulau Semakau and Big Sisters’
Island were mainly coral reef patches, while East Coast Park
was a rocky shore (Figure 1). The most distinct assemblages
were found in the latter, where organisms had to be able to with-
stand various stressors such as fluctuating environmental condi-
tions (i.e. water levels, temperature, oxygen availability, nutrient
changes and pH), desiccation and strong wave action (Oswald
& Seed, 1986; Taylor, 1998; Schreider et al., 2003; Hooper &
Davenport, 2006; Norderhaug et al., 2014; Mieszkowska, 2016).

Apart from site differences, algal morphology also had an
effect on epifaunal communities. In particular, foliose algae had
the most distinct epifauna, a pattern congruent with a study by
Cacabelos et al. (2010) who found that macroalgae with simpler
structures tend to have more dissimilar communities.
Furthermore, foliose macroalgae generally have lower complexity
in the available space that could be exploited by invertebrates,
resulting in reduced epifaunal abundance and species diversity
(Morse et al., 1985; Miller et al., 2009; McDonald & Bingham,
2010; Veiga et al., 2014), a pattern consistent with our findings.

Organisms utilize their host seaweeds in different ways.
Broadly, hosts may be used as shelter or as a source of food,
and detritivores, planktivores and algivores have varying abun-
dances on different macroalgae (Beckley & McLachlan, 1980;
Gestoso et al., 2012; Roff et al., 2013; Desmond et al., 2018).
For instance, more pycnogonids (Pantopoda) were found on foli-
ose algae as they probably grazed on rhodophytes (Bamber &
Davis, 1982), which accounted for the majority of foliose algae
examined in this study. Ecological interactions may also structure
epifaunal assemblages. For example, the presence of predators
such as annelids may deter grazers from inhabiting particular
macroalgae (Antoniadou & Chintiroglou, 2006; Soler-
Membrives et al., 2011), and could explain the marginally higher
abundance of annelids compared with arthropods and molluscs
observed here among 3D macroalgae. Predation and competition
among epifauna are important determinants of community
organisation (Seed & O’Connor, 1981), but these processes

Fig. 4. Non-metric multi-dimensional scaling (NMDS) of macroalgal-associated epifaunal communities from 43 algal samples (stress = 0.176). Left: Communities on
algal samples distinguished by morphology. Right: Communities on algal samples distinguished by sampling site. Site labels follow Figure 1.

Table 2. Results of the best linear model, according to the Akaike information
criterion with a correction for small sample sizes (AICc = 91.8), showing the
effects of algal morphology on epifaunal Shannon-Wiener diversity index

Coefficient Estimate SD P-value

Intercept 1.979 0.172 <<0.001

Filamentous −0.303 0.257 0.246

Foliose −0.900 0.263 0.002

Values obtained for factors are compared to the intercept which represents 3D morphology.
Bold P-values represent P < 0.05.
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remain poorly characterized and ought to be studied in detail for
these macroalgal habitats.

Overall, amphipods and gastropods were the most abundant
epiphytic invertebrates, a result that is in agreement with
Christie et al. (2009), who posited that habitat complexity elevates
amphipod abundance since they utilize macroalgae as shelter.
However, we found that amphipods were much more abundant
in filamentous macroalgae than in the more complex 3D hosts.
Filamentous algae did occur in greater densities, suggesting that
amphipod abundance, and in general abundance of all epifauna,
can be affected by how densely packed algal structures are natur-
ally (Seed & O’Connor, 1981). Indeed, the high surface area to
volume ratio of filamentous algal mats as a consequence of
their thinner forms makes available more space for particular epi-
faunal species to exploit in large numbers. Detailed comparisons
of the colonizable area among macroalgal forms will help estab-
lish the precise relationship between habitat availability and abun-
dance distribution of the associated invertebrates (Venier &
Fahrig, 1996).

While epifaunal abundance was highest in filamentous macro-
algae, our results clearly showed that 3D species hosted the high-
est richness of invertebrates, most of which were not found in
other algal morphologies (Supplementary Figure 2). This could
be due to the greater variety of niches in the form of colonizable
surfaces and spaces available in the thalli and associated branch-
lets and vesicles of 3D macroalgae that allow for increased
resource partitioning and specialization among epifauna (Gee &
Warwick, 1994a; Finke & Synder, 2008; Thomaz & da Cunha,
2010). Conversely, foliose species contained lower epifaunal diver-
sity compared with 3D algae, probably due to fewer niches avail-
able in foliose macroalgae for organisms to exploit – the flat
blades have relatively low structural complexity and variation to
host different species of invertebrates (Parker et al., 2001).

The differences observed in epifaunal community structure
among algal morphologies, particularly between 3D and filament-
ous species, may be due to specific host-epifaunal associations.
For instance, many gastropods are host-specific because they
graze on their macroalgal hosts and can be slow moving (see
Howard, 1985; Norderhaug et al., 2002; Vermeij, 2002). Among

our samples, large numbers of the sea slug Placida sp. were pre-
sent amongst filamentous Bryopsis spp., but it was rare and absent
in foliose and 3D macroalgae respectively (Figure 3). This sea slug
is known to feed on Bryopsis and also exhibits crypsis due to the
retained chloroplasts enhancing background matching with its
host (Trowbridge, 1992; Händeler & Wägele, 2007). Among
other gastropods, Volvatella sp. and Juliidae sp. were observed
to be hosted specifically by the 3D structures of Caulerpa race-
mosa, Caulerpa racemosa var. turbinata and Caulerpa lentilifera,
corroborating findings by Thompsen (1979) and Renard et al.
(1996). These specific associations drove the differences in epi-
faunal communities between 3D macroalgae and the structurally
simpler filamentous and foliose species.

Habitat effects are known to influence the community struc-
ture and diversity of macroalgal-associated epifauna as each habi-
tat faces distinct environmental regimes and may select for
different species interactions (Grabowski et al., 2005; Trussell
et al., 2006). These effects were not tested in this study – macro-
algae were collected from different habitats including seagrass
beds, rocky shores and coral reefs. While the variation among
habitats was partitioned roughly by sampling site, future targeted
collections at localities with multiple habitats could help discern
the effects of habitat type on epifaunal assemblages. Epiphytic
invertebrates may also utilize macroalgae for purposes which
vary seasonally. For example, polychaete mortality is typically
highest in warmer months, and pycnogonids can vary their
diets according to seasonal food availability (Woodin, 1974;
Soler-Membrives et al., 2011). More generally, outside the tropics,
the abundance of intertidal animals from amphipods to ostracods
are strongly influenced by the changing seasons (DeBlois &
Leggett, 1993; Hull, 1997). Although Singapore does not experi-
ence these climates, variations in temperature, precipitation and
salinity driven predominantly by the monsoons can affect inter-
tidal communities (see Sin et al., 2016; Tan et al., 2016; Chou
et al., 2018). There are also emerging data demonstrating
temperature-driven seasonal variation in the abundances of cer-
tain macroalgal species (Low & Chou, 2013; Low et al., 2019).
Therefore, future studies should consider longer-term sampling
covering all the monsoonal phases to investigate the temporal
variation of macroalgal-associated epifauna. A more even sam-
pling of a wider range of algal morphologies and species could
also be targeted to provide more generalizable results and to dis-
cover new epifaunal taxa.

Despite the large number (356) of good-quality COI sequences
obtained, only 4.2% matched at ≥97% to available GenBank bar-
codes which have been identified to species, while there was not a
single match at ≥97% to BOLD records. In other words, nearly all
of the successfully sequenced individuals could not be identified
to species level when searched against the global databases.
While the majority of our sequences could be confidently
matched to their expected morphological identities at the order
level, the distances to matched records were too large for most
epifauna to be identified more precisely. This lack of certainty
and published barcode data emphasizes the need for more basic
taxonomic research and collections to be performed on marine
invertebrates that will contribute to the global COI databases.

This study is the first to use DNA barcoding to quantify the
epiphytic invertebrates living amongst different tropical seaweeds.
In conclusion, filamentous macroalgae hosted the highest abun-
dance of epifauna, while 3D macroalgae contained the highest
diversity of invertebrates. Epifaunal community structure was
affected by site as well as by algal morphology, with differences
more accentuated among algal morphologies. On the one hand,
our finding of high invertebrate diversity in the most structurally
complex epiphytic habitats – exemplified by the 3D macroalgae
examined here – is in line with numerous past studies set in

Fig. 5. Diversity of macroalgal-associated epifauna in relation to algal morphology
and sampling site. Individual lines represent single samples. Site labels follow
Figure 1.
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temperate ecosystems (Dean & Connell, 1987; Gee & Warwick,
1994a, 1994b; Parker et al., 2001; Norderhaug et al., 2012;
Veiga et al., 2014; but see Cacabelos et al., 2010). Invertebrate epi-
faunal patterns among tropical macroalgae are not as well under-
stood, being sparsely characterized in localities such as Australia
(Martin-Smith, 1994), Tanzania (Tano et al., 2016) and the
Caribbean (Lewis, 1987; Roff et al., 2013), so our study fills an
important knowledge gap in Southeast Asia. On the other hand,
the much higher epifaunal abundance in filamentous macroalgae
even when compared with the 3D forms suggests that habitat
complexity may not drive abundance as much as other factors
such as packing density (Gee & Warwick, 1994b), colonizable
space (Seed & O’Connor, 1981) and shore height (Schreider
et al., 2003).

More broadly, we have shown that tropical macroalgae can
house a diverse array of invertebrates. The resolution of this
study could be improved by detailed characterization of inverte-
brates in each host species and testing various habitat and envir-
onmental drivers of epifaunal community structure. Some of
those observed here, including polychaetes and caprellids, have
the potential to serve as indicator organisms for monitoring the
health of habitats, particularly if their abundances co-vary with
environmental quality (Pocklington & Wells, 1992; Guerra-Garcia
& Koonjul, 2005). It remains uncertain as to whether macroalgae
can serve as vital habitats for species conservation or recovery.
Future studies ought to consider these implications in examining
the role of seaweeds as a biological tool to help habitats recover
from various stressors and recruit biodiversity.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0025315419000900.
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