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Abstract

Collisionless shocks have been the subject on many studies in recent years, due to their ability
to accelerate particles. In order to do so, a shock must fulfill three criteria. First, it must be
strong enough to accelerate particles efficiently. Second, both the upstream and the down-
stream must be collisionless. Third, the shock front must be surrounded by electromagnetic
turbulence capable of scattering particles back and forth. We here consider the encounter
of two identical plasma shells with initial density, temperature, and velocity n0, T0, v0, respec-
tively. We translate the three criteria to the corresponding requirements on these parameters.
A non-trivial map of the allowed region for particle acceleration emerges in the (n0, T0, v0)
phase space, especially at low velocities or high densities. We first assess the case of pair
plasma shells, before we turn to electrons/protons.

Introduction

In a fluid, energy dissipation at the front of a shockwave is provided by binary collisions. As a
consequence, the width of the front is a few mean free path thick (Zel’dovich and Raizer,
2002). Yet, in a plasma, a shockwave can propagate with a front far smaller than the mean
free path. For example, the front of the bow shock of the earth magnetosphere in the solar
wind is about 100 km thick, while the mean free path at the same location is of the order
of the Sun Earth distance (Bale et al., 2003; Schwartz et al., 2011).

Such shocks have been dubbed “collisionless shocks” and are exclusively mediated by col-
lective plasma effects (Sagdeev, 1966). An interesting consequence of the absence of binary
collisions is that particles can gather energy without sharing it with the others. Indeed, colli-
sionless shock have been found excellent particle accelerators, which explains in great part the
large amount of work that has been dedicated to them is the last decades (Blandford and
Eichler, 1987; Kirk and Duffy, 1999; Dieckmann, 2005; Niemiec et al., 2012; Marcowith
et al., 2016; Ruyer et al., 2017; Yuan et al., 2017).

In collisionless shocks, particles are accelerated when going back and forth around the
shock front. Because of the difference of bulk velocity on each side of the front, energy is
gained at each crossing until the particles escape upstream or downstream. We thus find
three implicit assumptions are made at this stage:

(1) The shock must be strong enough. A collisionless shock with a density compression ratio r
accelerates particles with a power-law distribution of index q∝ (r− 1)−1 (Blandford and
Ostriker, 1978). Therefore, a weak shock with r = 1 + ε will not be an efficient particle
accelerator.

(2) Particles must be able to travel back and forth around the front. This implies that both the
upstream and the downstream are collisionless, for if any is collisional, particles will be
captured as soon as they enter it, no longer being able to travel across the front.

(3) In order to scatter particles, the vicinity of the front must be electromagnetically turbulent.
This turbulence arises in the downstream from the growth of beam–plasma instabilities
during the shock formation (Bret et al., 2013b, 2014). Once the shock is formed, the
upstream turbulence is prompted by the unstable interaction of the upstream plasma
with particles reflected at the front, and/or by accelerated particles escaping ahead of
the front (Nakar et al., 2011; Lemoine et al., 2014). At any rate, the shock formation
must have been mediated by plasma instabilities instead of binary collisions between par-
ticles of the two shells.

This article will explore these three requirements. We will first consider a system consisting
in two colliding identical pair plasma shells. Their initial densities (in the laboratory
frame), temperatures (comoving), velocities and Lorentz factor are n0, T0, +v0 and
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g0 = (1− v20/c
2)−1/2. At each step, we will study how the three

aforementioned criteria translate to the parameters (n0, T0, γ0).
As we will see, the strong shock requirement constraints the

range of allowed temperatures. As a result, criteria 2 and 3 can
be assessed assuming T0 = 0. Only criterion 1 can display impor-
tant temperature effects due to the possible degeneracy of the
plasma shells.

Having treated the case of colliding pair plasmas, we will turn
to the case of electron/proton plasmas.

We first address in section “Criterion for strong shock” the
criterion for strong shock. Then the criterion for collisionless
downstream is explained in section “Criterion for collisionless
downstream”. Finally, we turn in section “Criterion for collision-
less formation” to the criterion for collisionless shock formation
necessary to the existence of scattering agents. Section “Merging
the three criteria” presents all the criteria together before
we explain the case of electron/proton shells in section “Electron/
proton shells”, and reach our conclusions.

Criterion for strong shock

The determination of the properties of the shock formed by the
collision of two fluids is a typical Riemann problem. The solution
of this problem is that a shock is formed regardless of the speed
of the collision [see Landau and Lifshitz (2013b) p. 362, or
Zel’dovich and Raizer (2002) p. 89]. Yet, in the limit of small col-
lision speed, that is, small Mach number M0, the shock density
jump reads r � 1+M0 [this is straightforwardly derived from
the expression of the jump in terms of M0; see, e.g. Thorne and
Blandford (2017), p. 905].

We can therefore set the threshold for efficient acceleration at
M0 = 1. The Mach number reads M0 = v0/CS where CS is the speed
of sound, which is proportional to the thermal spread Δv in the
shells. We find therefore that the threshold for particle accelera-
tion naturally limits the range of thermal spreads we need to
explore. Such a feature will be important to assess the next two
criteria in sections “Criterion for collisionless downstream” and
“Criterion for collisionless formation”.

Since v0 can be relativistic, it is convenient to assess M0 = 1 in
the reference frame of one shell. In this frame, the density is n0/γ0,
and the impact velocity is the relative velocity vr with,

vr
c
= 2b0

1+ b2
0

, (1)

where β0 = v0/c. Then, the equalityM0 = v0/CS = 1 reads differently
according to the regime considered for the shells. The shells can
be relativistic or not, and degenerate or not. Let us start with the
case of degenerate shells.

• If the shells are initially degenerate, the speed of sound varies
with the density. The condition M0 = 1 therefore translates to
a condition on n0 and v0. In the non-relativistic regime, the
speed of sound reads (Landau and Lifshitz, 2013a),

CS = VF��
3

√ = (3p2)1/3��
3

√ n1/30
h−
me

, (2)

where VF is the Fermi velocity and me the electron mass.
Replacing n0 by n0/γ0 and writing vr = CS gives the critical density

beyond which no strong shock forms,

n0,c = 8
��
3

√

p2

mec
h−

( )3 b3
0

(1+ b2
0)3

g0, (3)

where me is the electron mass. This expression is valid as long as
CS≪ c. When the density tends to infinity, Eq. (2) has to be
amended and the asymptotic value of CS is c/

��
3

√
. In this regime,

the equality vr = CS gives therefore a limit value of β0 beyond
which any shock is strong. This critical value is,

b0 =
��
3

√ −
��
2

√
� 0.32. (4)

• As long as the shells are dense enough, they are degenerate1 and
the strong shock threshold is given by Eqs. (3) and (4). When
the density is such that the Fermi temperature becomes lower
than the shells temperature, then the speed of sound is given by,

CS =

�������
ĝ
kBT
m

√
(kBT ≪ mc2),

c��
3

√ (kBT ≫ mc2),

⎧⎪⎪⎨
⎪⎪⎩

(5)

where ĝ is the adiabatic index of the gas. In this regime, CS = vr
yields therefore a maximum velocity β0 beyond which the shock
is strong.

The portion of the phase space defined in this section is even-
tually pictured in Figure 1. For T0 = 0, there cannot be strong
shocks to the left of the blue line defined by Eqs. (3) and (4).
At low β0 and for T0 = 0, the frontier is defined by Eq. (3) all
the way to β0 = 0. Then, for finite temperature T0, the frontier
turns vertical at a density n0 defined by TF(n0) = T0. In the limit
of infinite T0, the strong shock threshold is simply a vertical
line located at b0 =

��
3

√ − ��
2

√ (b0g0 = 0.32). Beyond this initial
velocity, the shock formed must be strong because the speed of
sound cannot exceed c/

��
3

√
.

Criterion for collisionless downstream

A plasma is collisionless, or weakly coupled, if it contains more
kinetic energy than Coulomb potential energy. If its temperature
T is higher than the Fermi temperature TF (and lower than mec

2),
the weakly coupled regime pertains to,

kBT . q2n1/3. (6)

When the plasma becomes degenerate, that is, T <TF, the weakly
coupled regime pertains to,

kBTF . q2n1/3, (7)

where TF is the Fermi temperature, with kBTF = (3p2n)2/3h− 2/2me.
Equation (7) gives,

n . 6.3× 1022 cm−3. (8)

1See Section 3.
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The weakly coupled regime is eventually pictured in Figure 2
by the purple area. When T <TF, density plays the role of the
temperature.

Assume, for a start, that the two colliding shells are cold. Upon
which conditions on (n0, v0) will the downstream be strongly cou-
pled? The downstream of the shock formed by their collision will
be at density n and temperature T, both functions of (n0, v0). The
non-relativistic2 Rankine–Hugoniot relations allow to determine
(n, T) in terms of (n0, v0). For a null upstream pressure, they
give (Zel’dovich and Raizer, 2002),

n = n0
ĝ+ 1
ĝ− 1

, (9)

kBT = mev
2
0, (10)

where mev20 could be written 2(1/2)mev20, making it clear that the
downstream thermal energy comes from the initial kinetic energy
of the electrons and the positrons (hence the factor 2). Inverting
these relations, we find that if the downstream is degenerate, then
it is collisionless for,

n0 , 6.3× 1022
ĝ− 1
ĝ+ 1

( )
cm−3. (11)

If the downstream is classical, then it is strongly coupled for,

n0 . N
∗ ĝ− 1

ĝ+ 1

( )
b6
0, (12)

where,

N
∗ = mec2

q2

( )3

= 4.5× 1037 cm−3. (13)

The strongly coupled conditions for the downstream translate
to the two conditions above on (n0, v0). The corresponding

portion of the phase space parameter (n0, v0) is pictured in
Figure 3 by the green area. Some frontiers derived in the preced-
ing section have been reproduced. We here check that relativistic
effects are irrelevant, as the maximum β0 involved is � 0.004.

How can a finite T0 affect the picture? Weakly, simply because
criterion 1 studied in section “Criterion for strong shock” imposes
a strong shock. Hence, while the equations above are exact in the
T0 = 0 limit, they remain valid at first order for a strong shock,
and Figure 3 with them.

Criterion for collisionless formation

When the two shells approach each other, their interaction can be
of two very different kinds. On the one hand, the binary collision
frequency νs,s between particles of two different shells sets the
time scale for collisional interaction. On the other hand, if the
shells start overlapping, the growth rate δ of the fastest growing
mode of the resulting unstable counter-streaming system sets
the time scale for collisionless interaction.

If δ≪ νs,s, binary collisions mediate the interaction. The shells
encounter is fluid-like, as they do not interpenetrate each other.
The outcome of the interaction is also fluid-like, with a shock
therefore free of electromagnetic turbulence upstream and
downstream.

In the opposite case, when δ≫ νs,s, the interaction is mediated
by counter-streaming instabilities. As a result, the overlapping
region is quickly filled with an electromagnetic turbulence
which blocks the incoming flow and forms the shock (Bret
et al., 2013a, 2014). The same electromagnetic turbulence then
provides the scattering agents necessary for particle acceleration.

The condition δ = νs,s is therefore a third criterion for particle
acceleration. Let us now compute δ and νs,s, before we compare
these two quantities.

Largest growth rate

The strong shock criterion established in section “Criterion for
strong shock” imposes an initial thermal spread Δv≪ v0. We
can therefore work here in the cold limit T0 = 0.

The growth rate δ we are interested in is the one of the fastest
growing mode in the unstable region. Many unstable modes can
grow in this region where the two shells overlap. Two-stream
modes grow with a wave vector aligned with the flow (Bohm

Fig. 1. Strong shock threshold discussed in section “Criterion for strong shock”. For
finite comoving temperature T0, the limit turns vertical at a density n0 defined by
TF(n0) = T0 and no strong shock forms to the left of the corresponding vertical line.
In the limit of infinite temperature, the speed of sound tends to c/

��
3

√
so that all

shocks are strong beyond β0γ0 = 0.32.

Fig. 2. Plasmas located inside the purple area are strongly coupled, that is, colli-
sional. A shock cannot accelerate particles if either its downstream or its upstream
is located within this region.

2We will check at the end of the calculation that relativistic effects do not need to be
accounted for.
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and Gross, 1949a, 1949b). Weibel modes grow with a wave vector
normal to the flow (Fried, 1959), and oblique modes also grow,
with a wave vector oblique to the flow (Faĭnberg et al., 1970;
Bret et al., 2005, 2006, 2010).

For the present case of two counter-streaming pair beams, the
fastest growing modes only depend on γ0. They are two-stream
like as long as g0 ,

����
3/2

√
(Bret et al., 2013b). Beyond this,

Weibel modes are the fastest growing ones. The quantity δ is
eventually given by,

d =
(1+ b2

0)
���
g0
2

√
vp, g0 ,

����
3/2

√
,

2b0���
g0

√ vp, g0 .
����
3/2

√
,

⎧⎪⎪⎨
⎪⎪⎩

(14)

where v2
p = 4pn0q2/me is the electronic plasma frequency.

Inter-shell binary collision frequency, and comparison with δ

We now compute the binary collision frequency for particles of
one shell with particles of the other shell. These particles
approach each other at the relative velocity vr given by Eq. (1).
The impact parameter b for close collisions, namely, collisions
yielding a deviation of π/2, reads (Jackson, 1998),

b = max
q2

grmev2r
,

h−
grmevr

( )
, (15)

with gr = (1− v2r /c
2)−1/2. The collision frequency νs,s then reads,

ns,s = n0vrpb
2. (16)

We need now to compare Eqs. (14) and (16). Due to the var-
ious expressions involved in several intervals, the corresponding
frontier has several breaks. It is pictured by the orange line in
Figure 4, which is further commented in the next section.

Merging the three criteria

Figure 4 gathers all the results obtained for pair plasmas. Plasma
shells located above the orange line will form a shock through
inter-shells binary collisions. Clearly, our three criteria for no

particle acceleration largely overlap. However, the only criterion
still discriminating for β0γ0 >0.32 (and T0 large enough, see
Eq. 18) is the collisional/collisionless formation one.

The effects of a finite comoving temperature T0 are readily
accounted for. As noted previously, the strong shock requirement
imposes v0≫ Δv so that the growth rate and the inter-shells
binary collision frequency used in section “Criterion for collision-
less formation”, together with the Rankine–Hugoniot relations
used in section “Criterion for strong shock”, remain unchanged.
Hence, the green and the blue frontiers are nearly unaffected by
T0≠ 0. Only the criteria for strong shock significantly changes
since a finite temperature can result in a sound speed varying
with the temperature instead of the density.

Section “Criterion for collisionless downstream” assessed
the conditions upon which the downstream is collisional. What
about the upstream? Indeed, if our colliding shells (which repre-
sent the future upstream) are already collisional, acceleration is
also suppressed. The shells are collisional if the parameters
(T0, n0) lie inside the purple triangle in Figure 2. For a given
temperature T0, this translates to a collisional “window” for the
density n0. Therefore, the upstream is collisional if,

n0 [ [n−(T0), n+], with

n−(T0) = kBT0

q2

( )3

, and

n+ = 6.3× 1022 cm−3.

(17)

We reach n−(T0) = n+ for,

T0 = 2
32/3p4/3

mq4

h− 2kB
= 6.73× 104 K = 5.8 eV. (18)

Back to Figure 4, this additional criterion defines therefore an
horizontal stripe from n0 = n−(T0) to n+. The upper limit of the
stripe is at n+ and does not vary with T0. The lower limit is at
n−(T0). It reaches the upper limit for T0 = 5.8 eV so that this cri-
terion for a collisional upstream disappears from the map beyond
this temperature. Notably, it turns out that it is perfectly possible
to have a collisionless upstream and a collisional downstream, at
the same time.

Fig. 3. If the colliding shells parameters lie inside the green triangle, the downstream
of the shock will be strongly coupled and the shock unable to accelerate particles.
This criterion excludes regions which would be allowed by the strong shock
requirement.

Fig. 4. Representation of the three criteria on a single plot (pair plasmas). The shock
formation is mediated by plasma instabilities only below the orange line. The shock
formed is strong only below (or to the right of) the blue line. The downstream is col-
lisional inside the green triangle. Regarding the horizontal gray stripes varying with
T0, see Eqs. (17) and (18) in section “Merging the three criteria”.
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In order to provide a clearer picture of the portion of the (β0γ0,
n0) phase space allowing particle acceleration, Figure 5 represents
all the forbidden zones with a unique shading, and for four values
of the comoving temperature T0. At low T0, the resulting map is
highly non-trivial as the three criteria do not fully overlap. At high
T0, only the strong shock criteria (at low densities) and the colli-
sionless formation criteria shape the map.

Electron/proton shells

The case of electron/proton (e/p) shells can be nearly straightfor-
wardly adapted from the pair shells treated previously.

The strong shock requirements for e/p shells are derived
replacing the electron mass by the proton mass mp in section
“Criterion for strong shock”. The reason for this is that the
sound speed is formally given by C2

S = ∂P/∂r, where the density
ρ now comes from the protons.

The strongly coupling criteria is also retrieved replacing the
electron mass me by the proton mass mp in section “Criterion
for collisionless downstream”.

Regarding the criteria for collisionless formation of section
“Criterion for collisionless formation”, we need to now focus on
the protons, since they control the dynamics of the shock forma-
tion. The inter-shell collision frequency νs,s is obtained replacing
the electron mass me by the proton mass mp in Eqs. (15) and (16).
The maximum growth rate needs slightly more adjustments, for
two reasons.

(1) In pair plasmas, the dominant instability grows and then, the
shock formation starts (Bret et al., 2014; Dieckmann and Bret,
2017; Dieckmann and Bret, 2018). The process is one stage.

In e/p plasmas, the electrons turn unstable first. The related
dominant instability grows and saturates. At that stage,
owing to the large mass ratio involved, the protons are still
counter-streaming over the bath of randomized electrons.
Then they turn unstable and form the shock. The process is
therefore two stages (Stockem Novo et al., 2015).

(2) From the point above, we infer that the growth rate δ we need
to compare with the inter-shell collision frequency is the one
of the counter streaming protons over the bath of electrons.

Evaluating δ here is both different and simpler. Different
because the unstable system under scrutiny is different. Simpler
because we only need to focus on the non-relativistic regime.
Indeed, as will be checked later, the equality δ = νs,s translates to
physically meaningful proton densities (say n0 <10

40 cm−3) only
in the non-relativistic regime.

We therefore need to find the maximum growth rate of the
unstable system formed by two counter-streaming cold proton
beams at +v0, over a bath of electrons. The derivation of the
growth rate δ can be performed noting that in the limit of
small velocities, the background electrons are cold since their
thermal energy comes from their initial kinetic energy. For such
a system, the fastest growing instability is the two-stream instabil-
ity (Bret et al., 2008, 2010), with a dispersion equation given by
(Ichimaru, 1973),

2
x2

+ R

(Z − x)2 +
R

(x + Z)2 = 1, (19)

where x = ω/ωp, Z = kv0/ωp and R =me/mp. Note that ωp is still the
electronic plasma frequency. Since R≪ 1, the roots of this

Fig. 5. The shaded area pictures the region of the phase parameter where no particle acceleration can occur for pair plasmas collisions. The four maps are plotted
for four different comoving temperatures T0. The vertical dashed line on the map for T0 = 50 keV shows the threshold for strong shock in the limit of infinite T0.
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equation have to be close to x = +
��
2

√
. Hence, in terms of Z, they

will be found near Z = +
��
2

√
, for the denominator of the terms

∝ R has to be small since their numerator is small. Focusing on
the solution near Z = + ��

2
√

, we can drop the term ∝ (x + Z)−2

and set x = ��
2

√ + 1. A Taylor expansion in ε gives,

d = ℑ(1) =
��
3

√

27/6
R1/3vp. (20)

Assessing δ = νs,s is then straightforward from Eqs. (15, 16, 20).
Finally, comoving temperature effects are similar to the pair

case. The strong shock limit is obtained from section “Criterion
for strong shock” replacing me by mp, and the upstream is colli-
sional for n0∈ [n−(T0), n+], where n−(T0) is given by Eq. (17)
and n+ = 3.88 × 1032 cm−3. Here, n−(T0) = n+ is reached for
T0 = 10.6 keV. Beyond this temperature, the colliding e/p plasmas
are collisionless regardless of their density n0.

Figure 6 pictures the three criteria for e/p plasmas and four
comoving temperatures. The plot for T0 = 50 keV also features
the asymptotic position of the strong shock threshold in the
limit T0 =∞. It is found equal to the pair case since it is the result
of the speed of sound being limited by c/

��
3

√
in both settings.

Conclusion

We considered the shock formed by the encounter of two identi-
cal pair plasma shells characterized by the parameters (n0, T0, γ0).
We assessed three criteria for particle acceleration, namely (1) that
the shock must be strong, (2) that neither the downstream nor the
upstream can be collisional, and (3) that the shock formation

must have been mediated by plasma instabilities which seed the
scattering agents essential for particle acceleration.

Figures 4–6 summarize how these criteria translate to the
parameters (n0, T0, γ0) for pair and e/p plasmas. The resulting
maps are non-trivial as the three criteria do not overlap.

Future works could account for various additional effects. An
external magnetic field would modify the Rankine–Hugoniot rela-
tions and the growth rate calculations, for example. Also, astro-
physical settings often involve radiative shocks (Bouquet et al.,
2000, 2004) in which radiation pressure and energy must be
accounted for in the Rankine–Hugoniot budget. As a conse-
quence, the allowed regions for particle acceleration would also
be modified.
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