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Traditionally, GNSS receiver autonomous integrity monitoring (RAIM) has been based
upon single epoch solutions. RAIM can be improved considerably when available
dynamic information is fused together with the GNSS range measurements in a Kalman

filter. However, while the Kalman filtering technique is widely accepted to provide optimal
estimates for the navigation parameters of a dynamic platform, assuming the state and
observation models are correct, it is still susceptible to unmodelled errors. Furthermore,

significant deviations from the assumed models for dynamic systems may also occur. It is
therefore necessary that the state estimation procedure is complemented with effective and
reliable integrity measures capable of identifying both measurement and modelling errors.

Within this paper, fundamental equations required for the effective detection and identifi-
cation of outliers in a kinematic GNSS positioning and navigation system are described
together with the reliability and separability measures. These quality measures are im-

plemented using a Kalman filtering procedure formulated with Gauss-Markov models where
the state estimates are derived from least squares principles. Detailed simulations and
analyses have been performed to assess the impact of the dynamic information on GNSS
RAIM with respect to outlier detection and identification, reliability and separability. The

ability of the RAIM algorithms to detect and identify dynamic modelling errors is also
investigated.
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1. INTRODUCTION. Current techniques and algorithms employed for
Receiver Autonomous Integrity Monitoring (RAIM) have evolved from single
epoch snapshot solutions. The extensive demand for kinematic GNSS positioning,
however, has led to a derivation of statistical quality control principles, based on
the least squares residuals, for the Kalman filter. The Kalman filtering technique
is widely accepted to provide optimal estimates of the navigation parameters of a
dynamic platform, assuming the state and observation models are correct.
Unfortunately, such assumptions do not always hold and inevitably, significant
deviations from the assumed models are not uncommon for dynamic systems. If the
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assumptions for the mathematical models are correct, the state parameter estimates
are unbiased with a minimum variance within the class of linear unbiased esti-
mators. Unpredictable events, such as multipath in the GNSS measurements or the
deviation of receiver dynamics from the assumed dynamic model, result in un-
modelled errors. In order to detect and account for such errors the state estimation
procedure must be complemented with effective quality control techniques, such
as RAIM. The RAIM performance should also be assessed in its ability to alert
the user when the solution cannot be guaranteed to meet the specified performance
tolerances. The assessment should include both reliability and separability
measures, where reliability is an assessment of the capability of GNSS receivers to
detect outliers and separability refers to the system’s ability to correctly identify the
detected outliers from the measurements. In kinematic positioning scenarios RAIM
procedures should also be capable of detecting and identifying faults due to mis-
modelling of the system dynamics.

Developments in quality control and RAIM algorithms for kinematic GPS have
progressed at an impressive rate over the last decade. Quality control for integrated
navigation systems using recursive filtering is described in Teunissen (1990). Lu
(1991) uses a two-stage Kalman filter (Friedland, 1969; Ignagni, 1981) for differential
kinematic GPS quality control including reliability determination. In Salzman (1995)
a procedure for real-time adaptation for model errors in dynamic systems is presented
and analysed. Gillesen and Elema (1996) present the results of a detection, identifi-
cation and adaptation (DIA) procedure with reliability analysis in a kinematic
integrated navigation system. DIA and reliability evaluation techniques for kinematic
GPS surveying are discussed in great detail in Tiberius (1998b) and Nikiforov (2002)
discusses integrity monitoring with fault detection and exclusion (FDE) algorithms
for integrated navigation systems.

In this paper, the algorithms for the RAIM of a dynamic GNSS receiver derived
from the least squares estimators of the state parameters in a Gauss-Markov Kalman
filter (Wang et al., 1997) are used to assess the impact of dynamic information via a
Kalman filter on GNSS RAIM. Herein, the dynamic information is delivered via
velocity estimates derived from the accumulated delta range measurements. Analyses
compare the outlier detection and identification capabilities and reliability and
separability measures of a GPS-only system, with and without the delta-range
measurements.

2. GNSS NAVIGATION MODELS.
2.1. Kalman Filtering in GNSS Navigation. A discrete extended Kalman filter

(EKF), where the measurement models are linearised about an approximation of the
state at discrete time intervals, is typically used for GNSS navigation solution esti-
mation. For standalone GNSS navigation, either an 8-state or 11-state filter is gen-
erally employed depending on the dynamics of the system. If the dynamics are
relatively low, such as in a car or less mobile vehicle, the 8-state filter estimating only
the position, velocity and clock bias and drift may be sufficient. In this case, the
accelerations are assumed to be white noise and are therefore accounted for in the
system process noise. However, if the system is expected to experience high dynamics
with significant accelerations an 11-state filter incorporating the implicit estimation of
the accelerations should be used.
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Regardless of the number of states employed, the state evolution model of the
discrete extended Kalman filter describes the dynamic processes of the system:

x̂xxk =Wk, kx1x̂xkx1+wk (1)

and the linearised measurement model relates the measurements to the state of
the system:

zk=Hkxk+ek (2)

where x̂xkx1 is the mkr1 updated state parameter vector at epoch kx1; x̂xxk is the
mkr1 predicted state vector for epoch kmade at epoch kx1;Wk,kx1 is themkrmkx1

state transition matrix from epoch kx1 to k ; wk is the mkr1 random error vector
representing the dynamic process noise at epoch k ; zk is the nkr1 measurement
vector at epoch k ; Hk is the nkrmk geometry matrix relating the measurements to
the state parameters and ek is the nkr1 error vector of the measurement noise at
epoch k.

2.2. GNSS Navigation Dynamic Models. The 8-state filter is based on a Position-
Velocity (PV) model where the acceleration is assumed as white noise and the velocity
and position are estimated as random-walk processes (Brown and Hwang, 1996). The
8-state vector for the PV model is :

x̂xk � [Dx D _xx Dy D _yy Dz D _zz Db Df ] (3)

The 11-state filter is based on a PVAmodel where the acceleration can be estimated as
either a random-walk or a Markov process. Theoretically, the stationary Gauss-
Markov model may generally be more appropriate than the non-stationary random-
walk model as accelerations are rarely sustained (Brown and Hwang, 1996). For this
reason, the Gauss-Markov model was adopted for the simulations herein. For the
Gauss-Markov PVA model, the acceleration is modelled as a Gauss-Markov process
with parameter b=1=t€xx where t€xx is the system acceleration. The 11-state vector of the
PVA model is :

x̂xk � [Dx D _xx D€xx Dy D _yy D€yy Dz D _zz D€zz Db Df ] (4)

For details regarding the transition and process noise covariance matrices used
herein, readers are referred to Brown and Hwang (1996).

2.3. Kalman Filtering as Least Squares. A major advantage of the snapshot
solution for GNSS navigation is that, unlike the Kalman filter, it is not model
dependent. Due to this model dependence, the solutions of Kalman filter-based
integrity algorithms are prone to high false alarm rates when unexpected system
dynamics are experienced. The Kalman filter residual vector, or innovation sequence,
only gives the residuals corresponding to the measurements with respect to the state
predictions and not a posteriori residuals of both the measurements and state pre-
dictions. Therefore, by performing a least squares navigation solution containing
the measurements and the predicted states of the Kalman filter’s dynamic model, we
can obtain an ideal integrity solution which not only checks the consistency of the
measurements but also the state predictions.

It has been shown that by integrating the measurements zk with the predicted
values of the state parameters x̂xk

x, optimal estimates for the state parameters xk
can be obtained using least squares principles. The corresponding measurement
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model is (Sorenson, 1970; Cross, 1987; Salzmann, 1993; Leahy and Judd 1996; Wang
et al, 1997) :

lk=Akxk+vk (5)

where lk=
zk
x̂xxk

� �
; Ak=

Hk

E

� �
; vk=

vzk
vx̂xx

k

� �
. lk is the least squares measurement vector

containing measurements zk and predicted state parameters x̂xxk ; Ak is the
(nk+mk)rnk design matrix; vzk is the nkr1 residual vector of the measurements zk ;
vx̂xx

k
is the nkr1 residual vector of predicted state parameters �xxk ; E is the mkrmk

identity matrix.
The corresponding stochastic model is described as:

Clk=
Rk

0

0
Px
k

� �
(6)

where Clk is the VCV of the measurement vector lk. The optimal estimates for the
state parameters x̂xk and the error covariance matrix Qx̂xk can be determined by:

x̂xk=(AT
xC

x1
lklk

Ak)
x1AT

kC
x1
lk

lk (7)

Qx̂xk=(AT
xC

x1
lk

Ak)
x1 (8)

The filtering residuals vyk and v�xxk can then be calculated from:

vk=
vzk
vx̂xx

k

� �
=Akx̂xkxlk (9)

From the least squares principles the cofactor matrix of the filtering residuals
Qvk is :

Qvk=Clk
xAQx̂xkA

T (10)

3. RAIM ALGORITHMS. Through adopting least squares principles for
the state estimations in a Kalman filter, the same quality control algorithms as for
the single epoch snapshot approach can be used. In such a case, the predicted state
parameters can be included as measurements in the adjustment. The algorithms
used herein are based on the widely known and implemented detection, identifi-
cation and adaptation (DIA) procedure. For a detailed background to the DIA
procedure used herein, see Wang and Chen (1994) and Hewitson et al. (2004). The
inclusion of dynamic information, in the form of the state parameter predictions of
the Kalman filter, increases the redundancy of the adjustment. The improvement in
redundancy has significant effects on the quality control.

3.1. Outlier Identification. Once a fault has been detected with a global detection
algorithm such as the variance factor test, the w-test can then be used to identify the
corresponding measurement, where the test statistic is (Baarda, 1968; Cross et al.,
1994; Teunissen, 1998) :

wi=
xeTi Pv̂vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTi PQv̂vPei

p
�����

����� (11)
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Under the null hypothesis, wi has a standard normal distribution and under the
alternative, wi has the following non-centrality :

di=rSi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTi PQv̂vPei

q
(12)

The critical value for the test is N1xa/2(0,1), where a is the significance level.
3.2. Reliability. The internal reliability is expressed as a minimal detectable bias

(MDB) and specifies the lower bound for detectable outliers with a certain prob-
ability and confidence level. The MDB is determined, for correlated measurements
(Baarda, 1968; Cross et al., 1994), by:

r0Si=
d0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eTi PQv̂vPei
p (13)

where d0 is the non-centrality parameter, which depends on the detection probability
and false alarm rate. The external reliability is then evaluated as (Baarda, 1968; Cross
et al., 1994) :

r0x̂x=QxA
TPeir0Si (14)

3.3. Separability. For situations arising where an outlier is sufficiently large to
cause many w-test failures, resulting in many alternatives, it is essential to ensure any
two alternatives are separable so that a good measurement is not incorrectly flagged
as an outlier. The probability of incorrectly flagging a good measurement as the
detected outlier is dependent on the correlation coefficient of the test statistics wi and
wj (Förstner, 1983; Wang and Chen 1994; Tiberius, 1998a) :

rij=
eTi PQv̂vPejffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eTi PQv̂vPei
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTj PQv̂vPej

q (15)

where |rij|f1. Correlation coefficients of 1 and 0 correspond to full and zero corre-
lation between two test statistics, respectively. The greater the correlation between
two test statistics, the more difficult they are to separate. The degree of correlation of
measurements is dependent on the measurement redundancy and geometric strength.
If the measurement redundancy is equal to 1 an outlier can be detected but not
identified as all the measurements are fully correlated. When determining the separ-
ability, it suffices to only consider the maximum correlation coefficient rijmax(8jli)
for each statistic.

4. S IMULATIONS AND RESULTS ANALYSIS. The reference trajec-
tories in Figures 1 and 2 were used to simulate the GNSS measurements of
a moving receiver. The measurement update rate was 1 Hz and single frequency
pseudorange and accumulated delta range measurements were generated using a
modified version of the GPSoft1 Satellite Navigation and Navigation System
Integration and Kalman Filter Toolboxes. The pseudorange and accumulated
delta range measurements are generated with standard deviations of 1 m and 0.1 m,
respectively. Accumulated delta-range measurements are taken 50 milliseconds
prior to the filter update time as well as at the filter update time to derive the
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delta-range observables. The delta-range measurements were then used to estimate
the receiver’s velocity and provide the dynamic information in the Kalman filter for
the state predictions. The satellite coordinates were calculated from the Keplerian
elements of the nominal 24-satellite constellation design of GPS and all simulations
were conducted with a 5-degree masking angle unless stated otherwise.

In order to assess the impact of dynamic information on receiver integrity several
scenarios were considered. Firstly, the outlier detection and identification ability of
an ordinary least squares (OLS) integrity solution was compared with the Kalman
filter solutions of varying weights for the dynamic model. For these comparisons a
simple high velocity 2-Dimensional dog-leg trajectory was simulated. Finally, to
appropriately investigate the impact of the dynamic information and provide a
holistic analysis of the effect of accurately modelled dynamic information on the
reliability and separability performance measures a low dynamic 3-Dimensional
trajectory was used.

Figure 1. 2D Dog-leg simulation reference trajectory.

Figure 2. 3D Simulation Reference Trajectory.
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In the following simulations, four variations of the extended Kalman filter (EKF)
were used; EKF1-3 use the random-walk PV model and EKF4 is based on the
Gauss-Markov PVA model. The spectral amplitudes used for each model are shown
in Table 1 along with the correlation time constant parameter for the acceleration
state, where Sp, Sf and Sg are the spectral amplitudes associated with the white noise
driving functions corresponding to the position, clock bias and clock drift estimates
respectively (Brown and Hwang, 1996). In order to maintain a similar weight with
respect to the position state of EKF3, the Sp of EKF4 was set to 67. All the integrity
solutions used in the following analyses were derived from the least squares principles
and the critical value used for the w-test was 3.2905 for a significance level (a) of
0.1%. The internal reliabilities (MDBs) were determined with a detectability (c) of
80% and a false alarm rate (significance level, a) of 0.1%.

4.1. Single Epoch Outlier Identification Performance Analysis. In this section, the
dog-leg trajectory in Figure 1 was used to compare the performances of the OLS and
EKF estimations with respect to outlier detection and identification. Initially,
analyses of all five estimation approaches were made with a single 17m outlier in-
duced into one of the pseudorange measurements of epoch 100 (see Figure 1). Due to
space constraints only the results for the OLS, EKF2 and EKF3 scenarios are pre-
sented in this section. The position estimation errors and w-statistics for the entire
trajectory were then examined and the correlation coefficient matrices corresponding
to epoch 100 were also compared. Further outlier identification analyses were then
made after increasing the masking angle to 10 degrees, for which only 6 satellites were
visible at epoch 100. The measurements were simulated for a receiver moving along
the trajectory in Figure 1 with a speed of 200 m/s and a turn-rate of 3 deg/sec. The
centripetal acceleration was approximately 10.472 m/s2 and the Kalman filter was
updated at 1 Hz.

4.1.1. Ordinary Least Squares (OLS) Estimation. Figure 3 shows the position
and clock bias errors of the OLS estimation with respect to the reference trajectory. In
this scenario there were 8 satellites visible. It can be clearly seen that the 17m bias
induced into the pseudorange to SV11 has caused a 6m error in the Z component of
the position. In Figure 4, which shows the w-test statistics for the duration of the
simulation, the failure is prominent and has caused several statistics to exceed the
critical value of 3.2905 as indicated by the solid red line. Furthermore, we can see that
there are some other small w-test failures e.g. near epochs 35 and 90. These errors are
not specifically induced and are the results of the measurement noise.

Figure 5 is a visual representation of the correlation matrix for the w-test statistics
of epoch 100. Observations 1–8 correspond to the pseudoranges and observations
9–16 correspond to the delta-range measurements. The matrix is symmetric about
the diagonal of ones showing that each observation is fully correlated to itself.

Table 1. Process noise covariance parameters for Kalman filter adjustment models.

Adjustment Model Sp Sf Sg b=1=t€xx

EKF1 1000 0.100 0.100 NA

EKF2 100 0.010 0.010 NA

EKF3 10 0.001 0.001 NA

EKF4 67 0.001 0.001 1/60
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By definition, this is always true. Generally speaking, the correlations for this
adjustment are relatively high although they would be even higher with fewer
satellites. It can also be seen that there is no correlation between the pseudoranges
and the delta ranges. Furthermore, the pseudoranges are correlated to each other in
exactly the same way as the delta-ranges are due to the identical measurement geo-
metries. Regardless of the relatively high correlations, the largest test failure correctly
corresponds with the pseudorange to SV11 and has therefore correctly identified the
outlier. However, when we increase the masking angle to 10 degrees where there are
only 6 satellites in view the reduction in redundancy has a drastic effect on the outlier
identification.

Table 2 shows the MDBs, w-statistics and maximum correlation coefficients for
each measurement when the masking angle is increased to 10 degrees. In this case a
single 15 m outlier has been included in the pseudorange to SV15. Here we can see
that four statistics have failed the test due to the high measurement correlation. As it

Figure 4. OLS estimation w-test statistics (a=0.1%, Critical Value=3.2905).

Figure 3. OLS estimation position and clock bias errors.
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is common practice to exclude only the largest w-test failure as the outlier, the outlier
has been falsely identified due to the extreme correlation between the test statistics
corresponding to the pseudorange measurements to SVs 12 and 15. It can also be seen
that there has been a drastic increase in the correlations due to the reduction in
redundancy when compared with Figure 5. Table 2 also shows the adjustment after
the satellite corresponding to the incorrectly identified fault SV12 has been removed.
Here we can see that the w-statistics for the pseudoranges are equal and fully corre-
lated to one another, as are the delta-ranges. In this situation, there is no chance of
identifying the remaining or any further faults.

4.1.2. Extended Kalman Filter Estimation 2 – PV model. The EKF2 adjustment
is less affected by the 17m outlier than the OLS adjustment. The position error in the
Z component is now 5m, see Figure 6. Figure 7 shows that the outlier is clearly

Figure 5. Correlation coefficients for epoch 100 of the OLS estimation with 8 satellites visible,

rs[0,1].

Figure 6. EKF2 estimation position and clock bias

errors.
Figure 7. EKF2 estimation w-test statistics for

measurements (top) and predicted states (bottom),

(a=0.1%, Critical Value=3.2905).
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identified in the measurement model and the largest failure correctly corresponds to
SV11. Furthermore, the correlation matrix in Figure 8 shows a slight decrease in the
pseudorange measurement correlations amongst themselves and a slight increase in
the correlations of the predicted states with themselves and the measurements. The
correlations amongst the delta-ranges are the same.

Table 3 shows that the 15m outlier in the 10 degree mask angle scenario has now
caused four pseudorange and one predicted state w-statistics (predicted Z component
of the position error state) to fail due to the increase in correlations of the predicted
states with the measurements. The outlier has again been correctly adjusted and
after SV15 has been removed there is still the potential to be able to identify another
bias even though only five SVs are available. However, it should be remembered
that the ability to correctly identify further outliers is limited due to the high
correlations. The marked improvement of the MDBs on the OLS estimation should
also be noted.

4.1.3. Extended Kalman Filter Estimation 3 – PV model. Figure 9 shows that
with the increased weight of the dynamic model for EKF3, the position error in the Z
component, due to the 17m outlier, has been decreased to 4m. Figure 10 reveals that
once again the outlier has been detected in the measurement model but also that
failures are detected in the predicted states at epochs 100 and 123. However, at epoch
100, the largest test statistic corresponds correctly to the pseudorange to SV12. At
epoch 123 the failures occur in the statistics corresponding to the predicted states
only. These failures are due to a deviation of the system from the dynamic model. At
epoch 123 the system is just coming out of turn and this particular deviation has little
impact on the position solution as can be seen in Figure 9. The correlation matrix in
Figure 11 shows a solid decrease amongst the pseudorange measurement correlations
and again, the correlations amongst the delta-range statistics are the same while those
between the pseudorange and the predicted state statistics have significantly in-
creased.

4.2. Comprehensive 3D Trajectory Performance Analysis. In order to assess
the impact of the dynamic information of outlier detection and identification in a
more holistic way, the 3D reference trajectory shown in Figure 2 was used to simulate
the GNSS measurements and determine the associated internal reliabilities
and maximum correlation coefficients. The measurements were simulated for a re-
ceiver with a speed of approximately 4.7 m/s after accelerating from rest at approxi-
mately 0.12 m/s2. The centripetal acceleration was approximately 0.34 m/s2 for all

Table 2. Internal reliabilities and simulation results for identifying a+15m outlier induced in Dr15 by OLS

Estimation with 10 degree mask angle (c=80%, a=0.1%, CV=3.2905).

Observable

1st Adjustment Iteration SV15 Removed

r0Si rijmaxs [0,1] wi r0Si rijmaxs [0,1] wi

Dr11 6.110 0.789 7.233 11.140 1.000 x6.560

Dr12 7.827 1.000 x9.756

Dr15 7.204 1.000 x9.755 10.218 1.000 x6.560

Dr17 10.528 0.872 7.172 10.569 1.000 6.560

Dr18 8.653 0.884 1.670 14.071 1.000 x6.560

Dr21 5.558 0.884 3.016 6.094 1.000 6.560
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turns and the Kalman filter was updated at 1 Hz, 7–8 satellites were visible for
the duration of the simulation. Histograms of the internal reliabilities and
maximum correlation coefficients were then generated to show the distribution of
values over the whole trajectory. The histograms were separated with respect to the
pseudorange and delta range measurements and the predicted states for each esti-
mation scenario. It should be noted that the correlation coefficient results were not
isolated to type of measurement being analysed due to space limitations, i.e. the
results for the pseudorange measurements include the correlations with the delta
range and predicted state statistics as well as the statistics corresponding to the other
pseudoranges.

Figures 12 and 13 show the histograms of the internal reliabilities and maximum
correlation coefficients corresponding to the pseudorange observations for each of
the estimation scenarios. It is clear that with the inclusion of the dynamic model and
its increasing weights the internal reliabilities and correlation coefficients are
improved. Furthermore, with the inclusion of acceleration estimation in EKF4 there
is marked improvement in the internal reliabilities though the maximum correlation
coefficients appear worse. The greater degree of maximum correlations is due to
an increase in correlation between the pseudorange and predicted state statistics.
The pseudorange statistics are actually less correlated with the other measurement
statistics.

Figures 14 and 15 are the histograms of the MDBs and maximum correlation
coefficients, respectively, associated with the delta range measurements. For the
MDBs we can see that there is some improvement in the maximumMDB values with
the inclusion and increasing weight of dynamic information. However, the inclusion
of the acceleration state estimation has no impact on the MDBs. The correlation
results exhibit a substantial degree of decorrelation with the inclusion of the dynamic
model although increasing the weight of the dynamic model has little impact on the
maximum correlations of the delta-range statistics. The EKF3 and EKF4 results are
almost identical.

Table 3. Internal reliabilities and simulation results for identifying a +15m outlier induced in Dr15 by

EKF2 Estimation with 10 degree mask angle (c=80%, a=0.1%, CV=3.2905).

Observable

1st Adjustment Iteration SV15 Removed

r0Si rijmaxs [0,1] wi r0Si rijmaxs [0,1] wi

Dr11 5.262 0.641 4.605 5.692 0.730 0.427

Dr12 6.773 0.641 x6.064 8.228 0.558 0.253

Dr15 6.354 0.585 x11.046

Dr17 5.979 0.633 6.466 7.374 0.730 0.003

Dr18 5.863 0.658 3.266 6.110 0.785 0.177

Dr21 5.387 0.658 2.330 5.566 0.785 x0.472

Drx
x 12.745 0.851 1.204 12.951 0.847 x0.739

Dvx
x 21.698 0.851 x1.515 21.956 0.847 0.126

Dry
x 12.690 0.852 x1.150 12.703 0.852 x0.655

Dvy
x 21.629 0.852 0.762 21.646 0.852 0.342

Drz
x 12.873 0.849 x3.382 13.417 0.839 x0.328

Dvz
x 21.856 0.849 2.685 22.525 0.839 0.092

Dbx 5.930 0.633 x1.853 5.990 0.686 x0.302

Dfx 2.354 0.817 0.694 2.515 0.967 0.729
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In Figure 16 it is clear that increasing the weight of the dynamic model improves
the MDB values for the state predictions. However, when the acceleration state is
estimated there is an improvement in the predicted states except for the velocity
predictions which have slightly larger MDBs for EKF4. It should also be re-
membered that the MDBs for the acceleration states are infinite due to the fact
that the acceleration states are unobservable. With respect to the correlations of the
predicted state statistics, it is clear from Figure 17 that the maximum correlation
coefficients decrease with the increasing weight of the dynamic model but are actually
at their largest with the inclusion of the acceleration estimation (EKF4).

Figure 9. EKF3 estimation position and clock bias errors.

Figure 8. Correlation coefficients at epoch 100 of the EKF2 (PV model) estimation with 8

satellites visible, rs[0,1].
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5. CONCLUSIONS. In this paper, the RAIM algorithms for a dynamic
GNSS receiver derived from the least squares estimators of the state parameters
have been employed with a Gauss-Markov Kalman filter to evaluate the impact of
dynamic information on GNSS RAIM. The actual analyses have been carried out
to compare the outlier detection and identification capabilities and reliability and
separability measures of a GPS-only system, with and without the delta-range
measurements and with varying weight for the dynamic model where applicable.

Based on the results presented here it is clear that RAIM performance can be
significantly improved with the inclusion of a dynamic model. The degree of such

Figure 11. Correlation coefficients for epoch 100 of the EKF3 (PV model) estimation with

8 satellites visible, rs[0,1].

Figure 10. EKF3 estimation w-test statistics for measurements (top) and predicted states

(bottom), (a=0.1%, Critical Value=3.2905).
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improvement is dependent on the weighting of the dynamic model. A major advan-
tage of increasing the weight of dynamic model is the drastic improvement in outlier
detection and identification robustness in the measurement domain. Furthermore, by
performing a least squares navigation solution containing the measurements and the

Figure 13. Histogram of maximum correlation coefficients corresponding to pseudoranges for

OLS and EKF1-4 estimations, rs[0,1].

Figure 12. Histogram of pseudorange internal reliabilities for OLS and EKF1-4 estimations

(c=80%, a=0.1%).
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predicted states of the Kalman filter’s dynamic model, it has been shown that the
dynamic modelling errors can be separated from the measurement errors. However, a
drawback to increasing the weight of the dynamic model is that it generates greater
levels of correlations between the measurement and the state prediction statistics.

Figure 14. Histogram of delta range internal reliabilities for OLS and EKF1-4 estimations

(c=80% a=0.1%).

Figure 15. Histogram of maximum correlation coefficients corresponding to delta ranges for OLS

and EKF1-4 estimations, rs[0,1].
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In order to reliably distinguish measurement errors from the dynamic modelling
errors the correlation coefficients between them must be reasonably low. To gain
deeper understanding of the difference between the PV model and the PVA model
filters in GNSS RAIM, more investigations are required to determine the effect of any
possible benefits of including the estimation of acceleration in the dynamic model.

Figure 16. Histogram of predicted state internal reliabilities for EKF1-4 estimations (c=80%,

a=0.1%).

Figure 17. Histogram of maximum correlation coefficients corresponding to predicted states for

EKF1-4 estimations, rs[0,1].
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