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ABSTRACT

Spatial data are a rich source of information for actuarial applications:
knowledge of a risk’s location could improve an insurance company’s ratemak-
ing, reserving or risk management processes. Relying on historical geolocated
loss data is problematic for areas where it is limited or unavailable. In this
paper, we construct spatial embeddings within a complex convolutional neu-
ral network representation model using external census data and use them as
inputs to a simple predictive model. Compared to spatial interpolation mod-
els, our approach leads to smaller predictive bias and reduced variance in most
situations. This method also enables us to generate rates in territories with no
historical experience.
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1. INTRODUCTION

Insurance plays a vital role in protecting customers from rare but costly perils.
Insurance companies accept to cover a policyholder’s peril in exchange for a
fixed premium. For insurance costs to be fair, customers must pay premiums
corresponding to their expected future costs. Actuaries accomplish this task
by segmenting customers in similar risk profiles and using historical data from
these classes to estimate future costs. Advances in computation and statistical
learning, along with more information, drive insurance companies to create
more individualized risk profiles.
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An important factor that influences insurance risk is where a customer lives.
Locations explain socio-demographic perils like theft, irresponsible driving or
responsible home maintenance. Natural phenomena such as weather-based
perils depend on natural factors such as elevation and historic rainfall.
Geographic ratemaking attempts to capture geographic effects within the
rating model. Historically, actuaries have used spatial models to perform
geographic ratemaking.

One may think that one must include a geographic component for a model
to capture geographic effects: either depending on coordinates or on indicator
variables that identify a territory. Indeed, the related research from actuarial
science uses the latter approach. These models require a large quantity of data
to learn granular geographic effects and do not scale well for large territories.
Until wemodel the geographic variables that generate the geographic risks, it is
unfeasible to model postal code-level risk in a country-wide geographic model.
In the present paper, we propose a method to construct geographic features
that capture the relevant geographic information to model geographic risk.
We find that a model using these features as input to a generalized linear model
(GLM) can model geographic risk more accurately and more parsimoniously
than previous geographic ratemaking models.

In this paper, we construct geographic features from census data. The intu-
ition through this paper is that since people generate risk, the geographic
distribution of the population (as captured by census data) relates to the geo-
graphic distribution of risk. If we capture the geographic characteristics of the
population correctly, then a ratemaking model using the geographic distribu-
tion of the population as input may not require any geographic component
since the geographic distribution of the populationwill implicitly capture some
of the geographic distribution of risk. We focus on the geographic distribution
of populations as an intermediate step of the predictive model.

We now review the literature of geographic ratemaking in actuarial sci-
ence. Early geographic models in actuarial science were correction models that
smoothed the residuals of a regression model, that is, capturing geographic
effects after the main regression model, in a smoothing model. Notable exam-
ples include Taylor (1989), Boskov and Verrall (1994) and Taylor (2001). If
we address the geographic effects during or before the main regression model,
then the smoothing is not required. Dimakos and Di Rattalma (2002) propose
a Bayesian model that estimate geographic trend and dependence simultane-
ously to the main regression model. This model was later refined and studied
as conditional autoregressive models by Gschlößl and Czado (2007) and Shi
and Shi (2017). Another approach is spatial interpolation, which uses geo-
graphically varying intercepts in the model. Examples include Fahrmeir et al.
(2003), Denuit and Lang (2004), Wang et al. (2017) and Henckaerts et al.
(2018) and other spatial interpolation methods like regression-kriging Hengl
et al. (2007). These methods use the geographic coordinates of the risk along
with multivariate regression functions to estimate geographic trend.
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The above models capture geographic effects directly and non-
parametrically, increasing model complexity and making estimation difficult
(increasing the number of parameters, making them less competitive when
comparing models based on criteria that penalize model complexity). As
a result, geographic smoothing methods adjusted on residuals are still the
prevalent geographic methods in practice for geographic ratemaking.

In the present paper, we take a fundamentally different approach, captur-
ing the geographic effects during feature engineering. Instead of capturing
geographic effects non-parametrically with geographic models, we introduce
geographic data in the ratemaking model. Geographic data are “data with
implicit or explicit reference to a location relative to the Earth” (ISO 19109,
2015). Geographic data can describe natural variables like the ecosystem and
the landform of a location, or artificial variables including human settlement
and infrastructure information. We study the effectiveness of automatically
extracting useful representations of geographic information with representa-
tion learning, see Bengio et al. (2013) for a review of this field of computer
science.

Early geographic representation models started with a specific applica-
tion and then constructed representations useful for their applications. These
include Eisenstein et al. (2010) and Cocos and Callison-Burch (2017) for topi-
cal variation in text, Yao et al. (2017) to predict land use, Xu et al. (2020) for
user location prediction and Jeawak et al. (2019) and Yin et al. (2019) for geo-
aware prediction. More recent approaches aim to create general geographic
embeddings. See Blier-Wong et al. (2020), Hui et al. (2020), Wang et al. (2020)
and references therein for alternative model architectures.

The remainder of this paper is structured as follows. In Section 2, we explain
how we can capture spatial models’ desirable properties within representations
models. Section 3 presents a spatial representation model, while Section 4 pro-
vides the details of an implementation on Canadian census data. Sections 2,
3 and 4 present the same ideas, the first presenting general ideas and the last
including concrete model architectures. We present applications of the spa-
tial embeddings on insurance-related datasets in Section 5, comparing spatial
embeddings to an existing spatial model. Section 6 concludes the paper.

2. SPATIAL REPRESENTATIONS

In Blier-Wong et al. (2021), we propose a framework for actuarial modeling
with emerging sources of data. This approach separates the modeling pro-
cess into two steps: a representation model and a predictive model. Using this
deconstruction, we can leverage modern machine learning models’ complexity
to create useful representations of data and use the resulting representa-
tions within a simpler predictive model like a GLM. This section presents an
overview of representation models, with a focus on spatial embeddings.
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FIGURE 1: Encoder/decoder architecture.

2.1. Overview of representation models

The defining characteristic of a representation model (as opposed to an end-
to-end model) is that representation models never use the response variable of
interest during training, relying instead on the input variables themselves or
other response variables related to the insurance domain. We propose using
encoder/decoder models to construct embeddings, typically with an intermedi-
ate representation (embedding) with a smaller dimension than the input data;
see Figure 1 for the outline of a typical process. When training the represen-
tation model, we adjust the parameters of the encoder and the decoder, two
machine learning algorithms. To construct the simpler regression model, one
extracts embedding vectors for every observation and stores them in a design
matrix. The representation construction process has four steps:

Step 1: Construct an encoder, transforming input variables into a latent
embedding vector.

Step 2: Construct a decoder, which will determine which information the
representation model must capture.

Step 3: (Optional) Combine features from different sources into one com-
bined embedding.

Step 4: (Optional) Evaluate different embeddings and validate the quality of
representations.

Representation models have many advantages: they transform categorical
variables into dense vectors, reduce the input variable dimension, construct
reusable representations, automatically learn non-linear transformations and
interactions and reduce the predictive model’s complexity.

The geographic methods proposed in actuarial science address the data’s
geographic nature within or after the predictive model. Geographic embed-
dings are a fundamentally different approach to geographic models studied
in actuarial science. The geographic embeddings approach that we propose is
largely inspired by word embeddings in natural language processing (NLP).
We first transform geographic data into geographic embedding vectors, dur-
ing feature engineering. Using geographic embeddings in the main regression
model, we capture the geographic effects and the traditional variables at the
same time. Figure 2 provides an overview of the method. The representation
model takes geographic data as input to automatically create geographic fea-
tures (Sections 3 and 4, respectively, present architectures and implementations
of geographic embedding models). Then, we combine the geographic embed-
dings with other sources of data (such as traditional actuarial variables, e.g.,
customer age). Finally, we use the combined feature vector within a predictive
model.
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FIGURE 2: Proposed geographic ratemaking process.

2.2. Desirable attributes of spatial embeddings

The representation learning framework enables one to select an architecture
that captures specific desirable attributes from various data sources. There
is one generally accepted desirable attribute for geographic models, called
Tobler’s first law (TFL) of geography. We also propose two new attributes
that make geographic embeddings more useful. Below is a list of these three
desirable attributes for geographic embeddings.

Attribute 1 (TFL) Geographic embeddings must follow TFL of geography.
As mentioned in Tobler (1970), “everything is related to everything else, but
near things are more related than distant things.” This attribute is at the core
of spatial autocorrelation statistics. Spatial autocorrelation is often treated
as a confounding variable, but these variables constitute information since it
captures how territories are related (see, e.g., Miller, 2004 for a discussion).
A representation model, capturing the latent structure of underlying data,
generates geographic embeddings.

Attribute 2 (coordinate) Geographic embeddings are coordinate-based. A
coordinate-based model depends only on the risk’s actual coordinates and
its relation to other coordinates nearby. Polygon-based models highly depend
on the definition of polygon boundaries, which could be designed for tasks
unrelated to insurance.

We motivate this attribute with an example. Consider four customers A, B,
C and D that have home insurance for their house in the Island of Montreal,
Quebec, Canada. Figure 2 identifies each coordinate on a map. We also
included the borders of polygons, represented by bold black lines. These poly-
gons correspond to forward sortation areas (FSAs), a unit of geographic
coordinate in Canada (further explained in Section 4). Observations A and
B belong to the same polygon, while observations B and C belong to different
ones. However, B is closer to C than to A. Polygon-based representation mod-
els and polygon-based ratemaking models assume that the same geographic
effect applies to locations A and B, while different geographic effects apply
to locations B and C. However, following TFL, one expects the geographic
risk between customers B and C to be more similar than the geographic risk
between A and B.
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There are two other issues with the use of polygons. The first is that the
actual shapes of polygons could be designed for purposes that are not rele-
vant for capturing geographic risk. If an insurance company uses polygons for
geographic ratemaking, it is crucial to verify that risks within each polygon
are geographically homogeneous. The second issue is that polygon boundaries
may change in time. If postal codes are split, moved, merged or created, the
geographic ratemaking model will require changes. Finally, the type of loca-
tion information (coordinate or polygon) for the ultimate regression task may
be unknown while training the embeddings. For this reason, one should not
make the polygon depend on a specific set of boundary polygon shapes.

Attribute 3 (external) Geographic embeddings encode relevant external infor-
mation. There are two reasons for using external information. The first is that
geographic effects are complex, so we need a large volume of geographic infor-
mation to capture the confounding variable that generates them. Constructing
geographic embeddings with a dataset external to one’s specific problem may
increase the quantity and quality of data, providing new information for spa-
tial prediction. The second reason is that geographic embeddings can produce
rates in territories with no historical loss experience, as long as we have exter-
nal information for the new territory. Traditional geographic models capture
geographic effects from experience but are useless to rate new territories. If
we train geographic embeddings on external datasets that cover a wider area
than the loss experience of an insurance company, we may use the geographic
embeddings to capture geographic effects in territories with no loss experience.
This reason is related to using one-hot encodings of territories; see Blier-Wong
et al. (2021) for further illustrations. Finally, the external information should
be relevant to the insurance domain. Although geographic embeddings could
be domain agnostic (general geographic embeddings for arbitrary tasks), our
ultimate goal is geographic ratemaking, so we select the external information
that is related to causes of geographic risks.

Step 4 of the embedding construction process is to evaluate representations.
There are two types of evaluations for embeddings: the most important are
extrinsic evaluations, but intrinsic evaluations are also significant (Jurafsky
and Martin, 2009). One evaluates embeddings extrinsically by using them in
downstream tasks and comparing their predictive performance. In P&C actu-
arial ratemaking, one can use the embeddings within ratemaking models for
different lines of business and select the embedding model that minimizes the
loss on out-of-sample data.

According to our knowledge, there are no intrinsic evaluation methods
for geographic embeddings. We propose one method in this paper and dis-
cuss other approaches in the conclusion. Intrinsic evaluations determine if the
embeddings behave as expected. To evaluate embeddings intrinsically, one can
verify if they satisfy the three attributes proposed in Section 2. To validate
TFL, we can plot individual dimensions of the embedding vector on a map.
Embeddings that satisfy TFL vary smoothly, and one can inspect this property
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FIGURE 3: Coordinates vs polygons.

visually. Section 4.6 presents the implicit evaluation for the implementation on
Canadian census data.

3. CONVOLUTION-BASED GEOGRAPHIC EMBEDDING MODEL

In this section, we describe an approach to construct geographic embeddings.
We will prepare the data and explain the representation model choices for the
encoder in Step 1 and the decoder in Step 2.

3.1. Preparing the data

Suppose we are interested in creating a geographic feature that characterizes
a location s. Following attribute 3 (external), we must first collect geographic
information for location s. Objects characterized by their location in space can
be stored as point coordinates or polygons (boundary coordinates) (Anselin
et al., 2010). In Figure 3, the individualmarksA, B, C andD are point patterns,
and the different shaded areas are polygons.

To construct the representationmodel, we assume that we have one or many
external datasets in polygon format, with a vector of data for each polygon.
This is the case for census data in North America. Suppose the coordinate of s
is located within the boundaries of polygon S, then one associates the external
geographic data from polygon S to location s. We will use the notation γ ∈R

d

to denote the vector of geographic variables.
We first modify the input data for the representation model to satisfy the

TFL and coordinate attributes. To create an embedding of location s, we will
not only use information from location s but also data from surrounding loca-
tions. Since each coordinate within a polygon may have different surrounding
locations, the resulting embeddings will not be polygon-based, satisfying the
coordinate attribute. An approach to satisfy TFL is to use an encoder that
includes a notion of nearness. Convolutional neural networks (CNNs) have the
property of sparse interactions, meaning the outputs of a convolutional oper-
ation are features that depend on local subsets of the input (Goodfellow et al.,
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(a) (b) (c) (d)

FIGURE 4: Creating the grid of neighbors.

2016). CNNs accept matrix data as input. For this reason, we will define our
neighbors to form a grid around a central location. The representationmodel’s
input data are the geographic data square cuboid (GDSC) from Blier-Wong
et al. (2020), which we present in Algorithm 1 and explain below.

To create the geographic data cuboid for a location s with coordinate (lon,
lat), we span a grid of p× p neighbors, centered around (lon, lat). Each neigh-
bor in the grid is separated horizontally and vertically by a distance of w. The
lines 1 to 4 of Algorithm 1 create the matrix of coordinates for the neighbors,
and we illustrate each transformation in Figure 4.

Each coordinate in δ has geographic variables γ ∈R
d , extracted from dif-

ferent external data sources of polygon data. The set of variables for every
location in δ, which we note γ

δ
, forms a square cuboid of dimension p× p× d,

which we illustrate in Figure 6. We can interpret the GDSC as an image
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FIGURE 5: Set of neighbor coordinates δ.

FIGURE 6: Data square cuboid γ
δ
.

with d channels, with one channel for each variable. Algorithm 1 presents
the steps to create the data square cuboid for a single location. Lines 1 to
4 generate the set δ for the center location (the matrix of neighbor coordi-
nates), while lines 5 to 8 fill each coordinate’s variables. The random rotation
is present such that our model does not exclusively learn effects in the same
orientation.

If the grid size p is even, δ does not include the center coordinate. This
means the GDSC depends only on neighbor information and not information
of the center point itself. We present, in Figure 7, the entire convolution-
based model architecture of Continuous Bag of Word (CBOW)-convolutional
regional autoencoder (CRAE). The following two subsections will detail the
components of the encoder and of the decoder.

3.2. Step 1: Constructing the encoder

As explained in Section 2.1, the encoder generates a latent representation from
a bottleneck, which we then extract as embeddings. Above, we constructed the
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FIGURE 7: Convolution-based geographic embedding model.

FIGURE 8: Unrolling example for a 2× 2× 2 cuboid. Different colors are different variables.

input data to have a square cuboid shape to use CNNs as an encoder. The
encoder accomplishes two types of transformations: reducing the size of the
features and transforming a three-dimensional tensor into a one-dimensional
vector. The encoder has convolutional operations (Conv1 and Conv2 in
Figure 7), reducing the size of the hidden square cuboids (also called feature
maps in computer vision) after each set of convolutions. Then, we unroll (from
left to right, top to bottom, front to back, see Unroll in Figure 8) the square
cuboid into a vector. The unrolled vector will be highly autocorrelated: since
the output of the convolutions includes local features, features from the same
convolutional layer will be similar to each other, causing collinearity if we use
the unrolled vector directly within a GLM. For this reason, we add fully con-
nected layers after the unrolled vector (see FC1 and FC2 in Figure 7). The last
fully connected layer of the encoder is the geographic embedding vector, noted
γ ∗. This layer typically has the smallest dimension of the entire representa-
tion model. For a geographic embedding of dimension �, the encoder will be a
function R

p×p×d →R
�.

3.3. Step 2: Constructing the decoder

The decoder guides the type of information that the embeddings encode, that
is, selects which domain knowledge to induce into the representations. In
our model, the decoder attempts to predict the input variables γ , so that the
complete model is similar to an autoencoder.

In this paper, we present an improvement of the CRAE from Blier-Wong
et al. (2020) by changing the decoder, see the Supplementary Materials for
details on the original model. One can interpret the new model as using
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contextual variables to predict the central variables, directly satisfying the coor-
dinate attribute. This same motivation was suggested for NLP in Collobert
and Weston (2008) and applied in a model called CBOW (Mikolov et al.,
2013). For this reason, we call the new model CBOW-CRAE. The input of
CBOW-CRAE is the GDSC. The decoder attempts to predict the variables γ

for location s. Therefore, the decoder is a series of fully connected layers that
act as a function R

� →R
d . The loss function for CBOW-CRAE is the average

reconstruction error on the vector of variables for the central location:

L= 1
N

N∑
i=1

||γ̃i − γi||2 , (1)

where γ̃i = g
(
f

(
γ

δi

))
is the output of the autoencoder, f is the encoder and g

is the decoder.
This model satisfies desirable attributes 1 to 3 since

1. the encoder is a CNN, which captures sparse interactions from neigh-
boring information, encoding the notion of nearness;

2. the embeddings are coordinate-based: as the center coordinate moves,
the neighboring coordinates also move, so center coordinates within the
same polygon may have different GDSCs;

3. the model uses external data as opposed to one-hot encodings of
territories.

4. IMPLEMENTATIONS OF GEOGRAPHIC EMBEDDINGS

In this section, we present an implementation of geographic embeddings
using census data in Canada. We select census data since they contain cru-
cial socio-demographic information on the customer’s geography; geographic
embeddings trained with census data will compress this information. We first
present the census data in Canada, along with issues related to some of its
characteristics. Then, we explain the architectural choices and implementa-
tions for the GDSC, the encoder and the decoder. Finally, we perform intrinsic
evaluations of the geographic embeddings.

4.1. Canadian census data

Statistics Canada publishes census data every 5 years; our implementation uses
the most recent version (2016). The data are aggregated into polygons called
FSAs, which correspond to the first three characters of a Canadian postal
code. There are 1640 FSAs in Canada, and each polygon in Figure 5 repre-
sents a different FSA. The grid of neighbor coordinates of Figure 5 contains
eight points from the same FSA as the central location, represented by the
red star.
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The first issue with using census data for insurance pricing is the use of
protected attributes, that is, variables that should legally or ethically not influ-
ence the model prediction. One example is race and ethnicity (Frees, 2015). To
construct the geographic embeddings, we discard all variables related to eth-
nic origin (country of origin, mother tongue, citizen status). We retain only
variables that a Canadian insurance company could use for ratemaking and
end up with 512 variables that we denote γ . In the Supplementary Materials,
we provide a complete list of the categories of variables within the census
dataset.

It is common practice in machine learning to normalize input variables such
that they are all on the same scale. We use min-max rescaling on all vari-
ables such that the range of each variable is [0, 1]. Normalization requires
special attention for aggregated variables like averages, medians and sums:
some must be aggregated with respect to a small number of observations, oth-
ers with respect to the population within the FSA of interest and others with
the Canadian average. For example, the FSA population is normalized with
respect to all FSAs in Canada. For age group proportions (for instance, the
proportion of 15- to 19-year-olds), we normalize with respect to the current
FSA’s total population.

When using Algorithm 1, some coordinates do not belong to a polygon
index, which happens when the coordinate is located in a body of water. To
deal with this situation, we created a vector of missing values filled with the
value 0. Finally, we project all coordinates to Atlas Lambert (1772) to reduce
errors when computing Euclidean distances with coordinates.

4.2. Geographic data square cuboid

Now that we have prepared the census data, we can construct the GDSC for
our implementation. The parameters for the GDSC include square width w
and pixel size p. One can interpret these values as smoothing parameters. The
square width w affects the geographic scale of the neighbors, while the pixel
size p determines the density of the neighbors. For very flexible embeddings,
one can choose small w so that the geographic embeddings will capture local
geographic effects. If the embeddings are too noisy, then one can increase p
to stabilize the embedding values. Ultimately, the importance is the span of
the grid, determined by the farthest sampled neighbors. For an even value of
w, the closest sampled neighbor coordinates are the four corners surrounding
the central location at a distance of p/

√
2 units from the central location. The

farthest sampled neighbors are the four outermost corners of the grid at a dis-
tance of p(w− 1)/

√
2 units. Selecting the best parameters is a tradeoff between

capturing local variations in densely populated areas and smoothing random
fluctuations in rural areas. Insurance companies could construct embeddings
for rural portfolios and urban portfolios with different spans to overcome
this compromise. Another solution consists of letting the parameters depend
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on local characteristics of the population, such as population density (select
parameters such that the population contained within a grid is above a thresh-
old) or the range of a variogram (select parameters such that the observations
within the grid still exhibit geographic autocorrelation).

We consider square widths of w= {8, 16} and pixel sizes of p= {50, 100, 500}
m. Our experiments showed that a square width of w= 16 and a pixel size of
p= 100 m produced smaller reconstruction errors. The GDSC algorithm then
samples 162 = 256 neighbors, the closest one being at a distance of 71m and the
farthest one at 1061 m from the center location. Since we have 512 variables
available for every neighbor, the size of the input data is 512× 16× 16 and
contains 131,072 values.

The dataset used to train the representation models is composed of a GDSC
for every postal code in Canada (888,533 by the time of our experiments). A
dataset containing the values of every GDSC would take 2TB of memory,
too large to hold in most personal computers. For this reason, we could not
generate the complete dataset. However, one can still train geographic embed-
dings on a personal computer by leveraging the fact that many values in the
dataset repeat. For each postal code, one generates the grid of neighbor coor-
dinates (lines 1–4 of Algorithm 1) and identifies the corresponding FSA for
each coordinate (line 6 of Algorithm 1). We then unroll the grid from left to
right and from top to bottom into a vector of size 256. For memory reasons,
we create a numeric index for every FSA (A0A= 1, A0B= 2, . . . , Y1A= 1640)
and store the list of index for every postal code in a CSV file (1GB). Another
dataset contains the normalized geographic variables γ for every FSA (15.1
MB). Most modern computers can load both datasets in RAM. During train-
ing, our implementation retrieves the vector from the index and retrieves the
values associated with each FSA (line 8 of Algorithm 1), then rolls the data
into GDSCs.

4.3. CBOW-CRAE encoder

In this section, we present the architecture and dimensions of the encoder
from the selected model. To adequately explain the encoder (and provide the
necessary tools to replicate our study), we delay the comparison of multiple
architectures to the Supplementary Materials. The encoder contains two con-
volution layers (Conv1 and Conv2), followed by two fully connected layers
(FC1 and FC2), as in the left part of Figure 7, and contains 27,866,896parame-
ters. The code for the CBOW-CRAEmodel is in the SupplementaryMaterials,
where we also provide more model details. The encoder’s input is a GDSC of
size 512× 16× 16, and the output of the encoder must be a vector of size �. Our
experiments show that embedding dimension � = 16 works well for our appli-
cations. One must construct an encoder architecture that gradually decreases
the feature size from 131,072 to 16. One must avoid decreasing the feature size
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too quickly, since the encoder may fail to capture valuable features. We, there-
fore, use the architecture heuristics of Simonyan and Zisserman (2014) and
He et al. (2016) to construct the encoder architecture. The idea is to reduce
the width and height of intermediate features and increase the depth between
convolution blocks.

We use convolution filters of dimension 3× 3 throughout, such that convo-
lution operations capture local effects at the scale of 300× 300 m2. We also
apply half-padding to the features, meaning we surround each layer of feature
maps with zeros, such that the output of the convolution operation retains
the same dimension as the input. After the convolution operation, we apply
a batch normalizing transform (Ioffe and Szegedy, 2015), where each hidden
feature is normalized to have zero mean and unit variance, then train new
translation and scale parameters for each hidden feature to restore the repre-
sentation flexibility. Then, we apply max-pooling with a stride of two, meaning
that we retain only the maximum value for each 2× 2 grid (with increments of
two). We refer the interested reader to Dumoulin and Visin (2018) for details
on convolution and pooling arithmetic, including illustrations on half-padding
and max-pooling.

As an example, consider the first convolution block of the CBOW-CRAE
encoder with input dimension 512× 16× 16. First, we add zeroes around each
layer of the cube such that the dimension becomes 512× 18× 18. The result
of a single convolution operation has dimension 1× 16× 16 (because of the
half-padding, the width and height remain the same). The depth of the convo-
lution block doubles from one block to the next, so the first convolution block
includes 1024 convolutions, and the resulting dimension is 1024× 16× 16.
Finally, max-pooling separates the 16× 16 feature layers into 2× 2 blocks
and returns the block-wise maximum value. There are eight 2× 2 blocks for
each row and column, so the result of applying max-pooling on a 16× 16
matrix is an 8× 8 matrix. The final output of the first block is a 1024× 8× 8
tensor.

Applying a second convolution block, one obtains a feature of dimension
2048× 4× 4. Then, one must transition from a three-dimensional tensor to a
one-dimensional vector, since the embeddings are in vector form. We apply
the unroll operation of Figure 8, and the result is a vector of length 32,768.
Then, we transform the unrolled vector through two fully connected layers,
the first of dimension 128 and the second of dimension � = 16. The most sig-
nificant drop in features size occurs in the first hidden layer; the size of FC1 is
about 0.4% of the unrolled vector. Although the dimension reduction at this
step is significant, we found that the hidden features in the unrolled vector
contain redundant information, possibly due to the weight sharing property of
convolutions.

To constrain the embedding values in [− 1, 1], the last activation function of
the encoder should be the hyperbolic tangent (tanh) function. The activation
functions for intermediate layers (Conv1, Conv2, FC1) are hyperparameters;
we compare tanh and leaky rectified linear unit (leaky ReLU, max (x, 0.01x)).

https://doi.org/10.1017/asb.2021.25 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.25


GEOGRAPHIC RATEMAKINGWITH SPATIAL EMBEDDINGS 15

TABLE 1

DIMENSIONS OF EACH COMPONENT OF THE CBOW-CRAE MODEL.

Encoder Decoder

Input Conv1 Conv2 Unroll FC1 FC2 FC3 FC4

Square cuboid depth 512 1024 2048 32,768 128 16 128 512
Square cuboid width × height 16 × 16 8× 8 4× 4 1 1 1 1 1
Feature size 131,072 65,536 32,768 32,768 128 16 128 512
% of parameters NA 17 68 NA 15 0 0 0

The leaky ReLU activation function generated the best performances, but the
models did not converge for every initial seed. Our selected models use leaky
ReLU, but sometimes required restarting the training process with a different
initial seed when embeddings saturate.

4.4. CBOW-CRAE decoder

The role of the decoder in the CBOW-CRAE model is to transform the
embedding vector γ ∗ ∈R

� back to the original geographic variable vector
γ ∈R

d . Akin to constructing the encoder, one must design a decoder archi-
tecture that gradually increases the feature dimension from 16 to 512. From
many empirical comparisons, we notice that the decoder requires at least one
hidden layer, but including more does not significantly reduce the reconstruc-
tion error. Indeed, one’s effort is more valuable in the encoder architecture
than the decoder. We select the ascent dimensions (FC3 and FC4) to be the
same as the fully connected descent dimensions (FC1 and FC2). The acti-
vation function for FC3 is the leaky ReLU, while the activation function
for FC4 is the sigmoid function (the sigmoid is the inverse link function for
logistic regression, (1− e−1)−1). We select the sigmoid as the last activation
function since the image of the sigmoid is (0, 1), which is the same as the
input variables. Table 1 presents the dimensions for the entire CBOW-CRAE
model.

4.5. Optimization strategy and training issues

We split the postal codes into a training set and a validation set. Since the
dataset is very large, we select a test set composed of only 5% of the postal
codes. We train the neural network on a GeForce RTX 2080 8 GB GDDR6
graphics card and the training time is approximately 2 days. The batch size is
256, which is the largest power of 2 that fits on the graphics card. We train the
neural networks in PyTorch (Paszke et al., 2019) with the Adam optimization
procedure from Kingma and Ba (2014). We initialize model weights according
to He et al. (2015). We do not use weight decay (L2 regularization) since the
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model does not overfit. The initial learning rate for all models is 0.001, and it
decreases by a factor of 10 when validation loss stops decreasing for 10 consec-
utive epochs. After five decreases, we stop the training procedure and return
the model with the smallest loss on the validation set.

The most significant issue during training is the saturation of initial hid-
den values (see, e.g., Glorot and Bengio (2010) for a discussion of the effect
of neuron saturation and weight initialization). The encoder and the decoder’s
output are, respectively, tanh and sigmoid activations, which have horizon-
tal asymptotes and small derivatives for high magnitude inputs. All models
use batch normalization, without which the embeddings saturate quickly.
Initializing the network with large weights, using the techniques from Glorot
and Bengio (2010), generated saturated embedding values of –1 or 1. To
improve training, we initialize our models with very small weights, such that
the average embedding value has a small variance and zero mean. The neural
network gradually increases the weights, so embeddings saturate less.

4.6. Implicit evaluation of embeddings

We now implicitly evaluate if the 16 dimensions of the embedding vector (gen-
erated by the large CBOW-CRAE model) follow attribute 1 (TFL). Figure 9
presents an empty map for a location in Montreal (to identify points of inter-
est), along with two embedding dimensions. The red star is the same coordinate
as in Figure 5. The map includes two rivers (in blue), an airport (bottom left),
a mountain (bottom middle) and other parks. These points of interest typi-
cally have few surrounding postal codes, so the maps of embeddings are less
dense than heavily populated areas. The maps of embeddings include no leg-
end because the magnitude of embeddings is irrelevant (regression weights will
account for their scale). Not only are the embeddings smooth, but different
dimensions learn different patterns. Recall that a polygon-based embedding
model will learn the same shape (subject to the shape of polygons). Since mod-
els based on the GDSC depend on coordinates, the embeddings’ shapes are
more flexible. Inspecting Figures 9(a) and (b) around the red star, we observe
that the embedding values form different shapes, and these shapes are different
from the FSA polygons of Figure 6, validating attribute 2 (coordinate).

When viewing embedding maps, we diagnosed an issue of embedding satu-
ration, as discussed in Section 4.5. Saturated embeddings all equal the value
–1 or 1, and because of the flat shape of the hyperbolic tangent activation
function, the gradients of the model weights are too small for the optimizer
to correct the issue. In Figure 10, we present the histogram of the embed-
ding values for dimensions 3, 4, 6, and the remaining dimensions combined.
A good embedding will have values distributed along the entire support [–1, 1],
as presented in Figure 10(a). Dimensions 3 and 6 are heavily saturated, hav-
ing most values equal exactly 1 or –1. If one includes embedding dimension 6
in a GLM, the feature will replicate the model intercept exactly. Embedding
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Empty map Dimension 1 Dimension 2

(a) (b) (c)

FIGURE 9: Visually inspecting embedding dimensions on a map for the Island of Montreal.

Other dimensions Dimension 3 Dimension 4 Dimension 6

(a) (b) (c) (d)

FIGURE 10: Histogram of embedding dimensions. Dimensions 3 and 6 are saturated.

dimension 3 is less problematic since there is a small proportion of –1 val-
ues but still exhibits saturation. Most embedding values from dimension 4 are
saturated at –1 but also have other values on the support of the activation func-
tion, which could provide useful information. We decide to discard embedding
dimensions 3 and 6 for our applications.We visually conclude that the remain-
ing embedding dimensions satisfy all desirable attributes 1 to 3 of geographic
embeddings.

5. APPLICATIONS

In this section, we present applications of geographic embeddings within pre-
dictive models for accident frequency. We present the regression parameters
along with p-values in Appendix A for everymodel in this section. For all appli-
cations, we organize datasets as in Table 2. All applications are on Canadian
data, so we project the coordinates to Atlas Lambert. Each observation also
has geographic embeddings to describe the geography of the observation. The
geographic embeddings remain the same, no matter the application. Finally,
we have typical non-geographic information like traditional actuarial features,
the exposure and the response variable.
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TABLE 2

EXAMPLE OF A GEOGRAPHIC DATASET WITH GEOGRAPHIC EMBEDDINGS.

Geographic
Index Coordinates embeddings Other features Exposure Response

i loni lati γ ∗
i1 · · · γ ∗

i� xi1 · · · xip ωi yi

1 lon1 lat1 γ ∗
11 · · · γ ∗

1� x11 · · · x1p ω1 y1
2 lon2 lat2 γ ∗

21 · · · γ ∗
2� x21 · · · x2p ω2 y2

...
...

...
...

. . .
...

...
. . .

...
...

...
n lonn latn γ ∗

n1 · · · γ ∗
n� xn1 · · · xnp ωn yn

5.1. Dataset 1: Car accident counts

The first application is to predict car accident frequency in different
postal codes on the Island of Montreal between 2012 and 2017. The
city of Montreal publishes an open dataset including the coordinates
of the closest intersection of car accidents (https://donnees.montreal.ca/
ville-de-montreal/collisions-routieres). We allocate the accidents to the nearest
postal code. We organize data as in Table 2, with each observation represent-
ing one postal code. We use the years 2012–2016 for the training dataset, which
contains 116,118 car accidents. We keep the year 2017 as an out-of-sample test
dataset, containing 19,997 car accidents.

The model for the first application is a generalized additive model with a
Poisson response to model the accident count. The relationship between the
expected value of the response variable Y , the coordinates and the geographic
embeddings is given by

ln (E[Yi])= β0 + fk(loni, lati)︸ ︷︷ ︸
spline component

+
14∑
j=1

γ ∗
ij βj,

︸ ︷︷ ︸
embedding component

i= 1, . . . , n, (2)

where fk is a bivariate spline function with k× k knots (in our application,
a bivariate tensor product smooth, see Wood (2012) for details). Note that
there are no traditional variables for the model described in (2). The num-
ber of knots in the splines is a hyperparameter controlling flexibility. Model
(2) contains a smooth geographic component from the bivariate spline, along
with a linear geographic embedding component. One notices an advantage
of geographic embeddings: instead of dealing with geographic coordinates
directly, they capture geographic effects linearly with regression coefficients.
Since geographic embeddings satisfy TFL, a linear combination of geographic
embeddings also follows TFL. Geographic embeddings do not entirely replace
geographic models: it is simple to combine traditional geographic models with
the embeddings.
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TABLE 3

PERFORMANCE COMPARISON FOR CAR ACCIDENT COUNT MODELS.

Without embeddings With embeddings γ ∗

k Training Test DoF Time (s) Training Test DoF Time (s)

0 – – – – 153,592 72,419 15.00 0
3 156,424 73,247 8.98 2 153,305 72,349 20.53 5
5 156,106 73,237 18.39 3 152,921 72,205 32.58 5
8 153,701 72,353 45.25 10 151,369 71,550 59.19 11
10 152,050 71,822 78.03 74 150,856 71,374 80.13 13
15 149,770 70,859 155.39 66 149,099 70,612 166.49 71
20 147,548 69,818 263.76 341 146,921 69,589 275.58 148
25 144,789 68,602 410.49 328 144,379 68,476 420.32 607

We compare the models with only the embedding component (k= 0 with
embeddings), models with only spline components (k> 0 without embeddings)
and combinations of embeddings and splines (k> 0 with embeddings). Table 3
presents the training deviance, test deviance, model degrees of freedom (DoF)
and training time in seconds using the restricted maximum likelihood method
using the mgcv R package. The DoF from the embedding component is con-
stant at 14. For the spline component, we provide the effective DoF, which
corresponds to the trace of the hat matrix of spline predictors; seeWood (2012)
for details. The training times are based on a computer with Intel� CoreTM

i5-7600K CPU@ 3.80GHz.
One observes that for fixed k, including embeddings in the model decreases

both train and test deviance. Increasing k, the number of knots in the spline
component increases the effective DoF more than linearly. On the other hand,
including the embedding component increases the effective DoF by 14 since
embeddings’ dimension remains the same. The number of knots needed in a
spline model without embeddings to outperform the GLM without splines is
k= 7, with 36.81 effective DoF. To improve model performance, it is gener-
ally more advantageous to add the embedding component than to increase the
number of knots in the splines (based on the increase in effective DoF and the
increase in training time).

To evaluate the embeddings extrinsically, one can study the statistical sig-
nificance of the regression parameters. We have 13 embeddings that have
statistically significant regression coefficients at the 0.05 threshold, with 11
also statistically significant at the 10× 10−5 level, whichmeans that geographic
embeddings capture useful features.

5.2. Dataset 2: Fire incident counts

The second application predicts fire incidents in different postal codes in
Toronto between 2011 and July 2019. The data come from City of Toronto
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TABLE 4

PERFORMANCE COMPARISON FOR FIRE INCIDENT MODELS.

Without embeddings With embeddings γ ∗

k Training Test DoF Time (s) Training Test DoF Time (s)

0 – – – – 36,323 13,979 15 0
3 37,622 14,360 6.94 2 36,161 13,940 21.57 5
5 37,084 14,186 19.45 5 36,019 13,897 30.41 12
8 36,480 13,985 49.80 28 35,840 13,846 52.02 20
10 36,371 13,937 67.23 64 35,628 13,777 76.89 47
15 35,414 13,758 147.71 176 34,814 13,612 157.89 206
20 34,461 13,500 251.97 446 34,046 13,420 256.66 410
25 33,713 13,401 364.21 861 33,312 13,319 369.28 1413

Open Data (https://open.toronto.ca/dataset/fire-incidents/). The dataset con-
tains the coordinates of the nearest major intersection of fire incidents, which
we allocate to the nearest postal code. We organize data as in Table 2, with
each observation representing one postal code. We use the years 2011–2017 for
the training dataset, containing 12,540 incidents. We keep the year 2018 and
the first half of 2019 as out-of-sample test dataset, containing 2918 incidents.

The model for the second application is also a generalized additive model
with a Poisson response. The relationship between the expected value of the
response variableY , the coordinate predictors and the geographic embeddings
is still (2). Table 4 presents the training and test deviance, along with effec-
tive DoF and training time (still based on a computer with Intel� CoreTM

i5-7600K CPU @ 3.80GHz.). One draws similar conclusions to the first appli-
cation: increasing k reduces the train and test deviance, and so does including
geographic embeddings in the model. The number of knots needed in a spline
model without embeddings to outperform the GLM without splines is k= 8,
with 49.8 effective DoF.

There are 10 embeddings with statistically significant regression coefficients
at the 0.05 threshold, with seven also statistically significant at the 10× 10−5

level. In the car accident application, the only regression coefficient that was
not significant at the 0.05 level was β11, which is highly significant for the fire
incidents frequency model.

The applications of datasets 1 and 2 compare the performance of geographic
splines and geographic embeddings. One observes that GAMs without embed-
dings outperform GLMs with embeddings once the number of knots was
sufficiently high. This finding is not surprising: the geographic embeddings in
Section 4 depend on socio-demographic variables. Other geographic effects
(meteorological, ecological, topological) could also affect the geographic risk.
However, adding the embeddings to the model increased the performance, so
that models should include embeddings for both datasets. One concludes that
the geographic distribution of the population partially explains the geographic
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distribution of car accidents and fire incidents. Since residual effects (captured
by the GAM splines) improve the model, socio-demographic information does
not entirely explain the geographic distribution of risk. These conclusions hold
for two highly populated cities (Montreal and Toronto) and for two predictive
tasks that are not directly related to insurance, but which model P&C perils
(car accident and fire incident counts).

5.3. Dataset 3: Home insurance

The third dataset contains historical losses of home insurance contracts for
a portfolio in the province of Quebec, Canada, between 2007 and 2011. The
data come from a large Canadian P&C insurance company and contain over
2 million observations. The home insurance contract covers six perils, includ-
ing fire, water damage, sewer backup (SBU), wind & hail (W&H), theft and
a final category called other. The dataset provides the house’s postal code
for each observation, so we set the coordinates as the central point of the
postal code and extract the embeddings from that same postal code. We also
have traditional actuarial variables describing the house and the customer for
each contract, along with the contract’s length (exposure ω, treated as off-
sets in our models). We organize data as in Table 2, with each observation
representing one insurance contract for one or fewer years. For illustration
purposes, we select four traditional variables in the models, including x1: age
of the building, x2: age of the client, x3: age of the roof and x4: building
amount.

The third application uses a GAM with a Poisson response to model the
home claim frequency. The relationship between the response variable Y and
the traditional variables, the geographic embeddings and the exposure is

ln (E[Yi])= β0 + lnω +
4∑
j=1

xijαj

︸ ︷︷ ︸
traditional component

+ fk(loni, lati)︸ ︷︷ ︸
spline component

+
14∑
j=1

γ ∗
ij βj,

︸ ︷︷ ︸
embedding component

i= 1, . . . , n. (3)

The training times provided for all home insurance dataset comparisons
are based on a computer with two Intel� Xeon� Processor E5-2683 v4
@2.10GHz (about 3.7 times faster than the i5 processor when running at full
capacity).

5.3.1. Home accident frequency in Montreal
In the first comparison with the home insurance dataset, we attempt to predict
the total claim frequency for an insurance contract on the Island of Montreal.
The training data are calendar year losses for 2007–2010, while the test data
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TABLE 5

PERFORMANCE COMPARISON FOR HOME TOTAL CLAIM FREQUENCY MODELS (MONTREAL).

Without embeddings With embeddings γ ∗

k Training Test DoF Time (s) Training Test DoF Time (s)

0 – – – – 66,013 14,383 19 58
3 66,149 14,390 6.69 242 65,952 14,399 23.70 483
5 65,991 14,400 16.49 108 65,886 14,402 33.61 1553
8 65,838 14,390 34.00 1306 65,778 14,388 48.65 1024
10 65,766 14,389 46.03 2201 65,733 14,388 58.21 1540
15 65,691 14,389 64.44 2533 65,683 14,391 73.42 3617
20 65,652 14,386 75.37 7733 65,651 14,387 82.29 12,368
25 65,644 14,386 80.36 50,902 65,642 14,387 86.39 50,763

are the calendar year losses for 2011. Table 5 presents the training and test
deviance, along with effective DoF and training time.

The best model is the GLMwith embeddings. Including splines with embed-
dings does not improve the model: although the training deviance decreases,
the test deviance increases. One concludes that when smoothing the frequency
of rare events with limited observations, splines learn patterns that overfit on
observed loss experience and do not learn geographic effects that generalize
to new observations. These conclusions are in contrast to the applications of
Sections 5.1 and 5.2 (which had higher frequencies), where increasing the knots
decreased the test deviance.

5.3.2. Home claim frequency in the entire portfolio
In the second comparison with the home insurance dataset, we train the
ratemaking models on the entire province of Quebec. This application is most
representative of the ratemaking models in practice. We note that dataset 1
(Montreal) covered 365 km2, dataset 2 (Toronto) covered 630 km2, while this
application covers almost 1,400,000 km2, so the spline component will require
a much larger number of knots to replicate the flexibility of the models in
Sections 5.1, 5.2 and 5.3.1. Also, most of the area in Quebec is uninhabited,
so much of the flexibility is wasted on locations with no observations. The
geographic embeddings in this application are the same as the previous appli-
cations, so the models with geographic embeddings have the same flexibility
without significantly increasing the effective DoF. Table 6 presents the train-
ing and test deviance, along with effective DoF and training time for models.
Note that we omit k= 25 since training the model would require too much
RAM on the compute server.

Once again, the best model is the GLM with embeddings. One observes a
decreasing trend in the training deviance as k increases, but an increase in test
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TABLE 6

PERFORMANCE COMPARISON FOR HOME TOTAL CLAIM FREQUENCY MODELS (PROVINCE OF
QUEBEC).

Without embeddings With embeddings γ ∗

k Training Test DoF Time (s) Training Test DoF Time (s)

0 – – – – 332,577 80,663 19 312
3 333,231 80,766 7.18 4604 332,422 80,785 26.16 18,158
5 332,779 80,767 18.63 5709 332,251 80,780 35.18 9809
8 332,346 80,837 43.97 17,775 331,948 80,777 60.43 28,823
10 331,791 80,771 64.89 41,212 331,550 80,748 82.86 52,041
15 331,174 80,853 126.60 37,885 331,025 80,825 138.64 56,316
20 330,858 80,852 181.65 59,935 330,763 80,825 191.97 51,102

deviance follows. One concludes that geographic embeddings capture all signif-
icant geographic risk, and splines overfit the training data without generalizing
to new observations.

5.3.3. Extrinsic evaluation for home claim frequency
We now extrinsically evaluate geographic embeddings for predicting home
insurance claim frequency. The home insurance contracts in our dataset cover
six perils. We train seven GLM models with geographic embeddings and
the four traditional variables: one for the total claims frequency and six for
the claim frequency decomposed by individual peril. Recall that p-values are
available in the Appendix. For clarity and simplicity, we use the abuse of termi-
nology significant embeddings to mean that the regression coefficient associated
with an embedding dimension is statistically significant, based on the p-value
and a 0.05 threshold. There are 12 embedding dimensions that are significant
for the majority of models, and regression coefficients β4 and β5 are signifi-
cant for all models. The signs of the regression coefficients are not the same for
every peril, meaning some embedding dimensions have different directions on
predictions across perils.

The peril GLMs with the most significant geographic embeddings are theft
and other. Since the embeddings capture socio-demographic effects, it makes
sense that the theft peril, which onemostly associates with socio-demographic
actions, has the highest number of significant embeddings. The authors have
no knowledge of the contents of the other peril so we avoid interpreting this
result. The perils with the least number of significant embeddings are fire and
W&H. One notices that wind and hail are a meteorological phenomena, making
sense that geographic embeddings, built on socio-demographic variables, are
not all significant. One concludes that geographic embeddings generate sta-
tistically significant regression coefficients, so they are useful for ratemaking
models. This conclusion holds when deconstructing the claim frequency into
individual perils.
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TABLE 7

TEST DEVIANCE WITH DIFFERENT TRAINING DATASETS BY POPULATION CENTERS.

Population center WT OOT GAM Population center WT OOT GAM

Montreal 14,383 14,364 14,400 Sherbrooke 2783 2754 2782
Quebec 3803 3787 3801 Saguenay 961 958 963
Laval 4043 4046 4043 Lévis 2505 2500 2500
Gatineau 6495 6406 6495 Trois-Rivières 2961 2952 2961
Longueuil 3184 3203 3185 Terrebonne 2674 2656 2677

5.3.4. Predicting in a new territory
In the third comparison with the home insurance dataset, we determine if
embeddings can predict geographic risk in a territory with no historical losses.
On the one hand, we train a GLM with embeddings on a dataset with no his-
torical losses from a sub-territory. On the other hand, we train a GLM with
embeddings or a GAM with bivariate splines on a dataset with observations
exclusively from that sub-territory. Then, we compare the performance of both
approaches. To study this question, we split the dataset into two territories;
Figure 11 illustrates an example for the Island of Montreal. The set of poly-
gons in blue represents the Island of Montreal (see Figure 11(a) for a focused
look on the island), and in red is the remainder of the province (see Figure 11(b)
for the entire province, with Montreal in blue at the bottom left). We train a
Poisson GLM with embeddings for the two datasets: model out of territory
(OOT) trains on all observations in the province except Montreal (red area),
while model within the territory (WT) trains on observations inMontreal (blue
area). Therefore, model OOT never saw any observations from Montreal. We
also train a Poisson GAMwith k= 10 as a baseline. All models use 2007–2010
calendar years for training data. Then, we compare the performance of the
models on Montreal in 2011 (blue territory). The test deviance for model OOT
is 14,364, while the test deviance for model WT is 14,383. In Table 7, we repro-
duce the results for the population centers in Quebec with a population of over
100,000 and present the deviance computed on 2011 data.

The models trained with OOT typically have smaller test deviance, so gen-
eralize better. For a few population centers, it is more beneficial to use data
from the actual territory, but GLMs with geographic embeddings still out-
perform GAMs. These results lead to an important conclusion: to predict
geographic risk in a sub-territory of a dataset, it is more advantageous to use
geographic embeddings on a model trained with a larger quantity of losses, no
matter where these losses occur, than to train a model using data from the sub-
territory exclusively. When performing territorial ratemaking with traditional
methods like GAMs, one typically focuses on one sub-territory at a time, thus
ignores the remainder of the training data. On the other hand, OOTmodels use
much larger datasets than the WT or GAMmodels, and this increased volume
is more beneficial to improve the predictive performance than only studying

https://doi.org/10.1017/asb.2021.25 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.25


GEOGRAPHIC RATEMAKINGWITH SPATIAL EMBEDDINGS 25

FIGURE 11: Blue (darkest): Island of Montreal, red (lightest): Rest of Quebec.

the information from the territory of interest. This means that a model using
geographic embeddings on a large quantity of information can improve geo-
graphic prediction in a territory with no historical losses better than if one had
historical losses. In practice, one would not intentionally omit the observations
in a sub-territory to predict the geographic risk: we construct this compari-
son to show that GLMs with embeddings can predict the geographic risk in
territories with no historical losses.

6. CONCLUSION AND DISCUSSION

This paper shows that geographic models (bivariate splines) are sometimes
unnecessary to capture the geographic distribution of risk. Instead, we can
first capture the population’s geographic distribution within a geographic rep-
resentation learning model. Using the embedding in a simpler model such as
a GLM predicts the geographic risk of home insurance losses more accurately
than explicit geographic GAMs and enables predicting losses in territories with
no historical losses.

The ideas of Sections 3 and 4 require much technical knowledge on neural
networks and geographic models. These skills are outside of the typical actu-
ary’s knowledge, although this is rapidly changing. One main advantage of the
geographic embedding approach is that another analyst can use them within
any predictive model after constructing the geographic embeddings. In both
applications of Section 5, we use the same set of embeddings for postal codes;
we did not need to create specific representations for specific applications since
we keep the geographic embeddings general. This could lead to a new rela-
tionship between actuaries, other domain experts and data scientists: one of
a streamlined process of creating representations of novel sources of data,
followed by actuarial modeling within existing models, akin to an assembly
line.

https://doi.org/10.1017/asb.2021.25 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.25


26 C. BLIER-WONG, H. COSSETTE, L. LAMONTAGNE AND E. MARCEAU

Training the embeddings in Section 4 required no knowledge of the insur-
ance industry nor insurance data. The resulting embeddings are a geographic
compression of socio-demographic information from census data. For this rea-
son, the same set of embeddings could also be used for other tasks in domains
where socio-demographic information could be useful, including life insurance,
urban planning, election forecasting and crime rate prediction.

Note that embeddings do not entirely replace geographic models: they pro-
vide a simple way of compressing socio-demographic data into a vector. In
some cases, GLMs using geographic embeddings are useful enough to avoid
complex geographic models. In others, they provide a simple vector of features
such that ratemaking models perform well.

We offer two justifications of why we believe geographic embeddings per-
form so well. First, the embeddings capture geographic patterns that represent
census information on a location and its neighbors. Since human-generated
risks are closely related to human information, the geographic distribution of
census embeddings will likely be related to the geographic distribution of risks.
Therefore, a model using the census embeddings, even one as simple as aGLM,
will capture complex geographic risk. Second, insurance data are noisy, so a
model requires a high volume of historical losses to generate credible predic-
tions. To build a geographic model, one can only use a subset of data to learn
the geographic effect: the size of territories must be large enough to achieve
credibility. When using geographic embeddings, the same features are used for
the entire model, so the regression parameters associated with the geographic
embeddings achieve credibility faster using fewer parameters. One can inter-
pret these two claims as follows: observations from Montreal can help predict
the geographic risk in Quebec since they both use the same geographic features.
If an embedding dimension inMontreal generates higher risk, a GLMwill cap-
ture this effect. An observation in Quebec with a similar embedding dimension
will predict a similarly higher risk, making sense because similar embedding
dimensions imply similar census data, meaning the same type of individuals
inhabits both places so that the socio-demographic risks will be similar.

We proposed one intrinsic evaluation for geographic embeddings. For
more, we could look at the field of NLP, where embeddings are used for many
applications (Mikolov et al., 2017). Researchers in this field have developed a
set of tasks to evaluate the quality of embeddings. A common intrinsic evalu-
ation task for NLP is computing a similarity distance between different two
word embeddings and comparing the results with human similarity ratings
from datasets like wordsim353 (Finkelstein et al., 2002). One can also compare
the similarity between different locations. For example, select three coordi-
nates: two from similar territories and one from a dissimilar one. Embeddings
intrinsically make sense if the similar territories have a smaller cosine distance
than with the dissimilar embedding. This task depends on human interpre-
tation, so without a survey asking many participants to rate the similarity
of various territories, this intrinsic evaluation is not reliable for geographic
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embeddings. Future work on geographic embeddings could perform such a
survey for an additional intrinsic evaluation.
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APPENDIX A SIGNIFICANCE CODES FOR GLM MODELS

TABLE 8

p-VALUES FOR CAR COUNT GLM MODEL.

Parameter p-value Parameter p-value Parameter p-value Parameter p-value

β0 0.00000 β4 0.00000 β8 0.00355 β12 0.00000
β1 0.00000 β5 0.00000 β9 0.00000 β13 0.00000
β2 0.00000 β6 0.00752 β10 0.00000 β14 0.00000
β3 0.00000 β7 0.00000 β11 0.07549

TABLE 9

p-VALUES FOR FIRE COUNT MODEL.

Parameter p-value Parameter p-value Parameter p-value Parameter p-value

β0 0.00000 β4 0.00000 β8 0.13197 β12 0.11907
β1 0.00000 β5 0.00000 β9 0.00808 β13 0.00000
β2 0.05736 β6 0.10260 β10 0.01111 β14 0.00000
β3 0.00000 β7 0.00000 β11 0.00203
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TABLE 10

p-values FOR THE GLMS BY PERIL.

Total Fire Theft W&H Water SBU Other #

β0 0.0000 0.1575 0.0009 0.0235 0.0000 0.0009 0.0000 6
β1 0.0172 0.0204 0.0000 0.5152 0.0200 0.0001 0.0003 6
β2 0.0000 0.8525 0.0198 0.0000 0.0000 0.0000 0.0000 6
β3 0.0002 0.6756 0.0009 0.6661 0.3390 0.2551 0.0004 3
β4 0.0169 0.0006 0.0000 0.0000 0.0000 0.0052 0.0027 7
β5 0.0000 0.0050 0.0000 0.0000 0.0000 0.0000 0.0000 7
β6 0.0033 0.0595 0.0018 0.0000 0.5091 0.0227 0.1292 4
β7 0.0000 0.5498 0.0000 0.0000 0.3012 0.1538 0.0000 4
β8 0.1695 0.0155 0.2429 0.0000 0.0007 0.4392 0.0040 4
β9 0.0063 0.7287 0.6080 0.0033 0.0662 0.1104 0.8288 2
β10 0.0000 0.3631 0.0001 0.2265 0.0000 0.5243 0.0009 4
β11 0.0690 0.0032 0.0000 0.7296 0.0000 0.0051 0.9000 4
β12 0.0000 0.0038 0.2538 0.2029 0.0000 0.0002 0.0000 5
β13 0.0000 0.0000 0.0000 0.8895 0.0000 0.0012 0.0000 6
β14 0.5908 0.0172 0.0000 0.0000 0.7580 0.0000 0.0318 5
α1 0.0028 0.0001 0.0514 0.0000 0.2503 0.0000 0.0000 5
α2 0.0000 0.0000 0.0000 0.5023 0.0000 0.0000 0.0000 6
α3 0.0000 0.2040 0.2510 0.0000 0.0005 0.0000 0.0004 5
α4 0.0000 0.1022 0.0000 0.5681 0.0000 0.0000 0.0000 5
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