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Abstract
The theta graph ��,t consists of two vertices joined by t vertex-disjoint paths, each of length �. For fixed
odd � and large t, we show that the largest graph not containing��,t has at most c�t1−1/�n1+1/� edges and that
this is tight apart from the value of c�.
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1. Introduction
Given a graph F, the Turán number for F, denoted by ex(n, F), is the maximum number of edges in
an n-vertex graph that contains no subgraph isomorphic to F. Mantel and Turán determined this
function exactly when F is a complete graph, and the study of Turán numbers has become a fun-
damental problem in combinatorics (see [21, 22, 26] for surveys). The Erdős–Stone theorem [13]
determines the asymptotic behaviour of ex(n, F) whenever χ(F)� 3, and so the most interesting
Turán-type problems are when the forbidden graph is bipartite.

One of the most well-studied bipartite Turán problems is the even cycle problem: the study of
ex(n, C2�). Erdős initiated the study of this problem when he needed an upper bound on ex(n, C4)
in order to prove a theorem in combinatorial number theory [10]. The combination of the upper
bounds by Kővari, Sós and Turán [23] and the lower bounds by Brown [5] and Erdős, Rényi and
Sós [12] gave the asymptotic formula

ex(n, C4)∼ 1
2
n3/2.

It is now known that for certain values of n the extremal graphs must come from projective
planes [15, 16, 19], and this is conjectured to be the case for all n (see [17]).

A general upper bound for ex(n, C2�) of c�n1+1/� for sufficiently large n was originally claimed
by Erdős [11] and first published by Bondy and Simonovits [4], who showed that one can take
c� = 20�. Subsequent improvements of the best constant c� were made to 8(�− 1) by Verstraëte
[28], to (�− 1) by Pikhurko [25], and to 80

√
� log � by Bukh and Jiang [8], and this final bound is
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As stated above, we have an asymptotic formula for ex(n, C4). Moreover, the upper bound on
ex(n, C2�) is of the correct order of magnitude for � ∈ {3, 5} [2, 30], that is, ex(n, C2�)=�(n1+1/�)
for these values of �. However, unlike the case of C4, the sharp multiplicative constant is not
known; see [20] for the best bounds on ex(n, C6). The order of magnitude for ex(n, C2�) is
unknown for any � /∈ {2, 3, 5}. The best known general lower bounds are given by Lazebnik,
Ustimenko and Woldar [24] (but see [27] for a better bound for the ex(n, C14) case).

Although it is unclear whether ex(n, C2�)=�(n1+1/�) holds in general, more is known if
instead of forbidding a pair of internally disjoint paths of length � between pairs of vertices (i.e. a
C2�), one forbids several paths of length � between pairs of vertices. For t ∈N, let��,t be the graph
made of t internally disjoint paths of length � connecting two endpoints. The study of ex(n,��,t)
generalizes the even cycle problem as ��,2 = C2�. Faudree and Simonovits showed [14] that

ex(n,��,t)=O�,t(n1+1/�).
More recently, Conlon showed that this upper bound gives the correct order of magnitude

if the number of paths is a large enough constant [9]. That is, there exists a constant c� such that
ex(n,��,c�)=��(n1+1/�). Verstraëte andWilliford [29] constructed graphs with no�4,3 that have
( 12 − o(1))n5/4 edges.

In this paper we are interested in the behaviour of ex(n,��,t) when � is fixed and t is large.
When �= 2, a result of Füredi [18] shows that ex(n,�2,t)∼ 1

2
√
tn3/2. For general �, the result of

Faudree and Simonovits gives ex(n,��,t)� c�t�
2n1+1/�. We improve this bound as follows.

Theorem 1.1. For fixed �� 2, we have

ex(n,��,t)=O�(t1−1/�n1+1/�).

When � is odd, we show that the dependence on t in Theorem 1.1 is correct.

Theorem 1.2. Let �� 3 be a fixed odd integer. Then

ex(n,��,t)=��(t1−1/�n1+1/�).

We do not know if Theorem 1.1 is tight when � is even. In this case, our best lower bound is
the following.

Theorem 1.3. Let �� 2 be a fixed even integer. Then

ex(n,��,t)=��(t1/�n1+1/�).

It would be interesting to close the gap between Theorems 1.1 and 1.3 for even �.
Since the proof of Theorem 1.1 is relatively involved, we begin by introducing the main ideas

in Section 2, where we prove the theorem in the case �= 3. Then in Sections 3 and 4 we extend
this argument to prove the general upper bound. In Sections 5 and 6 we give constructions for
odd and even values of � respectively.

Related work. A year after this work was completed, Xu, Zhang and Ge [31] showed that a variant
of the construction in Theorem 1.3 demonstrates sharpness of the constant in the Kövari–Sós–
Turán theorem.

2. Case � = 3
In this section we present the proof of Theorem 1.1, dealing with the case �= 3. As every graph
of average degree 4d contains a bipartite subgraph of average degree 2d, and since every graph
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of average degree 2d contains a subgraph of minimum degree d, we henceforth assume that the
graph is bipartite of minimum degree d.

Lemma 2.1. Let r be any vertex of G. Call a vertex u bad if u �= r and u has more than t common
neighbours with r. If G is �3,t-free, then no neighbour of r is adjacent to t bad vertices.

Proof. Suppose w is adjacent to bad vertices u1, . . . , ut . Define a sequence of vertices z1, . . . , zt as
follows. We let zi be any common neighbour of r and ui other than w, z1, . . . , zi−1. It exists since
there are more than t common neighbours between r and ui. Then (wuizir)ti=1 is a collection of t
disjoint paths of length 3 from w to r.

Proof of Theorem 1.1 for �= 3. Let r be any vertex of G. Let L0 = {r}. Let L1 be the set of all the
neighbours of r. Let L2 be the set of all vertices at distance 2 from r that have at most t common
neighbours with r. Note that by Lemma 2.1 each vertex in L1 has at least d− t neighbours in L2.
Call a vertex v1 ∈ L1 a parent of v2 ∈ L2 if v1 and v2 are adjacent. Note that a vertex in L2 can have
at most t parents. Hence, each vertex in L2 has at least d− t neighbours in V(G) \ L1.

Let L3 be all vertices in V(G) \ L1 that are adjacent to some L2. Call v3 ∈ L3 a descendant of
v1 ∈ L1 if there is a path of the form v1v2v3 with v2 ∈ L2.

Let B(v1)⊂ L3 be the set of all the descendants of v1 that have more than t common neighbours
with v1. By Lemma 2.1, each v2 ∈N(v1) has fewer than t neighbours in B(v1).

LetH be the subgraph ofG obtained fromG by removing all edges between B(v1) andN(v1) for
all v1 ∈ L1. For a vertex v2 ∈ L2, an edge incident to it is removed only when v2 is adjacent to some
v1 ∈ L1 and the other endpoint of this edge is a neighbour of v2 in B(v1). We noted above that by
Lemma 2.1, each v2 ∈N(v1) has fewer than t neighbours in B(v1). Therefore since each v2 ∈ L2 has
at most t parents, each vertex in L2 has at least d− t− t(t− 1)= d− t2 neighbours in L3.

For a vertex v3 ∈ L3, let p(v3) be the number of paths (in H) of the form rv1v2v3 with vi ∈ Li.
We claim that p(v3)� 2t(t− 1) for every v3 ∈ L3. Indeed, suppose the contrary. We will construct
a �3,t subgraph as follows. First, we pick any path rv(1)1 v(1)2 v3 counted by p(v3). Since v3 and v(1)1
have at most t common neighbours, and since r and v(1)2 have at most t common neighbours, at
most 2t paths counted by p(v3) intersect {v(1)1 , v(2)2 }. So we can pick another path rv(2)1 v(2)2 v3 that is
disjoint from {v(1)1 , v(2)2 }. We can repeat this, at each step selecting path rv(i)1 v(i)2 v3 that is disjoint
from

⋃
j<i{v(j)1 , v(j)2 } for i= 1, . . . , t. The paths rv(i)1 v(i)2 v3 together form a �3,t . So p(v3)� 2t(t− 1)

after all.
Since each vertex in L1 has at least d− t neighbours in L2 and each vertex in L2 has at least

d− t2 neighbours in L3, it follows that

|L3|� d(d− t)(d− t2)
2t(t− 1)

.

Since |L3|� n, the result follows.

3. General case
Outline. The case of general � is similar to the case �= 3. Starting with a root vertex, we build
a sequence of layers L1, L2, . . . , L� such that each next layer is about d times larger than the pre-
ceding one. The condition of being ��,t-free is used to ensure that a vertex in Lj descends from a
vertex in Li in at most O(tj−i−1) ways. However, there are two complications that are not present
in the proof of the �= 3 case.

First, in the definition of L2 we excluded vertices that have too many neighbours back. Doing
so affects degrees of yet-unexplored vertices, such as those in L3. That was not important for the
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Figure 1. Layers in the exploration process.

�= 3 case because L3 was the final layer. In general, though, we will maintain a set of ‘bad’ vertices
and will control how removal of these vertices affects subsequent layers.

Second, removing vertices from later layers reduces degrees of the vertices in the preceding
layers. So, instead of trying to ensure that each vertex has large degree, we will maintain a weaker
condition that there are many paths from the root to the leaves of the tree.

Minimum and maximum degree control. As in the proof of the case �= 3, we will need to ensure
that all vertices are of large degree. For technical reasons that will become apparent in Section 4,
we need to control not only the minimum but also the maximum degrees. This is done with the
help of the following lemma.

Lemma 3.1 (Theorem 12 of [8] (arXiv version only)). Every n-vertex graph with � 6�cn1+1/�
edges contains a subgraph G such that

• the graph G′ has at least cn1/2� vertices, and
• degree of each vertex of G′ is between cv(G′)1/� and �cv(G′)1/� where �= (20�)2�.

Henceforth we assume that our graph is bipartite, and that each vertex has degree between d
and �d, where � is as above. We will show that d� � (8�t)�−1n(1+ o�(1)), and hence that every
��,t-free graph has at most 96�2t1−1/�n1/�(1+ o�(1)) edges (the factor of 6� is from the preceding
lemma, and another factor of 2 is because of passing to a bipartite subgraph).

Graph exploration process. We shall use the same terminology as in the case �= 3. Namely, if
v ∈ Li and u ∈ Li+1 are neighbours, then we say that v is a parent of u and u is a child of v. A
path of the form vivi+1 · · · vj with vs ∈ Ls for i� s� j is called a linear path; vertex vj is called a
descendant of vi. We let P(vi, vj) denote the number of linear paths from vi to vj. For sets A⊂ Li
and B⊂ Lj, we let P(A, B) denote the number of linear paths going from a vertex in A to a vertex
in B.

In addition to sets L0, L1, . . . , Lk we will also maintain sets B1, . . . , Bk−1 of bad vertices. All
the sets L0, L1, . . . , Lk, B1, . . . , Bk−1 will be disjoint. We shall say that we are at stage k if the
sets L0, L1, . . . , Lk and B1, . . . , Bk−1 have been defined but the sets Lk+1 and Bk have not yet
been defined. We let U def=V(G) \ (L0 ∪ · · · ∪ Lk ∪ B1 ∪ · · · ∪ Bk−1) denote the set of unexplored
vertices.

For v ∈ Li, let−→N (v) be the set of children of v, and let←−N (v) be the set of parents of v. We define
−→
deg (v) def= |−→N (v)| and

←−
deg (v) def= |←−N (v)|

to be the number of children and parents of v, respectively. The reason for this notation is that we
imagine that L0, . . . , Lk grow from left to right, as shown in Figure 1.

Let

Rm
def= (2�)m

m+ 1

(
2m
m

)
tm.
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Note that (1/(m+ 1))
(2m
m

)
is the mth Catalan number. We call a pair of layers (Li, Lj) with i< j

regular if, for every pair of vertices (vi, vj) ∈ Li × Lj, the number of linear paths from vi to vj is
P(vi, vj)� Rj−i−1.

We start the exploration process by picking a root vertex r and setting L0 = {r} and L1 =N(r).
At the kth stage the sets B1, B2, . . . , Bk−1, L0, L1, . . . , Lk satisfy the following properties.

P1. The root is preserved: L0 = {r}.
P2. No orphans: every vertex of Li for i= 1, 2, . . . , k has at least one parent.
P3. The explored part is tree-like: every pair of layers (Li, Lj) with 0� i< j< k is regular. (Note

that pairs of the form (Li, Lk) might be irregular.)
P4. Bad sets are small: |Bj|� τjdj−1 for all 1� j< k, where τj

def= 2�t
∑j−1

i=0 (i+ 1)�i.
P5. The ‘tree’ is growing: there are at least dk−1(d− ηk) linear paths from root r to layer Lk,

where ηk
def=∑k−2

i=0 ((�+ 1)Ri + 2(i+ 1)�t�i + τi).
P6. There are many children: each vertex in Lk has at least d neighbours in Lk−1 ∪ Bk−1 ∪U,

and each vertex in U has at least d neighbours in Lk ∪U.

The main step in going from the kth stage to the (k+ 1)st is to make P3 hold with j= k. To
that end, we rely on the following lemma, showing that only a few vk ∈ Lk are in pairs (vi, vk) that
violate P3.

Lemma 3.2 (the proof is in Section 4). Let

B′ def= {vk ∈ Lk : ∃i< k ∃vi ∈ Li P(vi, vk)> Rk−i−1}.
Then P(r, B′)� 2k�t(�d)k−1.

Assuming the lemma, we show next how to go from stage k to stage k+ 1, for k< �.
Because of P2, P(r, v)�←−deg (v) and thus←−deg (vk)� Rk−1 for every vk ∈ Lk \ B′. Since the degree

of every vertex of Lk is at least d, by P6 this implies that every vertex in Lk \ B′ has at least
d− Rk−1 neighbours in U ∪ Bk−1. Let B′′ consist of those vertices in Lk \ B′ that have at least
�Rk−1 neighbours in Bk−1. Note that

�Rk−1|B′′|� d�|Bk−1|,
and hence

|B′′|� d|Bk−1|� τk−1
Rk−1

dk−1.

Let Lk+1 be all vertices in U that are adjacent to some vertex in Lk \ (B′ ∪ B′′), replace Lk with
Lk \ (B′ ∪ B′′), and set Bk

def= B′ ∪ B′′. In that way, each linear path from r to Lk can be extended
to a path to Lk+1 in at least d− Rk−1 −�Rk−1 = d− (�+ 1)Rk−1 ways. So, since the number of
linear paths from r to the new Lk is at least

dk−1(d− ηk)− P(r, B′)− P(r, B′′)� dk−1(d− ηk − 2k�t�k−1)− Rk−1|B′′|
� dk−1(d− ηk − 2k�t�k−1 − τk−1),

it follows that the number of linear paths from r to Lk+1 is at least

(d− (�+ 1)Rk−1)P(r, Lk)� dk(d− ηk − 2k�t�k−1 − τk−1 − (�+ 1)Rk−1)
= dk(d− ηk+1).
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This shows that P5 holds at stage k+ 1. Since P2 held at stage k, it follows that |B′|� P(r, B′),
implying

|Bk| = |B′| + |B′′|� 2k�t(�d)k−1 + τk−1dk−1 = τkdk−1,

and hence property P4 holds at stage k+ 1. Property P6 holds at stage k+ 1 because it held at
stage k and the graph is bipartite. The other properties are immediate.

At the �th stage, the number of linear paths from r to L� is at least d�−1(d− η�)= d�(1+ o(1)).
On the other hand, it is at most |L�|R�−1 � (8�t)�−1n. The result then follows.

4. Embedding��,t
In this section we prove Lemma 3.2, which controls the number of linear paths in a ��,t-free
graph. For that we show that if there are many linear paths from some vertex v to its descendants,
then we can embed a subdivision of a star so that its leaves are mapped to the children of v. Adding
vertex v to the subdivision of the star yields a copy of ��,t .

The standard method for embedding trees is to find a substructure of large ‘minimum degree’
(in a suitable sense), and then embed vertex by vertex, avoiding already embedded vertices. For us
the relevant notion of a degree is the number of linear paths.

Definition 4.1. A pair of layers (Li, Lj) with i< j is almost-regular if every pair of layers (Li′ , Lj′),
with i� i′ < j′ � j and (i′, j′) �= (i, j), is regular.

Lemma 4.2. Suppose i< k and pair (Li−1, Lk) is almost-regular, and we are given a vertex vi−1 ∈
Li−1 and subsets A⊂−→N (vi−1), B⊂ Lk. Suppose that the number of linear paths between A and B
satisfies

P(A, B)/|A|> 2�t(�d)k−i−1, (4.1)

P(A, B)/|B|> Rk−i. (4.2)

Then G contains ��,r.

Proof. The proof naturally breaks into three parts: finding a substructure of a large minimum
degree, using that substructure to locate many disjoint paths, and then joining these paths to form
a copy of ��,t .

Part 1 (large minimum degree substructure). We will select a subset B′ ⊂ B that is well connected by
linear paths to the preceding layer Lk−1. We use a modification of the standard proof that a graph
of average degree 2d contains a subgraph of minimum degree d.

First, set B′ = B. To each pair (a, b) ∈A× B′ we associate a set P(a, b) of linear paths between
a and b. At the start, P(a, b) is the set of all linear paths from a to b. For brevity we use notations
P(·, b) def=⋃

a∈A P(a, b), P(a, ·) def=⋃
b∈B′ P(a, b), and similarly for P(·, ·).

Perform the following two operations, for as long as any of them is possible to perform:

(1) if |P(·, b)|� Rk−i/2 for some b ∈ B′, then remove vertex b from B′,
(2) if some linear path avi+1vi+2 · · · vk−1 is a prefix of fewer than �t paths in P(a, ·), remove

all these paths from respective P(a, b).

Since each step decreases the size of P(·, ·), the process terminates.
Since operation (1) is performed at most |B| times, the operation decreases the size of P(·, ·) by

no more than |B|Rk−i/2< P(A, B)/2.
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Since each vertex has degree at most �d, operation (2) is performed on at most (�d)k−i−1|A|
linear paths terminating in the layer Lk−1. Therefore the operation decreases |P(·, ·)| by less than

(�d)k−i−1|A| · �t < P(A, B)/2.

Hence the total number of edges removed by the two operations is less than P(A, B), so P(·, ·)
is non-empty when the process terminates. Therefore B′ is non-empty as well.

Part 2 (many disjoint paths from vertices of B′). Next we use the obtained set B′ and P(·, ·) to
embed ��,t . We start by proving that, for every vertex b ∈ B′, there are �t linear paths in P(·, b)
that are vertex-disjoint apart from sharing vertex b itself. We will pick these paths one by one
subject to the constraint of being vertex-disjoint.

Indeed, consider any linear path vivi+1 . . . vk−1b ∈P(·, b). Because (Li−1, Lk) is almost-regular,
the number of paths in P(·, ·) that intersect {vi, vi+1, . . . , vk−1} is at most

k−1∑
j=i

P(vi−1, vj)P(vj, vk)�
k−1∑
j=i

Rj−i · Rk−j−1 =
∑

u+v=k−i−1
RuRv = 1

2�t
Rk−i,

where the last equality relies on the convolution identity for the Catalan numbers.
From |P(·, b)|> Rk−i/2 it follows that as long we have picked fewer than �t paths, there is

another path in P(·, b) that is disjoint from those already picked.

Part 3 (embedding). Let

S def= {vk−1 ∈ Lk−1 : vk−1 is on some path in P(·, ·)}.
Consider the subgraph H of G that is induced by S∪ B′. This is a bipartite graph with parts S

and B′. The vertex-disjoint paths found in the previous step show that degree of each vertex in B′
is at least �t. We claim that vertices of S are also of degree at least �t. Indeed, let s ∈ S be arbitrary.
Then P(·, ·) contains a linear path of the form avi+1vi+2 · · · vk−2sb. Since it was not removed by
operation (2), there are at least �t linear paths having avi+1vi+2 · · · vk−2s as a prefix. Therefore s is
adjacent to at least �t vertices of B′.

Because the minimum degree of H is at least �t, it is possible to embed any rooted tree on at
most �t vertices into V(H)= S∪ B′ with the root as any prescribed vertex of S∪ B′. In particular,
we can find a vertex u ∈ S∪ B′ and t vertex-disjoint paths from u to B′ of length �− k+ i− 1 each.
Note that the choice of whether u ∈ S or u ∈ B′ depends on the parity of �− k+ i− 1.

Let b1, . . . , bt ∈ B′ be the endpoints of these paths, and let T be all the vertices in the union of
the paths. Since |T|< �t, at least one of the �t vertex-disjoint paths from b1 to A misses T. We
then join this path to b1. We can extend paths ending at b2, b3, . . . , bt in turn in a similar way.
We obtain an embedding of ��,t minus one vertex. Adding vi−1 we obtain an embedding of ��,t
into G.

We are now ready to prove Lemma 3.2, which controls the number of bad vertices.

Proof of Lemma 3.2. Inductively define sets B′k−1, B
′
k−2, . . . , B

′
1 (in that order) by

B′i
def= {vk ∈ Lk : ∃vi−1 ∈ Li−1 such that P(vi−1, vk)> Rk−i} \ (B′i+1 ∪ · · · ∪ B′k−1).

Note that B′ =⋃
i B′i. We will prove that P(r, B′i)� 2�t(�d)k−1, from which the lemma would

follow.
Decompose B′i further into sets

B′(vi−1)
def= {vk ∈ Lk : P(vi−1, vk)> Rk−i} \ (B′i+1 ∪ · · · ∪ B′k−1).

Clearly B′i =
⋃

vi−1∈Li−1 B
′(vi−1).
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To start, observe that if we remove B′i+1 ∪ · · · ∪ B′k−1 from Lk then the pair of layers (Li−1, Lk)
is almost-regular. Therefore, for every vi−1 ∈ Li−1, since

P(−→N (vi−1), B′(vi−1))> Rk−i|B′(vi−1)|,
it follows from Lemma 4.2 that

P(−→N (vi−1), B′(vi−1))� 2
−→
deg (vi−1)�t(�d)k−i−1.

In particular,

P(r, B′i)=
∑

vi−1∈Li−1
P(r, vi−1)P(

−→N (vi−1), B′(vi−1))

� P(r, Li−1)2�t(�d)k−i

� 2�t(�d)k−1

since the degree of every vertex is at most d�. Adding these over all i completes the proof.

5. Lower bound for odd length paths
In this section we construct graphs on n vertices that do not contain a ��,t with ��(t1−1/�n1+1/�)
edges when � is odd, showing that Theorem 1.1 has the correct dependence on t for odd �.

We will use the random polynomial method [3, 6]. Our construction is in two stages. First we
use random polynomials to construct graphs with only a few short cycles. In the second stage
we blow up the graph by replacing vertices with large independent sets. We will show that the
resulting graph is ��,t-free.

Let q be a prime power and let P s
d be the set of polynomials in s variables of degree at most

d over Fq. That is, P s
d is the set of linear combinations over Fq of monomials Xa1

1 · · · Xas
s with∑s

i=1 ai � d.
We reserve the term random polynomial to mean a polynomial chosen uniformly from P s

d. We
note that a random polynomial can equivalently be obtained by choosing the coefficients of each
monomial Xa1

1 · · · Xas
s uniformly and independently from Fq. In particular, because the constant

term of a random polynomial is chosen uniformly from Fq, it follows that

Pr [ f (x)= 0]= 1
q

(5.1)

for a random polynomial f and any fixed x ∈ Fs
q.

We now define a random graph model that we use in our constructions.

Definition 5.1 (random algebraic graphs). Set d def= 2�2. LetU andV be disjoint copies of F�
q, and

consider the following random bipartite graph with parts U and V . We pick �− 1 independent
random polynomials f1, . . . , f�−1 from P2�

d , and declare uv to be an edge of G if and only if
f1(u, v)= f2(u, v)= · · · = f�−1(u, v)= 0.

We call the resulting graph a random algebraic graph.

Note that in this definition we fixed the degree and number of polynomials, to suit our
particular application. More general random algebraic graphs have been been used in [7], for
instance.

LetG be a random algebraic graph. For T ∈N, we say that a pair of vertices x, y is T-bad if there
are at least T distinct (but not necessarily edge-disjoint) paths of length at most � between x and y.
Define BT to be the set of T-bad pairs of vertices in G.
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Proposition 5.2. (case h= 1 of Proposition 7.1). There exists a constant T = T(�) depending
only on � such that

E[|BT |]=O�(1).

The proof of Proposition 7.1 is similar to arguments in [7] and [9], and we defer it to Section 7.
We use Proposition 5.2 to make a graph with�(n1+1/�) edges where each pair of vertices is joined
by only a few short paths.

Theorem 5.3. There exists a constant T such that, for all n large enough, there is a bipartite graph
on n vertices with at least 1

4n
1+1/� edges and no T-bad pair.

Proof. Let q be the largest prime power with 2q� � n. Note that 2q� ∼ n, as there is a prime
between x and x+ x0.525 for all large x [1]. Let G be a random algebraic graph as in Definition 5.1.
Let T be the constant from Proposition 5.2. Remove all T-bad pairs from G to obtain a subgraph
G′ of G. Note that for each pair in BT which is removed from G, at most 2n edges are removed.

Since f1, . . . , f�−1 are chosen independently, (5.1) implies that the expected number of edges in
G is

q� · q� ·
(
1
q

)�−1
= q�+1.

Therefore, by Proposition 5.2 we have

E[e(G′)]� q�+1 − 2nE[|BT |]= q�+1 −O(n).

Since 2q� ∼ n, for n large enough we have E[e(G′)]� 1
4n

1+1/�, so a graph with the desired
properties exists.

We now construct our ��,t-free graphs. Given a graph G′, an m-blowup of G′ is obtained by
replacing every vertex ofG′ with an independent set of sizem and replacing each edge ofG′ with a
copy of Km,m. Note that anm-blowup of G′ hasm2e(G′) edges. If G is a blowup of G′, for u ∈V(G)
and v ∈V(G′), we say that v is a supervertex of u if u is in the independent set which replaced v.

Proof of Theorem 1.2. Let �� 3 be odd, and let T be as above. With foresight, set m def=
(t− 1)/T�. Let G′ be the graph on n/m vertices whose existence is guaranteed by Theorem 5.3.
So G′ has at least

1
4

(
n
m

)1+1/�

edges and no T-bad pair. Let G be an m-blowup of G′. To show that G is ��,t-free, let x and y be
vertices in G and let

P1 = xu11 · · · u1�−1y
...

PR = xuR1 · · · uR�−1y
be R internally disjoint paths of length � from x to y. Since � is odd andG′ is bipartite, x and y have
distinct supervertices in G′; call them x′ and y′. For 1� i� �− 1 and 1� j� R, let v ji ∈V(G′) be
the supervertex of u j

i ∈V(G). Now consider the multiset
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P′1 = x′v11 · · · v1�−1y′
...

P′R = x′vR1 · · · vR�−1y′.
This is a multiset of R not necessarily disjoint or distinct walks of length � from x′ to y′ in G′.
Removing cycles from these walks, we obtain a multiset of R paths of length at most � between x′
and y′ in G′. Although these paths are not necessarily disjoint or distinct, since G is anm-blowup
of G′ and since P1, . . . , PR are internally disjoint, each vertex besides x′ and y′ may appear in the
multiset of G′-paths at most m times. In particular, each distinct G′-path may appear at most m
times. Since G′ has at most T paths of length at most � between x′ and y′, we have

R� Tm< t
by the choice ofm.

So, G is a graph on n vertices with no ��,t and at least

1
4

(
n
m

)1+1/�
m2 = 1

4
n1+1/�m1−1/� =��(t1−1/�n1+1/�)

edges.

6. Lower bound for even length paths
Let h be a parameter to be chosen later. LetG1, . . . ,Gh be h independent random algebraic graphs
with partsU =V = F

�
q, chosen as in Definition 5.1. Consider the multigraphGwhich is the union

of all the Gi. Call a pair of vertices T-bad if they are joined by at least T paths of length at most
� in G. By Proposition 7.1 (proved in Section 7) there are constants T = T(�) and C= C(�) such
that the expected number of Th�-bad pairs is at most Ch�. Let G be obtained from G by removing
the multiple edges.

The expected number of edges in the multigraph G is

h · q�+1 = h
(
n
2

)1+1/�
.

LetM be the number of multiple edges. Then

E[M]� n2h2(q−�−1)2 = o(n).
Remove from G all Th�-bad pairs of vertices. Doing this removes at most 2n edges per pair
removed. The expected number of edges in the obtained graph is at least

h
(
n
2

)1+1/�
− 2Ch�n− o(n).

Choosing h= (t/T)1/� shows that there is a ��,t-free graph with ��(t1/�n1+1/�) edges and at
most n vertices.

7. Analysis of the random algebraic construction
Here we prove the bound, whose proof we deferred, on the number of T-bad pairs. Recall that
G1, . . . ,Gh are independent random algebraic graphs with parts U =V = F

�
q, and G is the multi-

graph which is the union of the Gi. As before, a pair of vertices is T-bad if it is joined by at least T
paths of length at most �.
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Let BT be the set of all T-bad pairs in G.

Proposition 7.1. There exist constants T = T(�) and C= C(�) such that

E[|BTh� |]� Ch�.

Proof of Proposition 7.1. Let r� � and (i1, . . . , ir) ∈ [h]r be fixed. A path made of edges
e1, . . . , er (in order) is of type (i1, . . . , ir) if ej ∈ E(Gij). For a type I, a pair of vertices x, y is (T, I)-
bad if there are T paths of type I between x and y. We will show that there is a constant T = T(�)
such that, for each fixed type I, the expected number of (T/�, I)-bad pairs is O�(1). Since the total
number of types is

∑
r�� hr � �hr , the proposition will follow by the linearity of expectation.

We will need the fact that if the degrees of random polynomials are large enough, then the
values of these polynomials in a small set are independent. Specifically, because of the way we
defined graphsGi, we are interested in the probabilities that the polynomials vanish on a given set.

Lemma 7.2 (Lemma 2.3 in [7] and Lemma 2 in [9]). Suppose that q�
(m
2
)
and d�m− 1. Then

if f is a random polynomial from P t
d and x1, . . . , xm are fixed distinct points in F

t
q, then

P[ f (x1)= · · · = f (xm)= 0]= 1
qm

.

We need to estimate the expected number of short paths between pairs of vertices. To this end,
let x and y be fixed vertices in G, let I = (i1, . . . , ir) be fixed, and let Sr be the set of paths of type I
between x and y. We use an argument of Conlon [9] to estimate the 2�th moment of SI .

The |SI|2� counts ordered collections of 2� paths of type I from x to y. Let Pm,r be all such
ordered collections of paths in Kq�,q� whose union has exactly m edges. Note that m� 2� · r�
2�2 � d. Conlon showed [9, p. 5] that every collection in Pm,r spans at least (r− 1)m/r vertices
other than x and y.

By Lemma 7.2 and independence between different Gi, the probability that a given collection
in Pm,r is contained in G is q−(�−1)m. From Conlon’s bound on the number of internal vertices it
follows that

|Pm,j|� q�m(j−1)/j.
Therefore

E[|SI|2�]=
2�2∑
m=1
|Pm,r|q−(�−1)m �

2�2∑
m=1

q�m−(�m)/rq−�m+m �
2�2∑
m=1

1,

where the last inequality uses r� �.
We next show that |SI| is either bounded or of order at least q. To do this, we must describe

the paths as a point on appropriate varieties. We write Fq for the algebraic closure of Fq. A variety
over Fq is a set

W = {x ∈ Ft
q : f1(x)= · · · = fs(x)= 0},

where f1, . . . , fs : F
t
q→ Fq are polynomials. We say thatW is defined over Fq if the coefficients of

the polynomials are in Fq and we let W(Fq)=W ∩ Fq. We say W has complexity at most M if s,
t, and the degree of each polynomial are at most M. We need the following lemma of Bukh and
Conlon [7].
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Lemma 7.3 (Lemma 2.7 in [7]). Suppose W and D are varieties over Fq of complexity at most M
which are defined over Fq. Then one of the following holds:

• |W(Fq) \D(Fq)|� cM, where cM depends only on M, or
• |W(Fq) \D(Fq)|� q(1−OM(q−1/2)).

Note that SI is a subset of a variety. Indeed, suppose x ∈U and y ∈V (if r is odd) or y ∈U (if r
is even) be the two endpoints. Let

W def= {(u0, . . . , ur) ∈ (F�
q)

r+1 : u0 = x, ur = y, f i1k (u0, u1)

= · · · = f irk (ur−1, ur)= 0, 1� k� �− 1},
where f ik is the kth random polynomial used to define the random graph Gi.

The setW(Fq) is simply the set of walks of type I from x to y. To obtain SI we need to exclude
the walks that are not paths. To that end, define

Da,b
def=W ∩ {(u0, . . . , ur) : ua = ub} for 0� a< b� r,

and set D def=⋃
a,b Da,b, which is a variety since the union of varieties is a variety. Furthermore, its

complexity is bounded since it is defined by polynomials that are products of polynomials defining
Da,b.

We then have

SI =W(Fq) \D(Fq).

Since the complexity of both W and D is bounded, Lemma 7.3 implies that either |W(Fq) \
D(Fq)|� cj or |W(Fq) \D(Fq)|� q(1−Or(q−1/2)), where cr is a constant depending only on r.
In particular, there is a constant Tr such that, for q large enough, we have either |SI|� Tr or
|SI|� q/2. Since E[|SI|2�]� 2�2, Markov’s inequality gives

P[|SI|> Tr]= P

[
|SI|� q

2

]
= P[|SI|2� � (q/2)2�]� E(|SI|2�)

(q/2)2�
=Or(q−2�). (7.1)

Upon letting T def= � ·maxr�� Tr , inequality (7.1) implies that the expected number of (T/�, I)-
bad pairs is at most Or(|V||U|q−2�)=Or(1).
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