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Powers of Principal Q-Borel ideals
Eduardo Camps-Moreno, Craig Kohne, Eliseo Sarmiento, and
Adam Van Tuyl

Abstract. Fix a poset Q on {x1 , . . . , xn}. A Q-Borel monomial ideal I ⊆ K[x1 , . . . , xn] is a monomial
ideal whose monomials are closed under the Borel-like moves induced by Q. A monomial ideal I
is a principal Q-Borel ideal, denoted I = Q(m), if there is a monomial m such that all the minimal
generators of I can be obtained via Q-Borel moves from m. In this paper we study powers of principal
Q-Borel ideals. Among our results, we show that all powers of Q(m) agree with their symbolic powers,
and that the ideal Q(m) satisfies the persistence property for associated primes. We also compute the
analytic spread of Q(m) in terms of the poset Q.

1 Introduction

Throughout this paper, S = K[x1 , . . . , xn] denotes the polynomial ring over an arbi-
trary fieldK. Francisco, Mermin, and Schweig [12] introduced the notion of a Q-Borel
monomial ideal to generalize the properties of Borel monomial ideals, also called
strongly stable monomial ideals (see [11, 15] and their references for more on Borel
ideals and their importance). Specifically, we fix a poset Q on the set {x1 , . . . , xn}.
Then a monomial ideal I is a Q-Borel ideal if for any monomial m ∈ I, if x i ∣m and
x j ≤Q x i , then x j ⋅ m

x i
∈ I. We call x j ⋅ m

x i
a Q-Borel move of m. A Borel ideal is then

the special instance when Q is the chain Q = C ∶ x1 < x2 < ⋯ < xn . A monomial ideal
I is a principal Q-Borel ideal, denoted Q(m), if there is a monomial m such that all
the minimal generators of I can be obtained from m via Q-Borel moves. As shown
in [12] and Bhat’s thesis [1], many properties of Q(m), e.g., projective dimension,
primary decomposition, can be described in terms of the poset Q and order ideals
of Q associated with the monomial m.

Our goal in this paper is to study the properties of powers of principal Q-Borel
ideals. Understanding powers of ideals figures prominently in commutative algebra.
Two examples of this theme are the ideal containment problem and the persistence
of primes. The ideal containment problem compares the regular powers of an ideal
with its symbolic powers. The persistence of primes asks whether ass(Is) ⊆ ass(Is+1)
for all s ≥ 1, where ass(J) denotes the set of associated primes of J. The references [2,
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3, 8, 10, 13, 16–18, 20] form a small subset of papers on these topics; see also [5, 9] for
an introduction.

For principal Q-Borel ideals Q(m), we consider these (and other) problems. Many
of our results are expressed in terms of the combinatorics of the poset of Q, thus build-
ing upon [12, Question 1.3] which asked what other properties of Q-Borel ideals are
determined by Q. One theme that becomes apparent is that principal Q-Borel ideals
satisfy many of the same properties as principal monomial ideals (in fact, results about
principal monomial ideals become special cases of our work when Q is the anti-chain).

We first compare the regular and symbolic powers (formal definitions postponed
until later in the paper) of principal Q-Borel ideals. Our main result in this direction
is the following theorem.

Theorem 1.1 (Theorem 3.8) Let I = Q(m) for some monomial m and poset Q. Then

I(d) = Id for all d ≥ 1.

Our proof requires Francisco et al. [12] characterization of the associated primes of
Q(m), and Cooper et al. [8] description of the symbolic powers of monomial ideals.
As a corollary, we obtain results on the Waldschmidt constant, the symbolic defect,
and the resurgence (see Corollary 3.10).

The analytic spread of I, denoted �(I), is the Krull dimension of the ring

F(I) =⊕
i≥0

I i

mI i where I0 = S and m = ⟨x1 , . . . , xn⟩.

For principal Q-Borel ideals, we obtain the following formula for the analytic spread
in terms of combinatorics of Q.

Theorem 1.2 (Theorem 5.4) Let I = Q(m) be a principal Q-Borel ideal, let A(m) be
the order ideal generated by the support of m. Then

�(I) = ∣A(m)∣ − K(A(m)) + 1

where K(A(m)) is the number of connected components in the subposet induced by
A(m).

Our proof uses the fact that for ideals generated by monomials of the same degree,
the analytic spread is the rank of the matrix of exponent vectors of the generators. The
analytic spread of Q(m) could also be computed using results of Herzog, Rauf, and
Vladoiu [17], but our result highlights the connection to the poset of Q.

Herzog, Rauf, and Vladoiu’s paper [17] is used to address the question of persis-
tence of primes. Precisely, we show that ass(I) = ass(Is) for all s ≥ 1 for any principal
Q-Borel ideal (see Theorem 4.3). In fact, we give two different proofs for this result.

We also consider powers of square-free principal Q-Borel ideals, denoted s f Q(m).
These square-free monomial ideals are generated by the square-free monomial gen-
erators of Q(m). For this class of ideals, we also compute their analytic spread (see
Theorem 5.10) in terms of Q.

Our paper is structured as follows. Section 2 is the background on monomial
ideals, posets, and (principal) Q-Borel ideals. In section 3 we prove Theorem 3.8. In
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Section 4 we examine the persistence of primes problem. Section 5 is devoted to the
analytic spread of (square-free) principal Q-Borel ideals.

2 Background

In this section we recall the relevant background and definitions.

2.1 Basics of monomial ideals and posets

Given a monomial m = xa1
1 ⋯xan

n in S, we may write the monomial as m = xα with
α = (a1 , . . . , an) ∈ Nn . The monomial m is a square-free monomial if a i = 0 or 1 for all
i = 1, . . . , n. The support of m = xa1

1 ⋯xan
n is the set supp(m) = { j ∣ a j > 0}.

An ideal I ⊆ S is a (square-free) monomial ideal if I is generated by (square-free)
monomials. A monomial ideal has a unique set of minimal monomial generators
denoted by G(I).

Let Q be a poset on the ground set {x1 , . . . , xn}, where the partial order is denoted
by <Q . A poset Q′ is an induced poset of Q if there exists an injective function f ∶ Q′ →
Q such that x ≤Q′ y if and only if f (x) ≤Q f (y).

Associated to any poset on a finite ground set is a Hasse diagram. In particular, the
elements of Q are represented by vertices, and there exists a line segment from x to
y in the “upwards” direction if x <Q y and if there is no other z ∈ Q such that x <Q
z <Q y. The Hasse diagram is an example of directed acyclic graph (a directed graph
with no directed cycles). Given a poset Q, the number of connected components of Q,
denoted K(Q), is the number of connected components of the Hasse diagram, i.e.,
the connected components of the Hasse diagram when viewed as a undirected graph.

An order ideal of Q is a set A ⊆ Q such that if y ∈ A and if x <Q y, then x ∈ A. Given
any monomial m = xa1

1 ⋯xan
n ∈ S, we can associate with m the order ideal

A(m) = {x j ∣ there is an x i such that x j ≤Q x i and x i ∣m} .

The order ideal A(m) is an induced poset of Q via the inclusion map. We say an order
ideal A(m) is connected if the Hasse diagram of A(m) is connected. The next lemma
follows directly from the definitions.

Lemma 2.1 Fix a poset Q on {x1 , . . . , xn}, and let m1 , m2 ∈ S be two monomials. If
supp(m1) = supp(m2), then A(m1) = A(m2).

The next lemma will be used in future calculations.

Lemma 2.2 Fix a poset Q on {x1 , . . . , xn} and let m1 , m2 ∈ S be two monomials. Then

A(lcm(m1 , m2)) = A(m1m2) = A(m1) ∪ A(m2).

Proof Note that

supp(lcm(m1 , m2)) = supp(m1m2) = supp(m1) ∪ supp(m2).

Now apply Lemma 2.1. ∎
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The next lemma shows the relationships between the components of a monomial
and the order subideals of its order ideal.

Lemma 2.3 Fix a poset Q on {x1 , . . . , xn} and let m ∈ S be a monomial. For any
order ideal O ⊂ Q such that O = A(m′) for some m′∣m, there is a unique monomial
mO satisfying:
• mO ∣m.
• O = A(mO).
• For any other monomial m′′∣m such that O = A(m′′), we have m′′∣mO .

Proof Define

mO = lcm{m′′ ∣ m′′ a monomial, m′′∣m, and A(m′′) = O} .

The set on the right contains m′ so mO is well-defined and it is clear that mO ∣m. From
the last lemma, we have A(mO) = O and from the definition, if any other monomial
m′′∣m satisfies A(m′′) = O, then we have m′′∣mO . ∎

2.2 Q-Borel ideals

Q-Borel ideals were introduced by Francisco, Mermin, and Schweig [12] to generalize
properties of Borel monomial ideals. We recall this definition.

Definition 2.4 Let I ⊆ S be a monomial ideal and let Q be a poset on {x1 , . . . , xn}.
The ideal I is a Q -Borel ideal if whenever x j ≤Q x i and x i ∣m for some monomial m ∈ I,
then x j ⋅ (m/x i) ∈ I. We say that I is Borel with respect to Q.

Remark 2.5 Definition 2.4 generalizes the notion of a Borel monomial ideal. More
precisely, a Q-Borel ideal is a Borel ideal if Q is the chain Q = C ∶ x1 <Q x2 <Q< ⋯ <Q
xn . Note that any monomial ideal I is a Q-Borel ideal if we take Q to be the antichain.

If x i ∣m and x j ≤Q x i , then we call x j ⋅ (m/x i) a Q-Borel move of the monomial m.
It follows that a monomial ideal I is a Q-Borel ideal if I is closed under Q-Borel moves.
Observe that if m = xα , then a Q-Borel move x j ⋅ (m/x i) corresponds to the existence
of a vector e(i , j) ∈ Nn whose k-th coordinate is given by

(e(i , j))k =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 k = j and x j ≤Q x i

−1 k = i and x j ≤Q x i

0 otherwise
(2.1)

such that xα+e(i , j) = x j ⋅ (m/x i). The following lemma shall be useful.

Lemma 2.6 Fix a poset Q on {x1 , . . . , xn}. Suppose that xα and xβ are monomials
of S such that xβ can be obtained via a series of Q-Borel moves on xα . Then there exists
e(i1 , j1), . . . , e(i l , j l ), not necessarily distinct, with it ∈ supp(xα) for t = 1, . . . , l , such that

α + e(i1 , j1) +⋯+ e(i l , j l ) = β.
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Equivalently, expressed in terms of monomials, we have

xβ = xα ⋅
x j1⋯x j l

x i1⋯x i l

where x i t divdes xα for t = 1, . . . , l .

Proof Because xβ can be obtained from xα by Q-Borel moves, there exists mono-
mials xα = xα1 , xα2 , . . . , xαr−1 , xαr = xβ such that xα t+1 is obtained from xα t via a Q-
Borel move for t = 1, . . . , r − 1. In particular, there exists a vector of the form e(a t ,b t)
such that

αt + e(a t ,b t) = αt+1 for each t = 1, . . . , r − 1

where at ∈ supp(xα t) and xb t ≤Q xa t . Consequently,

α + e(a1 ,b1) +⋯+ e(ar−1 ,br−1) = β.

If at ∈ supp(xα) for all t = 1, . . . , r − 1, then we are done.
On the other hand, suppose that there is some e(a t ,b t) such that at /∈ supp(xα).

Let t be the smallest index such that at /∈ supp(xα). That is, t is the smallest index
such that αt+1 has not been expressed in the form α + e(i1 , j1) +⋯+ e(i t , j t) with all
ik ∈ supp(xα). Note that t ≥ 2 because a1 ∈ supp(xα). Now

αt+1 = αt + e(a t ,b t) = (α + e(a1 ,b1) +⋯+ e(a t−1 ,b t−1)) + e(a t ,b t).

Because at is not in the support of xα , but in the support of xα t , this means that
at ∈ {b1 , . . . , bt−1} since the bk ’s correspond to the supports of the new variables by
which we multiply after dividing by ak . Say at = bs with s ∈ {1, . . . , t − 1}. But then by
equation (2.1)

e(as ,bs) + e(a t ,b t) = e(as ,b t) ,

that is, the coordinate which is 1 in the first vector cancels out with −1 in the
second vector. Furthermore, bt ≤Q as , because bt ≤Q at = bs ≤Q as . So, we can rewrite
αt+1 as

αt+1 = α + e(a1 ,b1) +⋯+ (e(as ,bs) + e(a t ,b t)) +⋯ + e(a t−1 ,b t−1)

= α + e(a1 ,b1) +⋯+ e(as ,b t) +⋯+ e(a t−1 ,b t−1)

where all the ak ’s are in the supp(xα). So αt+1 has the desired form.
Repeating this process allows β to be expressed in the desired form. ∎

Because Q-Borel ideals are closed under Q-Borel moves, the generators of Q-Borel
ideals can be described as subsets of monomials of S from which other monomial
generators in the ideal can be obtained via Q-Borel moves. The following terminology
shall be helpful.

Definition 2.7 Let X be a subset of monomials of S. The smallest Q-Borel ideal I that
contains X is denoted Q(X), and we say X is a Q -Borel generating set of I = Q(X).
A square-free monomial ideal J is a square-free Q -Borel ideal if it is generated by the
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square-free monomials of a Q-Borel ideal. Given a set Y of square-free monomials,
we let s f Q(Y) denote the smallest square-free Q-Borel ideal containing Y.

The following fact follows directly from the definitions.

Lemma 2.8 [12, Proposition 2.6] If all the monomials of X have the same degree, then
all the minimal generators of the Q-Borel ideal I = Q(X) have the same degree.

2.3 Q-Borel principal ideals

We are primarily interested in the following ideals.

Definition 2.9 If X = {m} contains a single monomial, then we call I = Q(X) a Q -
Borel principal ideal, and we abuse notation and write I = Q(m). Similarly, if Y = {m}
contains a single square-free monomial, then we call I = s f Q(Y) a square-free Q -
Borel principal ideal and write I = s f Q(m).

Principal Q-Borel ideals are preserved under ideal multiplication.

Lemma 2.10 Fix a poset Q on {x1 , . . . , xn}, and let m1 , m2 ∈ S be two monomials.
Then

Q(m1)Q(m2) = Q(m1m2).

Proof Let p1 ∈ Q(m1), respectively p2 ∈ Q(m2), be any monomial generator of
Q(m1), respectively Q(m2). So p1 is a Q-Borel move of m1, and similarly for p2 and
m2. Thus

p1 = m1
x j1 x j2⋯x jr

x i1 x i2⋯x ir

with x j� <Q x i� for � = 1, . . . , r

and

p2 = m2
xb1 xb2⋯xbs

xa1 xa2⋯xas

with xb�
<Q xa�

for � = 1, . . . , s.

But this means that

p1 p2 = m1m2
x j1 x j2⋯x jr

x i1 x i2⋯x ir

xb1 xb2⋯xbs

xa1 xa2⋯xas

is a Q-Borel move of m1m2, so p1 p2 ∈ Q(m1m2), thus showing Q(m1)Q(m2) ⊆
Q(m1m2).

For the reverse containment, if p ∈ Q(m1m2) is a generator of Q(m1m2) obtained
via a series of Q-Borel moves on m1m2. So, by Lemma 2.6 and Lemma 2.2, we have

p = m1m2
x j1 x j2⋯x jr

x i1 x i2⋯x ir

xb1 xb2⋯xbs

xa1 xa2⋯xas

xc1 xc2⋯xc t

xd1 xd2⋯xd t

where x j� <Q x i� , xb�
<Q xa�

, xc� <Q xd�
and i� ∈ supp(m1) / supp(m2), a� ∈

supp(m2) / supp(m1) and d� ∈ supp(m1) ∩ supp(m2) for all relevant �. Since
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xd1⋯xd t ∣(gcd(m1 , m2))2, we can re-index, if necessary, so that for some 1 ≤ t′ ≤ t − 1
we have

xd1⋯xd t′
∣gcd(m1 , m2) and xd t′+1

⋯xd t ∣gcd(m1 , m2).
We then have

(m1
x j1⋯x jr

x i1⋯x ir

xc1⋯xc t′

xd1⋯xd t′

) ∈ Q(m1), (m2
xb1⋯xbs

xa1⋯xas

xc t′+1⋯xc t

xd t′+1
⋯xd t

) ∈ Q(m2)

implying that p ∈ Q(m1)Q(m2). Therefore, Q(m1m2) ⊆ Q(m1)Q(m2) and we have
the conclusion. ∎

We also have the following property of ideal intersections.

Lemma 2.11 Fix a poset Q on {x1 , . . . , xn}, and let m1 , m2 ∈ S be two monomials. If
A(m1) ∩ A(m2) = ∅, then Q(m1) ∩ Q(m2) = Q(m1)Q(m2).

Proof It suffices to show that Q(m1) ∩ Q(m2) ⊆ Q(m1)Q(m2).
Note that for any monomial m, if p ∈ G(Q(m)) is a minimal generator of Q(m),

then {x j ∣ j ∈ supp(p)} ⊆ A(m). In fact, we have

A(m) = ⋃
p∈G(Q(m))

{x j ∣ j ∈ supp(p)}.

That is, A(m) is precisely the set of variables that divide at least one minimal generator
of Q(m).

Because A(m1) and A(m2) are disjoint, this implies that for any Q-Borel move-
ment m′ of m1 and any Q-Borel movement m′′ of m2, gcd(m′ , m′′) = 1, and thus
lcm(m′ , m′′) = m′m′′. It then follows that

Q(m1) ∩ Q(m2) = ⟨lcm(m′ , m′′) = m′m′′ ∣ m′ ∈ G(Q(m1)) and m′′ ∈ G(Q(m2))⟩
= Q(m1)Q(m2),

as desired.

As first shown by Francisco, et al. [12], the associated primes of principal Q-Borel
ideals are related to order ideals of Q. Recall that for any ideal I ⊆ S, a prime ideal P is
an associated prime of I if there exists an element f ∈ S such that

I ∶ ⟨ f ⟩ = {g ∈ S ∣ g f ∈ I} = P.

We denote the set of all associated primes of I by ass(I). We then have the following
theorem.

Theorem 2.12 [12, Theorem 4.3] Let I = Q(m) for some monomial m and poset Q.
Then P ∈ ass(I) if and only if

P = ⟨x i ∣ x i ∈ A(m′)⟩
for some m′∣m with the property that A(m′) is connected.

Remark 2.13 As we will see in Section 4, principal Q-Borel ideals are products of
prime monomial ideals, that is, all principal Q-Borel ideals are examples of ideals that
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are products of ideals generated by linear forms. There are a number of papers on this
topic, for example [6, 7].

In particular, the primary decomposition of principal Q-Borel ideals can also
be deduced from the work of [6]. We use the statement of [12] since it relates the
associated primes directly to the Hasse diagram of Q,

Example 2.14 We illustrate some of the above ideas with the following example. Let
S = K[x1 , . . . , x11] and let Q be the poset on {x1 , . . . , x11} with Hasse diagram:

x1

x3

x6 x7 x8

x2 x4 x9 x10

x5 x11

In the above drawing, x i <Q x j if there is a path from x i to x j such that the path
from x i to x j only moves “upward”. For example x1 <Q x5, but x1 and x3 are not
comparable.

If we consider the monomial m = x4x2
9 , then because

x1 <Q x4 and x4∣m, the monomial x1 ⋅ (m/x4) = x1x2
9 is a Q-Borel move of m. The

Q-Borel principal ideal I = Q(x4x2
9) is the monomial ideal generated by all the Q-

Borel moves one can obtain from x4x2
9 . In particular,

Q(x4x2
9) = ⟨x1x2

6 , x1x6x7 , x1x2
7 , x1x6x9 , x1x7x9 , x1x2

9 , x4x2
6 , x4x6x7 , x4x2

7 ,
x4x6x9 , x4x7x9 , x4x2

9⟩.

Observe that all the generators of Q(x4x2
9) have degree three, as expected by

Lemma 2.8.
We apply Theorem 2.12 to compute ass(Q(x4x2

9)). The monomials that divide x4x2
9

are x4 , x9 , x2
9 , x4x9 and x4x2

9 . Now A(x4x9) = A(x4x2
9) = {x1 , x4 , x6 , x7 , x9} is not

connected, but the order ideals A(x4) = {x1 , x4} and A(x9) = A(x2
9) = {x9 , x6 , x7}

are. So

ass(Q(x4x2
9)) = {⟨x1 , x4⟩, ⟨x6 , x7 , x9⟩}.

3 The ideal containment problem for Q(m)

The d-th symbolic power of an ideal I ⊆ S, denoted I(d), is the ideal

I(d) = ⋂
P∈ass(I)

(Id SP ∩ S)

where SP is the ring S localized at the ideal P, and the intersection is over the set of
all the associated primes of I. (The definition of symbolic powers is not uniform in
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the literature, where in some references, the indexing set is only over the minimal
associated primes, as in [21, Definition 4.3.22].)

The regular d-th power of I, that is Id , always satisfies Id ⊆ I(d). Ein-Lazersfeld-
Smith [10] and Hochster-Huneke [18] showed that, for every positive integer d, there
is an integer r ≥ d such that I(r) ⊆ Id . The “ideal containment problem” pertains to
the problem of determining, for each positive integer d, the smallest integer r such
that I(r) ⊆ Id . In this section, we show that for any principal Q-Borel ideal, we can
take r = d.

The following results of Cooper et al. [8] about symbolic powers of monomial
ideals will be useful. If I = Q1 ∩⋯∩ Qs is a primary decomposition of the monomial
ideal I, and if P ∈ ass(I), then we define

Q⊆P = ⋂√
Q i⊆P

Q i .

That is, Q⊆P is the intersection of all the primary ideals in the primary decomposition
of I such that

√
Q i is contained in P. Then, we have the following theorem.

Theorem 3.1 [8, Theorem 3.7] The d-th symbolic power of a monomial ideal I is

I(d) = ⋂
P∈maxass(I)

Qd
⊆P

where maxass(I) denotes the maximal associated primes of I, ordered by inclusion.

Thus, to compute the symbolic powers of principal Q-Borel ideals, we need to
determine maxass(I). We introduce the following terminology.

Definition 3.2 Let S = K[x1 , . . . , xn] and let Q be a poset over its variables. Fix
a monomial m ∈ S and suppose that m′∣m. We say that m′ is a maximal connected
component of m if
• A(m′) is connected,
• A(m′) is maximal with respect to inclusion, i.e., there is no other m′′ that divides

m such that A(m′′) is connected and A(m′) ⊊ A(m′′), and
• m′ = mO with O = A(m′), i.e., m′ is the unique monomial of Lemma 2.3.

Note that by Lemma 2.3, the maximal connected components of a monomial exist
and are unique.

Remark 3.3 Using Lemma 2.3, we can give an equivalent definition of a maximal
connected component in terms of the poset Q. Specifically, let m be a monomial and Q
a poset as before. Let L be the lattice of divisors of m and Λ the subposet of L consisting
of {μ ∣ A(μ) is connected.}. Then m′ is a maximal connected component if and only
if m′ is a maximal element of Λ. This alternative viewpoint may be helpful.

Lemma 3.4 Let I = Q(m) for some monomial m and poset Q. Then P ∈ maxass(I)
if and only if P = ⟨x ∣ x ∈ A(m′)⟩ with m′ a maximal connected component of m.
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Proof (⇒) Suppose that P ∈maxass(I). By Theorem 2.12, there exists a monomial
m′ such that m′∣m, A(m′) is connected, and P = ⟨x i ∣ x i ∈ A(m′)⟩. We can assume
that m′ = mO with O = A(m′). If m′ is not a maximal connected component of m,
then there is some m′′ that divides m such that the connected component A(m′′)
properly contains A(m′). But since A(m′′) is connected, P′ = ⟨x i ∣ x i ∈ A(m′′)⟩ is an
associated prime of I that properly contains P, contradicting the maximality of P. We
now have the desired contradiction.
(⇐)We reverse the above argument. Let m′ be a maximal connected component

of m. By Theorem 2.12, there is a prime ideal P ∈ ass(I) such that P = ⟨x i ∣ x i ∈ A(m′)⟩
since A(m′) is connected. If P is not a maximal associated prime, then there is a prime
ideal P′ with P ⊊ P′. But then P′ = ⟨x i ∣ x i ∈ A(m′′)⟩ for some m′′ such that m′′∣m
and A(m′′) is connected. But then A(m′) ⊊ A(m′′) contradicting the fact that m′ is
a maximal connected component of m. ∎

The following lemma on distinct maximal connected components is required.

Lemma 3.5 Let m ∈ S be a monomial, and let m1 an m2 be two distinct maximal
connected components of m. Then A(m1) ∩ A(m2) = ∅.

Proof Suppose that y ∈ A(m1) ∩ A(m2). Then y is path connected to every element
in A(m1), and similarly, to every element in A(m2) since both A(m1) and A(m2)
are connected. But then A(lcm(m1 , m2)) is a connected component of A(m) that
properly contains A(m1) and A(m2). But this contradicts the fact that A(m1) and
A(m2) are maximal.

Lemma 3.6 Let m ∈ S be a monomial and let m1 , . . . , mr be all the maximal con-
nected components of m. Then m = m1⋯mr .

Proof Note that by Lemma 3.5, it follows that all the supports of m1 , . . . , mr are
pairwise disjoint, so m1⋯mr divides m. If m1⋯mr strictly divides m, that means that
there is either: (1) a variable x j that divides m that does not divide any of m1 , . . . , mr ,
or (2) a variable x j such that xd

j ∣m and xa
j divides some m i , but a < d. We show that

neither case can happen.
If x j ∣m, then A(x j) ⊆ A(m) and A(x j) is connected. Consider all m′ such that

m′∣m, A(x j) ⊆ A(m′), and A(m′) is connected. In addition, suppose m′ is picked to
be maximal with the property with respect to both inclusion and the degree of m′.
But then m′ would be a maximal connected component, which is a contradiction.

For case (2), suppose that xd
j ∣m. Since the m1 , . . . , mr have distinct support, x j

can only divide one of these monomials. After relabeling, suppose x j ∣m1. Suppose xa
j

with a ≥ 1 is the largest power of x j that divides m1. We claim that a = d. Since m1∣m
we know a ≤ d. If 1 ≤ a < d, then A(m1x j) = A(m1) since m1 and m1x j have the same
support. But then m1 is not a maximal connected component since deg m1x j > deg m1
and m1x j ∣m. So case (2) cannot happen. ∎

We relate the primary decomposition of Q(m) with its maximal connected com-
ponents.
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Lemma 3.7 Let m ∈ S be a monomial and let m1 , . . . , mr be all the maximal con-
nected components of m. Then

Q(m) = Q(m1) ∩⋯ ∩ Q(mr).
Furthermore, if Q(m) = Q1 ∩⋯∩ Qs is a primary decomposition of Q(m), then

Q(m i) = Q⊆⟨A(m i)⟩ for i = 1, . . . , r

where ⟨A(m i)⟩ = ⟨x ∣ x ∈ A(m i)⟩.

Proof By Lemma 3.6, we have m = m1⋯mr . By Lemmas 2.2 and 3.5, we have that
A(m1⋯m j−1) ∩ A(m j) = (⋃ j−1

i=1 A(m i)) ∩ A(m j) = ∅, for j = 2, . . . , r. So by repeat-
edly applying Lemma 2.11, we have

Q(m) =
r
∏
i=1

Q(m i) =
r
⋂
i=1

Q(m i).

For the second claim, observe that any associated prime of Q(m) is an associated
prime of Q(m j) for just one j (due to Theorem 2.12 and the definition of a maximal
connected component); for the same reason, any associated prime of Q(m i) is an
associated prime of Q(m). Since Q(m i) has just one maximal associated prime,
namely, ⟨A(m i)⟩, we then have Q⊆⟨A(m i)⟩ = Q(m i), as desired. ∎

We arrive at the main result of this section.

Theorem 3.8 Let I = Q(m) for some monomial m and poset Q. Then

I(d) = Id for all d ≥ 1.

Proof Let m1 , . . . , mr be the maximal connected components of m. By Lemma 3.4,
maxass(I) = {⟨A(m i)⟩ ∣ i = 1, . . . , r}. By Theorem 3.1 and Lemma 3.7 we have

I(d) =
r
⋂
i=1

Qd
⊆⟨A(m i)⟩ =

r
⋂
i=1
(Q(m i))d .

But, by Lemma 2.10, we have
r
⋂
i=1
(Q(m i))d =

r
⋂
i=1
(Q(md

i ))

Because A(m i) = A(md
i ), it follows from Lemma 3.5 that all the generators of Q(md

i )
are relatively prime with the all generators of Q(md

j ) for any i ≠ j. Thus

I(d) =
r
⋂
i=1
(Q(md

i )) =
r
∏
i=1

Q(md
i ) = Q(md) = Q(m)d = Id

The third and fourth equality follow from Lemma 2.10 and the fact that
m = m1⋯mr . ∎

Theorem 3.8 allows us to compute some invariants related to the ideal containment
problem. We recall these definitions (see [5] for more on the properties of these
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invariants). For a homogeneous ideal I, α(I)denotes the smallest degree of an element
in a minimal set of homogeneous generators for I. For a graded R-module M, μ(M)
denotes its minimal number of generators.

Definition 3.9 Let I be a homogeneous ideal of S.
(1) (see [3]) The Waldschmidt constant of I, denoted by α̂(I), is

α̂(I) ∶= lim
s→∞

α(I(s))
s

.

(2) (see [13]) The d -th symbolic defect of I, denoted by sdefect(I, d), as

sdefect(I, d) = μ (I(d)/Id) .

(3) (see [3]) The resurgence of I, denoted by ρ(I), is

ρ(I) = sup{ s
r
∣ I(s) /⊂ Ir} .

Corollary 3.10 Let I = Q(m) for some monomial m and poset Q. Then
(1) α̂(I) = deg(m),
(2) sdefect(I, d) = 0 for all d ≥ 1, and
(3) ρ(I) = 1.

Proof These results follow directly from the fact that Id = I(d) for all d ≥ 1. ∎

Remark 3.11 Observe that Corollary 3.10 holds for principal ideals in the regular
sense, thus illustrating the theme that principal Q-Borel ideals behave like principal
ideals.

Remark 3.12 For principal Q-Borel ideals I = Q(m), Corollary 3.10 shows that the
Waldschmidt constant is very easy to obtain from m. If we consider square-free Q-
Borel ideals, it becomes much harder to determine this invariant. In a follow up
paper [4], we look at the Waldschmidt constant of square-free Q-Borel ideals in the
special case that Q is the chain C ∶ x1 < ⋯ < xn , or in other words, square-free Borel
ideals.

4 Associated primes of powers of principal Q-Borel ideals

As noted in the introduction, studying the set of the associated primes of a power
of an ideal has been of recent interest. One property that has been studied is the
persistence property. Formally, an ideal I is said to have the persistence property if
ass(I i) ⊆ ass(I i+1) for all i ≥ 1. Given this interest, it makes sense to determine if
principal Q-Borel ideals have this property. This short section gives two different
proofs that principal Q-Borel ideals have this property.

Our first proof relies on the work of Herzog, Rauf, and Vladoiu [17]; we recall a
key definition from [17].
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Definition 4.1 A monomial ideal I is a transversal polymatroidal ideal if

I = P1P2⋯Pt

for prime monomial ideals P1 , . . . , Pt .

Lemma 4.2 Let I = Q(m) for some monomial m and poset Q. Then, I is a transversal
polymatroidal ideal.

Proof This result follows from [12, Proposition 2.7], which states that a principal
Q-Borel ideal is a product of prime monomial ideals. ∎

We then have following result, which implies that principal Q-Borel ideals have the
persistence property. Our first proof makes use of a property of polymatroidal ideals,
while our second proof uses Lemma 2.10, and is self-contained.

Theorem 4.3 Let I = Q(m) for some monomial m and poset Q. Then we have

ass(I) = ass(Is) for all s ≥ 1.

First Proof By [17, Corollary 3.6], every transversal polymatroidal ideal J satisfies
ass(J) = ass(J s) for all s ≥ 1. Now apply Lemma 4.2. ∎

Second Proof By repeatedly applying Lemma 2.10, Is = Q(m)s = Q(ms). If P ∈
ass(I), then by Theorem 2.12, there is a m′ such m′∣m and A(m′) is connected
and P = ⟨x i ∣ x i ∈ A(m′)⟩. But then m′∣ms and A(m′) is connected, so P is also an
associated prime of Is = Q(ms).

Conversely, suppose that P ∈ ass(Is) = ass(Q(ms)). By Theorem 2.12, there is
a monomial m′ that divides ms such that A(m′) is connected and P = ⟨x i ∣ x i ∈
A(m′)⟩. If m′ = xb i1

i1
⋯xb ir

ir
with b i j > 0, let m′′ = x i1⋯x ir . Since m′∣ms , we have m′′∣m.

Furthermore, because m′ and m′′ share the same support, A(m′) = A(m′′) by Lemma
2.1. So, we have m′′ divides m and A(m′′) is connected. So by Theorem 2.12, P =
⟨x i ∣ x i ∈ A(m′) = A(m′′)⟩ is an associated prime of I, as desired. ∎

5 The analytic spread of principal Q-Borel ideals

In this section, we compute the analytic spread of principal Q-Borel ideals Q(m) and
square-free principal Q-Borel ideals s f Q(m). In particular, this invariant is expressed
in terms of the properties of the order ideal A(m) viewed as an induced subposet of
Q. We recall the definition of analytic spread.

Definition 5.1 Let I ⊆ S = K[x1 , . . . , xn] be a homogeneous ideal, and let m =
⟨x1 , . . . , xn⟩. The analytic spread of I, denoted �(I), is the Krull dimension of the ring

F(I) =⊕
i≥0

I i

mI i where I0 = S .

Remark 5.2 The ring F(I) is usually referred to as the special fiber ring. The special
fiber ring is also isomorphic to R(I)/mR(I) where R(I) = R[It] = ⊕i≥0 I i t i ⊆ R[t]
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is the Rees algebra of I. Roughly speaking, the analytic spread is the minimum number
of generators of an ideal J that is a reduction of I (e.g., see [19, Corollary 8.2.5]).

The next lemma gives us a tool to compute �(I)when I is generated by monomials
all of the same degree.

Lemma 5.3 [20, Lemma 3.2] Let I = ⟨xα1 , . . . , xαr ⟩ be a monomial ideal and let A be
the matrix with columns α i . If deg xα i = d for all i, then the analytic spread of I is

�(I) = rank A.

Since I = Q(m) is generated by monomials of the same degree (see Lemma 2.8),
to compute �(Q(m)) it is enough compute the rank of the matrix corresponding to
the degrees of the generators. The rank of this matrix is encoded in A(m), as we now
show.

Theorem 5.4 Let I = Q(m) for some monomial m and poset Q. Then

�(I) = ∣A(m)∣ − K(A(m)) + 1

where A(m) is the order ideal of m and K(A(m)) is the number of connected
components of A(m) as an induced subposet of Q.

Proof We can write I = Q(m) as I = ⟨xα1 , . . . , xαr ⟩ where {xα1 , . . . , xαr} are the
minimal generators, and m = xαr . By Lemma 2.8, the generators all have the same
degree.

Let A = [α1 ⋯ αr] be the n × r matrix where the i-th column is given by α i . By
Lemma 5.3 we need to compute rank(A), or equivalently, the rank of the matrix

A′ = [α1 − αr α2 − αr ⋯ αr−1 − αr αr]
because the column space of A and A′ is the same.

For all x j ≤Q x i , let e(i , j) ∈ Nn denote the vector defined in (2.1). Note that xαk

is the monomial obtained from m = xαr via a series of Q-Borel moves. In particular
by Lemma 2.6 there exists vectors e(i1 , j1), e(i2 , j2) , . . . , e(i l , j l ) with it ∈ supp(xαr) for
t = 1, . . . , l such that

αr + e(i1 , j1) +⋯+ e(i l , j l ) = αk .

Thus αk − αr ∈ Span{e(i , j) ∣ i ∈ supp(xαr) and x j ≤Q x i} for any 1 ≤ k ≤ r − 1.
Because αr + e(i , j) is a column of A for any i ∈ supp(xαr) and x j ≤Q x i , the vectors
e(i , j) appear as columns of A′. This implies that

rank A′ = 1 + dimK(Span{e(i , j) ∣ i ∈ supp(xαr) and x j ≤Q x i}).
where the 1 corresponds to the column corresponding to αr .

Consider the order ideal A(xαr) and view it as an induced poset of of Q. Let B
denote the incidence matrix of the Hasse diagram associated to A(xαr). That is, B is
the matrix whose rows are indexed by the elements of A(xαr) and whose columns are
indexed by the directed edges in A(xαr). Furthermore, in the column indexed by the
edge of A(xαr) between x j and x i with x j <Q x i , we put a −1 in the row indexed by x i
and a 1 in the row indexed by j.
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It follows from the proof of [14, Theorem 8.3.1] that the kernel of B is generated by
the vectors vC = ∑x i∈C e i where C is a connected component of A(m). Given that the
columns of B belong to Span{e(i , j) ∣ i ∈ supp(xαr) and x j ≤Q x i} and the generators
of this space are orthogonal to the elements in {vC ∣ C is a connected component of
A(m)}, then

Col(B) = Span{e(i , j) ∣ i ∈ supp(xαr) and x j ≤Q x i}.

Thus,

�(Q(m)) = rank A = rank A′ = 1 + rank B

and from [14, Theorem 8.3.1] we know rank B = ∣A(m)∣ − K(A(m)) from where we
obtain the desired conclusion. ∎

Before considering square-free principal Q-Borel ideals, we make a brief aside to
differentiate our work from that of Herzog and Qureshi [16]. As shown in [16], the
analytic spread of a polymatroidal ideal [16, Definition 2.3] can be computed via the
linear relation graph of the ideal.

Definition 5.5 Let G(I) = {m1 , . . . , ms} be the minimal generators of a monomial
ideal I. The linear relation graph � of I is the graph with edge set

E = {{i , j} ∣ there exists mk , m l ∈ G(I) such x i mk = x jm l}

and vertex set V = ⋃{i , j}∈E{i , j}.

The analytic spread of a polymatroidal ideal is related to its linear relation graph.

Lemma 5.6 [16, Lemma 4.2] Let I be a polymatroidal ideal with linear relation
graph �. If r is the number of vertices of � and s is the number of connected components
of �, then

�(I) = r − s + 1.

As shown in [12, Proposition 2.9], a principal Q-Borel ideal I = Q(m) is a poly-
matroidal ideal. Consequently, one can compute �(Q(m)) via Lemma 5.6. However,
our Theorem 5.4 has the advantage of expressing the analytic spread in terms of the
poset Q and order ideal A(m). As the next example shows, we do not necessarily have
∣A(m)∣ = r and K(A(m)) = s, with r and s as in Lemma 5.6.

Example 5.7 Consider S = K[x1 , x2 , x3], and let our poset Q on {x1 , x2 , x3} have
Hasse diagram

x2 x1

x3
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Consider I = Q(x2x3) = ⟨x1x2 , x2x3⟩. Then ∣A(x2x3)∣ = 3 and K(A(x2x3)) = 2.
However, the linear relation graph � of I contains the single edge {1, 3} since
x3(x1x2) = x1(x2x3) is the only linear relation among the generators of I. So r = 2
and s = 1.

In light of the above example, it is natural to ask if there is any connection between
A(m) and the linear relation graph � of the principal Q-Borel ideal I = Q(m). This
relationship is explained in the following theorem.

Theorem 5.8 Fix a poset Q on X = {x1 , . . . , xn} and take m ∈ S a monomial. Let
I = Q(m) and let � be its linear relation graph. Consider H, the Hasse diagram of A(m),
but as an undirected graph; that is, the vertex set is V(H) = A(m) and {x i , x j} ∈ E(H)
is an edge if x i <Q x j or x j <Q x i and there is no element y ∈ X with x i <Q y <Q x j or
x j <Q y < x i .

Then � is the transitive closure of H after removing the isolated vertices of H.

Proof First, it is clear that E(H) ⊆ E(�). Also V(H) / V(�) is precisely the set of
isolated vertices of H. Now, take {i , j} ∈ E(�). Then there exists xα , xβ ∈ G(I) such
that

e i + α = e j + β.

But xα , xβ are also Q-Borel movements of m = xν . Then, by Lemma 2.6, there
exists i1 , . . . , it ∈ supp(m), j1 , . . . , jt with x jk <Q x ik for 1 ≤ k ≤ t and {i′1 , . . . , i′s} ∈
supp(m), j′1 , . . . , j′s with x j′k <Q x i′k , 1 ≤ k ≤ s, such that:

ν = α +
t
∑
k=1

e(ik , jk) = β +
s
∑
k=1

e(i′k , j′k)

and then

e j − e i =
s
∑
k=1

e(i′k , j′k) −
t
∑
k=1

e(ik , jk) .

But this means that there is a path from i to j along the vertices of H and then {i , j}
is in the transitive closure of H. ∎

Remark 5.9 The previous theorem implies that if c is the number of isolated vertices
of A(m), then ∣A(m)∣ = r + c and K(A(m)) = s + c where r and s are as in Lemma 5.6.
Using the fact that a principal Q-Borel ideal is a polymatroidal ideal, we could then
use Lemma 5.6 and Theorem 5.8 to give a different proof of Theorem 5.4. In particular,
if � is the linear relation graph of Q(m), we have

�(Q(m)) = r − s + 1 = (r + c) − (s + c) + 1 = ∣A(m)∣ − K(A(m)) + 1.

Our proof of Theorem 5.4 avoids using the polymatroidal property.

Our analysis of the square-free principal Q-Borel case is similar to the principal
Q-Borel case. We require the following notation. Suppose that Q is a poset on X =
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{x1 , . . . , xn}. If Y = {x j1 , . . . , x js} is a subset of X, then Q induces a poset Q′ on Y if
we define x j <Q′ x i if x j <Q x i .

If m is a monomial only in the variables of Y, then we write AQ(m) or AQ′(m) if
wish to view the order ideal in Q on the set X or in Q′ on the set Y. Similarly, we write
s f Q(m) or s f Q′(m), and Q(m) and Q′(m) if we wish to denote which partial order
and ground set we are using.

Theorem 5.10 Fix a poset Q on X = {x1 , . . . , xn}, and suppose that m ∈ S is a square-
free monomial. Let m′ = gcd(G(s f Q(m))) be the greatest common divisor of all the
generators of the square-free principal Q-Borel ideal I = s f Q(m). Then,

�(I) = �(Q′(m/m′)) = ∣AQ′(m/m′)∣ − K(AQ′(m/m′)) + 1,

where Q′ is the induced poset on Y = X / {x j ∣ j ∈ supp(m′)}.

Proof Let m = xα = x i1 x i2⋯x is and m′ = xδ = x j1⋯x j t . Since m′ is the greatest
common divisor of all the generators, m′∣m. Furthermore, suppose x j ∣m′, and thus
x j ∣m. If xk <Q x j , then xk

x j
m /∈ I because otherwise we would have a generator of I not

divisible by x j . If x j <Q x i and x i ∣m, then x j
x i

m is a Q-Borel move of m, but it is not in
I since this monomial is not square-free. Thus, x ∈ A(m′) implies that A(x) = {x} or
for any y ∈ Q / {x} comparable to x, the corresponding Q-Borel movement is not in
s f Q(m).

We first consider the case that m′ = 1. Note that this means that every x i that divides
m is not a minimal element of A(m). Indeed, if x i is a minimal element, then x i would
appear in every generator of I, contradicting the fact m′ = 1.

Set I = s f Q(m) and J = Q(m). Let A be the matrix whose column entries have the
form β where xβ is a generator of I, and similarly, let B be the matrix whose columns
have the form γ where xγ is a generator of J. By Lemma 5.3 and Theorem 5.4 we have

�(I) = rank(A) ≤ rank(B) = �(J) = ∣A(m)∣ − K(A(m)) + 1.

The inequality follows from the fact that all of the columns of A are in B.
Fix any i ∈ supp(m) (and thus, x i ∣m), and suppose x j <Q x i . If x j ∤ m, then x j

x i
m ∈

G(I), and therefore α + e(i , j) is a column of A. Since α is a column of A, we have
e(i , j) ∈ Col(A). If x j also divides m, then there exists a minimal element xk <Q x j .
Since xk is minimal, our hypotheses imply that xk ∤ m. But then

α + e(i ,k) and α + e( j,k)

are columns of A, and then e(i ,k) − e( j,k) = e(i , j) is in Col(A). But from Theorem 5.4
we have

Col(B) = Span({α} ∪ {e(i , j) ∣ i ∈ supp(m), x j ≤Q x i}) ⊂ Col(A).

Consequently, rank(B) ≤ rank(A), giving the desired result.
Now suppose that m′ = xδ = x j1⋯x jk > 1. Since every generator of s f Q(m) is

divisible by m′, we have

I = s f Q′(m) = m′ ⋅ s f Q′(m/m′).
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If A, respectively B, is the matrix whose columns have the form γ with xγ a generator of
s f Q′(m), respectively, s f Q′(m/m′), we can use Lemma 5.3 and the proof of Theorem
5.4 to show that rank(A) = rank(B); in particular, one needs to verify

dim Col(A) = dim Span({δ + β} ∪ {e(i , j) ∈ N∣Q ∣ ∣ i ∈ supp(m/m′) and x j ≤Q′ x i})
= dim Span({β} ∪ {e(i , j) ∈ N∣Q

′∣ ∣ i ∈ supp(m/m′) and x j ≤Q′ x i})
= dim Col(B)

where m = xδ+β and m/m′ = xβ . Consequently

�(I) = rank(A) = rank(B) = �(s f Q′(m/m′)) = �(Q′(m/m′))
where the last equality follows from the first part of the proof. ∎

Example 5.11 We illustrate the above result. Let Q be the poset with Hasse
diagram

x1

x3

x2

x4

x5

x6

Let m = x1x2x3x6 and I = s f Q(m), and thus

I = ⟨x1x2x3x6 , x1x2x3x5 , x1x2x3x4⟩.
We have gcd(G(I)) = x1x2x3. Therefore Q′ is the poset on {x4 , x5 , x6} with Hasse
diagram:

x4

x5

x6

Hence, �(I) = �(Q′(x6)) = 3.

Remark 5.12 It can be shown that m′ = gcd(G(I)) in Theorem 5.10 is the largest
monomial (by degree) that divides m such that

{x j ∣ j ∈ supp(m′)} = A(m′).
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That is, the variables that divide m′ form an order ideal. Returning to the above
example, note that {x j ∣ j ∈ supp(x1x2x3)} = {x1 , x2 , x3} = A(x1x2x3) in the poset Q.
Note that if no such monomial exists, we use the convention that A(1) = ∅.

Using the above interpretation of m′, we have the following corollary, which uses
the following terminology. Given a poset Q on {x1 , . . . , xn}, the minimal elements of
{x1 , . . . , xn} are those x i that are minimal with respect to the partial order on Q.

Corollary 5.13 Fix a poset Q and suppose that m ∈ S is a square-free monomial.
Suppose {x j ∣ j ∈ supp(m)} contains no minimal elements of Q. If I = s f Q(m),
then

�(I) = �(Q(m)) = ∣A(m)∣ − K(A(m)) + 1.

Proof No subset of {x j ∣ j ∈ supp(m)} is an order ideal in Q. So m′ = gcd
(G(I)) = 1. Now, apply Theorem 5.10. ∎
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