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Abstract

In the course of data modelling, many models could be created. Much work has been done on formulating guidelines
for model selection. However, by and large, these guidelines are conservative or too specific. Instead of using general
guidelines, models could be selected for a particular task based on statistical tests. When selecting one model, others
are discarded. Instead of losing potential sources of information, models could be combined to yield better perfor-
mance. We review the basics of model selection and combination and discuss their differences. Two examples of op-
portunistic and principled combinations are presented. The first demonstrates that mediocre quality models could be
combined to yield significantly better performance. The latter is the main contribution of the paper; it describes and
illustrates a novel heuristic approach called theSG(k-NN) ensemblefor the generation of good-quality and diverse
models that can even improve excellent quality models.

Keywords: Ensemble; Machine Learning; Neural Networks; Data Modelling; Stacked Generalization; Model
Selection

1. INTRODUCTION

Given a set of input–output data@x, y#, one can build an
unlimited number of models that represent an implicit map-
ping y 5 f ~x!. There is no best model for arbitrary data or
function. In fact, for classification tasks, averaged over all
modelling problems, all methods are equal as shown by the
conservation law for generalization performance~Schaf-
fer, 1994! and theno-free-lunch (NFL) theorems~Wolpert,
1995!.

In the traditional approach, the information available on the
problem is examined and a choice is made among available
models that might best solve the problem. Such a choice could
use heuristics or guidelines derived from experience. The
choice might fail because the true functionf is unknown, the
information available is limited or even erroneous, and

the guidelines or heuristics would be overgeneralization of
past experiences.

Inevitably, through the modelling process, the data na-
ture is better understood and new insight about the model-
ling problem emerges. Consequently, the process iterates
where different models are examined or additional data is
collected~Reich, 1997, 1998!. At the end of modelling, the
intermediate models are usually discarded.

A more systematic model selection will follow a compar-
ative statistical testing among candidate models. Such test-
ing would require large data for model building and tuning,
and for model comparison. A common test to use is cross
validation but others, especially for classification, are ex-
plored in the machine learning~ML ! community~Reich &
Barai, 1998a).

Whether a model is selected systematically or not, it is
clear that the remaining models that were developed and
discarded contain potentially valuable information about the
problem. If we wish to better understand the nature of data
and the process that generated it, and not necessarily esti-
mate the functionf for making future predictions, we could
definitely benefit from multiple perspectives provided for
by different models~Reich et al., 1996!.
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It has become clear that prediction models could also be
improved by the combination of multiple models into one,
an approach calledensemble modelling@see Sharkey~1996!
for a summary# . Numerous practical modelling problems
were solved successfully using ensembles. However, we must
not think that the combined model or ensemble is guaran-
teed to perform better than any of its constituents or that the
same combination approach will work equally well on an-
other arbitrary modelling problem. This is a corollary of the
conservation law or NFL theorem. The choices between mod-
els are merely deferred to a meta level: which models to
select as the ensemble members and how to combine them?

An important concept that underlies model selection or
combination is thebias-variance tradeoff~Geman et al.,
1992!. These could be explained in terms of this tradeoff.
This tradeoff emerges from decomposing the expected value
of the error of an estimatorZf of some functiony into three
terms: bias, variance, plus some noise factor. For a square
loss function the decomposition of the error can be written
very generally as@for a precise formulation see~Geman et al.,
1992!#:

E@~ y 2 Zf ~x!!2 # 5 E@~ y 2 E@ y# !2 # “noise”

1 ~E@ Zf ~x!# 2 E@ y6x# !2 “bias”

1 E@~ Zf ~x! 2 E@ Zf ~x!# !2 # “variance,” ~1!

where,E@{# represents expected value. The noise element
reflects the variance ofy given x including measurement
and human coding errors; it is fixed for the data. It turns out
that when model complexity increases the bias is reduced
but the variance is increased. Therefore, there is a tradeoff
between the two terms that yields the “optimal” estimator.
This insight can be used to design better estimators or se-
lect between them.

This paper reviews the problem of model selection and
model design guidelines in the context of neural networks
modelling~Section 2!. We discuss heuristics for combining
models into an ensemble to improve performance and re-
view a formalization that makes these heuristics explicit~Sec-
tion 3!. We present two examples of ensemble modelling
~Section 4!; one example demonstrates that opportunistic
ensemble modelling based on models generated in an ex-
ploratory iterative modelling process can lead to improved
performance even when data quality is poor. This example
highlights the problems of models generation and combi-
nation, which are addressed by the second example. The sec-
ond example constitutes the main contribution of this paper;
it describes and demonstrates a new method based on a set
of modified stacked generalization instantiations~Wolpert,
1992! for systematically generating quality ensembles. The
method is called theSG~k-NN! ensemble. This method suc-
ceeds in improving results even when it seems that close to
optimal performance has already been achieved.

2. MODEL SELECTION

Model selection is one of the steps in building models from
data~Reich, 1997, 1998!. It has been perceived that using
the best single tool for solving a problem is the best solu-
tion approach. However, it is also recognized that no ML
tool is better than all others on all problems~Schaffer, 1994;
Wolpert, 1995!. A critical issue therefore is determining
for each model the class of problems it can solve best. This
requires collecting data on the use of different tools for
different problems including successes and failures and com-
piling such a mapping~Reich, 1994!. Such compilation re-
quires significant effort. An attempt to use ML to assist in
this task is demonstrated in the StatLog project. Following
the testing of 22 classification programs on more than 20
databases, knowledge was extracted in the form of heuris-
tics that can direct ML program selection given a particu-
lar learning problem~Michie et al., 1994!. It is unclear
whether this approach can be generalized to handle the va-
riety of learning situations and solution methods.

Depending on the choice of modelling approach, several
parameters are often available for selection. For example,
in the context of modelling a function by neural networks
~NN!, the following choices are available:

• Model type. This selection is based on the particular
problem: A simple feedforward network might be suf-
ficient for modelling a simple function, while a recur-
rent network might be better for a time-dependent
function. In the former case, multilayer perceptron
~MLP! network or a radial basis function~RBF! net-
work could be used.

• Model configuration or topology. This choice is one of
the most common design decisions: determining the
number of hidden layers, the number of hidden units,
and the type of activation functions of the NN model.
Model complexity must produce a good tradeoff be-
tween thebias andvarianceof the model error~Ge-
man et al., 1992!.

• Model estimation. First, the error or cost function be-
tween the training data and NN output needs to be for-
mulated. Second, there are two broad categories of
model estimation methods to minimize this function.
The first method is the one developed for the particu-
lar NN such as back propagation for a MLP. The sec-
ond method involves using minimization programs to
minimize the error or cost function directly~Sarle,
1994!.

• Implementation. Many implementations of NN algo-
rithms are available. They vary in reliability and de-
tails. For example, the generation of random numbers
may be different thus leading to different initializa-
tions of NN weights. Such discrepancies undermine the
ability of different implementations to replicate results
~Nabney et al., 1997!.
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There are two methods for generating guidelines: theo-
retical and empirical. To illustrate them, consider the choice
of model configuration.

2.1. Theoretical guidelines

Many guidelines are based on interpretations of theoretical
results related to NN. In particular, there are various proofs
that NN are universal approximators. For example, Kolmog-
orov’s mapping neural network existence theorem~Hecht-
Nielsen, 1990! states that every real continuous function
f : @0,1#d r Rm can be written as

yi 5 (
h51

2d11

fiS(
k51

d

lhc~xk 1 he! 1 hD, ~2!

wherel is real,c is continuous real monotonically increas-
ing function independent off, e is a rational number as small
as desired, andfi, i 5 1, . . . ,m are continuous real func-
tions dependent onf ande. Some authors interpreted this as
a guideline that in no situation does one need more hidden
unitsh than 2d11, whered is the number of inputs~Swin-
gler, 1996!. This, however, is wrong because the activation
functions required to prove the theorem are problem depen-
dent, unknown, and certainly do not resemble those used in
any common NN architecture.

Another related theorem states that a two-hidden layer NN
with a step-activation function would require a number of hid-
den units that is polynomial in the desired error and expo-
nential in the number of inputs~K _urková, 1991; Scarselli &
Tsoi, 1998!. Consequently,h5 O~ad!, for some constanta.
The proof of this theorem is constructive: it describes the
method of building the NN and its usage. Obviously, the two
results are markedly different. If we use any of them as guide-
lines for one or two-hidden layer MLP with sigmoid activa-
tion function, we would have abstracted those results out of
their context, rendering them useless. Swingler~1996! men-
tions many such guidelines with their origin in theoretical re-
sults. However, he wrongly maintains the bound on hidden
units ash ≤ 2d11.

Theoretical guidelines can also emerge from different
theoretical analyses. For example, Fu and Chen~1993! sug-
gested usingb ≤ 4 in the sigmoid function 1/~11 e2bx! of
an MLP instead ofb 5 1 to reduce the sensitivity of the
MLP output to variations in inputs.

Many other theory-based guidelines are based on NN de-
grees of freedom or various criteria such as the Vapnik–
Chervonenkis~VC! dimension~Lawrence et al., 1996!. In
one such example, Baum and Haussler~1989! relate the size
of a MLP with linear threshold functions, the number of train-
ing examples, and the training error to the confidence in
future predictions. However, the bounds derived from those
analyses are too conservative. There is still a gap between
theoretical and empirical results in NN as the gap associ-
ated with symbolic ML~Turney, 1991!.

2.2. Empirical guidelines

Most often, empirical guidelines are based on parametric
studies involving various NN architectures applied to sev-
eral databases or modelling problems. The guidelines are
then generalized from the studies~Carpenter & Hoffman,
1997!. In performing such tests, attention should be given
to the following issues. Similar to what we know about ML,
to get useful generalized guidelines they have to be ex-
tracted from modelling problems that are representative of
the problems we might encounter in the future. The number
of these problems must be sufficient to obtain meaningful
generalization.

The generalized guidelines should be formulated care-
fully following analyzing the results with acceptable statis-
tical tests. In particular, when comparing multiple models
on multiple modelling problems, the problem of multiplic-
ity must be addressed so as to minimize spurious statistical
results~Feelders & Verkooijen, 1995; Reich & Barai, 1998a).

In addition, statistical tests have their own bias and vari-
ance. Some tests~e.g., cross validation!, are more accurate
~i.e., have less bias! than others but must be interpreted with
care. It is best to control their variance with respect to test
execution conditions and data sampling by performing sev-
eral tests and averaging the results. One such test isK I , where
I runs ofk-fold cross validation~CV! are averaged~Reich
& Barai, 1998a).

A k-fold CV is performed as follows~Reich, 1997!. The
dataD is divided intok subsets of roughly equal size. The
ML program is trainedk times, each time leaving out one of
the subsets from training, and using it for testing. The error
estimation is the average accuracy of thek runs. If k 5 n,
n is the size of the data set, the test is called aLOO test. It
has been common in general ML studies to use a 10-fold
CV method when the number of instances,n, exceeds 100,
or a leave-one-out method for small databases.

Instead of formulating general guidelines, one can use sta-
tistical tests to select a particular model for a particular mod-
elling problem. The process is similar to the generation of
general guidelines except that only one modelling problem
is solved and less testing is performed because the selection
need not apply in general.

3. ENSEMBLE MODELLING

No guideline is always correct. No single method is always
the best. This has led to the idea of trying to combine mod-
els into an ensemble rather than selecting among them. The
idea seems to work well as demonstrated by many practical
classification applications~although note that failures are
rarely reported!. Wolpert~1992! proposed two heuristics for
assessing the potential of an ensemble.

1. The ensemble should span the space of generalizers.
The ensemble members should be of different types
and not merely variants on the same model type.
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2. The ensemble models should be “orthogonal.” This
ensures that each adds additional information toward
building an accurate model. Correlated models are not
useful for ensemble construction.

These heuristics are clear when using ML to gain better un-
derstanding of data: the use of diverse methods provides dif-
ferent perspectives, and many different perspectives improve
understanding~Reichetal., 1996!.KroghandVedelsby~1995!
formalized these heuristics as an instance of the bias-variance
tradeoff~Geman et al., 1992!. The ensemble error is given by:

Ej 5 OEj 2 NAj ~3!

where

OEj 5 (i51
n wij dij is the weighted average of error of in-

dividual networks of thejth output parameter;

NAj 5 (i51
n wij aij , is the weighted average of ambiguities

~aij , defined below! in the jth output parameter;

wij 5 the weight assigned to the output of thejth param-
eter of theith model; these weights satisfy(i wij 5
1;

dij 5 the sum square error~SSE! of the jth parameter of
the ith model;

aij 5 ~ yij 2 Syj !
2 is referred to as theambiguityin the jth

parameter of theith model;

yij 5 the output of thejth parameter of theith model;
and

Syj 5 the weighted average output of thejth parameter,
that is,(i51

n wij yij .

Equation 3 separates the generalization error into one term
that depends on the errors of the individual models and an-
other term that contains all the correlation between them.
The first is low if models quality is high~heuristic 1! and
the second is high if the diversity is high~heuristic 2!. Krogh
and Vedelsby~1995! also show how to compute the values
of optimal weightswij . However, this calculation requires a
large data set for training and testing. Thus, in cases where
a small dataset is available, it is advisable to assign equal
weights that lead to a conservative ensemble.

Figure 1 shows the differences between the model selec-
tion and combination approaches. The general framework
is similar; however, the combination approach has many
more degrees of freedom. It also has many more opportu-
nities to address the bias-variance tradeoff. Instead of opti-
mizing the tradeoff for each model before combination, one
can generate basic models with lower bias and let the am-
biguity of the ensemble@i.e., the ambiguity term in Eq.~3!#
reduce the variance~Naftaly et al., 1997!. This requires in-
tegrating tightly the two steps in the model combination
approach.

Most work on ensembles to date have dealt with classi-
fication. We will present two examples of using ensembles
for multidimensional regression.

Lawrence et al.~1996! pointed out that the more noisy
the data, the more beneficial is ensemble construction. Our
first example has two levels of noise. Our results lead to
similar findings: the advantage of using ensemble increases
with the level of noise in, or variance of, the data. We also
show that ensembles do not always improve results.

Most previous work on ensembles have not dealt with
actively generating a good set of diverse models. Opitz and
Shavlik~1996! operationalized Eq.~3! into a procedure for
such generation. Their algorithm is based on genetic search
in the space of NN configurations for those NN that con-
tribute most to lowering theEj ’s. Our second example im-
plements a novel heuristic approach for systematic generation
of good quality ensemble models.

4. OPPORTUNISTIC AND PRINCIPLED
ENSEMBLE MODELLING: CASE STUDIES

We illustrate two approaches of ensemble modelling:op-
portunistic and principled. The opportunistic approach
emerges from the usual iterative data modelling process. Dur-
ing modelling, various models are explored, the problem is
gradually better understood, and hopefully, modelling im-
proves. Yet, at the end of the process, one remains with all
the intermediate models, some of which may perform bet-
ter than the final model. Instead of discarding these models,
ensemble modelling combines them into one. If the models
are quite different~i.e., diverse! and reasonably good, the
ensemble will improve upon the best of them. We demon-
strate this approach through modelling corrosion data.

The principled approach seeks to generate systematically
a set of as accurate as possible and diverse models from
which a single model is composed. We develop a new method
with these properties and demonstrate it through modelling
marine propeller’s behavior data.

4.1. Opportunistic method: Combining
intermediate models

This exercise deals with the stress corrosion cracking~SCC!
of a sensitized, wrought type 304 stainless steel~Congle-

Fig. 1. Model selection versus combination.
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ton et al., 1995!. The goal of modelling is establishing re-
lationships between the environmental conditions and their
effects on the steel. The environmental conditions are tem-
perature~T!, potential~V !, solution types~ST1 and ST2!
and the effects are crack length~CL!, ultimate tensile
strength~UTS!, time of failure~TF!, reduction of area~RA!,
and the crack type~CT1 with four distinct values or CT2
with two aggregated values “yes” and “no-crack”!. Prelim-
inary data analysis suggested that the data, consisting of
93 instances, is sparse, noisy, and its quality is rather poor.

4.1.1. Neural networks models

We selected multilayer perceptron~MLP! and a self-
organizing map~SOM! for creating input–output mappings
and for locating possible outliers in the data. We used the
implementations in the MATLAB Neural Network Toolbox
~Demuth & Beale, 1994!. From these two basic models, five
model combinations were synthesized and summarized in
Table 1.

• Model 1: This is the basic model where MLP creates
one mapping between the input and output parameters.

• Model 2: This modelling is based on the assumption
that classifying the data points into similarity regions
will improve predictability. First, SOM forms clusters
considering all the parameters. Second, a model is built
to recognize these clusters given input data only. Third,
a model is built to map the input parameters and the
class onto the output parameters.

• Model 3: This approach tries to subdivide the predic-
tion task into two steps. First, the CT1 is predicted and
second, CT1 and the other input parameters determine
the other output parameters.

• Model 4: Same as model 1 except thatwhitening~Bish-
op, 1995! is performed on the data before training. Whit-
ening is a linear transformation with correlations of
attributes that are performed using eigenvectors calcu-
lated from the data.

• Model 5: Same as model 1 except that CT1 is replaced
by CT2.

4.1.2. Selection of neural networks model parameters

The topology and training parameters@number of ep-
ochs, and learning rate~lr!# of the different models are given
in Table 1. The topology specifies the number of input units,
units in two hidden layers, and number of output units. SSE
was set to 0.005, but was never reached in our experiments;
rather, the training cut-off was determined by the number of
epochs. There was no optimization of the parameters. Rather,
we selected parameters that gave reasonable results with rea-
sonable execution time to allow us to execute the study.

4.1.3. Evaluating and interpreting results

Due to the small data size we usedleave-one-out~LOO)
to determine the accuracy of the NN models~Reich, 1997;
Reich & Barai, 1998a). Two cases were analyzed: the first
case used theraw dataand the second case usedcleaned
data. The data cleaning was carried out manually consider-
ing the following criteria:

• Focusing on the parameter RA and removing inconsis-
tent or repetitive examples from the data set.

• Performing resubstitution and LOO tests on the raw
data. Identifying patterns that gave high errors for the
output parameters and removing them from the data.

In the context of RA, 14 patterns were removed from orig-
inal data set.

The results of the LOO tests in terms of SSE for each
model and the ensemble results for the two cases are shown
in Tables 2 and 3. In the case of raw data~Table 2!, the
ensemble improved the predictive accuracy of all four pa-
rameters by a significant amount; in particular, the accu-
racy of the two difficult to predict parameters: CL and RA.
In the case of cleaned data~Table 3!, we expected less im-
provement. Indeed, this was the case and for two param-
eters~UTS and TF!, the ensemble performed worse than
the best model.

We did not perform any statistical test to assess the sig-
nificance of the results we obtained. Such tests would be
extremely time consuming. However, to study the sensitiv-

Table 1. A summary of modelling approaches

Model Step Input Parameters Output Parameters Modeller Topology Epochs lr

1 1 ST1, ST2, T, V CL, UTS, TF, RA, CT1 MLP 4–18–18–6 25,000 0.02
2 1 ST1, ST2, T, V Classification SOM* — 2000 0.1

2 ST1, ST2, T, V Class MLP 4–18–18–1 10,000 0.02
3 ST1, ST2, T, V, Class CL, UTS, TF, RA, CT1 MLP 5–18–18–6 25,000 0.02

3 1 ST1, ST2, T, V CT1 MLP 4–18–18–2 25,000 0.02
2 ST1, ST2, T, V, CT1 CL, UTS, TF, RA MLP 6–18–18–4 25,000 0.02

4 1 ST1, ST2, T, V CL, UTS, TF, RA, CT1 MLP 4–18–18–6 25,000 0.02
5 1 ST1, ST2, T, V CL, UTS, TF, RA, CT2 MLP 4–18–18–5 25,000 0.02

*SOM was trained for 8 classes, 6 points in each class, and a standard deviation of 0.05.
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ity of the ensemble to model’s availability, we calculated
the ensemble accuracy for each combination of the six mod-
els. The maximum and minimum errors, with the model com-
binations that generated them, are shown at the end of
Tables 2 and 3. The results show significant variations. One
of the combinations in Table 3, models 1 and 4 which yields

the minimal error for TF~0.0476!, performs worse than the
best model~0.0427!. Consequently, ensembles are not guar-
anteed to improve results upon the best model. It becomes
critical to determine a systematic method for generating di-
verse, good-quality ensembles.

4.2. Principled method: TheSG(k-NN) ensemble

The principled method involves using stacked generaliza-
tion ~SG! in an innovative manner. SG is a method for im-
proving the accuracy of one model or combining several
models into an ensemble~Wolpert, 1992!. To improve one
model, SG is used in the following manner~see Fig. 2!. One
model may represent a function fromx to y in theoriginal
data space, [y 5 Zf ~x!. The errors between the data and the
model prediction are used as input to a second algorithm in
the error spaceto create a model between an augmented
inputx ' and the errore5 y2 yo, [e5 Zf '~x ' !, wherey is the
target output from the dataset andyo is the output of the
first model. The augmented input is the original inputx and
the description of the instance closest~nearest neighbor! to
the new input in the training set. The second model could
be used to predict the error that the first model would have
when predicting the output of a new input. Together, both
models can yield better estimation that is calculated by[y 1
[e. To be safe, the contribution of the second model could be

halved to yield~Wolpert, 1992!:

[y 1 0.5{ [e ~4!

The process of applying SG to a model extracted from a
data set is quite involved. Figure 3 shows the data arrange-
ment for SG and Figure 4 provides the algorithm. The fig-
ure shows one iteration of testing SG onT after building it
from D. If D is composed ofk 2 1 folds of a CV test andT
is the last fold, the procedure can iteratek times to yield a
completek-fold CV test.

Table 2. NN performance study of material corrosion—
raw data

Error of Individual Networks

Parameters

NN Model
Crack
Length UTS

Time of
Failure

Reduction
of Area

Model 1 0.4236 0.1460 0.2361 4.0897
Model 2 0.5963 0.2343 0.1643 5.9212
Model 3 0.4610 0.2335 0.2335 4.5191
Model 4 0.3321 0.1634 0.1146 3.9106
Model 5 0.4524 0.1481 0.2775 3.3689

Ensemble Error

OE 0.4289 0.1861 0.2167 4.2812
NA 0.2082 0.0608 0.1349 1.6582

E 0.2496 0.1295 0.0865 2.7733
Min ~E! 0.2305 0.1259 0.0856 2.7456
Models 1, 3, 4 1, 4, 5 1, 2, 3, 4 1, 2, 4, 5
Max~E! 0.3968 0.1646 0.1627 3.8604
Models 2, 3 2, 3 3, 5 2, 3

Table 3. NN performance study of material corrosion—cleaned
data for RA

Error of Individual Networks

Parameters

NN Model
Crack
Length UTS

Time of
Failure

Reduction
of Area

Model 1 0.2529 0.1204 0.0427 1.2165
Model 2 0.8039 0.2237 0.1269 2.8658
Model 3 0.2458 0.1603 0.0804 1.9874
Model 4 0.1934 0.2578 0.0746 1.7532
Model 5 0.2107 0.1888 0.0965 1.2779

Ensemble Error

OE 0.3189 0.1775 0.0865 1.8121
NA 0.1691 0.0603 0.0388 0.9860

E 0.1659 0.1255 0.0528 0.8612
Min ~E! 0.1317 0.1149 0.0476 0.8612
Models 1, 3, 4, 5 1, 3 1, 4 1, 2, 3, 4, 5
Max~E! 0.3498 0.1867 0.0808 1.4394
Models 2, 3 2, 4 2, 5 2, 4

Fig. 2. Error prediction with stacked generalization.

Fig. 3. Stacked generalization data management.
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The original SG uses one nearest neighbor to augment
the input space. Instead of using one nearest neighbor, we
usek-nearest neighbors. We anticipate improved perfor-
mance similar to the improved performance when using
k-NN regression instead of 1-NN regression in statistics.
Thus, by varyingk we can generate different models that
are denoted by SG~k-NN!, k 5 1, . . . ,n. For each problem
and a database, there is an optimal value fork that will yield
the best performance.k also depends on the level of noise
~Lawrence et al., 1996!. We experimented withn 5 6. This
exercise yields good-quality and evidently, quite diverse
models.

With the same approach we could have used SG to com-
bine models instead of improve one. The same scheme would
then become an ensemble of ensembles.

4.2.1. Case study problem definition

This study deals with predicting the behavior of a marine
propeller given certain operating conditions and design pa-
rameters. The data were created in open sea trials~Denny
et al., 1989!. The data include 301 instances and cover the
following dimensionless parameters: thrust coefficient~KT!,
torque coefficient~KQ!, efficiency~h!, advance coefficient
~J!, pitch diameter ratio~P/D!, expanded area ratio~EAR!,

number of blades~Z!, and cavitation number~s!. The task
is to build a model that maps the input data described by the
propeller geometry and operating conditions~i.e., Z, EAR,
P/D, J, etc.! to the output that is the performance of the
propeller~i.e., KT, KQ, andh!.

4.2.2. Neural networks models
An MLP was selected due to its proven ability to perform

nonlinear regression; the apparent smoothness of the func-
tion being modelled; and the availability of seemingly suf-
ficient data. We chose to use the implementation~with
improved backpropagation! of MATLAB Neural Networks
Toolbox ~Demuth & Beale, 1994!.

4.2.3. Selection of neural networks model parameters
Three NN were used in this study as shown in Figure 4:

ATM, LTM, and EPM. Their topology and parameters were:

1. ATM: 5–30–30–3, SSE5 0.5, lr5 0.02; SSE was the
governing stopping training criterion.

2. LTM: 5–30–30–3, SSE5 0.5, lr5 0.02; SSE was the
governing stopping training criterion.

3. EPM: 5–30–30–3, SSE5 0.05, epochs 50,000; num-
ber of epochs was the governing stopping training
criterion.

Fig. 4. The stacked generalization algorithm.
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As before, there was no optimization of parameters in-
volved. Again, we selected parameters that gave reasonable
results with reasonable execution time to allow us to per-
form the study.

The set of models we obtained was then used to create
an ensemble by assigning equal weights to the different SG
~k-NN! models.

4.2.4. Evaluating and interpreting results
A basic 10-fold CV test was performed whose data sub-

divisions were used in all other tests. SG~k-NN!, k51, . . . ,6,
were created and their results calculated according to Eq.~4!.
Further, the ensemble approach was used on the SG~k-
NN! results according to 3. The results of these exercises
are tabulated in Table 4. The use of the SG~k-NN! algo-
rithm with different k values improved the basic SG and
was better than the results of the particular CV test whose
data subdivision was used in all the tests~shown as the
first entry in the table!. Nevertheless, these improvements
are rather small. In contrast, the ensemble results show sig-
nificant improvement above each of the models alone and
above the original CV test.

The ensemble of six SG~k-NN! models, and even the
worst combination, gave results better than any other se-
quence with lowerk. Different combinations of different
models gave better~or worse! results for the different pa-
rameters. The maximal and minimal accuracies and the mod-
els that participated in these ensembles are given at the end
of Table 4.

Interestingly, the worst results are associated with an en-
semble of the first two models. This could be explained by

the high correlation that exists between them. In contrast,
the best results involve ensembles composed of either the
4th and 5th SG models or the 5th and 6th models. Instead of
the optimal value ofk that we find ink-NN, there is a dif-
ferentk value that optimizes the ensemble accuracy. We in-
tend to explore whether this observation applies to other
situations.

4.2.4.1. Note on statistical tests.As noted earlier, no sta-
tistical tests were performed. Conducting such tests with
SG is extremely time consuming. For example, the com-
putational cost of obtaining the values in Table 4 could be
decomposed as follows~see Figs. 3 and 4!. Testing the ac-
curacy of one SG is done withk-fold CV. In each of thek
iterations, an SG is developed fromk 2 1 subsets of the
total k ~the setD in Fig. 3!. This development is done with
CV that is executed in an inner loop. Consequently, in the
process of testing one SG,k2 models are trained from
n{~~k 2 1!/k!2 instances, and 2k models are trained with
n{~k 2 1!/k instances, wheren is the size of the data. For
six models withk 5 10 andn 5 301, these numbers are
720 training sessions with a database of about 250 in-
stances. Any statistical test would involve at least 10 ex-
ecutions of a similar procedure—a costly endeavor. Instead
of statistical tests, we provide a different measure of the
quality of these results: Elsewhere~Reich & Barai, 1998b),
we conducted an analysis of the measurement error in the
collection of data for this problem and found that our en-
semble results come close to being optimal considering these
errors. Additional confidence in this technique will emerge
from future applications.

5. CONCLUSIONS

Modelling data is a hard problem that often requires a long
iterative modelling process where different choices are ex-
plored and evaluated. Most often a model would include
useful information even if it is inferior to all other models.
Even opportunistic combination of models generated in the
course of iterative modelling could be useful. We demon-
strated this by combining five models created in the course
of modelling material corrosion data.

Engineering data, particularly those generated in exper-
imental setting, are often noisy, sparse, and of mediocre qual-
ity from the perspective of NN modelling. Fortunately, the
usefulness of using ensembles increases when the data qual-
ity is poor because the ensemble averaging reduces the vari-
ance contribution to model error. Ensembles can also succeed
if data quality is good and the basic models are selected and
combined carefully. Nevertheless, there are also chances that
the combination of models will result in models less accu-
rate than the best model available.

All these phenomena were demonstrated in the exercise
of modelling material corrosion; they suggest that addi-
tional work is needed on the generation and combination of

Table 4. Error rates of SG(k-NN) and their ensemble

Error of Individual Networks

Parameters

KT KQ h

10-Fold CV 8.09 4.47 4.20
SG ~k-NN! No. of Neighbors

1 ~Original SG! 7.41 4.48 4.30
2 7.03 4.48 4.12
3 7.21 4.57 4.16
4 7.27 4.59 4.10
5 7.33 4.45 4.19
6 7.45 4.56 4.13

Ensemble Error

OE 7.28 4.52 4.17
NA 1.45 1.03 0.73

E 5.83 3.50 3.43
Min ~E! 5.0975 2.9443 2.9916
Models 4, 5 4, 5 5, 6
Max~E! 6.0197 3.5623 3.5881
Models 1, 2 1, 2 1, 2
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good, diverse models and on the influence of the general
goal of modelling—obtaining accurate ensemble—on the
training of the basic models.

We presented a novel heuristic approach called theSG
(k-NN) ensembleto the systematic generation of good-
quality and diverse ensembles. The approach was tested on
good-quality data and proved useful in improving the best
single basic model we generated. Even the worst combina-
tion performed better that any single model. This exercise
demonstrates that careful generation of ensembles can im-
prove on good-quality models created from good-quality
data.

In spite of these results, no general method will work al-
ways. Therefore, we can only state that a particular method
for creating an ensemble can be better than the best single
model and continue to work on identifying the generation
and combination methods that can best solve different classes
of data modelling problems.
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