
Euro. Jnl of Applied Mathematics (2021), vol. 32, pp. 436–469 c© The Author(s), 2020. Published by 436
Cambridge University Press.
doi:10.1017/S0956792520000224

A multi-level procedure for enhancing accuracy
of machine learning algorithms

K J E T I L O . L Y E1, S I D D H A R T H A M I S H R A2 and R O B E R T O M O L I N A R O2

1SINTEF Digital, Oslo, Norway
email: kjetil.olsen.lye@sintef.no

2Seminar for Applied Mathematics (SAM), D-Math, ETH Zürich, Rämistrasse 101, Zürich-8092, Switzerland
emails: smishra@sam.math.ethz.ch; roberto.molinaro@sam.math.ethz.ch

(Received 30 September 2019; revised 21 April 2020; accepted 18 June 2020; first published online 14 July 2020)

We propose a multi-level method to increase the accuracy of machine learning algorithms for
approximating observables in scientific computing, particularly those that arise in systems modelled
by differential equations. The algorithm relies on judiciously combining a large number of computa-
tionally cheap training data on coarse resolutions with a few expensive training samples on fine grid
resolutions. Theoretical arguments for lowering the generalisation error, based on reducing the vari-
ance of the underlying maps, are provided and numerical evidence, indicating significant gains over
underlying single-level machine learning algorithms, are presented. Moreover, we also apply the
multi-level algorithm in the context of forward uncertainty quantification and observe a considerable
speedup over competing algorithms.

Key words: Variance Reduction, Multi-level Algorithms, Machine Learning, Uncertainity
Quantification

2020 Mathematics Subject Classification: 65M06, 65M08, 65M75

1 Introduction

A fundamental goal in scientific computing is the efficient simulation of observables, also
referred to as functionals, quantities of interest or figures of merit, of systems that arise in physics
and engineering. Often, the underlying system is modelled by non-linear partial differential equa-
tions (PDEs). A prototypical example is provided by the simulation of flows past aerospace
vehicles where the observables of interest are body forces such as the lift and the drag coeffi-
cients and the underlying PDEs are the compressible Euler or Navier–Stokes equations of fluid
dynamics. Other interesting examples include the run-up height for a tsunami (with the shallow
water equations modelling the flow) or loads (stresses) on structures, with the underlying system
being modelled by the equations of elasticity or viscoelasticity.

Computing observables involves first solving the underlying PDE by suitable numerical meth-
ods such as finite difference, finite element, finite volume or spectral methods and then evaluating
the corresponding observable by another numerical method, usually a quadrature rule.

The computation of observables can be very expensive as solving the underlying (non-linear)
PDE, especially in three space dimensions, entails a large computational cost, even on state-of-
the-art high-performance computing platforms.

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224
mailto:kjetil.olsen.lye@sintef.no
mailto:smishra@sam.math.ethz.ch
mailto:roberto.molinaro@sam.math.ethz.ch
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956792520000224&domain=pdf
https://doi.org/10.1017/S0956792520000224

Multi-level procedure for enhancing machine learning algorithms 437

This high computational cost is particularly evident when one considers large-scale problems,
such as uncertainty quantification (UQ), (Bayesian) inverse problems, data assimilation or
optimal control/design. All these problems are of the many query type, that is, the underlying
PDE has to be solved for a very large number of instances, each corresponding to a particular
realisation of the input parameter space, in order to compute the input parameters to observable
map. Querying the computationally costly PDE solver multiple times renders these problems
prohibitively expensive.

Although many methods such as reduced order models [27] have been developed to provide
a surrogate for the PDE solver in computing observables, they may not be stable or accurate
enough for complex non-linear PDEs such as those modelling fluid flows. Hence, there is a
pressing need for the design of fast and accurate surrogates for computing observables.

Machine learning is a very popular field within computer science in recent years. In particular,
artificial neural networks, that is, layers of units (neurons) that compose affine transformations
with simple (scalar) non-linearities, are a very effective tool in a variety of contexts. Deep
learning, based on artificial neural networks with a large number of hidden layers, is extremely
successful at diverse tasks, for instance in image processing, computer vision, text and speech
recognition, game intelligence and more recently in protein folding [6], see [16] and references
therein for more applications of deep learning. A key element in supervised deep learning
is the training of tunable parameters in the underlying neural network by (approximately)
minimising suitable loss functions on the set of training data. The resulting very high-dimensional
(non-convex) optimisation problem is customarily solved with variants of the stochastic gradient
descent (SGD) method [33].

Machine learning is being increasingly used in the context of scientific computing. Given
that neural networks are very powerful universal function approximators [4, 41, 5], it is natu-
ral to consider the space of neural networks as an ansatz space for approximating solutions of
PDEs. First proposed in [15] on an underlying collocation approach, it has been successfully
used recently in different contexts. See [28, 29, 17, 24, 40, 38, 10] and references therein. This
approach appears to work quite well for problems with high regularity (smoothness) of the under-
lying solutions and/or if the solution of the underlying PDE possesses a representation formula
in terms of integrals.

Another set of methods embed deep learning modules within existing numerical methods to
improve them. Examples include solving the elliptic equations in a divergence projection step
in incompressible flows [37] or learning troubled cell indicators within an RKDG (Runge-Kutta
Discontinuous Galerkin) code for applying limiters [31] or recasting finite difference (volume)
schemes as neural networks and training the underlying parameters to improve accuracy on
coarse grids [20].

In the recent paper [18], the authors developed a deep learning algorithm to approximate
observables (functionals) in computational fluid dynamics. One of the challenges, discussed in
[18], in using deep learning algorithms in many contexts in scientific computing, stems from esti-
mates on the so-called generalisation error ([3], see also 2.26 of [18] or (2.17) for the definition),
that measures the accuracy of the trained network on unseen inputs. Although estimating gener-
alisation error sharply is a notoriously hard problem [1, 3], an upper bound on the generalisation
error in the context of regression of functions, for randomly selected training data is usually in
the form:

ĒG ∼ ĒT + U√
N

, (1.1)

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

438 K. O. Lye et al.

with ĒG being the generalisation error, ĒT the training error (see (2.18) for definition) and N being
the number of training samples. The detailed estimate, presented in Section 2, (2.24), bounds
U in (1.1) in terms of two components, one arising from the so-called validation gap for the
neural network (to check overfitting) and the other depending on the variation (measured by the
standard deviation) of the underlying function (and neural network) . The bound (1.1) illustrates
one of the challenges of using deep learning in the context of approximating (observables of)
solutions of PDEs. As long as the upper bound U ∼O(1), we need a large number of training
samples in order to obtain reasonably small generalisation errors. Since the training samples are
generated by solving PDEs, generation of a large number of training samples necessitates a very
high computational cost.

In [18], the authors proposed reducing the generalisation error in this data poor regime, by
selecting training points based on low-discrepancy sequences, such as Halton or Sobol sequences
which are heavily used in the context of quasi-Monte Carlo (QMC) methods [2]. This approach
yielded considerable increase in accuracy at the same cost, over choosing random training points
and allowed the authors to obtain very low prediction errors with a few (O(100))) training
samples for problems such as predicting drag and lift for flows past airfoils.

However, one can only prove that such an approach of using low-discrepancy sequences
reduces the generalisation error if the underlying function is sufficiently regular (see the recent
paper [21] for the relevant estimates). In general, observables arising in computational fluid
dynamics for instance have rather low regularity (see Section 2.3.2 of [18]). Moreover, the
approach of using low-discrepancy sequences is viable only if the dimension of the underlying
input parameter space is only moderately high.

In this paper, we propose another approach for increasing the accuracy (by reducing the gen-
eralisation error) of deep neural networks for computing observables. Our approach is based on
the observation that the upper bound U in (1.1) involves the standard deviation of the underly-
ing observable (see (2.24) for an exact statement of the estimate). We will reduce the variance
(standard deviation) of the observable in order to lower the generalisation error. To this end, we
adapt a multi-level or multi-resolution procedure to the context of machine learning.

Multi-level methods were introduced in the context of numerical quadrature by Heinrich in
[11] and for numerical solutions of stochastic differential equations by Giles in [7]. They have
been heavily used in recent years for UQ in PDEs, solutions of stochastic PDEs, data assimila-
tion and Bayesian inversion. See [8] for a detailed survey of multi-level Monte Carlo (MLMC)
methods and applications and [22, 23] for applications to computational fluid dynamics. We
would like to point out that multi-level methods are inspired by multi-grid and multi-resolution
techniques, which have been used in numerical analysis over many decades.

The basic idea of our multi-level machine learning algorithm is to approximate the observable
on a sequence of nested mesh resolutions for solving the underlying PDE. We then learn the
so-called details (differences of the observable on successive mesh resolutions), instead of the
observable itself. If the underlying numerical method converges to a solution of the PDE, then
the standard deviation of the details is significantly smaller than the standard deviation of the
underlying observable, resulting in a smaller value of the upper bound in (1.1) and allowing us
to learn the details with significantly fewer training samples. By carefully balancing the standard
deviation of the details with the computational cost of generating the observable at each level of
resolution, we aim to reduce the overall generalisation error, while keeping the cost of generating
the training samples small.

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

Multi-level procedure for enhancing machine learning algorithms 439

The main aim of this paper is to present this novel multi-level machine learning algorithm
for computing observables and to demonstrate the gain in accuracy over standard supervised
deep learning algorithms, such as the one proposed in [18] . We will also use this algorithm in
the context of speeding up forward UQ. Numerical experiments for two prototypical problems
in scientific computing will be presented in order to illustrate the gain in efficiency with the
proposed algorithm.

The rest of the paper is organised as follows: in Section 2, we present the deep learning algo-
rithm for approximating observables. The multi-level machine learning algorithm is presented
in Section 3 and its application to UQ is presented in Section 4. In Section 5, we present exten-
sions of the multi-level algorithm and discuss its implementation. Numerical experiments are
presented in Section 6.

2 The deep learning algorithm

2.1 Problem formulation

Our objective is to approximate observables with machine learning algorithms. For definiteness,
we assume that the observable of interest is defined in terms of the solutions of the following
very generic system of time-dependent parametric PDEs:

∂tU(t, x, y) = L
(
y, U, ∇xU, ∇2

x U, . . .
)

, ∀ (t, x, y) ∈ [0, T] × D(y) × Y ,

U(0, x, y) = U(x, y), ∀ (x, y) ∈ D(y) × Y ,

LbU(t, x, y) = Ub(t, x, y), ∀ (t, x, y) ∈ [0, T] × ∂D(y) × Y .

(2.1)

Here, Y is the underlying parameter space and without loss of generality, we assume it to be
Y = [0, 1]d , for some d ∈N.

The spatial domain is labelled as y → D(y) ⊂R
ds and U : [0, T] × D × Y →R

m is the vector
of unknowns. The differential operator L is in a very generic form and can depend on the gradient
and Hessian of U, and possibly higher-order spatial derivatives. For instance, the heat equation as
well as the Euler or Navier–Stokes equations of fluid dynamics are specific examples. Moreover,
Lb is a generic operator for imposing boundary conditions.

The parametric nature of the PDE (2.1), represented by the parameter space Y , can stem from
UQ or Bayesian inversion problems where the parameter space models uncertainties in the PDE.
The parametric nature can also arise from optimal design, control and PDE constrained optimi-
sation problems with Y being the design (control) space. We equip this parameter space with a
measure μ ∈ Prob(Y).

For the parameterised PDE (2.1), we consider the following generic form of observables,

Lg(y, U) :=
T∫

0

∫
Dy

ψ(x, t)g(U(t, x, y))dxdt, for μ a.e y ∈ Y . (2.2)

Here, ψ ∈ L1
loc(Dy × (0, T)) is a test function and g ∈ Cs(Rm), for s � 1.

For fixed functions ψ , g, we define the parameters to observable map:

L : y ∈ Y →L(y) = Lg(y, U), (2.3)

with Lg being defined by (2.2).

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

440 K. O. Lye et al.

We also assume that there exist suitable numerical schemes for approximating the PDE (2.1)
for every parameter vector y ∈ Y , such that a high-resolution approximate solution U�(y) ≈ U(y)
is available, with � denoting the grid resolution (mesh size, time step, etc.). Hence, there exists
an approximation to the inputs to observable map L� of the form,

L� : y ∈ Y →L�(y) = Lg(y, U�), (2.4)

with the integrals in (2.2) being approximated to high accuracy by quadratures. Therefore, the
original input parameters to observable map L is approximated by L� to very high accuracy,
that is, for every value of a tolerance ε > 0, there exists a �� 1, such that

‖L(y) −L�(y)‖L
p
μ(Y) < ε, (2.5)

for some 1 � p �∞ and weighted norm,

‖f ‖L
p
μ(Y) :=

(∫
Y

|f (y)|pdμ(y)

) 1
p

.

The estimate (2.5) can be ensured by choosing � small enough in an underlying error estimate,

‖L(y) −L�(y)‖L
p
μ(Y) ∼�s, (2.6)

for some s> 0.

2.2 Deep learning the parameters to observable map

The process of learning the (approximate) parameters to observable map L� (2.4) involves the
following steps:

2.2.1 Training set

As is customary in supervised learning ([9] and references therein), we need to generate or obtain
data to train the network. To this end, we fix N ∈N and select a set of parameters S= {yi}1�i�N ,
with each yi ∈ Y . The points in S can be chosen randomly from the parameter space Y , indepen-
dently and identically distributed with the measure μ. We will identify the training set S with the
vector S ∈ Y N , defined by

S = [y1, y2, . . . yN] .

Hence, each S ⊂ Y , is distributed according to the measure μN ∈P(Y N) with
μN (y1, y2, . . . , yN) =μ(y1) ⊗μ(y2) . . .⊗μ(yN)

Once the training set S is chosen, we perform a set of simulations of the underlying PDE (2.1),
at a resolution �, to obtain L�(y), for all y ∈ S.

2.2.2 Neural network

Given an input vector y ∈ Y , a feedforward neural network (also termed as a multi-layer percep-
tron), shown in Figure 1, transforms it to an output, through a layer of units (neurons) which

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

Multi-level procedure for enhancing machine learning algorithms 441

FIGURE 1. An illustration of a (fully connected) deep neural network. The red neurons represent the inputs
to the network and the blue neurons denote the output layer. They are connected by hidden layers with
yellow neurons. Each hidden unit (neuron) is connected by affine linear maps between units in different
layers and then with non-linear (scalar) activation functions within units.

compose of either affine-linear maps between units (in successive layers) or scalar non-linear
activation functions within units [9], resulting in the representation,

Lθ (y) = CK ◦ σ ◦ CK−1 ◦ σ ◦ C2 ◦ σ ◦ C1(y). (2.7)

Here, ◦ refers to the composition of functions and σ is a scalar (non-linear) activation function. A
large variety of activation functions have been considered in the machine learning literature [9].
A very popular choice, which we will consider for the rest of this article, is the ReLU function,

σ (z) = max(z, 0). (2.8)

When, z ∈R
p for some p> 1, then the output of the ReLU function in (2.8) is evaluated

componentwise.
For any 1 � k � K, we define

Ckzk = Wkzk + bk , for Wk ∈R
dk+1×dk , zk ∈R

dk , bk ∈R
dk+1 . (2.9)

For consistency of notation, we set d1 = d and dK = 1.
Thus in the terminology of machine learning (see also Figure 1), our neural network (2.7)

consists of an input layer, an output layer and (K − 1) hidden layers for some 1<K ∈N. The
k-th hidden layer (with dk neurons) is given an input vector zk ∈R

dk and transforms it first by
an affine linear map Ck (2.9) and then by a ReLU (or another) non-linear (component wise)

activation σ (2.8). A straightforward addition shows that our network contains

(
d + 1 +

K−1∑
k=2

dk

)
neurons. We also denote

θ = {Wk , bk}, θW = {Wk}, ∀ 1 � k � K, (2.10)

to be the concatenated set of (tunable) weights for our network. It is straightforward to check that
θ ∈�⊂R

M with

M =
K−1∑
k=1

(dk + 1)dk+1. (2.11)

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

442 K. O. Lye et al.

2.2.3 Loss functions and optimisation

For any y ∈ S, one can readily compute the output of the neural network Lθ (y) for any weight
vector θ ∈�. We define the so-called training loss function as

J (θ) :=
∑
y∈S

|L�(y) −Lθ (y)|p, (2.12)

for some 1 � p<∞.
The goal of the training process in machine learning is to find the weight vector θ ∈�, for

which the loss function (2.12) is minimised.
It is common in machine learning [9] to regularise the minimisation problem for the loss

function, that is, we seek to find,

θ∗ = arg min
θ∈� (J (θ) + λR(θ)) . (2.13)

Here, R :�→R is a regularisation (penalisation) term. A popular choice is to set R(θ) = ‖θW ‖q
q

for either q = 1 (to induce sparsity) or q = 2. The parameter 0 � λ� 1 balances the regularisation
term with the actual loss J (2.12).

The above minimisation problem amounts to finding a minimum of a possibly non-convex
function over a subset of RM for possibly very large M . We follow standard practice in machine
learning by either (approximately) solving (2.13) with a full-batch gradient descent algorithm or
variants of mini-batch SGD algorithms such as ADAM [14].

For notational simplicity, we denote the (approximate, local) minimum weight vector in (2.13)
as θ∗ and the underlying deep neural network L∗ =Lθ∗ will be our neural network surrogate for
the parameters to observable map L (2.4). The algorithm for computing this neural network is
summarised below,

Algorithm 1 Deep learning of parameters to observable map
Inputs: Parameterised PDE (2.1), Observable (2.2), high-resolution numerical method for

solving (2.1) and calculating (2.2).
Goal: Find neural network Lθ∗ for approximating the parameters to observable map L (2.4).

Step 1: Choose the training set S and evaluate L�(y) for all y ∈ S by a numerical method.
Step 2: For an initial value of the weight vector θ ∈�, evaluate the neural network Lθ (2.7),

the loss function (2.13) and its gradients to initialise the (stochastic) gradient descent
algorithm.

Step 3: Run a stochastic gradient descent algorithm till an approximate local minimum θ∗ of
(2.13) is reached. The map L∗ =Lθ∗ is the desired neural network approximating the
parameters to observable map L.

Note that the trained neural network L∗ =L∗(S) depends explicitly on the training set, identi-
fied by the vector S ∈ Y N . Hence, it should be denoted as L∗(y; S) for its application to each y ∈ Y .
However, for notational convenience, we will suppress this explicit dependence and denote the
trained network as L∗.

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

Multi-level procedure for enhancing machine learning algorithms 443

2.3 An estimate on the generalisation error of deep learning Algorithm 1

For the rest of this section, we set p = 1 in (2.12) and aim to minimise the absolute value of the
training loss. Moreover, we assume that their exists an underlying complete probability space
(
,�, P), with respect to which random draws can be made.

Our aim in this section is to derive bounds on the so-called generalisation error [35], which is
customarily defined by,

EG(S) = EG(θ∗; S) :=
∫
Y

|L�(y) −L∗(y; S)|dμ(y) (2.14)

Note that this generalisation error depends explicitly on the training set S (identified by vector S).
For each fixed training set S, the training process in Algorithm 1 amounts to minimising the

so-called training error:

ET (S) = ET (θ∗; S) := 1

N

N∑
i=1

|L�(yi) −L∗(yi; S)|, (2.15)

with yi ∈ S. The training error can be estimated from the loss function (2.12), a posteriori. Note
that the training error ET depends on the underlying randomly drawn training vector S.

It would be tempting to realise that for each randomly drawn S, the training error (2.15) in the
collocation of the integrand |L� −L∗|, of the generalisation error (2.14) on randomly chosen
points. A naive application of the central limit theorem would then lead to a bound on the so-
called generalisation gap of the form,∫

YN
|EG(S) − ET (S)|2dμN (S) ∼ V

(|L� −L∗(:; S)|)
N

. (2.16)

Thus, in heuristic terms, the generalisation gap is estimated in terms of the variance of the
integrand in (2.14) and the number of training samples.

However, such a bound is not rigorous. This is on account of the fact that the central limit
theorem is only applicable if the underlying realisations are independent. Although this is true
for the underlying map L�, this is no longer true for the trained neural network L∗. In fact, the
realisations of L∗ on the training points can be highly correlated during the training process.
These correlations create a formidable obstacle for obtaining sharp bounds on the generalisa-
tion error [35]. In fact, tools from statistical learning theory ([3]) such as VC dimension or
Rademacher complexity [35] have been developed to deal with this issue, see the recent paper
[39] for an application of this theory to obtain sharp generalisation bounds for one hidden layer
neural networks.

Our objective in this paper is not to derive or work with sharp bounds on the generalisation
error but rather to illustrate the role of variance in the generalisation error and how reducing
variance can increase accuracy. To this end, we will adopt a heuristic approach and assume
certain properties of trained neural networks that allow us to sharply illustrate the role of the
underlying variance in controlling the generalisation error.

To this end, we start by realising that the generalisation error (2.14) relies explicitly on the
training set S and by defining an average (over all training sets) cumulative generalisation error:

ĒG =
∫

YN

EG(S)dμN (S) =
∫

YN

∫
Y

|L�(y) −L∗(y; S)|dμ(y)dμN (S). (2.17)

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

444 K. O. Lye et al.

Similarly an average cumulative training error is defined by,

ĒT =
∫

Yn
ET (S)dμN (S) = 1

N

∫
YN

N∑
i=1

|L�(yi) −L∗(yi; S)|dμN (S). (2.18)

Note that as the points yi ∈ S in the integrand of (2.18), the cumulative training error is a
deterministic quantity.

Our objective would be to estimate the cumulative generalisation gap, that is, the difference
between (2.17) and (2.18). To do so, we require another widely used set in machine learning,
that is, the so-called validation set,

V= {zj ∈ Y , 1 � j � N , zj i.i.d wrt μ}. (2.19)

The validation set is chosen before the starting of the training process and is independent of the
training sets. We define the cumulative validation error as,

ĒV = 1

N

∫
YN

N∑
j=1

|L�(zj) −L∗(zj; S)|dμN (S). (2.20)

We observe that the as the set V is drawn randomly from Y with underlying distribution μ,
the cumulative validation error is a random quantity, ĒV = ĒV (ω) with ω ∈
. We suppress this
ω-dependence for notational convenience. Finally, we introduce the validation gap:

ETV :=E
(|ĒT − ĒV |) :=

∫

|ĒT − ĒV (ω)|dP(ω) (2.21)

Equipped with the above notation and considerations, we obtain the following bounds on the
cumulative generalisation error,

Lemma 2.1 The generalisation gap, that is, ĒG − ĒT , for the deep learning Algorithm 1 for
approximating the observable L� (2.4) satisfies the following bound,

|ĒG − ĒT |� ETV +
√

8
(
V
(
L�
)+V (L∗)

)
N

. (2.22)

Here, V denotes the following variances,

V
(
L�
)=

∫
Y

(
L�(y)

)2
dμ(y) −

⎛
⎝∫

Y

L�(y)dμ(y)

⎞
⎠2

,

V
(
L∗)=

∫
Y

∫
YN

(
L∗(y; S)

)2
dμN (S)dμ(y) −

⎛
⎝∫

Y

∫
YN

L∗(y; S)dμN (S)dμ(y)

⎞
⎠2

,

(2.23)

Proof We start with the elementary application of triangle and Cauchy–Schwartz inequalities
to obtain,

|ĒG − ĒT | =E(|ĒG − ĒT |) � ETV +E(|ĒG − ĒV |)

� ETV +
√
E(|ĒG − ĒV |2).

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

Multi-level procedure for enhancing machine learning algorithms 445

Next, we will use a MC approximation to compute the integral inside the square root of the
above expression.

Using the definitions of the generalisation error (2.17) and validation error (2.20) and for any
z ∈ Y , consider the integrand in the above integral, that is, I(z) =L�(z) − ∫

YN L∗(z; S)dμN (S).
As the validation points zj ∈V are randomly chosen from the underlying measure μ, we realise
that the validation error EV (2.20) is the MC quadrature approximation of the generalisation error
(2.17) and we can estimate the difference between them, in terms of the central limit theorem
[2] by,

E(|ĒG − ĒV |2) � V(I)

N
.

We estimate the variance in the above equation in the following manner,

V(I) =
∫
Y

(∫
Y

∫
YN

|L�(z) −L∗(z; S)| − |L�(z̄) −L∗(z̄; S)|dμN (S)dμ(z̄)

)2

dμ(z)

�
∫
Y

⎛
⎝∫

Y

∫
YN

|L�(z) −L∗(z; S) − (L�(z̄) −L∗(z̄; S))|dμN (S)dμ(z̄)

⎞
⎠2

dμ(z)

(by triangle inequality)

�
∫
Y

⎛
⎝∫

Y

|L�(z) −L�(z̄)|dμ(z̄) +
∫
Y

∫
YN

|L∗(z; S) −L∗(z̄; S)|dμN (S)dμ(z̄)

⎞
⎠2

dμ(z)

(by triangle inequality)

� 2

⎛
⎜⎜⎜⎜⎜⎝
∫
Y

∫
Y

|L�(z) −L�(z̄)|2dμ(z)dμ(z̄)

︸ ︷︷ ︸
I1

+
∫
Y

∫
Y

|L∗(z; S) −L∗(z̄; S)|2dμN (S)dμ(z̄)dμ(z)

︸ ︷︷ ︸
I2

⎞
⎟⎟⎟⎟⎟⎠

(by Cauchy−Schwartz)

Using the definitions of the variances (2.23), it is straightforward to obtain the following
estimates,

I1 � 4V
(
L�
)

, I2 � 4V
(
L∗) ,

resulting in the estimate (2.22).

The bound (2.22) yields

ĒG ∼ ĒT + ETV + 2
√

2

(
std(L�) + std(L∗)

)
√

N
, (2.24)

with std denoting the standard deviation, that is, the square roof of the variances in (2.23).
Several remarks are in order about the estimate (2.22) on the generalisation gap and the

resulting estimate (2.24) on the generalisation error.

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

446 K. O. Lye et al.

Remark 2.2 The estimate (2.24) bounds the cumulative generalisation error (generalisation
error averaged over different choices of the training sets) in terms of the cumulative training
error (training error averaged over different choices of the training sets), the validation gap
(difference between training and validation errors, averaged over training sets), and the vari-
ances of the underlying map as well as the trained neural network (averaged over the choice
of training samples). This is a non-standard form of writing the generalisation error. However,
it corresponds to the usual practice in machine learning, where one computes both the training
and validation errors for each choice of training samples and also considers multiple training
samples.

Remark 2.3 In practice, the accuracy of the training process is ascertained by monitoring both
the training and the validation errors. The training process is usually terminated when the train-
ing error is lower than some tolerance, while at the same time the validation error is also low
enough, that is, the validation gap ETV is small. So, an estimate of the form (2.24) corresponds
to what is most often computed in practice. One of the limitations of the estimate (2.24) is that
fact that the training and validation sets are of similar size whereas in practice, one sets aside a
much smaller number of samples for validation.

Remark 2.4 The above estimate (2.24) on the generalisation gap is clearly an upper bound and
is not necessarily sharp. In fact, the proof of the lemma makes it clear that the bound could be
a significant overestimate. As is well known [1, 39, 25], estimating the generalisation error of
neural networks sharply is a notoriously hard problem. Nevertheless, the upper bound (2.24)
will suffice for our purposes in this paper.

3 A multi-level deep learning algorithm

In order to motivate the design of a multi-level deep learning algorithm, we introduce the
following concept,

Definition 3.1 (Well-trained Neural Network.) A neural network L∗, generated by the deep
learning algorithm 1 to approximate the parameters to observable map L� (2.4), is said to be
well trained if the following hold,

std(L∗) ∼ std(L�), ĒT ≈ ETV � std(L�)√
N

. (3.1)

In other words, the training error (2.18) and the validation gap (2.21) for a well-trained network
are significantly lower than the variance of the underlying map. Moreover, the variance of the
network is comparable to that of the underlying map.

We assume that such a well-trained network can be found during the training process.
Although this assumption appears rather stringent, it must be mentioned that the conditions on
the training error and the validation gap can be monitored during the training process. In fact, it is
standard practice in machine learning to check the validation error in order to monitor overfitting.

This assumption automatically implies from (2.24) that the generalisation error scales as,

ĒG ∼ std(L�)√
N

. (3.2)

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

Multi-level procedure for enhancing machine learning algorithms 447

FIGURE 2. A schematic for a sequence of nested grids used in defining the multi-level algorithms.

Even under the assumption of the existence of a well-trained network, as long as std(L�) ∼
O(1), we see from (3.2) that the generalisation error ĒG ∼ 1√

N
. Hence, for obtaining a generali-

sation error of say 1 per cent, we need 104 training samples. Generating such a large number of
training samples might be prohibitively expensive, particularly for if the underlying parametric
PDE (2.1) is in two or three space dimensions.

Our goal in this section is to propose a multi-level version of the deep learning Algorithm 1.
The basis of this algorithm is the observation that the underlying parameters to observable map L

(2.3) can be approximated on a sequence of mesh resolutions �
, for 0 �
� L for some L> 0.
We require that�
 <�
−1 for each 1 �
� L, see Figure 2 for a diagrammatic representation of
this sequence of grids.

For each
, we assume that the underlying parameters to observable map L can be approxi-
mated by the map L�
 , computed on resolution �
 with an estimate,

‖L−L�
‖L1
μ(Y) ∼�s

, s> 0. (3.3)

Given such a sequence of resolutions�
 and approximate parameters to observable maps L�
 ,
we have the following (telescopic decomposition)

L�L (y) =L�0 (y) +
L∑

=1

(
L�
(y) −L�
−1 (y)

)
, ∀y ∈ Y . (3.4)

Introducing the so-called details,

D
(y) =L�
 (y) −L�
−1 (y), ∀y ∈ Y , 1 �
� L, (3.5)

we rewrite the telescopic decomposition (3.4) as

L�L(y) =L�0 (y) +
L∑

=1

D
(y), ∀y ∈ Y . (3.6)

The multi-level deep learning algorithm will be based on independently learning the following
maps

L�0 (y) ≈L∗
0(y), D
(y) ≈D∗

(y), ∀y ∈ Y , 1 �
� L. (3.7)

Here, L∗
0, D∗

 , for 1 �
� L are artificial neural networks of the form (2.7). The resulting
algorithm is summarised below,

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

448 K. O. Lye et al.

Algorithm 2 Multi-level deep learning of parameters to observable map
Inputs: Parameterised PDE (2.1), Observable (2.2), high-resolution numerical method for

solving (2.1) and calculating (2.2), a sequence of grids with grid size �
 for 0 �
� L.
Goal: Find neural network L∗

ml for approximating the parameters to observable map L (2.3).
Step 1: For the coarsest mesh resolution�0, select a training set S0 = {y0

i }, 1 � i � N0 = #(S0),
with y0

i ∈ Y being independently and identically distributed with respect to the measure
μ, that is , the training set S0 can be identified with the S0 ∈ Y N0 , with

S0 = [
y0

1, y0
2, . . . , y0

N

]
,

drawn from an underlying distribution μN0 ∈P(Y N0). For each y0
i , compute L�0 (y0

i) by
solving the PDE (2.1) on a mesh resolution �0 and computing the observable (2.2).
With the training data {y0

i , L�0 (y0
i)}1�i�N0 , find the neural network L∗

0 ≈L�0 by apply-
ing the deep learning Algorithm 1. Note that the trained neural network L∗

0 =L∗
0(:; S0),

depends on the underlying training set and we suppress this dependence for notational
simplicity.

Step 2: For each 1 �
� L, select a training set S
 = {y
i }, 1 � i � N
 = #(S
), with y
i ∈ Y being
independently and identically distributed with respect to the measure μ, that is, the
training set S
 can be identified with the vector S
 ∈ Y N
 as

S
 = [
y
1, y
2, . . . , y
N

]
,

drawn from an underlying distribution μN
 ∈P(Y N
). For each y
i , compute D
(y
i) =
L�
 (y
i) −L�
−1 (y
i) by solving the PDE (2.1) on two mesh resolutions of mesh size�

and�
−1 and computing the observable (2.2). With the training data {y
i , D
(y
i)}1�i�N
 ,
find the neural network D∗

 ≈D
 by applying the deep learning Algorithm 1. Note that
the trained neural network D∗

 =D∗

(:; S
), depends on the underlying training set and

we suppress this dependence for notational simplicity.
Step 3: Form the artificial neural network L∗

ml ≈L by,

L∗
ml(y) =L∗

0(y) +
L∑

=1

D∗

(y), ∀y ∈ Y . (3.8)

Note that the neural network L∗
ml explicitly depends on the underlying training sets. To

formalise this dependence, we introduce the notation,

N̄ = N0 +
L∑

=1

Nl, Y N̄ = Y N0 ⊗ Y N1 ⊗ . . .⊗ Y NL ,

μN̄ ∈P(Y N̄), μN̄ =μN0 ⊗μN1 ⊗ . . .⊗μNL , S̄ = [S0, S1, . . . , SL]

With the above notation, we have that L∗
ml =L∗

ml(:; S̄).
Analogous to (2.17), we can define a cumulative generalisation error for the multi-level

network L∗
ml as,

Ēml
G :=

∫
YN̄

∫
Y

|L�L (y) −L∗
ml(y; S̄)|dμN̄ (S̄)dμ(y). (3.9)

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

Multi-level procedure for enhancing machine learning algorithms 449

Implicitly, we have assumed that the approximation L�L to the underlying parameters to
observable map L at the finest level of resolution �L is the ground truth.

We are going to estimate the cumulative generalisation error (3.9) in terms of the cumulative
generalisation errors at the coarsest level of resolution and that of the details, defined as

Ē0
G =

∫
YN0

∫
Y

|L�0 (y) −L∗
0(y; S0)|dμ(y)dμN0 (S0),

Ē
G =
∫

YN

∫
Y

|D
(y) −D∗

(y; S
)|dμ(y)dμN
 (S
), 1 �
� L. (3.10)

The cumulative training errors for each network can be defined analogous to (2.18) to obtain
Ē0

T , Ē
T . As in the previous section, we need to specify validation sets of the form (2.19), for
validating the networks L∗

0, D∗

 for each 1 �
� L. The validation gap is defined, in analogy

with (2.20), to define E
TV , with 0 �
� L.
We have the following bound for the cumulative generalisation error (3.9) of the network,

generated by the multi-level deep learning Algorithm 3.

Lemma 3.2 The generalisation error (3.9) of the multi-level machine learning Algorithm 3 is
estimated as,

Ēml
G � Ē0

G +
L∑

=1

Ē
G,

|Ē0
G − Ē0

T |� E0
TV +

√
8
(
V
(
L�0

)+V
(
L∗

0

))
N0

,

|Ē
G − Ē
T |� E
TV +
√

8
(
V (D
)+V

(
D∗

))
N

for all 1 �
� L.

(3.11)

The proof of the first inequality in (3.11) in above lemma is based on the telescopic decompo-
sition (3.6) and successive applications of the triangle inequality. The other estimates in (3.11)
follow from a direct application of the inequality (2.22) in Lemma 2.1 to the neural networks
L∗

0, D∗

 , for all 1 �
� L.

One can rewrite the above estimate on generalisation error as,

Ēml
G ∼ Ē0

T + E0
TV +

L∑

=1

(
Ē
T + E
TV

)

+ 2
√

2(std(L�0) + std(L∗
0))√

N0
+

L∑

=1

2
√

2(std(D
) + std(D∗

))√

Nl

(3.12)

We need to determine the training sample numbers N
 for 0 �
� L, in order to complete
the description of the multi-level machine learning Algorithm 3. These have to be deter-
mined such that the multi-level deep learning Algorithm 3 can lead to a greater accuracy (a
lower generalisation error ĒG) at a similar computational cost as the underlying deep learning
Algorithm 1.

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

450 K. O. Lye et al.

A heuristic argument for selecting sample numbers runs as follows. First, we assume that the
cost of training the neural networks and evaluating them is significantly lower than the cost of
generating the training data with a PDE solver for (2.1). This assumption is indeed justified for
most realistic problems (see Table 13 in [18] for the training and evaluation costs vis a vis the
cost of generating training data for a flow past airfoils). Next, we assume that the cost of solving
a PDE such as (2.1) for a single realisation of the parameter vector y ∈ Y , on a mesh resolution
of �
 scales as �−(ds+1)

 . This assumption is justified for first-order time-dependent PDEs (due
to the CFL condition) and the arguments below can be readily extended to a more general case.
It assume it here for the sake of definiteness.

Thus, it is much cheaper to generate a training sample on a coarse resolution than on a fine
resolution. Hence, the intuitive idea is to generate a much larger number of training samples on
coarser mesh resolutions than on finer resolutions (see Figure 2). From the generalisation error
estimate (3.12), we see that contribution to the generalisation error from the details, correspond-
ing to fine mesh resolutions, can be very low, even for a low number of training samples as long
as the standard deviation of the underlying details is low. Thus, we can combine a large number
of training samples at low resolution with a few training samples at high resolution, in order
to obtain low generalisation errors at comparable cost to the deep learning Algorithm 1. These
heuristic considerations are formalised in the lemma below.

Lemma 3.3 For any given tolerance ε, there exists a �> 0 such that the error estimate (2.5)
holds, we assume that training process for the deep learning Algorithm 1 results in a well-
trained neural network L∗ with properties (3.1). Moreover, we consider a generic sequence of
mesh resolutions sn = {
k} with
0 = 0,
n = L that yields the following generalised formulation
of the multi-level deep learning algorithm 3

L∗

n

(y) =L∗

0

(y) +
n∑

k=1

D∗
k (y), L∗

0
(y) ≈L�0 (y),

D∗
k (y) ≈Dk(y) :=L�
k (y) −L

�
k−1 (y), ∀y ∈ Y , (3.13)

such that

�k = 2(
n−
k)�, 0 � k � n, (3.14)

and training sample numbers given by,

Nk ∼ LVk

ε2
, 0 � k � n, with V0 =V(L�0), Vk =V(Dk), 1 � k � n. (3.15)

Furthermore, we assume that the training process in the multi-level deep learning Algorithm 3
results in well-trained artificial neural networks, that is, neural networks L∗

0, D∗
k with properties,

Ē0
T ≈ E0

TV � std(L�0)√
N0

, std(L∗
0) ∼ std(L�0),

Ēk
T ≈ Ek

TV � std(Dk)√
Nk

, std(D∗
k) ∼ std(Dk), ∀1 � k � n. (3.16)

Let �ml be speedup, that is, the ratio of computational cost of computing L� to accuracy of
O(ε). to the cost of computing L� to the same accuracy with the multi-level machine learning

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

Multi-level procedure for enhancing machine learning algorithms 451

Algorithm 3. Under the assumption that the costs of training and evaluation of all the neural
networks in Algorithms 1 and 3 is significantly smaller than the cost of generating the training
data, we have the following estimate on �ml,

1

�ml
∼ L

V(L�)

[
V02−Ld̄ +

n∑
k=1

Vk2−(L−
k)d̄

]
, (3.17)

with d̄ = ds + 1 is the number of space-time dimensions for the parametrised PDE (2.1).

Proof Based on error estimate (2.6), we observe that ε∼�s. Applying assumptions (3.1) on
the neural network L∗, generated by the deep learning Algorithm 1, in the estimate (2.22) for the
generalisation error of L∗, we obtain that

N ∼V(L�)�−2s (3.18)

training samples are required to approximate L� to tolerance ε.
Under our assumptions, the cost of training and evaluating neural networks is much smaller

than the cost of generating the training data. Hence, the total cost of the deep learning Algorithm
1 is given by,

CDL ∼ NC� ∼V(L�)�−(2s+d̄). (3.19)

Here, we have used (3.18) and the fact that the computational cost of generating a single training
sample by solving the PDE (2.1) numerically at resolution � is given by C� ∼�−d̄

Next, we consider the multi-level machine learning Algorithm 3. Applying the assumptions
(3.14) on the resolutions, (3.15) on the training sample numbers and (3.16) on trained neural
networks in the formula for the generalisation error (3.11), we observe that each term in the
right-hand side of the upper bound in (3.11) scales as O (

ε
n

)
and the total generalisation error is

of O(ε).
Under the assumptions that the cost of training and evaluating neural networks is much smaller

than the cost of generating the training data, the total cost of the multi-level machine learning
Algorithm 3 is given by,

CML ∼
n∑

k=0

NkC�k

∼
n∑

k=0

LVk2−(L−
k)d̄�−(2s+d̄), by (3.14), (3.15).

(3.20)

The estimate on speedup (3.17) follows from dividing (3.20) by (3.19).

Remark 3.4 Each sequence of resolutions in the multi-level method can be specified in terms of
a single parameter, that is, model complexity defined as:

cml = n2

L
(3.21)

Remark 3.5 From formula (3.17), we see that speedup of the multi-level Algorithm 3 over the
underlying machine learning Algorithm 1 is expressed in terms of the variance of the details

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

452 K. O. Lye et al.

D
. In practice, V0 =V(L�0) ∼V(L�). On the other hand, a straightforward application of the
error estimate (2.6) yields the following estimate,

Vk =V(Dk) =V(L�
k −L
�
k−1) ∼�2s

k−1
=�2s22(L−
k−1)s, from (3.14). (3.22)

Assuming for simplicity that
k = k L
n ∀k : 1 � k � n and substituting (3.22) in (3.17) results in

1

�ml
∼ L2−Ld̄ + L�2s22s L

n

V(L�)

n∑
k=1

2L(1− k
n)(2s−d̄) (3.23)

The geometric series in (3.23) clearly converges to a finite value as long as s � d̄
2 . This holds

true in most cases of practical interest as s � 1 and d̄ = 3 or 4. Consequently, the speedup will
be exponential in L for small values of �.

Remark 3.6 We have used a very crude strategy of selecting sample numbers in (3.15). It relies
on specifying the number of samples at the finest level NL and at the coarsest level N0. The
samples at intermediate levels are determined by,

Nk = NL2e(L−
k), 0< k < n, e = log2(N0/NL)

L
. (3.24)

More sophisticated strategies, such as those proposed in the context of MLMC methods in [8]
and references therein, might lead to greater speedup with the multi-level machine learning
algorithms.

4 Uncertainty quantification

In this article, we focus our attention on forward UQ or uncertainty propagation with respect to
the parameters to observables map L (2.3) (or rather its numerical surrogate L� (2.4)). To this
end, we follow [18] and consider the so-called push-forward measure with respect to this map,
that is, μ̂� ∈ Prob(R) given by

μ̂� :=L�#μ, ⇒
∫
R

f (z)dμ̂�(z) =
∫

Y
f (L�(y))dμ(y), (4.1)

for any μ-measurable function f : R→R.
Note that the measure μ̂� contains all the statistical information about the map L�. In

particular, any moment or statistical quantity of interest with respect to this map can be com-
puted by choosing a suitable test function f in (4.1). In particular, choosing f (z) = z provides the
mean L̄ of the observable L� and f (z) = (z − L̄)2 yields the variance.

The baseline MC algorithm for approximating this measure (probability distribution) con-
sists of choosing J independent, identically distributed (with respect to μ) samples yj ∈ Y and
approximating the measure μ̂� by the so-called empirical measure,

μ̂mc = 1

J

J∑
j=1

δL�(yj) ⇒
∫
R

f (z)dμ̂qmc(z) = 1

J

J∑
j=1

f
(
L�(yj)

)
. (4.2)

On the other hand, within the deep learning Monte Carlo (DLMC) algorithm, proposed in
[18], we first generate a deep neural network L∗ to approximate the underlying map L� by the

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

Multi-level procedure for enhancing machine learning algorithms 453

deep learning Algorithm 1 and then approximate the measure μ̂� by,

μ̂∗
mc = 1

JL

JL∑
j=1

δL∗(yj), (4.3)

with JL � J evaluations of the neural network. In [18], the authors provide a complexity analysis
of the DLMC algorithm and also estimate the speedup with respect to the baseline MC algorithm,
in terms of the errors of computing the measure μ̂� in the Wasserstein metric. We refer the inter-
ested reader to [18], Theorem 3.11. The numerical experiments, presented in [18], also provide
evidence of a significant speedup with the DLMC algorithm over the baseline MC method.

Here, we propose another variant of the DLMC algorithm, which is based on the multi-level
machine learning Algorithm 3. The algorithm is as follows,

One can readily perform a complexity analysis, completely analogous to Section 3.3 of [18] to
quantify possible speedups with the ML2MC algorithm over the DLMC algorithm by combining
the arguments in Theorem 3.11 of [18], with the speedup estimate (3.17).

Algorithm 3 A Multi-level Machine learning Monte Carlo (ML2MC) algorithm for forward UQ
Inputs: Parameterised PDE (2.1), Observable (2.2), high-resolution numerical method for

solving (2.1) and calculating (2.2), a sequence of grids with grid size �
 for 0 �
� L.
Goal: Find a measure μ̂ml2mc ∈ Prob(R) to approximate the push-forward measure μ̂� (4.1).

Step 1: Generate the neural network L∗
ml ≈L� by applying the multi-level machine learning

Algorithm 3.
Step 2: Define the approximate push-forward measure by,

μ̂∗
ml2mc = 1

JL

JL∑
j=1

δL∗
ml(yj), (4.4)

5 Extensions and implementation

The multi-level machine learning Algorithm 3 can be readily extended in the following
directions,

5.1 QMC-type algorithms

In the recent paper [18], the authors obtained significantly lower generalisation errors by choos-
ing low-discrepancy sequences, instead of randomly distributed points, as the training set S in
Step 1 of the deep learning Algorithm 1. The intuitive reason for this was the fact that low-
discrepancy sequences, such as the Sobol and Halton points popularly used in QMC integration
methods [2], are equi-distributed in the underlying parametric domain Y , see the recent paper [21]
for a rigorous explanation of this observation. We can readily adapt the multi-level Algorithm 3
to this setting by requiring that the training sets S
 for 0 �
� L are chosen as consecutive Sobol
(or Halton) points. The rest of the algorithm is unchanged. Similarly, the UQ Algorithm 4 can be
readily adapted to this context.

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

454 K. O. Lye et al.

5.2 Other surrogate models

Deep neural networks are only one possible machine learning surrogate for the parameters to
observable map L (2.4). Another popular class of surrogate models are Gaussian process regres-
sions (GPRs) [30], which belong to a larger class of so-called Bayesian models. GPRs rely on the
assumption that the underlying map � is drawn from a Gaussian measure on a suitable function
space, parameterised by,

L(y) ∼ GP(m(y), k(y, y′)), (5.1)

Here, m(y) =E[L(y)] is the mean and k(y, y′) =E[(L(y) − m(y))(L(y′) − m(y′))] is the underly-
ing covariance function. The mean and the covariance parameterise the so-called prior measure.
It is common to assume that m ≡ 0.

Given a training set Y ⊃ S= {yi}, 1 � i � n, the key idea underlying a GPR is to apply Bayes
theorem and update the conditional distribution for a test set Y∗ ⊂ Y , Y∗ ∩ S= ∅ with #(Y∗) = n∗.
For any y∗ ∈ Y∗, denote z∗ =L(y∗), then one uses the Gaussian nature of the distributions to
calculate the posterior conditional probability by the formula,

Prob(z∗|y∗, S) ∼N (GT
∗ G−1z, G∗∗ − GT

∗ G−1G∗
)
, (5.2)

with N denoting a Gaussian distribution and z = [L(y1), . . . , L(yn)], yi ∈ S. Here, G ∈R
n×n,

G∗ ∈R
n×n∗ and G∗∗ ∈R

n∗×n∗ are the training, the training test and test Gram matrices, respec-
tively, given by,

G(i,j) = k(yi, yj), G(i,j)
∗ = k(yi, y∗,j), and G(i,j)

∗∗ = k(y∗,i, y∗,j). (5.3)

Thus, computation of the conditional probability (5.2) requires the inversion of the training Gram
matrix G (5.3), for instance by a Cholesky algorithm, entailing a computational cost of O(n3).

Popular choices for the covariance function in (5.1) are the squared exponential (RBF
function) and Matern covariance functions,

kSE(y, y′) = exp

(
− ||y − y′||2

2
2

)
, kMatern(y, y′) = 21−ν

�(ν)

(√
2ν

||y − y′||

)ν
Kν

(√
2ν

||y − y′||

)
.

(5.4)
Here || · || denotes the standard euclidean norm, Kν is the Bessel function and
 the characteristic
length, describing the length scale of the correlations between the points y and y′.

We can readily adapt the multi-level Algorithm 3 to other surrogate models such as GPRs. In
fact, we propose a significantly more general form of the Algorithm 3 below.

5.3 Selection of hyperparameters

There are quite a few hyperparameters in the multi-level Algorithm 4. We choose these
hyperparameters with the following procedure,

5.3.1 Choice of neural network hyperparameters

The deep learning Algorithm 1 requires specification of the following hyperparameters: the archi-
tecture of the neural network (2.7) (number of layers (depth) and size of each layer (width), the
exponent p in the loss function (2.12), the exponent q and constant λ in the regularisation term

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

Multi-level procedure for enhancing machine learning algorithms 455

Algorithm 4 Multi-level learning of parameters to observable map
Inputs: Parameterised PDE (2.1), Observable (2.2), high-resolution numerical method for solv-

ing (2.1) and calculating (2.2), sequence of mesh resolutions sn, number of training
samples N0, number of training samples NL.

Goal: Compute a machine learning surrogate L∗
ml for approximating the parameters to

observable map L (2.3).
Step 1: For the coarsest mesh resolution
0, select a training set S0 = {y0

i }, 1 � i � N0 =
#(S0), constituted by either random i.i.d points or with consecutive low-discrepency
sequences such as Sobol points. For each y0

i , compute L�0 (y0
i) by solving the PDE

(2.1) on a mesh resolution �0 and computing the observable (2.2). With the train-
ing data {y0

i , L�0 (y0
i)}1�i�N0 , train the neural network L∗

0,NN ≈L�0 by Algorithm 1
and the Gaussian process regressor L∗

0,GP ≈L�0 , with suitable choice of the model
hyperparameters. Assemble the ensemble model L∗

0 = α0
NNL

∗
0,NN + α0

GPL
∗
0,GP

Step 2: For each
k ∈ sn, 1 � k � n, select a training set Sk = {y
k
i }, 1 � i � Nk = #(Sk), with

Nk defined as in (3.24) and Sk consisting of either random points or Sobol points.
For each y
k

i , compute Dk(y
k
i) =L�
k (y
k

i) −L
�
k−1 (y
k

i) by solving the PDE (2.1)
on two successive mesh resolutions of �
k and �
k−1 and computing the observable

(2.2). With the training data {y
k
i , Dk(y
k

i)}1�i�Nk train the neural network D∗
k,NN ≈Dk

and the Gaussian process regressor D∗
k,GP ≈Dk , with suitable choice of the model

hyperparameters. Assemble the ensemble model D∗
k = αk

NND
∗
k,NN + αk

GPD
∗
k,GP

Step 3: Form the machine learning surrogate L∗
ml ≈L�L as

L∗
ml(y) =L∗

0(y) +
k∑

k=1

D∗
k (y), ∀y ∈ Y . (5.5)

Remark 5.1 We have omitted for ease of notation the dependency of the trained network on
the training set for ease of notation.

(2.13), the choice of the optimisation algorithm for minimising (2.13) and the starting value for
it.

Following [18], we consider either p = 1 or p = 2 in the loss function (2.12). Similarly, the
ADAM version of stochastic gradient algorithm [14] is used in full batch mode with a learning
rate of η= 0.01 and is terminated at 10, 000 epochs. For the regularisation terms and starting
value for ADAM, we use the ensemble training procedure of [18] with either q = 1 or q = 2
and λ= 5 × 10−7, 10−6, 5 × 10−6, 10−5, 5 × 10−5, 10−4. Similarly, five starting values (based on
the He initialisation) are used. Once the ensemble is trained, we select the hyperparameters that
correspond to the smallest validation error, calculated on a validation set, created by setting aside
10% of the training samples.

5.3.2 Choice of Gaussian process hyperparameters

For the characteristic length l in (5.3), we minimise the log-negative marginal likelihood [30].
This leaves two hyperparameters, that is, the choice of the covariance kernel in (5.2) and if we
choose the Matern kernel (5.3), the choice of the parameter ν. Here, we consider four hyperpa-
rameters configurations for the GPR, namely either the squared exponential kernel in (5.3) or the

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

456 K. O. Lye et al.

Matern kernel with ν = 0.5, 1.5, 2.5. These parameters are determined from an ensemble training
process by selecting the parameter with the least validation error.

5.3.3 Choice of ensemble model coefficients

If Nk > 500, 0 � k � n, we determine the ensemble hyperparameters αk
NN ,GP in Algorithm 4 by

performing a linear least squares regression on the ensemble model with respect to a validation
set, accounting for 10% of the training set. Otherwise, we simply set αk

GP = αk
NN = 0.5.

5.3.4 Choice of multi-level hyperparameters

In addition to the above hyperparameters, the multi-level Algorithms 3 and 4 involve three addi-
tional hyperparameters, that is, the sequence sn = {
k}n

k=1 of mesh resolutions, parametrised by
the model complexity cml (3.21), the number of samples N0 at the coarsest level to learn L�0 and
the number of samples NL to learn the detail Dn =L�
n −L

�
n−1 , at the finest resolution. We
will perform a sensitivity study to assess influence of these hyperparameters on the quality of
results.

6 Numerical experiments

6.1 Projectile motion

We start with a dynamical system modelling the motion of a projectile, subjected to both gravity
as well as air drag and described by the non-linear system of ODEs,

d

dt
x(t; y) = v(t; y),

d

dt
v(t; y) = −FD

(
v(t; y); y

)
e1 − ge2

x(y; 0) = x0(y),
dx(y; 0)

dt
= v0(y).

(6.1)

Here, FD = 1
2mρCdπr2||v||2 denotes the drag force, with ρ being the air density and m, Cd , r, the

mass, the drag coefficient and the radius of the object, respectively. Let further x0(y) = [0, h],
v0(y) = [v0 cos(α), v0 sin(α)] be the initial position and velocity of the object (see Figure 3 for a
schematic representation).

On account of measurement errors, the system is described by the following uncertain
parameters,

ρ(y) = 1.225
(
1 + εG1(y)

)
, r(y) = 0.23

(
1 + εG2(y)

)
, CD(y) = 0.1

(
1 + εG3(y)

)
m(y) = 0.145

(
1 + εG4(y)

)
, h(y) = (

1 + εG5(y)
)
, α(y) = 30◦(1 + εG6(y)

)
,

v0(y) = 25
(
1 + εG7(y)

)
. (6.2)

Here, y ∈ [0, 1]7 describes the input parameter space, with uniform distribution, and Gk(y) =
2yk − 1 for k = 1, ..., 7, with ε= 0.1. The objective of the simulation is to compute and quan-
tify uncertainty with respect to the observable corresponding to the horizontal range xmax (see
Figure 3),

L(y) = xmax(y) = x1(y; tf), with tf = x−1
2 (0). (6.3)

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

Multi-level procedure for enhancing machine learning algorithms 457

FIGURE 3. An illustration of two-dimensional projectile motion, with the mean value and the envelope of
trajectories, corresponding to the 95% interval shown.

Although at first glance, this problem appears simplistic, it has all the features of much more
complicated problems (such as the one considered in the next experiment). Namely, the input
parameter space Y is moderately high-dimensional with seven dimensions and the parameters to
the observable map is highly non-linear. Moreover, it yields a significant amount of variance in
the trajectories and the observable (see Figure 3). Therefore, we will approximate solutions with
a forward Euler discretisation of (6.1). The main advantage for choosing this model lies in the
fact that we can compute solutions of (6.1) for a very large number of samples (realisations of
y in (6.2)) with minimal computational work. This allows us to compute reference solutions and
test our algorithms carefully.

6.1.1 Upper bounds on the generalisation error

In Section 2.3, Theorem 2.1, we provided an upper bound (2.22), (2.24), on the cumulative
generalisation error for the deep learning Algorithm 1. Our subsequent theory about the utility
of multi-level training, rested partially on this upper bound. We test our algorithm to check how
sharp this upper bound is for this particular problem.

To this end, we fix a neural network with 6 hidden layers and 10 neurons per layer, resulting in
a network with 638 tunable parameters (weights and biases). A mean absolute error loss function
with a mean square regularisation (with λ= 10−6 in (2.13)) is minimised with the ADAM opti-
miser for a fixed learning rate of η= 0.01. To test the upper bound (2.24), we choose training sets
as independent, uniformly distributed points in [0, 1]7 and the observable L (6.3) is computed
with a forward Euler discretisation with time step �t = 0.00125.

We trained the above neural network with training sets of size Nr = 2r, 4 � r � 10 and com-
puted the generalisation error with respect to 2000 − Nr i.i.d points in [0, 1]7. In order to compute
the cumulative training, validation and generalisation error, we retrain the network K = 60 times

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

458 K. O. Lye et al.

FIGURE 4. Errors for the projectile motion. Left: Number of samples (X -axis) versus training error, gener-
alisation error and computable upper bound (2.24) on the generalisation error. Right: Compression (ratio of
the upper bound to the generalisation error) (Y -axis) versus number of training samples (X -axis). (a) Errors.
(b) Compressions.

and compute the corresponding average errors. The computation of the validation error is per-
formed on a validation set of Nr samples that is kept fixed over the K resamplings of the training
set. The expected validation gap (2.21) is then computed by repeating the procedure above over
L = 30 different realisations of the validation set.

As the right-hand side of (2.24) involves computing standard deviations, we estimate std(L)
from 2000 samples of L and std(L∗) from 1000 realisations of the neural network. The same
averaging strategy is also used for the computation of the variances.

The results are presented in Figure 4. In Figure 4 (left), we plot the training error, validation
gap, estimated generalisation error and computed upper bound (rhs of (2.24) versus the num-
ber of training samples. We see from this figure that the training error is consistently low and
only decreases slightly as the number of training samples are increased. On the other hand, the
validation gap is significantly larger than the training error for small number of samples but it
decays very fast and is almost negligible when the number of training samples is large. On the
other hand, the generalisation error is approximately the same size as the validation gap (for
small number of training samples) and the training error (for larger number of training samples).
These findings are consisted with the theory presented here and infact, the generalisation error
decays as N−0.82. On the other hand, the upper bound (2.24) provides a reasonable overestimate
of this generalisation error. To further quantify the overestimate, we plot the compression that
is, the ratio of the upper bound (2.24) to the computed generalisation error in Figure 4 (right)
and find that it lies between a factor of 3 and 9. This sharpness of the upper bound is particularly
impressive given how difficult it is to obtain sharp upper bounds for neural networks [1, 39] and
references therein.

For the remaining part of this work we will consider only one single realisation of the training
set for ease of computation.

6.1.2 Results of multi-level training and UQ

Given the sharpness of the bound (2.24) and the fact that the cumulative training error and valida-
tion gap seem to be significantly less than the generalisation error (for sufficiently large number

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

Multi-level procedure for enhancing machine learning algorithms 459

of training samples), we can follow Lemma 3.3 and expect that the multi-level machine learn-
ing Algorithm 3 will provide a lower generalisation error than the deep learning Algorithm 1
for this problem. To test this, we consider seven successive time step resolutions (L = 6) within
Algorithm 3. Moreover,�t0 = 0.08 at coarsest resolution and�tL = 0.00125 at the finest resolu-
tion. We performed an ensemble training for the selection of the exponent q of the regularisation
term and the parameter λ of L∗

0 and D∗
ref (which the detail corresponding to the two coarsest

resolutions) . The remaining parameters are identical to the previous subsection, with exception
of the loss function, that in this case is the mean squared error (p = 2 in (2.12)). L2 regularisation
with λ= 5 × 10−7 revealed the best-performing configuration for both the maps. The same set
of parameters found for D∗

ref was used for all the details. Moreover, we consider the following
set of multi-level hyperparameters:

• four sequences of multi-level resolutions corresponding to s1
n = {0, 6} (cml = 0.16), s2

n =
{0, 3, 6} (cml = 0.67), s3

n = {0, 2, 4, 6}, cml = 1.5, s4
n = {0, 1, 2, 3, 4, 5, 6} (cml = 6.0).

• four different choices of number of training samples at the coarsest resolution N0 =
{256, 512, 1024, 2048}

• seven different choices of number of training samples at the highest resolution NL =
{4, 8, 16, 32, 64, 92, 128}
Overall, we have 112 multi-level configurations. For each configuration, we run the multi-

level Algorithm 3 and compute the generalisation error from only high-fidelity samples, that is ,
samples at the finest mesh resolution. As we constrain the total number of high-fidelity samples
to 2000, we approximate the generalisation error (2.14) with the prediction error E,

E := 1

NT

(∑
y∈T

∣∣L�L (y) −L∗(y)
∣∣p) 1

p

, (6.4)

by choosing test sets T ⊂ Y with number of samples NT = #(T) ranging from 1872 to 1996. We
choose p = 2 in this section. For the sake of comparison, the deep learning Algorithm 1 is run
on this data with the number of training samples determined by the need to match the cost of the
multi-level Algorithm 3 (approximately).

The corresponding results for the generalisation error are plotted in Figure 5 (Left). In this
figure, we plot the generalisation error for each multi-level hyperparameter configuration (and the
corresponding equally expensive deep learning algorithm) versus the total computational time (in
seconds). From this figure, we observe that the error with deep learning algorithm reduces with
time (number of training samples). Moreover, the multi-level algorithms lead to a significant
reduction in error at the same computational cost to the deep learning Algorithm 1. A close
inspection of this figure reveals that about 95% of multi-level hyperparameters resulted in an
error reduction (at the same cost) over the deep learning Algorithm 1 and about 7% led to an
order of magnitude reduction in error.

This gain in efficiency is quantified in terms of the so-called gain:

G = Edl

Eml
, (6.5)

with Edl,ml corresponding to the prediction errors of the the deep learning 1 and multi-level 3
algorithms, respectively. We plot the mean and the maximum value of the gain G (6.5) with

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

460 K. O. Lye et al.

Table 1. Different cost configurations used to evaluate the performance of multi-level machine
learning method for the projectile motion example

ML2MC configurations

Samples N0 256 256 2048 2048 2048
Samples NL 4 8 8 32 64
Complexity cml 0.17 0.67 0.67 0.67 1.5

(a) (b) (c)

FIGURE 5. Results for the projectile motion case. Left: Prediction errors (Y -axis) versus computational
cost (X -axis) for different multi-level parameters in Algorithm 3 and corresponding results with deep learn-
ing Algorithm 1. Centre: gain (6.5) versus cost. Right: errors, measured in the Wasserstein distance for
the Monte Carlo (MC), multi-level Monte Carlo (MLMC), single-level machine learning (SL2MC) and
multi-level machine learning algorithms (ML2MC) versus computational cost. (a) Prediction error versus
computational cost. (b) Gains (6.5). (c) Wasserstein distance versus cost.

respect to multi-level hyperparameters for a range of computational costs, in Figure 5 (cen-
tre). From this figure, we see a mean gain between 2 and 8 and a maximum gain of 12 for the
multi-level algorithm over the deep learning Algorithm 1. Larger gains were obtained for lower
computational costs (less number of training samples), which is the case of practical interest.

Finally, we apply the multi-level Algorithm 3 in the context of UQ, in the form of the ML2MC
Algorithm 4. We compute approximations μ̂∗

ml2mc to the full push-forward measure μ̂� (4.1). A
reference push-forward measure μ̂ref is computed with a very small time step of �t = 0.001
and 20, 000 MC samples and we ascertain the quality of the ML2MC algorithm by computing
Wasserstein distances W1

(
μ̂∗

ml2mc, μ̂ref
)

with the function wasserstein_distance of the Python
library scipy.stats [36], on the multi-level hyperparameter configurations shown in Table 1.
These hyperparameters approximately correspond to those that result in the highest gain in the
prediction error (see Figure 5(a)).

In order to compare the multi-level UQ Algorithm 4 with existing algorithms, we select the
following,

• Standard MC approximation of the push-forward measure, at the finest resolution of �t =
0.00125.

• A MLMC algorithm for computing push-forward measures as proposed in [19].
• The single-level variant (SL2MC) of Algorithm 4 where the multi-level Algorithm 3 is

replaced by the deep learning Algorithm 1, trained with 9, 15, 21, 64, 191 and 322 num-
ber of samples at the finest mesh resolution. This single-level algorithm coincides with the
DLMC algorithm of [18].

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

Multi-level procedure for enhancing machine learning algorithms 461

FIGURE 6. Flow past a RAE2822 airfoil. Left: high-resolution grid centre and right: Flow visualised with
Mach number for two different samples. (a) Hi-resolution grid. (b) Mach number (sample). (c) Mach
number (sample).

In Figure 5 (Right), we plot the mean Wasserstein distance versus the computational time for all
four competing algorithms. We observe from this figure that the ML2MC Algorithm 4, clearly
outperforms the competing algorithms. On an average (over the computational costs considered),
it provides a speedup (reduction in error at same computational cost) of a factor of 5 over the MC
algorithm, 4 over the MLMC method and 3 over the single-level machine learning UQ algorithm,
based on the deep learning Algorithm 1.

6.2 Flows past airfoil

In this section, we consider a much more realistic example of a compressible flow past a
RAE2822 airfoil. The problem set-up is a benchmark for UQ in fluid flows [12] and is identical
to the one considered in [18]. The two-dimensional compressible Euler equations are solved on
the following perturbed free stream conditions and the profile geometry:

T∞(y) = (
1 + ε1G1(y)

)
, M∞(y) = 0.729

(
1 + ε1G2(y)

)
,

p∞(y) = (
1 + ε1G2(y)

)
, α(y) = 2.31◦(1 + ε1G6(y)

)
, (6.6)

SL(x; y) = SL(x)
(
1 + ε2G4(y)

)
, SU (x; y) = SU (x)

(
1 + ε2G4(y)

)
,

where α is the angle of attack and S̄U (x), S̄L(x), x ∈ [0, 1], denote the unperturbed upper and
lower surfaces of the airfoil, respectively, see Figure 6 (Left) for the reference geometry. Gk are
defined as in the previous numerical examples and ε1 = 0.1, ε2 = 0.2. The observables are the
lift and drag coefficients:

L1(y) = CL(y) = 1

E∞
k (y)

∫
SL∪SU

p(y)n(y) · ŷ(y)ds, (6.7)

L2(y) = CD(y) = 1

E∞
k (y)

∫
SL∪SU

p(y)n(y) · x̂(y)ds, (6.8)

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

462 K. O. Lye et al.

where x̂(y) = [cos(α(y)), sin(α(y))], ŷ(y) = [− sin(α(y)), cos(α(y))] and

E∞
k (y) = ρ∞(y)||u∞(y)||2

2
(6.9)

is the free-stream kinetic energy.
Thus, the input parameter space is the six-dimensional cube Y = [0, 1]6, and two samples

corresponding to two different realisations in Y are shown in Figure 6.
In [18], the authors observed that for this problem, the deep learning Algorithm 1 with Sobol

training points was significantly more accurate, with a factor of 10–20 lower generalisation errors
than with randomly distributed training points. Hence, we will only consider the case of Sobol
training points here. Moreover, we use this example to test the more general multi-level machine
learning Algorithm 4.

To this end, we consider five levels of grid resolution approximating the flow past the air-
foil, with L = 4 in Algorithm 4. The grid at the finest resolution is shown in Figure 6 (Left).
For each resolution, the two-dimensional Euler equations will be solved with the TEnSUM
code, which implements vertex centred high-resolution finite volume schemes on unstructured
triangular grids [32].

For implementing the multi-level algorithm, we consider four sequences of multi-level reso-
lutions corresponding to s1

n = {0, 4} (cml = 0.25), s2
n = {0, 2, 4} (cml = 1.0), s3

n = {0, 2, 3, 4} (cml =
2.31), s4

n = {0, 1, 2, 3, 4} (cml = 4.0). Moreover, the same choices of samples at the coarsest level
(N0) and finest level (NL) are made as in the previous numerical experiment. This results in a
total of 112 multi-level hyperparameter configurations.

For the lift coefficient, we use the neural network architecture of [18], namely a fully connected
network of 9 hidden layers with 12 neurons in each layer, and minimise a mean square loss
function with the ADAM optimiser at a fixed learning rate of η= 0.01. This configuration was
used for learning both L∗

0,NN as well as the reference detail D∗
ref ,NN . An ensemble training, in the

sense of [18], was performed to discover that a mean square regularisation with a λ= 5 × 10−7,
provided the optimal hyperparameters for both maps. The same hyperparameter configuration
was used for learning other details. Similarly for the GPR hyperparameters, we performed an
ensemble training on L∗

0,GP, D∗
ref ,GP to find that the Matern covariance kernel (5.3) with ν = 1.5

provided the best hyperparameters.
For the drag coefficient, we retain the same hyperparameters for the Gaussian process, but for

the neural networks in Algorithm 4, we performed a full ensemble training for each map, which
resulted in hyperparameters shown in Table 2. In addition to those listed in this table, the ADAM
optimiser was used to minimise a mean square loss function.

6.2.1 Prediction errors with multi-level model

We approximate the generalisation error (2.22) by computing the prediction error of the algo-
rithms (6.4) on a test set, formed by 2000 Sobol training points on the finest mesh resolution.
The resulting prediction errors for the multi-level machine learning Algorithm 4, for all the
112 multi-level hyperparameters configurations, for both the lift and the drag, are shown in
Figure 7 (top row). To provide a comparison, we also compute the single-level surrogate map
α1L

∗
NN + α2L

∗
GP, with all the training samples being generated at the finest grid resolution and

determined to (approximately) match the computational cost of the multi-level algorithm and
plot the corresponding prediction errors in Figure 7. From this figure, we see that the multi-level

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

Multi-level procedure for enhancing machine learning algorithms 463

Table 2. Best performing neural network configurations for the drag coefficient. In first column,
we show the number of training samples used in performing the ensemble training

Samples Lear. rate L1 - Reg. L2 - Reg. Depth Width

L�0 1024 0.001 0 5 × 10−7 6 16
L�1 −L�0 256 0.001 0 10−6 6 12
L�2 −L�1 64 0.001 5 × 10−7 0 6 12
L�3 −L�2 64 0.01 5 × 10−6 0 6 8
L�4 −L�3 8 0.01 10−5 0 6 8
L�2 −L�0 256 0.001 5 × 10−7 0 6 8
L�4 −L�2 8 0.01 5 × 10−7 0 6 12
L�3 −L�0 256 0.001 5 × 10−7 0 9 16
L�4 −L�0 32 0.001 10−5 0 6 8

(a) (b)

FIGURE 7. Prediction errors with the multi-level machine learning Algorithm 4 for flow past a RAE2822
airfoil. Top row: prediction error versus computational cost. Bottom row: gain (6.5) over single-level
algorithm versus computational cost. (a) Lift. (b) Drag.

algorithms clearly outperform the single-level machine learning algorithm, with approximately
75% of the configurations, resulting in a lower prediction error at similar computational cost.
A few of the configurations (3% for the lift and 8% for the drag) result in at least a factor of 4
reduction in the prediction error at same cost.

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

464 K. O. Lye et al.

(a) (b) (c)

FIGURE 8. Sensitivity of the multi-level machine learning Algorithm 4 to multi-level hyperparameters for
the flow past RAE2822 airfoil. Top row: lift, bottom row: drag. We plot prediction error (Y -axis) versus
computational cost (X -axis). (a) Sensitivity to N0. (b) Sensitivity to NL. (c) Sensitivity to cml.

This gain in efficiency is further quantified by computing the gain (6.5) and plotting it in Figure
7 (Bottom Row). From this figure, we see that on an average, the gain with the multi-level model
is a factor of 2–3 for the lift and 3–4 for the drag, in the range of reasonably small computational
times, corresponding to the interesting case of low number of training samples. The maximum
gain in this range is approximately 6 for both observables. Although these gains are a bit smaller
than the ones for the projectile motion, they are more impressive as the underlying maps are
hard to learn but the combination of Sobol training points, deep neural networks and Gaussian
processes makes the competing single-level machine learning model quite accurate.

6.2.2 Sensitivity of results to multi-level hyperparameters

Next, we study the sensitivity of prediction errors and in particular, of the gains of the multi-level
algorithm over the single-level algorithm, with respect to the three multi-level hyperparameters,
that is, model complexity cml, number of training samples N0 (at the coarsest level) and NL (at
the finest level). This sensitivity, for both the lift and the drag, is plotted in Figure 8. We have
the following observations from this figure,

• Sensitivity to N0: We observe from Figure 8 (Left column) that the best gains for the multi-
level model arise when a larger number of samples is used at the coarsest level of resolution.

• Sensitivity to NL: We observe from Figure 8 (Middle column) that the best gains for the
multi-level model arise when a few samples are used at the finest level. This is not surprising
as increasing the number of samples at the finest level increases the overall cost dramatically,
without possibly reducing the prediction error to the same extent.

• Sensitivity to cml: We observe from Figure 8 (Right column) that the models of intermedi-
ate complexity, particularly with cml = 1, provide the best gains over the single-level model

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

Multi-level procedure for enhancing machine learning algorithms 465

Table 3. Different configurations for multi-level machine learning model for approximating the
push-forward measure wrt lift and drag

ML2MC configurations

Lift
Samples N0 512 256 2048 2048 2048 2048 2048
Samples NL 4 4 8 32 64 92 92
Complexity cml 0.25 1 4 1 1 1 2.31

Drag
Samples N0 256 512 512 512 1024 1024 1024
Samples NL 4 4 4 8 64 92 92
Complexity cml 0.25 0.25 1 4 1 1 2.31

Wasserstain distance Wasserstain distance

FIGURE 9. Uncertainty quantification for the RAE2822 airfoil. The Wasserstein distance between the
approximate push-forward measure (4.1) computed with standard QMC, multi-level QMC (MLQMC),
single-level machine learning (SL2MC) and multi-level machine learning (ML2MC) and a reference
push-forward measure for the lift and the drag versus computational cost. (a) Lift. (b) Drag.

as they ensure a balance between accuracy and computational cost, when compared to the
inaccurate models of low complexity and costly models of high complexity.

6.2.3 Uncertainty quantification

Finally, we consider forward UQ by computing approximations of the push-forward measure
(probability distribution) (4.1), with respect to each observable. To this end, we use the gen-
eralised version of the ML2MC algorithm (by replacing the multi-level Algorithm 3 with the
extended multi-level Algorithm 4). For comparison, a reference QMC solution is computed with
2000 Sobol points.

We compute approximations to push-forward measure with multi-level configurations, shown
in Table 3 for the lift and the drag. For the sake of comparison, we also compute the measure
with the standard single-level QMC algorithm, the multi-level Quasi–Monte Carlo (MLQMC)
algorithm [19] and the single-level machine learning algorithm (SL2MC) trained with 4, 7, 16,
32, 64, 128, 144, 228 and 256 samples for the lift and 4, 8, 16, 32, 110 and 128 samples for the
drag. For the MC method, we choose the number of samples such that the computational costs
of the algorithms are comparable to the cost of the multi-level algorithm.

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

466 K. O. Lye et al.

The results are shown in Figure 9, where we plot the Wasserstein distance between the approx-
imations and the reference measure, as a function of the computational cost. As seen from the
figure, the UQ algorithm, based on the multi-level machine learning Algorithm 4, clearly and
substantially outperforms the standard QMC, multi-level QMC and the single level machine
learning algorithm for both the lift and the drag by providing considerably lower error for the
same computational cost. In particular, we obtain an average speedup of 9.2 (over QMC), 5.4
(over multi-level QMC) and 1.7 (over single-level machine learning) for the lift and an aver-
age speedup of 4.8 (over QMC), 3.5 (over multi-level QMC) and 1.8 (over single-level machine
learning) for the drag. The maximum speedups are even more impressive as they range from 11.4
(over QMC), 6.4 (over multi-level QMC) and 4.0 (over single-level machine learning) for the lift
to an average speedup of 6.8 (over QMC), 5.2 (over multi-level QMC) and 3.8 (over single-level
machine learning) for the drag. We would like to remark that the speedups can be even more sub-
stantial for the moments with respect to the push-forward measure. For instance for the standard
deviation, we obtain speedup, on an average over the range of computational costs, of 5.9 (over
QMC), 4.1 (over multi-level QMC) and 4.1 (over single-level machine learning) for the lift and
an average speedup of 5.5 (over QMC), 3.3 (over multi-level QMC) and 3.0 (over single-level
machine learning SL2MC) for the drag.

6.3 Code

The assembling of the multi-level models and the ensemble training for the selection of the
model hyperparameters are performed with a collection of Python scripts, with the support of
Keras, Tensorflow and Scikit-learn. The scripts for the generation of the data set for the first
numerical experiments and the construction of the multi-level model for both experiments can
be downloaded from https://github.com/mroberto166/MultilevelMachineLearning.

7 Discussion

Machine learning, particularly deep learning, algorithms are increasingly popular in the context
of scientific computing. One very promising area of application of these algorithms is in the
computation of observables, corresponding to systems modelled by PDEs. The computation of
these observables is very expensive as PDEs have to be simulated for every query, that is, every
call of the underlying parameters to observable map (2.3). Instead, following [18], one can train
deep neural networks to provide a surrogate for this parameters to observable map. Although it
works well in practice, it was already observed in [18] that finding and training a neural network
to approximate the parameters to observable map is very challenging as one can only expect to
compute a few training data points (samples), given that the evaluation of each sample involves
a very expensive PDE solve.

We tackle this issue in this paper and present a novel multi-level algorithm to significantly
increase the accuracy of deep learning algorithms, particularly in the poor data regime. The key
idea behind our algorithm is based on the upper bound (2.24) on the generalisation error of a
deep learning algorithm for regressing maps. We see from (2.24) that a significant component of
this error is the variance (standard deviation) of the underlying map. Hence, variance reduction
techniques can help reduce the generalisation error.

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://github.com/mroberto166/MultilevelMachineLearning
https://doi.org/10.1017/S0956792520000224

Multi-level procedure for enhancing machine learning algorithms 467

Multi-level methods are examples for a class of variance reduction techniques, termed as con-
trol variate methods and are heavily used in the context of UQ. We adapt the multi-level idea
to machine learning algorithms. The main principle here is to simulate the training data on sev-
eral mesh resolutions. A large number of cheap (computationally) training samples are used at
coarse mesh resolutions whereas only a few computational expensive training samples at gener-
ated at fine mesh resolutions, to learn the details, that is, differences between successive mesh
resolutions.

We provide theoretical arguments in the form of Lemmas 3.2 and 3.3 to support our contention
that under some reasonable hypothesis on the training process, the multi-level machine-learning
algorithm will lead to a decrease in generalisation error, when compared to a single-level deep
learning algorithm, at the same computational cost.

In fact, the same design principle works for a very general multi-level machine learning
Algorithm 4 that learns the parameters to observable map by a judicious combination of multi-
level training on either random points or low-discrepancy sequences, deep neural networks and
GPRs.

We test the proposed algorithms on two representative problems. The first is a toy problem of
ODEs modelling projectile motion but with a high-dimensional parameter space and highly non-
linear parameters to observable map. The second problem is a benchmark uncertain compressible
flow past an airfoil. For both problems, we observe that the multi-level algorithm significantly
outperforms the single-level machine learning algorithm, resulting in computational gains from
half an order to an order of magnitude, in the data poor regime. Moreover, we provide a recipe
for finding the set of (multi-level) hyperparameters that result in the highest gains.

The multi-level algorithm is the basis for a machine learning Algorithm 4 for forward UQ or
uncertainty propagation. Again, we observe from the numerical experiments that the multi-level
algorithm outperforms all competing algorithms that we tested and provided a computational
gain of half an order to an order of magnitude over the standard MC (QMC), MLMC (MLQMC)
and single-level machine learning models (such as the Deep Learning Monte Carlo-DLMC- and
Deep Learning quasi-Monte Carlo-DLQMC- algorithms of [18]).

Based on both theoretical and empirical results, we conclude that the multi-level algorithm
provides a simple, straightforward to implement and efficient method for improving machine
learning algorithms in the context of scientific computing.

Although we consider only the example of non-linear hyperbolic PDEs, the theory and the
algorithms are readily extended to other PDEs such as elliptic and parabolic PDEs.

The results of this paper can be extended in many different directions, for instance, the so-
called multi-fidelity algorithms [26] can be readily adapted to machine learning and a multi-
fidelity algorithm can be designed.

The multi-level algorithm can be extended to learn the whole solution field of the PDE (2.1),
instead of to just the observable.

Moreover, one can envisage applying multi-level techniques for problems beyond PDEs, in
fact beyond traditional scientific computing. In fact, one could use the multi-level techniques in
more traditional applications of machine learning such as image and speech processing, where
the multiple levels correspond to different resolutions of the image or the sound file. An inter-
esting application of a related multi-level method in the context of computational chemistry is
provided in the recent paper [42]. Finally, the multi-level machine learning Algorithm 4 will be
used in the context of shape optimisation and Bayesian inverse problems in future work.

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000224

468 K. O. Lye et al.

Acknowledgements

The research of SM was partially supported by European Research Council Consolidator grant
ERCCoG 770880: COMANFLO.

Conflict of interest

The authors have no conflicts of interest.

References

[1] ARORA, S., GE, R., NEYSHABUR, B. & ZHANG, Y. (2018) Stronger generalization bounds for deep
nets via a compression approach. In: Proceedings of the 35th International Conference on Machine
Learning, Vol. 80. PMLR, July 2018, pp. 254–263.

[2] CAFLISCH, R. E. (1988) Monte Carlo and Quasi–Monte Carlo methods. Acta. Numer. 1, 1–49.
[3] CUCKER, F. & SMALE, S. (2001) On the mathematical foundations of learning. Bull. Amer. Math.

Soc. 39(1), 1–49.
[4] CYBENKO, G. (1989) Approximations by superpositions of sigmoidal functions. Approximation

Theory Appl. 9(3), 17–28.
[5] DE RYCK, T., MISHRA, S. & DEEP, R. (2020) On the approximation of rough functions with deep

neural networks. Preprint, available from arXiv:1912.06732.
[6] EVANS, R., JUMPER, J., KIRKPATRICK, J., SIFRE, L., GREEN, T. F. G., QIN, C., ZIDEK, A.,

NELSON, A., BRIDGLAND, A., PENEDONES, H., PETERSEN, S., SIMONYAN, K., CROSSAN, S.,
JONES, D. T., SILVER, D., KAVUKCUOGLU, K., HASSABIS, D. & SENIOR, A. W. (2019) De novo
structure prediction with deep learning based scoring. Google DeepMind Working Paper.

[7] GILES, M. B. (2008) Multilevel Monte Carlo path simulation. Oper. Res. 56, 607–617.
[8] GILES, M. B. (2015) Multilevel Monte Carlo methods. Acta Numer. 24, 259–328.
[9] GOODFELLOW, I., BENGIO, Y. & COURVILLE, A. (2016) Deep Learning, MIT press, Cambridge,

Massachusetts, USA.
[10] HAN, J., JENTZEN, A. & WEINAN E. (2018) Solving high-dimensional partial differential equations

using deep learning. PNAS 115(34), 8505–8510.
[11] HEINRICH, S. (2001) Multilevel Monte Carlo methods. In: Large-Scale Scientific Computing, Third

International Conference LSSC 2001, Sozopol, Bulgaria, 2001, Lecture Notes in Computer Science,
Vol. 2170, Springer Verlag, pp. 58–67.

[12] HIRSCH, C., WUNSCH, D., SZUMBARKSI, J., LANIEWSKI-WOLLK, L. & PONS-PRATS, J. (EDITORS).
(2018) Uncertainty Management for Robust Industrial Design in Aeronautics, Notes on Numerical
Fluid Mechanics and Multidisciplinary Design, Vol. 140, Springer, Berlin, Germany.

[13] HORNIK, K., STINCHCOMBE, M. & WHITE, H. (1989) Multilayer feedforward networks are
universal approximators. Neural Networks 2(5), 359–366.

[14] KINGMA, D. P. & BA, J. L. (2015) Adam: a method for stochastic optimization. In: International
Conference on Learning Representations, pp. 1–13.

[15] LAGARIS, I. E., LIKAS, A. & FOTIADIS, D. I. (1998) Artificial neural networks for solving ordinary
and partial differential equations. IEEE Trans Neural Networks 9(5), 987–1000.

[16] LECUN, Y., BENGIO, Y. & HINTON, G. (2015) Deep learning. Nature 521, 436–444.
[17] LU, L., JIN, P. & KARNIADAKIS, G. E. (2019) DeepONet: learning nonlinear operators for identi-

fying differential equations based on the universal approximation theorem of operators. Preprint,
available from arXiv:1910.03193.

[18] LYE, K. O., MISHRA, S. & RAY, D. Deep learning observables in computational fluid dynamics. J.
Comput. Phys. 410, 109339 (2020).

[19] LYE, K. O. Statistical Solutions of Hyperbolic Systems of Conservation Laws. PhD thesis, ETH
Zurich.

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://arxiv.org/abs/1912.06732
https://arxiv.org/abs/1910.03193
https://doi.org/10.1017/S0956792520000224

Multi-level procedure for enhancing machine learning algorithms 469

[20] MISHRA, S. (2018) A machine learning framework for data driven acceleration of computations of
differential equations. Math. Eng. 1(1), 118–146.

[21] MISHRA, S. & RUSCH, K. (2020) Enhancing accuracy of deep learning algorithms by training with
low-discrepancy sequences. Preprint, available from arXiv:2005.12564.

[22] MISHRA, S. & SCHWAB, C. (2012) Sparse tensor multi-level Monte Carlo finite volume methods for
hyperbolic conservation laws with random initial data. Math. Comput. 81(180), 1979–2018.

[23] MISHRA, S., SCHWAB, CH. & ŠUKYS, J. (2012) Multi-level Monte Carlo finite volume methods for
nonlinear systems of conservation laws in multi-dimensions. J. Comput. Phys. 231(8), 3365–3388.

[24] MIYANAWALA, T. P. & JAIMAN, R. K. (2017) An efficient deep learning technique for the
Navier–Stokes equations: application to unsteady wake flow dynamics. Preprint, available from
arXiv:1710.09099v2.

[25] NEYSHABUR, B., LI, Z., BHOJANAPALLI, S., LECUN, Y. & SREBRO, N. (2018) Towards under-
standing the role of over-parametrization in generalization of neural networks. arXiv preprint
arXiv:1805.12076.

[26] PEHERSTORFER, B., WILLCOX, K. & GUNZBURGER, M. (2018) Survey of multifidelity methods in
uncertainty propagation, inference, and optimization. SIAM Rev. 60(3), 550–591.

[27] QUATERONI, A., MANZONI, A. & NEGRI, F. (2015) Reduced Basis Methods for Partial Differential
Equations: an Introduction, Springer Verlag, Berlin, Germany.

[28] RAISSI, M. & KARNIADAKIS, G. E. (2018) Hidden physics models: machine learning of nonlinear
partial differential equations. J. Comput. Phys. 357, 125–141.

[29] RAISSI, M., YAZDANI, A. & KARNIADAKIS, G. E. (2020) Hidden fluid mechanics: learning velocity
and pressure fields from flow visualizations. Science 367(6481), 1026–1030.

[30] RASMUSSEN, C. E. (2003) Gaussian Processes in Machine Learning, Summer School on Machine
Learning, Springer, Berlin, Heidelberg.

[31] RAY, D. & HESTHAVEN, J. S. (2018) An artificial neural network as a troubled cell indicator. J.
Comput. Phys. 367, 166–191.

[32] RAY, D., CHANDRASEKHAR, P., FJORDHOLM, U. S. & MISHRA, S. (2016) Entropy stable scheme
on two-dimensional unstructured grids for Euler equations. Commun. Comput. Phys. 19(5), 1111–
1140.

[33] RUDER, S. (2017) An overview of gradient descent optimization algorithms. Preprint, available from
arXiv.1609.04747v2.

[34] SACKS ET AL. (1989) Design and analysis of computer experiments. Stat. Sci. 4, 409–423.
[35] SHALEV-SHWARTZ, S. & BEN-DAVID, S. (2014) Understanding Machine Learning: From Theory

to Algorithms, Cambridge University Press, Cambridge, UK.
[36] STATISTICAL FUNCTIONS (SCIPY.STATS). Python Library. https://docs.scipy.org/doc/scipy/

reference/stats.html
[37] TOMPSON, J., SCHLACHTER, K., SPRECHMANN, P. & PERLIN, K. (2017) Accelarating Eulerian

fluid simulation with convolutional networks. Preprint, available from arXiv:1607.03597v6.
[38] E W. HAN, J. & JENTZEN, A. (2017) Deep learning-based numerical methods for high-dimensional

parabolic partial differential equations and backward stochastic differential equations. Commun.
Math. Stat. 5(4), 349–380.

[39] E W. MA, C. & WU, L. (2018) A priori estimates for the generalization error for two-layer neural
networks. ArXIV preprint, available from arXiv:1810.06397.

[40] E W. & YU, B. (2018) The deep Ritz method: a deep learning-based numerical algorithm for solving
variational problems. Commun. Math. Stat. 6(1), 1–12.

[41] YAROTSKY, D. (2017) Error bounds for approximations with deep ReLU networks. Neural Networks
94, 103–114.

[42] ZASPEL, P., HUANG, B., HARBRECHT, H. & ANOTOLE VON LILLENFELD, O. Boosting quan-
tum machine learning with multi-level combination technique: Pople diagrams revisited. Preprint,
available as arxiv1808.02799v2.

https://doi.org/10.1017/S0956792520000224 Published online by Cambridge University Press

https://arxiv.org/abs/2005.12564
https://arxiv.org/abs/1710.09099v2
https://arxiv.org/abs/1805.12076
https://arxiv.org/abs/1609.04747v2
https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
https://arxiv.org/abs/1607.03597v6
https://arxiv.org/abs/1810.06397
https://arxiv.org/abs/1808.02799v2
https://doi.org/10.1017/S0956792520000224

	A multi-level procedure for enhancing accuracy of machine learning algorithms
	Introduction
	The deep learning algorithm
	Problem formulation
	Deep learning the parameters to observable map
	Training set
	Neural network
	Loss functions and optimisation

	An estimate on the generalisation error of deep learning Algorithm alg:DL1

	A multi-level deep learning algorithm
	Uncertainty quantification
	Extensions and implementation
	QMC-type algorithms
	Other surrogate models
	Selection of hyperparameters
	Choice of neural network hyperparameters
	Choice of Gaussian process hyperparameters
	Choice of ensemble model coefficients
	Choice of multi-level hyperparameters

	Numerical experiments
	Projectile motion
	Upper bounds on the generalisation error
	Results of multi-level training and UQ

	Flows past airfoil
	Prediction errors with multi-level model
	Sensitivity of results to multi-level hyperparameters
	Uncertainty quantification

	Code

	Discussion

