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In this paper we consider a two-phase model describing the growth of avascular solid tumors

when taking into account the effects of cell-to-cell adhesion and taxis due to nutrient. The

tumor is surrounded by healthy tissue which is the source of nutrient for tumor cells. In

a three-dimensional context, we prove that the mathematical formulation corresponds to

a well-posed problem, and find radially symmetric steady-state solutions of the problem.

They appear in the regime where the rate of cell apoptosis to cell proliferation is less than

the far field nutrient concentration. Furthermore, we study the stability properties of those

radially symmetric equilibria and find, depending on the biophysical parameters involved in

the problem, both stable and unstable regimes for tumor growth.

Key words: Radially symmetric stationary solution; Classical solution; Stability; Tumor

growth; Taxis

1 Introduction

Most of the tumor models considered in the mathematical literature have the hindrance

of considering the evolution of the tumor without taking into account the influence of the

healthy tissue surrounding the tumor on its growth. Multi-phase tumor models consider

the tumor as being a saturated medium comprising at least one solid and one liquid

phase, the behaviour at any point being influenced by mechanisms in several different

phases: the extracellular fluid, the extracellular matrix or different cell types. These models

arise, therefore, as a natural improvement of single-models and allow one to incorporate

more of the biophysical processes which are relevant for the tumor evolution. Their

complexity though limits in most of the cases the analysis and numerical studies to

consider one-dimensional or radially symmetric evolution, cf. [2, 10]. As observed in [11]

and [12], radial symmetric tumor evolution may not always reflect the complexity and

may also create a false impression about the features of the model: There exist radially

symmetric steady states of the one-phase model analyzed in [11] and [12] which are

unstable, but attract at an exponential rate radially symmetric solutions.

In this paper we analyze a two-phase tumor model proposed recently in [3]. Particular

features of this model are the facts that the tumor evolution is coupled to the evolution

of the healthy tissue surrounding it, and the inclusion of cell-to-cell adhesion and nutrient

induced taxis. The surrounding tissue is treated as an inviscid fluid, whereas the tumor
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cells behave like a viscous fluid, both having the same density. Moreover, the nutrient

concentration σ∞ is assumed constant in the far field tissue. The nutrient acts as a

chemo-attractant for tumor cells, and the taxis is neglected in the tissue region. The

model describes the evolution of the nutrient (e.g. oxygen or glucose), which is consumed

proportionally to the local nutrient concentration, and a modified pressure coupled to

that of the tumor boundary.

In [3] the authors obtain for the first time a Cahn–Hilliard-type model for a two-

component mixture of tumor tissue and water. The mass exchange between the two

phases is due to cell-mitosis in the tumor component at a rate proportional to the nutrient

concentration, and the tumor mass is converted into fluid due to cell apoptosis. The

relevant non-dimensionalized parameters appearing in this model (and which are relevant

for our analysis) are

G :=
lχσσ∞

ε
√

fφT

, P :=
λpσ∞
λχ

, A :=
λA

λχ
, l :=

√
DT/λσφT , λχ :=

Mχσσ∞φT

l2
, (1.1)

where ε measures the strength of tumor–tissue interaction, λp is the proliferation rate per

unit mass, λA is the apoptosis rate per unit mass, f is a characteristic interaction energy,

DT is the diffusion coefficient in the tumor, ΦT is the characteristic solid tumor fraction,

χσ is the characteristic taxis coefficient, M is a permeability matrix and λσ is the nutrient

uptake rate. Then, assuming a smooth transition layer between the tumor and the water

(or healthy tissue domain), by a matched asymptotic analysis, the authors arrive at the

following two-phase moving boundary problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔσT = σT in ΩT (t), t � 0,

ΔσH = 0 in ΩH (t), t � 0,

Δp = AσT + B in ΩT (t), t � 0,

σH = 1 on ∂Ω, t � 0,

σT = σH on Σ(t), t � 0,

D∂νσH = ∂νσT on Σ(t), t � 0,

p = κΣ(t) on Σ(t), t � 0,

V = −∂νp + C∂νσT on Σ(t), t � 0,

(1.2)

where ΩT (t) is the tumor domain and ΩH (t) is the surrounding tissue at time t. These

two phases are separated by a sharp interface Σ(t), ΩT (t) being the interior region of

the fixed domain Ω ⊂ �3. The functions σH and σT denote the non-dimensionalized

nutrient concentration within ΩH and ΩT , respectively, while p is a modified pressure.

Together with the interior boundary Σ(t) they are the unknowns of the problem. The

mean curvature, the normal velocity of Σ(t) and the outward normal at ∂ΩT (t) = Σ(t) are

denoted by κΣ(t), V , and ν respectively.

The system (1.2) is supplemented by the initial condition

Σ(0) = Σ0, (1.3)
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where Σ0 is the boundary of a (sufficiently smooth) simply connected domain ΩT 0

contained in Ω. The constants A, B, C and D are related to those defined by (1.1) as

follows:

A := G̃(χσ − P), B := G̃A, C := G̃χσ, D :=
DH

DT

, (1.4)

where DH is the diffusion coefficients in the healthy tissue, G̃ is a positive constant which

incorporates the effect of cell-to-cell adhesion and χσ is the non-dimensionalized taxis

coefficient, cf. [3]. The natural restriction we make in this paper is that C −A > 0 (this is,

cf. (1.4), the biologically relevant situation). This model describes the evolution of a solid

avascular tumor, located at ΩT , which is surrounded by healthy tissue ΩH .

It should be noted that this model is an extension (taxis is taken into account) of

previous single phase models [1, 4], where the driving mechanisms were the pressure and

cell proliferation. The moving boundary problems associated to the models presented

in [1,4] have been investigated by many authors (see [5–9,11,12,19–21] and the references

therein). Unlike the models studied in [10, 13, 23, 24] where existence of a necrotic core

consisting of death cells is taken into account, the model derived in [3] and studied herein

does not possess this feature. However, system (1.2) has two phases, and the nutrient

concentrations σT and σH, inside and outside the solid tumor, are connected through

a diffraction problem, a feature which relates system (1.2) to the Muskat problem,

cf. [14, 15, 22].

We show in Theorem 3.1 that all these new aspects considered in (1.2) do not influence

the well-posedness of the problem. For initial data close to an arbitrary smooth domain,

we show that the solution of (1.2) and (1.3) exists atleast locally. To this scope we

transform the problem into an abstract parabolic evolution equation and use a theorem

from [25] to prove existence and uniqueness of classical solutions. Furthermore, it turns

out that problem (1.2) possesses radially symmetric stationary solutions only if the rate of

cell apoptosis to cell proliferation is less than the far field nutrient concentration. Unlike

the model proposed in [4], where the radius of the stationary tumor depends only of

one parameter, the situation considered here is more involved and the radii of the steady

states depend on all parameters appearing in problem (1.2), a feature which reflects the

complexity of the model.

The stability properties of these special solutions are analyzed in Theorems 4.1 and 4.3.

We show that unlike [7], where a threshold value for the surface tension coefficient of the

tumor boundary was found to distinguish between stable and unstable growth regimes,

the situation herein is more involved and the stability of spherical equilibria is determined

by a plethora of factors. For example, if the diffusion coefficient in the tumor tissue is

larger than that in the healthy tissue, and the regions rich in nutrients are closed to the

tumor, then the equilibria are unstable. This fits with the numerical simulations presented

in [3] for the mixture model where it is shown in a two-dimensional context that initially

avoids tumors that penetrate the healthy tissue by developing invasive fingers. Moreover,

we show that there exists also a certain range of the parameters A,B, C, D, where, starting

close to the steady state, the tumor evolves exponentially fast towards this equilibrium, a

feature which is not captured in [3].

Finally, let us observe that if the nutrient concentration σH is constant in ΩH (t), the taxis

is absent, C = 0, and we drop the sixth equation of (2.1) to arrive at the one-phase tumor

https://doi.org/10.1017/S0956792512000290 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000290


28 J. Escher and A.-V. Matioc

model analyzed in [6, 8, 20]. While in [8, 20] the equations coincide with those remaining

in (2.1), the authors in [6] consider the problem of existence of non-radial stationary

solution for the model when the first and the third equation of (2.1) are replaced with the

more general relations ⎧⎨
⎩

ΔσT = f(σT ) in ΩT , t � 0

Δp = g(σT ) in ΩT , t � 0
, (1.5)

the mappings f and g being the nutrient consumption rate function and the tumor cell

proliferation rate function respectively. For our two-phase model though, if f has a

general form, in order to prove the well-posedness of the problem we need to solve the

semi-linear diffraction problem (2.1) with the first equation replaced by the corresponding

equation of (1.5). As far as we know, the existence of solutions for this type of problems

has not been investigated yet, so that one has to restrict to f being linear. On the other

hand, we may assume the function g to have a general form in our case. Provided merely

g ∈ C∞(�), our analysis shows that the corresponding two-phase model is well-posed.

However, determining the existence of radially symmetric steady-state solutions (and

studying their stability properties) under suitable conditions on g is mathematically much

more challenging in this case.

The outline of the paper is as follows. We study in Section 2 the radially symmetric case

when Ω is itself a ball, and prove that the system (1.2) possesses spherically stationary

solutions, result established in Theorem 2.1. In Section 3 we prove the well-posedness of

the problem, and the last section is dedicated to the study of the stability properties of

the stationary solutions identified in Section 2.

2 Radially symmetric solutions

We first note that the set of solutions of (1.2) is invariant under rotations and translations

in �3. Therefore, we shall consider in the remainder of this paper that the domain Ω

contains the origin of �3.

In this section we are concerned with the question whether there exist radially symmetric

steady states of problem (1.2), i.e. we look for positive real numbers R1 and R2 with R1 < R2

such that ΩT = �(0, R1), and the annulus ΩH := �(R1, R2) := {y ∈ �3 : R1 < |y| < R2}
is a solution of (1.2). Of course, the existence of this solution may also depend on

the parameters A,B, C, D involved in the modeling. To this scope we first consider the

diffraction problem, ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ΔσT − σT = 0 in ΩT ,

ΔσH = 0 in ΩH,

σH = 1 on ∂Ω,

σT − σH = 0 on Σ,

D∂νσH − ∂νσT = 0 on Σ,

(2.1)

where ΩH is assumed to be a C2+α-domain, α ∈ (0, 1) and D > 0. We claim that this

problem has a unique solution (σT , σH ) within the class BUC 2+α(ΩT ) × BUC 2+α(ΩH )

consisting of functions having the uniformly Hölder continuous second order derivatives.
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Since from [25, Theorems 16.1 and 16.2] the existence of a classical solution to the

divergence problem (2.1) is implied by the uniqueness of the solution to (2.1), it suffices

to show that the system has, when the right-hand side of its third equation is a constant

0, only the trivial solution (σT , σH ) = (0, 0). Let us assume the contrary. The function

σ := σTχΩT
+ σHχΩH

, where χM stands for the characteristic function of M ⊂ �3, is

uniformly continuous in Ω so that we may presuppose that there exists a point x0 ∈ Ω

such that σ(x0) = maxΩ σ > 0. The strong elliptic maximum principle ensures that this

point belongs to Σ. Hence, σH is not constant and the Hopf’s lemma ensures that ∂νσH < 0

(ν points into ΩH ). We conclude that ∂νσT < 0, which contradicts Hopf’s lemma.

Summarising, (2.1) has a unique solution, and since the right-hand sides of equations

in (2.1) are constant, this solution depends only on the radial coordinate r ∈ [0, R2]

if ΩT = �(0, R1) and ΩH = �(R1, R2). Using spherical coordinates, we may determine

(σT , σH ) if we solve the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ′′
T (r) + 2r−1σ′

T (r) − σT (r) = 0, 0 < r < R1,

σ′′
H (r) + 2r−1σ′

H (r) = 0, R1 < r < R2,

σH (R2) = 1,

σT (R1) = σH (R1),

Dσ′
H (R1) = σ′

T (R1).

(2.2)

Using the first equation, respectively the second and the third, we determine the following

explicit relations for σT and σH :

σT (r) = α
sinh(r)

r
and σH (r) = 1 − β

R2
+

β

r
, (2.3)

with constants α and β chosen such that σT and σH also verify the last two equations of

the system, that is

α :=
DR1R2

DR2 sinh(R1) + (R2 − R1)(R1 cosh(R1) − sinh(R1))
, (2.4)

β := − R1R2(R1 cosh(R1) − sinh(R1))

DR2 sinh(R1) + (R2 − R1)(R1 cosh(R1) − sinh(R1))
. (2.5)

With σT given by (2.3) and (2.4), we may proceed and determine the pressure by solving

the Dirichlet problem

{
p′′(r) + 2r−1p′(r) = αAr−1 sinh(r) + B, 0 < r < R1,

p(R1) = R−1
1 ,

(2.6)

which is obtained by rewriting the third and seventh equations of (1.2) in spherical

coordinates and by taking into account that both σT and κΣ depend only upon r when
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ΩT = �(0, R1). Multiplying the second equation of (2.6) by r2 and integrating, we obtain

r2p′(r) =αA(r cosh(r) − sinh(r)) +
Br3

3
−

αA(R1 cosh(R1) − sinh(R1)) − B
R3

1

3
+ R2

1p
′(R1)

for all r ∈ [0, R1]. Moreover, since p ∈ C∞([0, R1]), we get

p′(r) = αA
r cosh(r) − sinh(r)

r2
+

Br

3
.

This last relation and the second equation of (2.6) lead us to the following expression for

p:

p(r) =
1

R1
− αA

∫ R1

r

s cosh(s) − sinh(s)

s2
ds +

B

6
r2 − BR2

1

6
. (2.7)

Finally, ΩT = �(0, R1) and ΩH = �(R1, R2), R1 < R2, is a stationary solution of problem

(1.2) if p, σT and σH are given by (2.3) and (2.7), respectively, and if the last relation

of (1.2) is fulfilled. Hence, we have to verify that p′(R1) = Cσ′
T (R1), a relation which is

equivalent to the following equation:

B = 3α(C − A)
R1 cosh(R1) − sinh(R1)

R3
1

. (2.8)

We use (2.8) to express R2 in dependence of A,B, C, D and R1, because we still have to

verify that R1 < R2. Combining (2.4) and (2.8), we get

R2 =
BR3

1(R1 cosh(R1) − sinh(R1))

[BR2
1 − 3(C − A)D](R1 cosh(R1) − sinh(R1)) + BDR2

1 sinh(R1)
, (2.9)

thus R2 > R1 if and only if

R2
1

D
+

R2
1 sinh(R1)

R1 cosh(R1) − sinh(R1)
>

3(C − A)

B
>

R2
1 sinh(R1)

R1 cosh(R1) − sinh(R1)
. (2.10)

The first inequality is obtained by imposing that the denominator of (2.9) is positive (the

numerator is obviously positive), while the second one is exactly the condition R2 > R1.

In order to present our first main result, we consider, motivated by (2.10), the auxiliary

function f : [0,∞) → � given by

f(x) :=
x2 sinh(x)

x cosh(x) − sinh(x)
, x ∈ [0,∞).

We first claim that f is strictly increasing. Indeed, given x � 0, we compute that

f′(x) = xg(x)/(x cosh(x) − sinh(x))2, whereby

g(x) := x2 + x sinh(x) cosh(x) − 2 sinh2(x).
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The function g has the property that g(m)(0) = 0 for all m � 2, while

g(3)(x) = 4x sinh2(x) + 4 cosh(x)(x cosh(x) − sinh(x)) � 0

for all x � 0. Consequently, f is a strictly increasing function. Since f(0) = 3, we obtain

the following restriction for the ratio (C − A)/B, namely

C − A

B
> 1. (2.11)

Thus, given positive constants A,B, C, D with (C − A)/B > 1, there exist unique positive

real numbers R1∗ < R∗
1 such that

R2
1∗
D

+
R2

1∗ sinh(R1∗)

R1∗ cosh(R1∗) − sinh(R1∗)
=

3(C − A)

B
=

R∗
1
2 sinh(R∗

1)

R∗
1 cosh(R∗

1) − sinh(R∗
1)
. (2.12)

Since (2.10) is satisfied by R1 exactly when R1 ∈ (R1∗, R1
∗), we conclude this section with

the following result.

Theorem 2.1 (Radially symmetric equilibria) Let A ∈ � and let B,C,D be positive con-

stants and assume that (2.11) is satisfied. Then (ΩT ,ΩH ):= (�(0, R1),�(R1, R2)) with

R1 ∈ (R1∗, R1
∗) and R2 given by (2.9) is a stationary solution of (1.2).

Moreover, there exists no other radially symmetric stationary solutions of (1.2).

Remark 2.2 Note that the above condition (2.11) is satisfied exactly when,

λA

λp
< σ∞,

cf. (1.1) and (1.4), showing that there must exist a balance between the rate of mitosis, the

rate of apoptosis and the far field nutrient concentration. Moreover, the exterior radius

R2 → ∞ for R1 → R1∗, while for R1 → R∗
1 we have that R2 → R∗

1 .

3 The local well-posedness result

In this section we are concerned with the problem whether the system (1.2) is well-posed

for arbitrary initial data. To do this, we assume that the tumor evolves within the domain

Ω, which is presupposed to be smooth. Furthermore, let Σ be the boundary of a bounded

and simply connected smooth domain ΩT ⊂ Ω and pick a < dist (Σ, ∂Ω). Denoting by ν

the outward unit normal at Σ, we proceed as in [17, 18] and define the mapping

X : Σ × (−a, a) → �3, (x, λ) 	→ x + λν(x),

which is a smooth diffeomorphism from Σ × (−a, a) onto its image R :=im(X), i.e.

X ∈ Diff∞(Σ × (−a, a),R). We decompose the inverse of X into X−1 = (P ,Λ) with both P

and Λ being smooth. Here P is the projection from R on Σ, i.e. P (y) is the nearest point

on Σ to y and Λ is the signed distance from y to Σ (that is to P (y)). We will parametrise
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the solid tumor by using functions from

Ad := {ρ ∈ C2(Σ) : ‖ρ‖C(Σ) < a/4},

which we call to be a set of admissible functions. More precisely, we associate to each

ρ ∈ Ad, a unique C2−surface Σ(ρ), namely the image of the function θρ(x) := x+ρ(x)ν(x),

x ∈ Σ. Indeed, since |ρ(x)| < a/4 for all x ∈ Σ, we get with our choice of a that

θρ ∈ Diff 2(Σ,Σ(ρ)). Note that y ∈ Σ(ρ) if and only if Λ(y) = ρ(P (y)), meaning that

Σ(ρ) = N−1
ρ (0), where Nρ : R → � is defined by

Nρ(y) = Λ(y) − ρ(P (y)) for y ∈ R.

Therefore, νρ := ∇Nρ/|∇Nρ| is the outward-orientated unit normal at Σ(ρ). Indeed, for

h being small enough, we have

Nρ(x + (ρ(x) + h)ν(x)) − Nρ(x + ρ(x)ν(x)) = h,

thus 〈∇Nρ(x + ρ(x)ν(x))|ν(x)〉 = 1 for all x ∈ Σ. Here and in the following 〈·|·〉 stands

for the scalar product in �3. Presuppose now that ρ : [0, T ] → Ad, T > 0, describes the

evolution of the boundary separating the tumor and the host domain, i.e. Σ(t) = Σ(ρ(t))

for all t ∈ [0, T ]. Then the solid tumor is located at ΩT (ρ(t)), the connected component

of �3 bounded by Σ(ρ(t)), while the host domain is ΩH (ρ(t)) := Ω \ ΩT (ρ(t)) for each

t ∈ [0, T ]. Using the function Nρ, the normal velocity of Σ(ρ(t)) is given by the relation

V =
∂tρ(t)

|∇Nρ(t)|
on Σ(ρ(t)), t ∈ [0, T ].

With this notation, we may rewrite our problem (1.2)–(1.3) as nonlinear and non-local

problem having also ρ as an unknown,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔσT = σT in ΩT (ρ),

ΔσH = 0 in ΩH (ρ),

Δp = AσT + B in ΩT (ρ),

σH = 1 on ∂Ω,

σT = σH on Σ(ρ),

D∂νρσH = ∂νρσT on Σ(ρ),

p = κΣ(ρ) on Σ(ρ),

∂tρ = 〈−∇p + C∇σT |∇Nρ〉 on Σ(ρ),

ρ(0) = ρ0 on Σ,

(3.1)

where t ∈ [0, T ] and ρ0 is the initial shape of the tumor. Let α ∈ (0, 1) be fixed for the

remainder of this paper. A tuple (ρ, σH, σT , p) is called the classical Hölder solution of
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(3.1) if

ρ ∈ C([0, T ], h4+α(Σ) ∩ Ad) ∩ C1([0, T ], h1+α(Σ)),

σT (t, ·), p(t, ·) ∈ buc2+α(ΩT (ρ(t))), σH (t, ·) ∈ buc 2+α(ΩH (ρ(t))) for all t ∈ [0, T ],

and (ρ, σH, σT , p) solves (3.1) pointwise. Given k ∈ � and α ∈ (0, 1), the small Hölder

space hk+α(Σ) is defined to be the completion of the smooth functions C∞(Σ) in the

Ck+α(Σ)-norm. Also, given U ⊂ �3 open and bounded, the space buck+γ(U) stands for

the closure of BUC ∞(U) in BUC k+α(U). Combining the results of Lemmas 3.2, 3.3 and

3.4 shows that the solution of the problem (3.1) is determined if we can specify how the

tumor evolves. More exactly, the concentration of nutrient in and outside the solid tumor,

as well as the pressure, can be expressed in dependence of ρ, the concentration of nutrient

on ∂Ω and the constants A,B, C, D. Therefore, we shall also call only ρ as being solution

of (3.1). The main result of this section is the following theorem.

Theorem 3.1 (Local well-posedness) There exists an open zero neighborhood O ⊂ h4+α(Σ)∩
Ad, such that for all ρ0 ∈ O problem (3.1) has a unique classical Hölder solution ρ defined

on a maximal time interval t ∈ [0, T (ρ0)), with T (ρ0) > 0, and which satisfies ρ(t) ∈ O for

all 0 � t < T (ρ0).

Although the new formulation (3.1) has the advantage that it transforms the problem

of determining the evolution of the solid tumor into the problem of finding ρ, it has the

inconvenience that the equations of (3.1) are posed on sets which depend on the unknown

ρ and change with time. That is why we transform (3.1) by writing all the equations of

this system on the fixed reference manifolds ΩH , ΩT and Σ. To do this, we extend θρ to a

diffeomorphism Θρ of the whole space �3. For simplicity, we will write in the remaining

part of the paper Θρ for both diffeomorphisms. For this purpose, we choose a cut off

function ϕ ∈ C∞(�, [0, 1]) such that

ϕ(λ) =

⎧⎨
⎩

1 if |λ| � a/4

0 if |λ| � 3a/4
, (3.2)

and the first derivative satisfies sup� |ϕ′| < 4/a. Then, given ρ ∈ Ad, we define the

extension Θρ of θρ by the relation

Θρ(y) :=

{
X(P (y), Λ(y) + ϕ(Λ(y))ρ(P (y))) if y ∈ R
y if y � R

.

The condition imposed on ϕ′ implies that for |ρ| < a/4, the function λ 	→ λ + ϕ(λ)ρ is

strictly increasing. Since Θρ(y) = y for all y ∈ R with |Λ(y)| > 3a/4, we conclude that Θρ

satisfies

Θρ ∈ Diff 2(�3) ∩ Diff 2(Ω) ∩ Diff 2(ΩT ,ΩT (ρ)).

The diffeomorphism Θρ introduces pull-back and push-forward operators which associate

to each function defined on the reference domains ΩT and ΩH := ΩH (0) a unique function
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on ΩT (ρ) and ΩH (ρ), respectively, according to the following relations:

Θ∗
ρ : BUC(Ξ(ρ)) → BUC(Ξ), u 	→ u ◦ Θρ,

Θ
ρ
∗ : BUC(Ξ) → BUC(Ξ(ρ)), v 	→ v ◦ Θ−1

ρ ,

with Ξ being either ΩT or ΩH. We use these operators to transform problem (3.1) into a

problem on the fixed reference domains ΩT and ΩH. To do this, we define the transformed

operators A(ρ) and B(ρ) by the formulae

A(ρ)v := Θ∗
ρ(Δ(Θρ

∗ v)), B(ρ)v := tr
(
〈∇(Θρ

∗ v)|∇Nρ〉(Θρ)
)

(3.3)

for functions ρ ∈ Ad and v ∈ buc 2+α(Ξ), with Ξ as above. We write tr to denote the trace

operator with respect to Σ. Lastly, we introduce the operator mapping functions ρ ∈ Ad

onto the mean curvature of Σ(ρ)

K(ρ) := Θ∗
ρκΣ(ρ). (3.4)

It is not difficult to see that if (ρ, σH, σT , p) is a solution of (3.1), then the tuple

(ρ, v, u, q) := (ρ,Θ∗
ρσH,Θ

∗
ρσT ,Θ

∗
ρp) solves pointwise a system of equations that are defined

on the reference domains:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(ρ)u = u in ΩT ,

A(ρ)v = 0 in ΩH,

A(ρ)q = Au + B in ΩT ,

v = 1 on Σ,

u = v on Σ,

q = K(ρ) on Σ,

DB(ρ)v = B(ρ)u on Σ,

∂tρ = B(ρ)q − CB(ρ)u on Σ,

ρ(0) = ρ0 on Σ,

(3.5)

with t ∈ [0, T ]. The notion of solution for this problem is defined analogously to that of

the solution to (3.1). In fact problems (3.1) and (3.5) are equivalent in the sense that the

tuple (ρ, σH, σT , p) is a solution of (3.1) if and only if (ρ,Θ∗
ρσH,Θ

∗
ρσT ,Θ

∗
ρp) is a classical

solution of (3.5). This assertion is a direct consequence of the following lemma.

Lemma 3.2 Given ρ ∈ h4+α(Σ) ∩ Ad and Ξ ∈ {ΩT ,ΩH}, the operator

Θ∗
ρ : buc2+α(Ξ(ρ)) → buc2+α(Ξ)

is an isomorphism and (Θ∗
ρ)

−1 = Θ
ρ
∗ .

Proof Pick ρ ∈ Ad ∩h4+α(Σ) and σT ∈ buc 2+α(ΩT (ρ)). We show that u := Θ∗
ρσT belongs

to buc2+α(ΩT ). By the definition of the small Hölder spaces we may find sequences
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(ρn)n ⊂ C∞(Σ) and (σT n) ⊂ BUC ∞(ΩT (ρ)) with the property that ρn → ρ in C4+α(Σ)

and σT n → σT in BUC 2+α(ΩT (ρ)). We can also achieve that ρn > ρ, which ensures that

ΩT (ρ) ⊂ ΩT (ρn) provided n is large enough to guarantee ρn ∈ Ad . Consequently, we

can define the composition un,m := Θ∗
ρn
σT m, n, m ∈ �, which is a smooth function, i.e.

un,m ⊂ BUC ∞(ΩT ). We then get:

un,m − u =σTm ◦ Θρn − σT ◦ Θρ

=(σTm ◦ Θρn − σTm ◦ Θρ) + (σTm ◦ Θρ − σT ◦ Θρ)

=

(∫ 1

0

∂σTm((1 − t)Θρn + tΘρ) dt

)
(Θρ − Θρn) + (σTm − σT ) ◦ Θρ.

The last term can be made arbitrarily small by choosing m large enough, while since

‖Θρn − Θρ‖BUC 4+α(Ω) � C‖ρn − ρ‖C4+α(Σ), n ∈ �,

we may choose n sufficiently large to guarantee that the first term is also as small as

we want. This shows that Θ∗
ρ : buc2+α(ΩT (ρ)) → buc2+α(ΩT ) is well defined. Using the

same arguments, we get that Θρ
∗ is also well defined and this proves our assertion when

Ξ = ΩT . The case Ξ = ΩH follows similarly. �

We now proceed as in Section 2 and solve separately the diffraction problem for (u, v)

and afterwards the elliptic problem for the function q. By doing this we can express,

since we now work on the fixed reference domains ΩH and ΩT , the solutions of this

problems as functions depending smoothly on the unknown ρ. Before doing this we study

the regularity properties of the operators defined by (3.3) and (3.4). It was noticed in [17],

that the operator A(ρ) is in fact the Laplace–Beltrami operator of the manifold (Ω,Θ∗
ρg),

A(ρ) = ΔΘ∗
ρg =

1√
G(ρ)

3∑
i,j=1

∂

∂xi

(√
G(ρ)gij(ρ)

∂

∂xj

)
,

where Θ∗
ρg is the pull-back metric on Ω induced by the diffeomorphism Θρ and the

standard Euclidean metric g. We denoted by gij(ρ) := 〈∂iΘρ|∂jΘρ〉, 1 � i, j � 3 the

coefficients of the first fundamental form, G(ρ) is the determinant of (gij(ρ)), and (gij(ρ))

is its inverse. By definition, Θρ(y) = P (y) + (Λ(y) + ϕ(Λ(y))ρ(P (y))) ν(P (y)) for y ∈ R so

that we have

[ρ 	→ Θρ] ∈ Cω(h4+α(Σ) ∩ Ad, buc 4+α(Ω,�3)).

Consequently, we get that

A ∈ Cω(h4+α(Σ) ∩ Ad,L(buc 2+α(Ξ), buc α(Ξ))). (3.6)

Furthermore, by the chain rule we have

B(ρ)v = tr
(
〈∇

(
Θ

ρ
∗ v

)
|∇Nρ〉(Θρ)

)
= tr〈[∂Θ−1

ρ (Θρ))]
T∇v|∇Nρ(Θρ)〉 = tr〈b(ρ)|∇v〉
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for all ρ ∈ h4+α(Σ) ∩ Ad, and v ∈ buc 2+α(Ξ), with b(ρ) := ∂Θ−1
ρ (Θρ)∇Nρ(Θρ). Since

[ρ 	→ Nρ] ∈ Cω(ρ4+α(Σ) ∩ Ad, buc 4+α(R)), (3.7)

and taking into account that P (Θρ(y)) = P (y) for all y ∈ R, we conclude that B is also

analytic, i.e.

B ∈ Cω(h4+α(Σ) ∩ Ad,L(buc 2+α(Ξ), h1+α(Σ))). (3.8)

These are the main ingredients used to prove the following lemma.

Lemma 3.3 Given ρ ∈ h4+α(Σ) ∩ Ad, there exists a unique solution

T(ρ) = (TH (ρ),TT (ρ)) ∈ buc 2+α(ΩH ) × buc 2+α(ΩT )

of the transformed diffraction problem

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A(ρ)u = u in ΩT ,

A(ρ)v = 0 in ΩH,

v = 1 on Σ,

u = v on Σ,

DB(ρ)v = B(ρ)u on Σ.

(3.9)

Moreover, the function T is real analytic

[ρ 	→ T(ρ)] ∈ Cω(h4+α(Σ) ∩ Ad, buc 2+α(ΩH ) × buc 2+α(ΩT )). (3.10)

Proof Similar arguments as for (2.2) ensure that the system (3.9) has a unique classical

solution T(ρ) in the classical Hölder spaces. To study the regularity of the solution

operator, we define the Banach space

� := {(u, v) ∈ BUC 2+α(ΩH ) × BUC 2+α(ΩT ) : u = v on Σ},

and the function ρ 	→ Ψ (ρ) : [(u, v) 	→ (A(ρ)u − u,A(ρ)v, tr v, DB(ρ)v − B(ρ)u)], which

belongs, in view of (3.6) and (3.8), to

Ψ ∈ Cω(C4+α(Σ) ∩ Ad,L(�,BUC α(ΩH ) × BUC α(ΩT ) × C2+α(Σ) × C1+α(Σ))).

Since Ψ (ρ) is an isomorphism for all ρ ∈ C4+α(Σ) ∩ Ad and T(ρ) = Ψ (ρ)−1(0, 0, 1, 0), we

obtain by taking into account that the function mapping an isomorphism onto its inverse

is analytic, that T(ρ) depends analytically on ρ. The assertion (3.10) follows now by using

a density argument. �

Before solving the Dirichlet problem for q, we study the dependence of the mean

curvature operator K of ρ. Since Σ(ρ) is the zero level set of Nρ, we can express the
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function K(ρ) by the formula

K(ρ) =
1

2
div

(
∇Nρ

|∇Nρ|

)
◦ Θρ,

which yields together with (3.7)

K ∈ Cω(h4+α(Σ) ∩ Ad, h2+α(Σ)). (3.11)

We close the preparations needed to prove Theorem 3.1 with the following lemma.

Lemma 3.4 Given ρ ∈ h4+α(Σ) ∩ Ad, the Dirichlet problem{
A(ρ)q = ATT (ρ) + B in ΩT ,

q = K(ρ) on Σ.
(3.12)

possesses a unique solution S(ρ) ∈ buc 2+α(ΩT ). The function S is real analytic

S ∈ Cω(h4+α(Σ) ∩ Ad, buc 2+α(ΩT )). (3.13)

Proof The proof is similar to that of [17, Lemma 3.2]. �

From Lemmas 3.3 and 3.4 we conclude that the tuple (ρ, v, u, q) is a solution of (3.5) if

and only if (v(t), u(t)) = T(ρ(t)), q(t) = S(ρ(t)), and

∂tρ = B(ρ)S(ρ) − CB(ρ)TT (ρ), ρ(0) = ρ0.

This shows that the original problem (3.1) may be expressed as an abstract evolution

equation for the function ρ, which describes the evolution of the solid tumor. We are now

ready to prove our second main result.

Proof of Theorem 3.1 Let Φ : h4+α(Σ) ∩ Ad → h1+α(Σ) be the nonlinear and non-local

operator with Φ(ρ) := B(ρ)S(ρ) − CB(ρ)TT (ρ). Invoking (3.10) and (3.13) we obtain

that Φ is a real analytic mapping, i.e. Φ ∈ Cω(h4+α(Σ) ∩ Ad, h1+α(Σ)), and system (3.1) is

equivalent to the abstract Cauchy problem

∂tρ = Φ(ρ), ρ(0) = ρ0. (3.14)

The key point in the proof is to show that the Fréchet derivative ∂Φ(0) generates an

analytic semi-group. To prove this assertion, we proceed as in [12] and decompose

∂Φ(0) = N ◦ ∂K(0) + P1, where P1 is a linear operator having first order, and N is

the Dirichlet–Neumann operator, which associates to each function in ρ ∈ h2+α(Σ) the

outward normal derivative of the harmonic function in ΩT equal to ρ on Σ, i.e.

[ρ 	→ N(ρ) := ∂ν(Δ, tr)
−1(ρ)] ∈ L(h2+α(Σ), h1+α(Σ)).
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Using local charts, it is shown in [17, Remark 3.3] that in fact ∂K(0) = ΔΣ
π + P2,

where ΔΣ
π is the principal part of the Laplace–Beltrami operator on (Σ, η), η being the

metric induced on Σ by the Euclidean metric g in �3. Hence, ∂Φ(0) = NΔΣ
π + P , with

NΔΣ
π being an operator of third order and P := P1 + NP2 having lower order. We infer

from [16, Theorem 6.12] by using standard perturbation arguments that ∂Φ(0) generates

a strongly continuous analytic semigroup, i.e.

−∂Φ(0) ∈ H(h4+α(Σ), h1+α(Σ)).

The assertion of Theorem 3.1 is obtained by using [26, Theorem 8.4.1] as we did in the

proof of [12, Theorem 2.1]. �

4 Stability properties of the radially symmetric equilibria

The main goal of this section is to study the stability properties of the radially symmetric

steady states determined in Theorem 2.1. The analysis done in the previous sections is

very useful because we have reduced the original problem (1.2) to an abstract nonlinear

Cauchy problem which suits the application of the principle of linearized stability. To be

more precise, pick R1 ∈ (R1∗, R
∗
1) and let Ω := �(0, R2), where R2, given by (2.9), be the

fixed region where the tumor is observed. At rest, the solid tumor is located at �(0, R1),

which corresponds to the stationary solution ρ∗ ≡ 0 of (3.1) if we choose in addition

Σ := R1�2. The question that we arise is, what happens with a tumor which is initially

close to Σ. This is equivalent to studying the stability properties of the steady state ρ∗ ≡ 0

of problem (3.1). We shall prove that as follows.

Theorem 4.1 (Unstable tumor growth) Let A ∈ � and let B,C,D be positive constants

satisfying (2.11). There exist constants � > 0 and R•
1 ∈ (R1∗, R

∗
1) depending only on A,B, C

such that if D < 1 + � and R1 ∈ (R•
1 , R

∗
1), then the equilibrium ρ∗ ≡ 0 of (3.1) is unstable.

Remark 4.2 Invoking Remark 2.2, the condition that R1 is close to R∗
1 implies that R2,

the radius of Ω, is nearby R1, meaning that the solid tumor is relatively close to the source

of nutrient. Moreover, in this unstable growth regime DH < (1 + ω)DT , meaning that the

nutrient may diffuse more rapidly through the solid tumor than in the surrounding tissue.

Numerical simulation done in [3] shows that tumors being initially circular may drive

fingering instabilities. Theorem 4.1 states that this may well be the case also when starting

close to a stationary tumor.

We now prove that if the D, (C − A)/B and C/(C − A) are sufficiently large, then

the solid tumor attracts at an exponential rate all solutions of (3.1) that start nearby.

Particularly, if for some sufficiently large integer N ∈ �, we have

DH

DT

� N,
λpσ∞
λA

� N, and
χσλχ

λpσ∞
� N,
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cf. (1.1) and (1.4), then the radially symmetric steady states are exponentially stable. This

shows that the taxis and the nutrient uptake rate also influence the stability properties of

the equilibria.

Theorem 4.3 (Asymptotically stable steady states) Let A ∈ � and B,C,D be positive con-

stants satisfying (2.11). In addition, we assume that:

D > 1 +
6

coth(1) − 1
. (4.1)

Denoting by R� the unique solution of the equation

R2 +
R2 sinh(R)

R cosh(R) − sinh(R)
=

3(C − A)

B
, (4.2)

we presuppose that

R� � 1 and
1

D
�

sinh(R�)

R� cosh(R�) − sinh(R�)
. (4.3)

Finally, assume that

C

C − A
� 3 sup

(k,R1)

∣∣∣∣R1 sinh(R1)

3Q
− 1

R1

∣∣∣∣ (2k + 1)D sinh(R1) + R1 cosh(R1) − sinh(R1)

(D − 1)(k2 + k)
, (4.4)

where the supremum is taken over all pairs (k, R1) ∈ � × (R�, R
∗
1) and R∗

1 is given by (2.12).

Then for all R1 ∈ (R1∗, R
∗
1), the stationary solution ρ∗ ≡ 0 of (3.1) is exponentially stable.

More precisely, there exist positive constants δ,M,w such that for all ρ ∈ h4+α(Σ) with

‖ρ‖h4+α(Σ) < δ, the solution to (3.1) exists globally and

‖ρ(t)‖h4+α(Σ) + ‖∂tρ(t)‖h1+α(Σ) � Me−wt‖ρ0‖h4+α(Σ) for all t � 0.

Remark 4.4 We now show that conditions (4.1)–(4.4) are satisfied for a large range of

values for the parameters (A,B, C, D). From the discussion in Section 2, we know that

the left-hand side of (4.2) is strictly increasing in R. Moreover, the function h(R) :=

sinh(R)/(R cosh(R) − sinh(R)) is strictly decreasing to 0 as R → ∞. Hence, if (C − A)/B

is large enough, the solution of (4.2) will satisfy (4.3). A consequence of (2.12) and (4.1)

is that R1∗ > R�, and if we choose (C − A) as small enough, this guarantees (4.4). We

enhance that our choice (4.1)–(4.4) for (A,B, C, D) are not optimal and could be slightly

improved.

The theorem states that equilibria are exponentially stable if the relative rate of mitosis

to taxis is small, the relative rate of mitosis to apoptosis is large and the diffusion constant

is large enough.

The size of the value D = DH/DT is essential for the stability properties of the steady

states: If D is below or very close to 1, the steady states are unstable, whereas if DT � DH ,

the equilibria are stable. Our analysis however gives no evidence upon stability properties

of steady states for values of D which are not too large but exceed the threshold 1 + ω
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(where ω appears in Theorem 4.1). Particularly, Theorem 4.1 shows that in a physically

relevant situation when the diffusion coefficients in the surrounding tissue and the tumor

are almost equal, the tumors exhibit an unstable growth. On the other hand, in the

absence of taxis the diffusion constant outside the tumor is large, cf. [3], and the stability

properties of the equilibria are predicted by Theorem 4.3.

In order to prove these results we have to study the spectrum of the the Fréchet

derivative ∂Φ(0). Invoking that ∂Φ(0) is a generator of an analytic semi-group and taking

also into account that the embedding h4+α(Σ) ↪→ h1+α(Σ) is compact, we obtain that ∂Φ(0)

has compact resolvent. Consequently, the operator ∂Φ(0) has only point spectrum, i.e.

σ(∂Φ(0)) = {λ ∈ � : λ is eigenvalue of ∂Φ(0)}.

We show below that the operator ∂Φ(0) is the Fourier multiplication operator acting on

orthonormal basis given by spherical harmonics. Then the point spectrum of ∂Φ(0) is

exactly the symbol of this multiplier, so that we are finally left to decide about the sign

of this symbol.

We now proceed and determine the linearization of problem (3.1) at the radially

symmetric solution (ρ∗ ≡ 0, σH , σT , p) given by (2.3)–(2.5) and (2.7). Therefore, we consider

linear perturbations of this solution of the form

ρε(ω) := ερ(ω), σε
H (y) = σH (r) + εv(r, ω),

σε
T (y) = σT (r) + εu(r, ω), pε(y) = p(r) + εq(r, ω),

where r = |y|, ω = y/|y|, ε is a small parameter and (ρ, v, u, q) are unknown functions.

We have identified functions of Σ with functions on �2, and (v, u, q) are defined on the

perturbed domains

ΩT (ρε) = {(r, ω) : r < R1 + ερ(ω)}, ΩH (ρε) = {(r, ω) : R1 + ερ(ω) < r < R2}.

Letting Δω be the Laplace–Beltrami operator on the unit sphere �2, we easily see from

(2.2) that the linearizations of the first three equations of (3.1) are

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2
Δωu = u in ΩT , (4.5)

∂2v

∂r2
+

2

r

∂v

∂r
+

1

r2
Δωv = 0 in ΩH, (4.6)

∂2q

∂r2
+

2

r

∂q

∂r
+

1

r2
Δωq = Au in ΩT , (4.7)

respectively. Besides, it is also immediate to see that the linearizations of the first two

boundary conditions of (3.1) are given by

v = 0 on ∂Ω, (4.8)

v − u = (D − 1)σ′
H (R1)η on Σ. (4.9)
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Note that in this particular situation there is an explicit formula for the function Nρ

defined in Section 2. Namely, we have Nρ(y) = |y| − R1 − ρ(ω) for y ∈ R, (R is an

annular domain in this case), which leads us in our case to the following expression for

the outward normal at ∂ΩT (ρε)

νε =
ω − ε∇ωρ(ω)

|ω − ε∇ωρ(ω)| = ω − ε∇ωρ(ω) + o(ε),

where ∇ω denotes the tangent mapping on the sphere �2, or the orthogonal projection of

the gradient ∇ to the tangent space Tω(�2), when regarding a function in ω ∈ �2 as a

function in y ∈ �3 so that 〈ω|∇ω〉 = 0. Since

〈∇σε
T |νε〉(Θρε) − 〈∇σT |ν〉(Θ0)

ε
=

〈∇σT |νε〉(Θρε) + ε〈∇u|νε〉(Θρε) − 〈∇σT |ν〉(Θ0)

ε

= 〈∇u|νε〉(Θρε ) +
〈∇σT |νε〉(Θρε ) − 〈∇σT |ν〉(Θ0)

ε
,

we obtain, by using the relation ∇w = (∂w/∂r)ω, which holds true for radial symmetric

functions w and in particular for w = σT , that

lim
ε→0

〈∇σε
T |νε〉(Θρε) − 〈∇σT |ν〉(Θ0)

ε
= ∂νu + σT

′′(R1)ρ.

Similar relations are also satisfied by σε
H and pε, with the obvious modifications. Therewith,

the linearization of the sixth equation of (3.1) takes the following form,

D∂νv − ∂νu = (σ′′
T (R1) − Dσ′′

H (R1))ρ on Σ,

which, in view of (2.2), is equivalent to

D∂νv − ∂νu = σT (R1)ρ on Σ. (4.10)

Similarly, the linearization of the last equation of (3.1) is given by

∂tρ = −∂νq + C∂νu + ((C − A)σT (R1) − B) ρ on Σ. (4.11)

Finally, we have the following formula for the mean curvature of the hypersurface

Σ(ερ(ω)), cf. [7, 21],

K(ρε) =
1

R1
− ε

R2
1

[
ρ +

1

2
Δωρ

]
+ o(ε),

and we conclude that the linearization of the seventh equation in (3.1) reads as follows:

q = − 1

R2
1

[
ρ +

1

2
Δωρ

]
on Σ. (4.12)

Summarizing, we have proved the following lemma.

Lemma 4.5 Let R1 ∈ (R1∗, R
∗
1), R2 be given by (2.9), Σ = R1�2 and Ω = �(0, R2). Then,

the linearization of the problem (3.1) at the radially symmetric stationary solution (ρ∗ ≡
0, σH , σT , p) found in Section 2 is given by the problem (4.5)–(4.12).
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When studying the linearized system (4.5)–(4.12), we proceed as we did in Section 3.

Namely, given ρ ∈ h4+α(Σ), we can solve the diffraction problem (4.5), (4.6) and (4.8)–

(4.10) for (v, u) and obtain, similarly as we did in Lemma 3.3, an operator (u, v) = (u, v)(ρ)

expressing the solution of this problem in dependence of ρ only. We now plug u(ρ) into

(4.7) and determine the solution q = q(ρ) for the Dirichlet problem (4.7) and (4.12). These

arguments show that the linearized problem (4.5)–(4.12) is equivalent to a linear evolution

equation

∂tρ = ΦL(ρ), t � 0, (4.13)

where ΦL : h4+α(Σ) → h1+α(Σ) is defined by the relation

ΦL(ρ) := −∂ν (q(ρ)) + C∂ν (u(ρ)) + ((C − A)σT (R1) − B) ρ.

Since problem (3.1) is equivalent to the transformed problem (3.5), we conclude from

Lemma 4.5 that the Fréchet derivatives ∂Φ(0) and ΦL coincide, i.e.

∂Φ(0)[ρ] = ΦL(ρ) for all ρ ∈ h4+α(Σ).

Since Σ = R1�2, we will solve the linearized problem and find for each ρ ∈ h4+α(Σ) an

explicit representation formula for ΦL(ρ). Therefore, given k � 0, we let Ykl , l = 1, . . . , dk,

denote the spherical harmonics of degree k. Since they build an orthonormal basis in

L2(�2), we expand (ρ, v, u, q) in the following way:

ρ =
∞∑
k=0

dk∑
l=1

cklYkl(ω) v =
∞∑
k=0

dk∑
l=1

vkl(r)Ykl(ω),

u =
∞∑
k=0

dk∑
l=1

ukl(r)Ykl(ω), q =
∞∑
k=0

dk∑
l=1

qkl(r)Ykl(ω),

(4.14)

where ckl is assumed to be given, and vkl , ukl and pkl are unknown.

Substituting (4.14) into the linearized problem (4.5)–(4.12), using the relation

ΔωYkl = −λkYkl , λk = k2 + k, k � 1,

and comparing coefficients of each Ykl , we obtain a system of ordinary differential

equations for the coefficients (vkl , ukl), k � 0, 1 � l � dk :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′
kl +

2

r
u′
kl − λk

r2
ukl = ukl , 0 < r < R1,

v′′
kl +

2

r
v′
kl − λk

r2
vkl = 0, R1 < r < R2,

vkl(R2) = 0,

vkl(R1) − ukl(R1) = (D − 1)σ′
H (R1)ckl ,

Dv′
kl(R1) − u′

kl(R1) = σT (R1)ckl .

(4.15)
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Similarly, the coefficients qkl are the solutions of the following problem:

⎧⎪⎪⎨
⎪⎪⎩

q′′
kl +

2

r
q′
kl − λk

r2
qkl = Aukl , 0 < r < R1,

qkl(R1) =
λk − 2

2R2
1

ckl ,

(4.16)

while the operator ΦL is given by

∞∑
k=0

dk∑
l=1

cklYkl

ΦL	−→
∞∑
k=0

dk∑
l=1

{−q′
kl(R1) + Cu′

kl(R1) + [(C − A)σT (R1) − B]ckl}Ykl . (4.17)

We now proceed and solve the systems (4.15) and (4.16) one by one. Note from (4.17) that

in order to determine the function ΦL(ρ) it suffices to find only the derivatives −q′
kl(R1)

and u′
kl(R1). As in [6,12], we let for each n ∈ �, un denote the solution of the linear initial

value problem ⎧⎪⎨
⎪⎩

u′′
n +

2n + 2

r
u′
n = un, r > 0,

un(0) = 1, u′
n(0) = 0.

(4.18)

It is shown in [6] that the solution un is global and smooth, i.e. un ∈ C∞([0,∞)). With this

notation we have

ukl(r) = αklr
kuk(r)

for all 0 � r � R1, whereby the constants αkl are still to be determined. The general

solution of the second equation of (4.15) has the form

vkl(r) = βklr
k + γklr

−k−1,

and the third relation of (4.15) implies that γkl = −βklR
2k+1
2 . From the last two equations

of the system we finally get αkl =: skckl , where

sk = −
σT (R1)

(
R1R

2k+1
2 − R2k+2

1

)
+ D(D − 1)σ′

H (R1)
(
kR2k+1

1 + (k + 1)R2k+1
2

)
uk(R1)

(
(D − 1)kR3k+1

1 + ((k + 1)D + k)Rk
1R

2k+1
2

)
+ Rk+1

1 u′
k(R1)

(
R2k+1

2 − R2k+1
1

) . (4.19)

The denominator is positive because the functions un are strictly increasing, cf. [6, 12].

Now that we know ukl , we can pursue and solve the problem for qkl . One can easily check

that the solution of (4.16) is given by the relation

qkl(r) = Aαklr
kuk(r) + δklr

k,

where αkl are given by (4.19) and the constant δkl can be determined from the last equation

of (4.16)

δkl :=
λk − 2

2Rk+2
1

ckl − Aαkluk(R1).

Summarizing, we get from (4.17) that the Fréchet derivative of ∂Φ(0) is a Fourier multiplier

∂Φ(0)

∞∑
k=0

dk∑
l=1

cklYkl =

∞∑
k=0

dk∑
l=1

SkcklYkl , (4.20)
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where the symbol Sk is given by

Sk :=
k(2 − λk)

2R3
1

+ (C − A)Rk
1u

′
k(R1)sk + CkRk−1

1 uk(R1)sk + (C − A)σT (R1) − B (4.21)

for k ∈ �. It is easy to read from (4.20) that the point spectrum of ∂Φ(0) consists exactly

the real numbers Sk so that in conclusion σ(∂Φ(0)) = {Sk : k ∈ �}. The maximum

principle argument used in [12] shows that

un+1 � un, u′
n+1 � u′

n, un(R1) ↘ 1, u′
n(R1) ↘ 0, (4.22)

while for n = 0 we have already shown in Section 2 that

u0(r) =
sinh(r)

r
for all r � 0. (4.23)

If we combine all these relations we obtain that

lim
k→∞

Sk = −∞. (4.24)

This behavior was also suggested by the fact that ∂Φ(0) is a generator of an analytic

semi-group. We now proceed with the proof of Theorem 4.1.

Proof of Theorem 4.1 In view of (4.24) it suffices to prove that if the hypotheses of

Theorem 4.1 are fulfilled, then S0 is positive. To do this, we choose k = 0 in (4.19) and

obtain the following relation

s0 = −
σT (R1)R

2
1

R2 − R1

R2
+ D(D − 1)R1σ

′
H (R1)

D sinh(R1) +
R2 − R1

R2
Q

,

where we used the shorthand Q := R1 cosh(R1) − sinh(R1). We rewrite this expression by

using the results from Section 2. Invoking (2.3), (2.4) and (2.9), we compute that

σT (R1) =
D sinh(R1)

D sinh(R1) +
R2 − R1

R2
Q

and σ′
H (R1) =

R−1
1 Q

D sinh(R1) +
R2 − R1

R2
Q

,

where

R2 − R1

R2
=

3(C − A)DQ − BDR2
1 sinh(R1)

BR2
1Q

,

so that we finally obtain an expression for σT (R1), σ
′
H (R1) in dependence only of R1 and

the constants A,B, C and D:

σT (R1) =
BR2

1 sinh(R1)

3(C − A)Q
and σ′

H (R1) =
BR1

3(C − A)D
.
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We conclude that

s0 = −BR4
1 sinh(R1)

9(C − A)2Q3
[3(C − A)Q − BR2

1 sinh(R1)] +
1 − D

D

B2R4
1

9(C − A)2Q
.

Note that S0 is positive if and only if

(C − A)σT (R1) > B − (C − A)R1u
′
0(R1)s0 = B − (C − A)

Q

R1
s0.

We reformulate this condition by making use of the relations found above, and finally get

that S0 is positive exactly when

R2
1 sinh(R1)

3Q
> 1 +

BR3
1 sinh(R1)

3(C − A)Q

[
(C − A)

B
− R2

1 sinh(R1)

3Q

]
− 1 − D

D

BR3
1

9(C − A)
. (4.25)

If we let R1 → R∗
1 in (4.25), we obtain, in view of (2.12), the following relation:

C − A

B
� 1 − 1 − D

D

BR∗
1
3

9(C − A)
.

The assertion of the theorem follows now from the principle of linearized stability [26,

Theorem 9.1.3] and (4.24). �

We end this paper with the proof of our last result.

Proof of Theorem 4.3 Let A,B, C and D satisfy the assumptions of Theorem 4.3 and

pick R1 ∈ (R1∗, R
∗
1). Particularly, we have D > 1. We claim that the spectrum σ(∂Φ(0)) is

bounded away from zero in the negative half-plane. To do this, we show in a first step

that S0 < 0, and then that all Sk, k � 1, are negative.

In view of (4.25), S0 is negative if and only if

R2
1 sinh(R1)

3Q
< 1 +

BR3
1 sinh(R1)

3(C − A)Q

[
(C − A)

B
− R2

1 sinh(R1)

3Q

]
− 1 − D

D

BR3
1

9(C − A)
.

Hence, it suffices to prove that

R2
1 sinh(R1)

3Q
�

D − 1

D

BR3
1

9(C − A)
.

We divide the relation by R1 and obtain

R1 sinh(R1)

3Q
�

D − 1

D

BR2
1

9(C − A)
. (4.26)

The function x 	→ x sinh(x)/(x cosh(x) − sinh(x)) is strictly decreasing on (0,∞), R1 >

R1∗ > R� (see Remark 4.4), and from (4.3) we also have R� � 1. Consequently, we can

bound the left-hand side of (4.26) by

R1 sinh(R1)

3Q
<

1

coth(1) − 1
.
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On the other hand, we infer from (2.12) that

R2
1

D
+

R2
1 sinh(R1)

R1 cosh(R1) − sinh(R1)
�

R2
1∗
D

+
R2

1∗ sinh(R2
1∗)

R2
1∗ cosh(R2

1∗) − sinh(R2
1∗)

=
3(C − A)

B
,

and obtain after dividing the inequality by R2
1 the following relation:

1

D
+

sinh(R1)

R1 cosh(R1) − sinh(R1)
�

3(C − A)

BR2
1

.

As we note in Remark 4.4, the left-hand side of this relation is a decreasing function of

R1, and since R1 > R1∗ > R�, we get together with (4.3)

2

D
>

1

D
+

sinh(R1)

R1 cosh(R1) − sinh(R1)
�

3(C − A)

BR2
1

.

Summarizing, due to (4.1), we obtain

R1 sinh(R1)

3Q
<

1

coth(1) − 1
<

D − 1

6
<

D − 1

D

BR2
1

9(C − A)
,

which proves (4.26), meaning that S0 < 0.

In order to prove that Sk are negative, we proceed as follows. We first estimate the

constants sk by using (4.22) and (4.23):

−Rk−1
1 sk >

D(D − 1)(k + 1)σ′
H (R1)R

2k+1
2

u0(R1)R1R
2k+1
2 ((D − 1)k + (k + 1)D + k) + R2

1u
′
0(R1)R

2k+1
2

�
(D − 1)(k + 1)

(2k + 1)D sinh(R1) + Q

BR1

3(C − A)
,

with Q as in the proof of Theorem 4.1. Given k � 1, it is not difficult to see that Sk < 0,

provided

1

R1
+

(D − 1)(k2 + k)

(2k + 1)D sinh(R1) + Q

C

3(C − A)
�

R1 sinh(R1)

3Q
,

which is equivalent to

C

3(C − A)
�

[
R1 sinh(R1)

3Q
− 1

R1

]
(2k + 1)D sinh(R1) + Q

(D − 1)(k2 + k)
.

However, this last relation is satisfied by (4.4). We have thus verified that the spectrum

σ(∂Φ(0)) is bounded away from zero in the negative half-plane, which yields in view

of [26, Theorem 9.1.2] the desired result. �

5 Conclusion

In this paper we analyze a two-phase mixture model for avascular tumor growth, when

considering cell-to-cell adhesion and repulsion, and taxis due to nutrient in the tumor

component. Taking advantage of the solvability of a diffraction problem related to
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the model, we show that the three-dimensional mathematical setting is equivalent to

an abstract evolution equation for the sharp interface separating the tumor from the

surrounding healthy tissue. This abstract setting allows us to use the parabolic theory and

prove the local well-posedness of the problem.

If the rate between cell apoptosis and cell mitosis is less than the nutrient concentration

in the far field tissue, then the model possesses radially symmetric steady-state solutions.

For these states, the tumor is a sphere and the surrounding tissue is an annulus. Our

analysis delivers precise bounds for the radius of the tumor and a formula for the

exterior radius of the annulus. Using the principle of linearized stability, we also study

the asymptotic behavior of arbitrary tumor domains which are initially close to a radially

symmetric steady state. Particularly, if the diffusion in the tumor is faster than that in

the surrounding tissue, and the regions rich in nutrients are close to the tumor boundary,

then the tumor will not converge to the radially symmetric equilibrium. This comes as

a completion of the two-dimensional numerical simulations in [3] where the invasive

character of the tumor in the surrounding tissue is illustrated. But there is also a regime

of stability, where starting close to the radially symmetric steady state, the tumor will

evolve towards the latter at an exponential rate. This regime can be described, in a rather

complicated way, in terms of the biophysical parameters involved in the modeling, which

also stands for the complexity of this mixture model.
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