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SUMMARY
A novel 4-dof 2SPS+SPR parallel kinematic machine
is proposed, and its kinematics, statics, and workspace
are studied systematically. First, the geometric constrained
equations are established, and the inverse displacement kin-
ematics is analyzed. Second, the poses of active/constrained
forces are determined, and the formulae for solving
inverse/forward velocities are derived. Third, the formulae
for solving inverse/forward accelerations are derived. Finally,
a workspace is constructed and its active/constrained forces
are solved. The analytic results are verified by its simulation
mechanism to be consistent with the calculated ones.

KEYWORDS: Parallel manipulator; Kinematics; Statics;
Workspace.

Nomenclature
B, m: the base and the moving platform
ri : the active leg and its length
li , Li:- the side of m and the side of B
P, S: the prismatic joint and the spherical joint
R1, R4: the revolute joints
O, o: the center point of B and the center point of m
{m}: coordinate o-xyz fixed on m
{B}: coordinate O-XYZ fixed on B
bi , Bi: the vertices of m and the vertices of B
vr : the general inverse velocity
e, E: the distances from ai to o and from Ai to O
δi ,: the unit vectors of ri

F, T : the concentrated force and torque applied on
m at o

Fai : the active forces exerted on ri

Fc: the constrained force
cj : the unit vectors of Fcj

J, H: the general Jacobian matrix and Hessian
matrix

xl , xm, xn: direction cosine between x and X, x and Y, x
and Z

yl , ym, yn: direction cosine between y and X, y and Y, y
and Z

zl , zm, zn: direction cosine between z and X, z and Y, z
and Z

α, β, γ : Euler angles of m
Xo, Yo, Zo: the position components of m at o in {B}

* Corresponding author. E-mail: luyi@ysu.edu.cn

V : the forward general velocity, V= [v ω]T

A: the forward general acceleration, A = [a ε]T

W: the reachable workspace
||, ⊥: parallel constraint and perpendicular

constraint

1. Introduction
Recently, some 4-dof (degree of freedom) parallel kinematic
machines (PKMs) have attracted much attention because
of their relatively large workspace, simple structure, larger
capability of load bearing, and easy control.1–3 In the
aspects of synthesis, kinematics, and dynamics, Carricato3

synthesized a fully isotropic a 4-dof PKM with Schoenflies
motion (three translations and one rotation). Fang and Tsai4

synthesized some 4-dof PKMs by the screws theory. Li
and Huang5 revealed some structural characteristics of the
4-dof PKMs by constraint–synthesis. Kong and Gosselin,6

Cornpany,7 and Choi8 studied various 4-dof PKMs with
Schonflies motion. Alizade9 and Gao10 synthesized some
4-dof PKMs with parallel active limbs. Chen11 proposed a
4-dof hybrid PKM with two translations and two rotations.
Gallardo–Alvarado et al.12 analyzed the kinematics and
singularity of a 4-dof PKM by the screw theory. Zhang
and Gosselin13 proposed n-dof PKMs with a passive
constraining leg. Lu and Hu14 studied the kinematics of
a 4-dof 3UPS+UPR PKM. Joshi and Tsai15 developed a
Jacobian matrix for limited-dof PKMs. Kim,16 Merlet17 et al.
studied Jacobian matrix of various PKMs by adopting
different approaches. Zhou et al.18 studied the kinematics
of some limited-dof PKMs. Lu19,20 analyzed the kinematics
and statics of some limited-dof PKMs by the CAD variation
geometry. Dasgupta21 solved the inverse dynamics by using
the Newton–Euler formulation. Tsai22 solved the inverse
dynamics of a Stewart–Gough PKM by the principle of
virtual work. Gallardo23 analyzed the dynamics of PKMs
by the screw theory. Using the vector analytic approach,
Russo et al.24 studied the static balancing of parallel robots.
However, no efforts were made toward the analysis of the
kinematics/statics of the 4-dof 2SPS+2SPR PKM.

Since the 2SPS+2SPR PKM includes six spherical joints
which are simple in structure, large in workspace, and easy to
control, this PKM has the potential applications for parallel
machine tools, parallel sensors, surgical manipulators, leg or
wrist of robot, tunnel borers, barbette of warship, satellite
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Fig. 1. The 2SPS+2SPR PKM.

surveillance platforms, and so on. For this reason, this
paper focuses on the analysis of the kinematics, statics, and
workspace of this PKM.

2. The 2SPS+SPR PKM and its dofs
A 2SPS+2SPR PKM (see Fig. 1a) includes a moving
platform m, a fixed base B, and four active legs ri (i = 1,
2, 3, 4) with linear actuator for connecting m with B.

Where m is an equilateral ternary link �b1b2b4 with three
sides l1 = l2 = l4 = l, four connection points bi (b2 coincident
with b3), and a central point o. B is a square B1B2B3B4 with
four sides Li = L, four connection points Bi , and a central
point O. Let {m} be a coordinate system o-xyz fixed on m at o,
{B} be a coordinate system O-XYZ fixed on B at O. Let ⊥ be a
parallel constraint, and || be a perpendicular constraint. Two
SPS (spherical joint-prismatic joint- spherical joint) active
legs connect m at bi with B at Bi (i = 1, 4), and two SPR
(spherical joint-prismatic joint- revolute joint) active legs
connect m at bi with B at Bi (i = 2, 3). Axis of revolute joint
R1 at b1 on m is parallel with b3b4. Axis of revolute joint R4 at
a4 on m is parallel with b1b2. Thus, the structure constraints
l1⊥r1 and e2⊥r4 should be satisfied.

Since each of the SPS active legs ri (i = 1, 3) only bears
the active force along ri , it obviously has a relative larger
capacity of load bearing and is simple in structure.

In the 2SPS+2SPR PKM, the number of links is g0 = 10
for one platform, four cylinders, four piston-rods, and one
base; the number of joints is g = 12 for four prismatic joints,
two revolute joints, and six spherical joints. Located dof is
M0 = 2 for two SPS legs rotated about their own axes. Based
on a revised Kutzbach–Grübler equation,1,2 the dof M of this
PKM is calculated as

M = 6(g0 − g − 1) +
g∑

i=1

mi − M0 = 6 × (10 − 12 − 1)

+ (6 × 1 + 6 × 3) − 2 = 4 (1)

3. Analysis of Inverse Displacement
Before analyzing the kinematics and statics of the
2SPS+2SPR PKMs, the positions of the joints Bi on B and
the joints bi on m must be determined. The position vectors
bi

m and bi of vertices bi (i = 1, 2, 3, 4) in {m} and {B}, and
position vectors Bi of vertices Bi in {B} can be expressed as
follows:1,2

bm
i =

⎡
⎣xbi

ybi

zbi

⎤
⎦, bi =

⎡
⎣Xbi

Ybi

Zbi

⎤
⎦, Bi =

⎡
⎣XBi

YBi

ZBi

⎤
⎦, o =

⎡
⎣Xo

Yo

Zo

⎤
⎦,

RB
m =

⎡
⎣ xl yl zl

xm ym zm

xn yn zn

⎤
⎦, bi = RB

mbm
i + o, (2a)

where (Xo, Yo, Zo) are the three position components of m at o
in {B}; o is a vector of point o on m in {B}; RB

m is a rotational
transformation matrix from {m} to {B}; (xl , xm, xn, yl , ym,
yn, zl , zm, zn) in RB

m are the nine orientation parameters of m,
their constrained equations can be obtained from refs. [1, 2].
bm

i , bi , and Bi (i = 1, 2, 3, 4) can be derived from Eq. (2a)
as follows:

bm
1 = e

2

⎡
⎣ q

−1
0

⎤
⎦, bm

2 = bm
3 =

⎡
⎣0

e

0

⎤
⎦, bm

4 = −e

2

⎡
⎣q

1
0

⎤
⎦,

B1 = L

2

⎡
⎣ 1

−1
0

⎤
⎦, B2 = L

2

⎡
⎣1

1
0

⎤
⎦, B3 = L

2

⎡
⎣−1

1
0

⎤
⎦ ,

B4 = L

2

⎡
⎣−1

−1
0

⎤
⎦. (2b)

b1 = 1

2

⎡
⎣ qexl − eyl + 2Xo

qexm − eym + 2Yo

qexn − eyn + 2Zo

⎤
⎦, b2 = b3 =

⎡
⎣ eyl + Xo

eym + Yo

eyn + Zo

⎤
⎦,

b4 = 1

2

⎡
⎣ −qexl − eyl + 2Xo

−qexm − eym + 2Yo

−qexn − eyn + 2Zo

⎤
⎦ , (2b)

where e is the distance from bi to o, and q = 31/2.
Let Ri (i = 1, 4) be the unit vector of revolute joint Ri in

{B}. They can be derived as follows:

R1 = b4 − b3

qe
= −1

2

⎡
⎣ xl + qyl

xm + qym

xn + qyn

⎤
⎦ ,

R4 = b1 − b2

qe
= 1

2

⎡
⎣ xl − qyl

xm − qym

xn − qyn

⎤
⎦ . (2c)

Let α, β, γ be the three Euler angles of m, ϕ be one of (α,
β, γ , γ+60◦, γ+30◦, and γ+45◦). Set sϕ = sinϕ, cϕ = cosϕ
and tϕ = tanϕ. Let the rotational transformation matrix RB

m

be formed by rotational order of ZYZ, namely, a rotation of α
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about Z-axis, followed by a rotation of β about Y1-axis, and
then a rotation of γ about Z2-axis, where Y1 is formed by Y
rotating about Z by α; Z2 is formed by Z1 rotating about Y1

by β. Thus, RB
m can be expressed as1

RB
m =

⎡
⎣cαcβcγ − sαsγ −cαcβsγ − sαcγ cαsβ

sαcβcγ + cαsγ −sαcβsγ + cαcγ sαsβ

−sβcγ sβsγ cβ

⎤
⎦ (2d)

Comparing Eq. (2a) with Eq. (2d), (xl , xm, xn, yl , ym, yn, zl ,
zm, zn) can be expressed by (α, β, γ ) as

xl = cαcβcγ − sαsγ , xm = sαcβcγ + cαsγ ,

xn= −sβcγ , yl = −cαcβsγ − sαcγ ,

ym= −sαcβsγ + cαcγ , yn = sβsγ

zl = cαsβ, zm = sαsβ, zn = cβ.

(2e)

Two constrained equations are derived from the structure
constraints l1⊥r1 and e2⊥r4 as follows:

R1 · (b1 − B1) = 0, R4 · (b4 − B4) = 0 (3a)

From Eqs. (2c) and (3a), leads to

R1 · o = R1 · (B1 − e1), R4 · o = R4 · (B4 − e4). (3b)

From Eq. (3b), leads to

[
Xo

Yo

]
=

[
XR1 YR1

XR4 YR4

]−1 [
RT

1 (B1 − e1)
RT

2 (B4 − e4)

]
1×2

−
[
XR1 YR1

XR4 YR4

]−1 [
ZR1

ZR4

]
Zo, (3c)

where

[
XR1 YR1

XR4 YR4

]−1

= 2

qcβ

[
YR4 −YR1

−XR4 XR1

]

= 2

q

⎡
⎢⎢⎣

sαsγ+30◦ − cαcγ+30◦

cβ

sαcγ+60◦ + cαsγ+60◦

cβ

−cαsγ+30◦ − sαcγ+30◦

cβ

−cαcγ+60◦ + sαsγ+60◦

cβ

⎤
⎥⎥⎦,

RT
1 (B1 − e1) = −L

4
(xl − xm) − qL

4
(yl − ym)

= L

2
[(sα − cα)cβcγ+60◦ + (sα + cα)sγ+60◦], (3d)

RT
4 (B4 − e4) = −L

4
(xl + xm) + qL

4
(yl + ym)

= L

2
[(cα − sα)cγ+30◦ − (sα + cα)cβsγ+30◦],

[
ZR1

ZR4

]
= 1

2

[−xn − qyn

xn − qyn

]
= sβ

[
cγ+60◦

−sγ+30◦

]
,

[
XR1 YR1

XR4 YR4

]−1 [
ZR1

ZR2

]
= −tβ

[
cα

sα

]

Substituting all terms of Eq. (3d) into Eq. (3c), Xo and Yo can
be expressed by (α, β, γ , Zo) as follows:

Xo =Zocαtβ − 2L

q

(
sαcαcβsγ+30◦cγ+60◦ + 2sγ cγ sγ+45◦cγ+45◦

+ sαcαsγ+60◦cγ+30◦

cβ

)
,

Yo = Zosαtβ − 2L

q

(
−c2

αcβsγ+30◦cγ+60◦ + 2sαcαsγ cγ

+ s2
αsγ+60◦cγ+30◦

cβ

+ q

4

)
. (3e)

The extension of active legs ri (i = 1, 2, 3, 4) and the unit
vector δi of ri can be expressed as follows:

ri = |bi − Bi | , δi = (bi − Bi)/ri . (4a)

Then, ri can be expressed by (α, β, γ , Zo) from the
constrained equations of (xl , xm, xn, yl , ym, yn, zl , zm, zn)
and Eqs. (2b), (3e), and (4a) as follows:

r2
1 = X2

o + Y 2
o + Z2

o + e2 − L(Xo − Yo) + L2/2

+ 2e[Xo(cαcβsγ+60◦ + sαcγ+60◦) + Yo(sαcβsγ+60◦

− cαcγ+60◦) − Zosβsγ+60◦] − Le(cα − sα)cβsγ+60◦

− Le(cα + sα)cγ+60◦,

r2
2 = X2

o + Y 2
o + Z2

o + e2 − L(Xo + Yo) + L2/2

+ 2e[−Xo(cαcβsγ + sαcγ ) − Yo(sαcβsγ − cαcγ )

+ Zosβsγ ] − Le(cα − sα)cγ + Le(cα + sα)cβsγ ,

r2
3 = X2

o + Y 2
o + Z2

o + e2 + L(Xo − Yo) + L2/2

+ 2e[−Xo(cαcβsγ + sαcγ ) − Yo(sαcβsγ − cαcγ )

+ Zosβsγ ] + Le(sα − cα)cβsγ − Le(cα + sα)cγ ,

r2
4 = X2

o + Y 2
o + Z2

o + e2 + L(Xo + Yo) + L2/2

− 2e[Xo(cαcβcγ+30◦ − sαsγ+30◦) + Yo(sαcβcγ+30◦

+ cαsγ+30◦) − Zosβcγ+30◦] − Le(cα + sα)cβcγ+30◦

− Le(cα − sα)sγ+30◦ (4b)

Let δi (i = 1, 2, 3, 4) be the unit vector of ri ; ei be the vector
of line from bi to o in {B}. They can be expended from Eqs.
(2b), (4a), and (4b) as follows:

δ1 = 1

2r1

⎡
⎢⎣

qexl − eyl + 2Xo − L

qexm − eym + 2Xo + L

qexn − eyn + 2Zo

⎤
⎥⎦ ,

δ2 = 1

2r2

⎡
⎢⎣

2eyl + 2Xo − L

2eym + 2Yo − L

2eyn + 2Zo

⎤
⎥⎦ ,
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δ3 = 1

2r3

⎡
⎣2eyl + 2Xo + L

2eym + 2Yo − L

2eyn + 2Zo

⎤
⎦ ,

δ4 = 1

2r4

⎡
⎢⎣

−qexl − eyl + 2Xo + L

−qexm − eym + 2Yo + L

−qexm − eym + 2Zo

⎤
⎥⎦ ,

ei = bi − o, e1 = e

2

⎡
⎢⎣

qxl − yl

qxm − ym

qxn − yn

⎤
⎥⎦ ,

e2 = e3 = e

⎡
⎣yl

ym

yn

⎤
⎦ , e4 = −e

2

⎡
⎢⎣

qxl + yl

qxm + ym

qxn + yn

⎤
⎥⎦ . (4c)

From Eqs. (2e) and (3e), δi (i = 1, 2, 3, 4) and ei can be
expressed by (α, β, γ , Zo).

4. The Inverse/Forward Velocity and Acceleration

4.1. Inverse velocity and acceleration of the ith leg
Let V be a general forward velocity of the platform m. Let
v and ω be a linear velocity and an angular velocity of m at
o, respectively. Let vi be a velocity of m at point bi . Let A
be a general forward acceleration of m. Let a and ε be the
linear acceleration and the angular acceleration of m at o,
respectively. They can be expressed as follows:1,2

V =
[
v

ω

]
, v =

⎡
⎢⎣

vx

vy

vz

⎤
⎥⎦, ω =

⎡
⎢⎣

ωx

ωy

ωz

⎤
⎥⎦, A =

[
a

ε

]
,

a =

⎡
⎢⎣

ax

ay

az

⎤
⎥⎦, ε =

⎡
⎢⎣

εx

εy

εz

⎤
⎥⎦, vi = v + ω × ei . (5a)

Suppose there are two vectors η and ς , and a skew-symmetric
matrix of η. The following equations1,14 should be satisfied

η =

⎡
⎢⎣

ηx

ηy

ηz

⎤
⎥⎦, ς =

⎡
⎣ςx

ςy

ςz

⎤
⎦, η̂ =

⎡
⎢⎣

0 −ηz ηy

ηz 0 −ηx

−ηy ηx 0

⎤
⎥⎦,

η × ς = η̂ς , η̂T = −η̂, η̂ = one of (δ̂i , êi , ĉi , d̂i).

(5b)

The scalar velocities vri of the ith leg ri along ri have been
derived from Eq. (5a) in ref. [14] as

vri = [
δT

i (ei × δi)
T
]
V (5c)

Fig. 2. Force situation of 2SPS+2SPR PKM.

The scalar accelerations ari of the ith leg ri along ri have
been derived in ref. [14] as follows:

ari = [
δT

i (ei × δi)T
]

A + V T hi V ,

hi = 1
ri

[ −δ̂2
i δ̂2

i êi

−êi δ̂
2
i ri êi δ̂i + êi δ̂

2
i êi

]
6×6

.
(5d)

where hi is the ith 6 × 6 sub-Hessian matrix.

4.2. Geometric constraints of constrained forces
The forces situation of the 2SPS+2SPR PKM is shown in
Fig. 2. The whole workload can be simplified as a wrench
(F, T ) applied onto m at the central point o. F and T are a
concentrated force and a concentrated torque applied on m
at o. (F, T ) includes the inertia wrench and the gravity of
the platform, the inertia wrench and the gravity of the active
legs which can be mapped into a part of the whole workload,
the external working wrench (such as machining or operating
wrench of tool and damping wrench of end effector), and the
friction wrench of all the joints in PKM. (F, T ) are balanced
by four active forces Fai (i = 1, 2, 3, 4) exerted on ri at Bi and
along ri , and two constrained forces Fcj (j = 1, 4) exerted on
rj at Bj and parallel with axis of Ri at bj .

Since the constrained forces Fcj limits the movement of
the 2SPS+2SPR PKM, Fci do not do any power during the
movement of ri . Thus, the two geometric constraints of Fci

are determined as follows:

1. Let vri be a translation velocity along prismatic joint P in
SPR active leg rj , thus Fcj ·vrj = 0, i.e., Fcj⊥rj must be
satisfied.

2. Let Rj be a unit vector of revolute joint Rj in SPR active
leg rj , let ρ × Fcj be a torque of Fcj about Rj . Thus,
Rj ·(ρ × Fcj ) = 0 must be satisfied. That is, Fcj must
intersect or be parallel with Rj .

Since a spherical joint S can be replaced by three intersect
revolute joints, an SPR-type leg can be transformed into a
(3R)PR leg. From about two geometric constraints and a
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Ri⊥ri , it is inferred that the direction of vector Fcj exerted
on rj at Bj is the same as that of vector Rj on rj at bj .

4.3. General inverse/forward velocities and accelerations
Since the constrained forces Fcj (j = 1, 4) limit movement
of this PKM, Fcj do not do any power during the movement
of this PKM. Thus, there must be

Fcj cj · v + (dj × Fcj cj ) ·ω = 0 ⇒ [
cT
j (dj × cj )T

]
V = 0,

(6a)

where dj (j = 1, 4) are the vectors of the arm from o to Fcj .
They can be solved as follows:

d1 = B1 − o = 1

2

⎡
⎣ L − 2Xo

−L − 2Yo

−2Zo

⎤
⎦,

d4 = B4 − o = −1

2

⎡
⎣L + 2Xo

L + 2Yo

2Zo

⎤
⎦. (6b)

By combining Eq. (5c) with the second equation in Eq. (6a),
a general inverse velocity vr can be derived as follows:

vr = JV ,

vr =

⎡
⎢⎢⎢⎢⎢⎣

vr1

vr2

vr3

vr4

0
0

⎤
⎥⎥⎥⎥⎥⎦

, J =

⎡
⎢⎢⎢⎢⎢⎢⎣

δT
1 (e1 × δ1)T

δT
2 (e2 × δ2)T

δT
3 (e3 × δ3)T

δT
4 (e4 × δ4)T

cT
1 (d1 × c1)T

cT
4 (d4 × c4)T

⎤
⎥⎥⎥⎥⎥⎥⎦

6×6

, (7)

where J is a 6 × 6 Jacobian matrix. Thus, J−1 can be solved.
Some differentiation equations are derived from Eqs. (5a),

(5b), and (6b) as follows:

ḋj = −ȯB = −v, ḋ
T

i = −vT ,

ċ1 = ω × (e2 − e3)

l
= ω × c1, ċ4 = ω × c4,

ċT
j = (ω × cj )T = (−ĉjω)T = −ωT ĉT

j = ωT ĉj , (8)

(ḋj × cj + dj × ċj )T = [−v × cj + dj × (ω × cj )]T

= [ĉjv − d̂j (ĉjω)]T = −vT ĉj − ωT ĉj d̂j .

By differentiating Eq. (6a) with respect to time, from Eq.
(5b) and (8), leads to

[
ċT

1 (ḋ1 × c1 + d1 × ċ1)T

ċT
4 (ḋ4 × c4 + d4 × ċ4)T

]
2×6

= V T

[
h5

h6

]
,

h5 =
[

03×3 −ĉ1

ĉ1 −ĉ1d̂1

]
6×6

, h6 =
[

03×3 −ĉ4

ĉ4 −ĉ4d̂4

]
6×6

.

(9)

The general inverse/forward accelerations of this PKM can
be solved from Eqs. (5d) and (9) as

ar = JA + V T HV , A = J−1(ar − V T HV )
ar = [

ar1 ar2 ar3 ar4 0 0
]T

,

H = [
h1 h2 h3 h4 h5 h6

]T
,

(10)

where H is a composite matrix with six layer. Each of the six
layers includes a 6 × 6 sub-Hessian matrix.

5. The Statics and the Reachable Workspace
Based on the principle of virtue work22, the power done by
(F, T ) must be the same as that done by active forces Fai

(i = 1, 2, 3, 4), constrained forces Fcj (j = 1, 4). Thus, the
formulae for solving the active forces and constrained forces
can be derived from Eq. (7) as below:

⎡
⎢⎢⎢⎢⎢⎣

Fa1

Fa2

Fa3

Fa4

Fc1

Fc4

⎤
⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎣

vr1

vr2

vr3

vr4

0
0

⎤
⎥⎥⎥⎥⎥⎦

6×1

+
[

F
T

]T

V = 0 ⇒

⎡
⎢⎢⎢⎢⎢⎣

Fa1

Fa2

Fa3

Fa4

Fc1

Fc4

⎤
⎥⎥⎥⎥⎥⎦

= −(JT )−1

[
F
T

]
(11)

A reachable workspace W of the 2SPS+2SPR PKM is
defined as all the positions that can be reached by the central
point of the platform (see Fig. 3). When given the maximum
extension rmax and the minimum extension rmin of active legs
ri (i = 1, 2, 3, 4), W of the PKM can be constructed by means
of its simulation mechanism14.

For instance, set L = 100, l=60, rmin = 150, rmax = 200,
δr = 10 cm, n1 = (rmax−rmin)/δr. W includes four upper
boundary surfaces Sui , four lower boundary surfaces Sli ,
and four side surfaces Ssi (i = 1, 2,. . . , 4), see Fig. 3. Their
construction processes are explained as follows:

The first upper boundary surface Su1 is constructed as
follows:

Step 1 Set r3 = r4 = rmax, r1 = rmin + jδr (j = 0, 1, . . . ,
n1−1).

Step 2 Set j = 0, vary r2, i.e., increase r2 by 10 at each step
from rmin to rmax.

Step 3 Solve the position components (Xo, Yo, Zo) of
m in {B} by automatically solving function of
simulation mechanism in CAD software, and then
insert the position components into the simulation
mechanism.

Step 4 Construct a spatial curve c0 by using the command
of curve passing through XYZ.

Step 5 Repeat the steps 2 through 4 above, except that set
j = 1, 2, . . . , n1, respectively. Thus, other spatial
curves cj are created.

Step 6 Construct the first upper boundary surface Su1

from n1 curves cj (j = 0, 1, . . . , n1−1) by the loft
command.
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Fig. 3. Reachable workspace of the 2SPS+2SPR PKM with its
simulation mechanism (a) Isometric view; (b) Tope view; (c)
Upward view; (d) Front view.

Table 1. Construction processes of the subsurfaces of reachable
workspace W.

S rmin rmax rmin+jδr r varying in rmin rmax Sr

Su1 r3, r4 r1 r2 Su2

Su2 r1, r2 r3 r4 Su1

Su3 r1, r4 r2 r3

Su4 r2, r3 r4 r1

Ss1 r1 r3 r2 r4 Ss2

Ss2 r4 r2 r3 r1 Ss1

Ss3 r2 r4 r1 r3 Ss4

Ss4 r3 r1 r4 r2 Ss3

Sl1 r1, r2 r4 r3 Sl2

Sl2 r3, r4 r2 r1 Sl1

Sl3 r1, r4 r2 r3

Sl4 r2, r3 r4 r1

S: subsurface, Sr : reflection of S.

The construction processes of all the subsurfaces S and their
reflections are summarized as shown in Table I

In fact, Su2, Sl2, Ss2, and Ss4 are the reflective surfaces
of Su1, Sl1, Ss1, Ss3, respectively. The whole workspace is
symmetrical about O-YZ plane.

6. Analytic Solved Example
The workload wrench (F, T ) includes the inertia wrench
and the gravity of the platform, the damping wrench of
platform, the equivalent inertia wrench and the gravity of
the legs mapped into a part of (F, T ), and the external
working wrench. Therefore, when velocity, acceleration, the
mass, inertia moment, mass-center, and damping coefficient
of platform and legs are given, the accurate (F, T ) can be
solved.

Set L = 100 cm, l = 60 cm, F = [20 30 60]T kN, T = [30
30 30]T kN·cm. When the three Euler angles α, β, γ are
increased by a velocity 0.3◦/s from 0◦ to 6◦, and given
Zo versus time (see Fig. 4a), by means of Matlab and the
relevant analytic formulae Eqs. (3e), (4b), (4c), (7)–(11), the
kinematics and the statics of this PKM are solved (see Fig. 4).
The two position components Xo and Yo of m are solved
(see Fig. 4a). The extension, velocity, and acceleration of
ri (i = 1, 2, 3, 4) are solved (see Fig. 4b–d). The velocity,
angular velocity, and acceleration of m are solved (see
Fig. 4e–g); the active/constrained forces are solved (see
Fig. 4h). These analytic solutions have been verified by the
simulation solutions of simulation mechanism of this PKM
in Solidwork.19,20

7. Conclusions
A 2SPS+2SPR parallel manipulator with two SPS active legs
and two SPR active leg has four dofs, i.e., three rotations and
one translation. Each of the SPS-type active legs with the
linear actuator is simple in structure and has a relatively
large capability of load bearing as it only bears a active force
along its own axis.

The reachable workspace of this parallel manipulator
is symmetric about the O-YZ plane and is quite large.
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Fig. 4. Solved results of the 2SPS+2SPR PKM.

When the central point of the platform is close to the side
surface of reachable workspace, the orientation parameters
are increased obviously.

A 6 × 6 Jacobian matrix without the partial differentiation,
and a 6 × 6 × 6 Hessian matrix without the partial
differentiation are derived, and the inverse/forward velocity
and acceleration of the 2SPS+2SPR parallel manipulator are

solved. The analytic results of this parallel manipulator are
verified by its simulation mechanism.

The 2SPS+2SPR parallel manipulator has some potential
applications for the 4-dof PMK, such as parallel machine
tool, leg or wrist of robot, parallel sensor, surgical
manipulator, tunnel borer, warship barbette, and satellite
surveillance platform.
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