
The Journal of Symbolic Logic

Volume 84, Number 4, December 2019

A WEAKLY 2-GENERIC WHICH BOUNDS AMINIMAL DEGREE

RODNEY G. DOWNEYAND SATYADEVNANDAKUMAR

Abstract. Jockusch showed that 2-generic degrees are downward dense below a 2-generic degree. That
is, if a is 2-generic, and 0 < b < a, then there is a 2-generic g with 0 < g < b. In the case of 1-generic
degrees Kumabe, and independently Chong and Downey, constructed a minimal degree computable from
a 1-generic degree. We explore the tightness of these results.
We solve a question of Barmpalias and Lewis-Pye by constructing a minimal degree computable from

a weakly 2-generic one. While there have been full approximation constructions of Δ03 minimal degrees
before, our proof is rather novel since it is a computable full approximation construction where both the
generic and the minimal degrees are Δ03 − Δ02.

§1. Introduction. Two of the fundamental construction techniques in set theory
and computability theory are Cohen and Sacks/Spector forcing. The first uses
(finite) strings1 as conditions and the second perfect trees. Computability theory
allows us to look at fine grained restricted versions of these notions. Cohen forcing
gives us various forms of genericity and Sacks/Spector allows for various forms of
minimality and computable domination.
This paper follows a tradition asking “How can these two notions interact?”.
In their unrestricted forms the notions are incompatible, no Cohen generic degree
has minimal degree. But there are restricted forms of genericity sometimes that can
interact via Turing reducibility.
The reader should recall the following definitions (which are really theorems
due to Jockusch and Posner, but have become standard in the literature as
definitions).

Definition 1.1. Let n ≥ 1.
1. A set A is called n-generic iff A meets or avoids all Σ0n sets of strings. That is,
if S is a Σ0n set of strings, then either ∃� ∈ S(� ≺ A) (� is an initial segment
of A) (A meets S) or ∃� ≺ A∀� ∈ S(� �� �). (A avoids S)

2. A set of strings B is called dense if for all � ∈ 2<� , there is a � ∈ B such that
� � �. We say that a set C is weakly n-generic iff for all dense Σ0n sets of strings
S, C meets S.

3. We say a degree a is (weakly) n-generic if it contains a (weakly) n-generic
set.

Received January 18, 2016.
2010Mathematics Subject Classification. Primary 03D28, Secondary 03D30, 03D55.
Key words and phrases. Turing degree, minimal degree, weakly 2-generic.
1Here, and henceforth, “string” is meant to mean finite string.

c© 2019, Association for Symbolic Logic
0022-4812/19/8404-0002
DOI:10.1017/jsl.2018.68

1326

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

AWEAKLY 2-GENERIC WHICH BOUNDS AMINIMAL DEGREE 1327

The natural relationship is thatweak n+1-genericity is implied by n+1-genericity
and implies n-genericity, and these implications cannot be reversed. (For example,
see Kurtz [14] orDowney andHirschfeldt [9], for amore readily available reference.)
How do n-genericity and minimality relate? First, it is easy to see that no 1-generic
degree can be minimal, but Kurtz showed that every hyperimmune degree is weakly
1-generic and hence there can be minimal degrees containing weakly 1-generic sets.
Jockusch [12] was the first person to give a detailed analysis of notions of (weak)
n-genericity and their relationship with Turing reducibility. In particular, Jockusch
showed that if a is a nonzero degree below a 2-generic degree, then a bounds a
2-generic degree. As a consequence, no 2-generic degree can bound a minimal
degree.
This result was extended by Chong and Jockusch [4] who proved that if g is
1-generic and 0 < a < g < 0′ then a bounds a 1-generic degree. Later Haught
[11] extended this result to prove the very attractive result that if g is 1-generic and
0 < a < g < 0′ then in fact a is 1-generic.
At the time, it seemed reasonable to conjecture that the restriction that g < 0′

could be removed. Independently, Kumabe [13] and Chong and Downey [3] proved
that this restriction cannot be removed, both papers constructing a 1-generic degree
g < 0′′ bounding a minimal degree m < 0′. Indeed, Chong and Downey [3] gave a
local iff condition (now called “having no tight cover”) which characterized when a
setB could be computed from a 1-generic set. In [5], they used this local condition to
construct a minimal degree below 0′ not computable from a 1-generic, and Downey
and Hirschfeldt [9] (page 387) also used this characterization to show that almost
every set is not computable from a 1-generic, although this was known earlier by
the work of Kurtz [14]. Finally, Downey and Yu [7] used this characterization to
construct a hyperimmune-free (minimal) degree computable from a 1-generic, this
being of interest since the construction of a hyperimmune-free degree is a much
“purer” form of perfect set forcing than is the construction of a minimal degree
which can use various approximation techniques.
Thus, we know no 2-generic degree can bound a minimal degree, but a 1-generic
degree can bound a minimal degree. In this paper, we give an affirmative answer
to the natural question of Barmpalias and Lewis-Pye [2] (see also [1]) who asked
whether a weakly 2-generic degree can bound a minimal degree.

Theorem 1.2. There existM <T G <T ∅′′ withM of minimal Turing degree and
G weakly 2-generic.

On general grounds, we point out that this theorem is unlikely to be proven by
forcing, and hence some kind of limit/approximation construction will be needed.
It is true that both weak 2-genericity and minimality constructions are easily done
by using finite extension and perfect set forcing, respectively. Minimality can also
be achieved using forcing with partial computable trees. The difficulty is the con-
struction of the reduction2 ΓG =M. Thus, to use two forcing-type constructions to
construct G andM , you would somehow need to specify Γ in advance, and hence
likely a truth table construction, or find a local condition like that of Chong and

2In this paper we will always view a reduction as a partial computable map Γ from strings to strings,
such that if Γ� ↓ and Γ� ↓, � ≺ �, then Γ� � Γ� , and lim�≺G∧Γ�↓ Γ� = M. Occasionally, to emphasise
this view, we might write Γ(�) in place of Γ� .

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

1328 RODNEY G. DOWNEYAND SATYADEVNANDAKUMAR

Downey (but more complex), and then run a second construction like they did.
While we acknowledge one of these might be possible, they both seem extremely
difficult. The simplest thing seems to be to construct Γ along with the construc-
tion, and since Γ needs to be computable, this will entail the construction being
computable.
Moreover, as we first prove, if G is weakly 2-generic then the degree ofG forms a
minimal pair with 0′ (something that might have been already known, but we could
not find in the literature). Thus, wewill need a computable construction to construct
both G and M, neither of which is Δ02 and hence at no stage will initial segments
come to limits. Full approximation constructions of Δ03 sets have occurred in the
literature such as Downey [8], but they are rare and complex. Moreover, no full
approximation construction of a weakly 2-generic has previously occurred. Thus,
the proof here is also of some technical interest as it involves techniques which may
have wider applications.
The proof consists of two interacting full approximation arguments, one of a
weakly 2-generic and the other of a minimal degree, where the interactions are
controlled by a priority tree of strategies.

§2. Notation. The set of binary strings is denoted by 2<� and the set of infinite
binary sequences by 2�. We will also use strings from �<� , finite sequences of
natural numbers. We point out that, up to Turing degree, (weak) n-genericity in
�<� and 2<� are identical. If � is a finite string, then [�] denotes the cylinder
determined by �, i.e., the set of infinite binary sequences with prefix �. If S is a set
of strings, then [S] is the set of all infinite sequences with some prefix in S.We say
that � � � if the finite string � is a prefix of the finite string or infinite sequence �.
We also use the relation <L to denote the lexicographic ordering of strings.
We remind the reader of our view that procedures/reductions/functionals ΘZ =
Y are partial computable maps from strings to strings such that if � ≺ � and
Θ� ↓,Θ� ↓, then Θ� � Θ� , and lim��Z Θ� = Y.

§3. Minimal pair. In this section we prove the following easy result, surely known
to anyone who thought about it.

Proposition 3.1. Suppose that X ≤T G, ∅′ and G is weakly 2-generic. Then X is
computable.

Proof. Suppose that ΦG = X with X ≤T ∅′, X = lims Xs , and G weakly
2-generic.
Let S = {� | [∃s0∀s > s0(Φ� ↓ [s] �≺ Xs) ∨ (∃n∀�∀s)(� � � → Φ�(n) ↑ [s])]}.
If S is dense, then G meets S which is a contradiction. Thus S is not dense.
Therefore there is some �0 such that for all � ∈ S, �0 �� �.
Then for all � extending �0 there is some �, � � � and Φ� ↓. But also for such a
�, Φ� ≺ X, so that X is computable. �

§4. The Proof of Theorem 1.2. We build a weakly 2-generic G and a set M
of minimal degree and a procedure Γ with ΓG = M. Proposition 3.1 imposes
some restrictions on the constructions of both G andM. Typically in computable
constructions of sets X and Y, with functionals Θ being built in the constructions,

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

AWEAKLY 2-GENERIC WHICH BOUNDS AMINIMAL DEGREE 1329

we ensure that from some point onwards Θ� = � for some � ≺ X and � ≺ Y, and
for all stages s beyond some point � ≺ Xs and � ≺ Ys . This is impossible here
as it would make X and Y both Δ02, since initial segments have come to limits, by
Proposition 3.1.
While the initial segments of both G and M do not come to limits in the
construction, we will be able to read them off the true path of the construction
and the construction will ensure that there are arbitrarily long initial segments
� ≺ G, � ≺M with Γ� ↓= �.
It is most convenient to buildM in Cantor Space and G in Baire space. We will
think of G as being the “left” construction andM the “right” construction with Γ
the partial computable mapping of strings in the left construction to strings in the
right construction.
As usual, Φe denotes the e-th Turing procedure, and we will let S0, S1, . . . be
a standard enumeration of the Σ02 sets of strings in Baire space. For example,
if Qi denotes the i-th partial computable binary relation, we can let � ∈ Si iff
∃s∀tQi (�, s, t). As is well known, we can choose Qi here to be the i-th primitive
recursive 3-place relation, so not worry about halting considerations.

4.1. Hat convention. It is most convenient to use certain conventions about the
approximation to Si . We will adopt a kind of “hat” convention. That is, suppose
that � appears in Si at stage s , with witness s0. By this statement we mean that

• Qi(�, s0, t) holds for all t ≤ s .
• s0 is least with this property.
Then if Qi(�, s0, s + 1) fails to hold, we will regard � to not appear to be in Si at
stage s + 1, even if there is some s1 with Qi(�, s1, t) for all t ≤ s + 1.
4.2. Further conventions. When we write � ∈ Si,s we mean that � appears to be
in Si,s in the sense above. Additionally, if � appears to be in Si,s with witness s0, then
we will ask that s0 > |�|. That is, we ask that long strings � must have large witnesses
s0. This additional convention helps when it comes to choosing strings appearing
to be in Si,s during the priority construction. These conventions are more or less
standard.
The requirements we must meet are the following.

Re : Se dense ⇒ G meets Se [weak 2-genericity]

Ne : ΦMe total ⇒ (ΦMe ≡T ∅) ∨ (M ≤T ΦMe). [minimality]

Additionally, we will need to make M noncomputable. This could be added as
an explicit feature of the construction, but in fact, noncomputability ofM will be a
consequence of the construction method and the Recursion Theorem, in a way we
will later discuss.
We will discuss themeeting of the requirements in isolation and then later analyze
the interactions of the requirements. We begin withRe .

§5. Weakly 2 generic construction - Basic module forRe . In isolation, the idea is
the following. We will assumeRe has at its disposal an initial segment �(e, s) of G .
Of course, in the real construction, there will be several versions of such � which
depend upon what seems correct at the current stage. However, for the present

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

1330 RODNEY G. DOWNEYAND SATYADEVNANDAKUMAR

discussion, we assume that �(e, s) is a true initial segment of G , and moreover
Γ�(e,s) ↓ [s]. In particular, in the real construction, we will also have that Γ�(e,s) lies
in a tree Te,s where we are building the minimal degree and this image is in a good
“e-state”, a concept we will discuss in the next section where we are discussing the
minimal degree construction. The only relevance for us here is that we are assuming
that the minimality machinery won’t initialize this string.
Now, the idea is to set aside the cones [�(e, s)̂ 1̂ n] for n ∈ � as the parts of �<�
where we try to meetRe , should Se be dense, and [�(e, s)̂ 0̂ n] is where we will meet
Re if we are in the lucky case that Se is not dense.
The most important of these cones for this discussion are [�(e, s)̂ î 0] for i ∈

{0, 1}. This is because we will simplify things and pretend that the left hand side
(building G) will be built in the same e-state as that of �(e, s). By doing this we will
avoid the effects of other requirements. All of the other [�(e, s)̂ î j] for j ≥ 1 play
a role in forcing this simplification to be true, or we will gain some higher priority
progress, as we later see.3

So concentrating on these two strings, we work as follows. It will be convenient
in the construction to also make sure that Γ�(e,s)̂ 0̂ 0 ↓ [s] and Γ�(e,s)̂ 1̂ 0 ↓ [s] are
incompatible extensions of Γ�(e,s). The cone [�(e, s)̂ 0̂ 0] (and in fact [�̂ 0]) is devoted
toRe ’s Π02 strategy and [�̂ 1] the Σ02 strategy. We will want the images of these cones
to be incompatible, because, as we will later see actions on the right, where M is
constructed, have consequences on the left where G is constructed. So if we have
defined Γ� = �[s] where are forced to obey that forever. It is hard to reconcile that
fact if we had distinct cones on the left but comparable images on the right. In fact,
one of the goals of the construction is to have alignment of the leftmost paths of the
priority tree and those of the constructions. As we see, this incompatibility feature
will necessitate certain complexities in the construction, but these will be discussed
later.
The strategy is the obvious one. If we see some �(e, s) � �(e, s)̂ 1̂ 0 and �(e, s) ∈
Se,s , then we would like to route Gs+1 � �(e, s). Should it be the case that �(e, s) ∈
Se,t for all t ≥ s , we will be done as now G meets Se . This is outcome f on the
priority tree.
While we are waiting for such a �(e, s) to occur, we route Gt through �(e, s)̂ 0̂ 0.
That is, until we see such a � ∈ Se,s , we have �(e, s)̂ 0̂ 0 ≺ Gt. We regard this as
outcome∞.4
Now should we think we have found �(e, s) and the �(e, s) /∈ Se,t at t ≥ s + 1,
our action will be to re-route Gt through �(e, s)̂ 0̂ 0 again. When we move back to
�(e, s)̂ 0̂ 0, we will play outcome ∞, for at least one stage. At stage t + 1 we will
again seek a �(e, t) ∈ Se,t extending �(e, s)̂ 1̂ 0.
Consider a stage u ≥ t + 1. Now the question is “Which �(e, u) to pick?”, since
there could be many possible choices of strings appearing in Se,u . As with most

3In some sense, this shows the length 2 extensions of � have two roles. One is to meet Re and the
other will be to reveal information about the behavior of splitting for Ne .
4Originally, we had a separate waiting outcome w, but have chosen to simplify the combinatorics

of the construction to have only two outcomes∞ <L f, where∞ will either mean waiting for Se to
provide a string forever, or infinitely many stages occur where candidate strings � leave Se , as we see
below.

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

AWEAKLY 2-GENERIC WHICH BOUNDS AMINIMAL DEGREE 1331

Figure 1. Basic Module forRe

Π2/Σ2 arguments, we pick the �(e, u) which has been there the longest time. That
is, if we think �i ∈ Se,u with witnesses si for i ∈ {1, 2}, then choose the one with the
least si , and then if both have the same si , choose the lexicographically least one.5

Note that if Se is really dense, eventually wewill find � = lims �(e, s) on extending
�(e, s)̂ 1̂ 0, to get stuck on. This is the Σ02 outcome f. If no such � is found, then
we will either switch to �̂ 0̂ 0 infinitely often (outcome∞, the Π02 outcome) or get
stuck extending �̂ 0̂ 0 from some point on, also outcome ∞. On the priority tree,
we have∞ <L f, as mentioned above.
Of course, asmentioned earlier, the above is a simplification for theBasicModule,
as there will be several versions of � on the guesses as per the behaviour of higher
priority requirements, but the reader should keep this model in mind.
Note also, in the background, we will also be mapping ΓGs →Ms in conjunction
with the above. We point out that Re has no actual desire to make Γ total. For
example, in the basic Re module, we would naturally map Γ�(e,s) = Γ�(e,s)̂ 1̂ 0 and
potentially Γ maps all extensions of �(e, s)̂ 0̂ 0 to Γ�(e,s)̂ 0̂ 0. Plainly there are prob-
lems with this idea since we need to make Γ total. Problems are revealed when we
consider the strategy in combination with others. See Figure 1 below.

Remark 5.1. Remember, Re does not care about the totality of Γ for its satis-
faction. As we will see, it is the definition of Γ itself which causes difficulties with
the satisfaction of Re if we are careless. The point is that if we decide to move to
some � ∈ Se,s and Γ� is already defined, firstly it needs to be the case that Γ� extends
Γ�(e,s)̂ 1̂ 0. Secondly, it must not be that this action causes us to injure higher priority
minimality requirements by forcing us off the “e-splitting” part of the relevant tree,
something we glossed over in the discussion above and something we now discuss.

5The reader here should pay attention to the second convention concerning Se , in that long strings
cannot have small witnesses.

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

1332 RODNEY G. DOWNEYAND SATYADEVNANDAKUMAR

We mention these points in passing, for the reader to keep in mind when we discuss
the requirements below.6

§6. Minimal degree construction: Basic module for Ne . The standard minimal
degree construction using e-splitting trees and full trees is well-known to com-
putability theorists. That is, a 0′′ oracle is used with perfect trees as conditions.
For the forcing, extension means subtree so we construct a sequence of computable
perfect trees T−1 ⊇ T0 ⊇ · · · . At step e, we either put all paths on an “e-splitting
tree”, or there is some � on Te such that if we take Te+1 as the full subtree of Te
above �, then either we force divergence or force computability. (Precise definitions
are given below.)
Less well known are full approximation constructions, and this is particularly
true in the setting where M �≤T ∅′. Thus, we will take the liberty of describing in
detail how this will work.
The reader should recall that a function T : 2<� → 2<� is called a (function)
tree if for every finite binary string �, T (�0) and T (�1) are incompatible extensions
of T (�). A string � is said to be on T if it is an element of the range of T . We
write � ∈ T . The set of paths in T are denoted by [T], where P ∈ 2� is a path iff
for all � � P, there exists � ′ � � with � ′ on T and � ′ ≺ P. A set M is said to
be a on T if infinitely many prefixes ofM are on T. Recall the following standard
definition.

Definition 6.1. A string � on a function tree T is said to e-split if there are
incompatible extensions � and � of � on T , and an input n such that Φ�e(n) ↓�=
Φ�e (n) ↓. It follows that a string � on T is non-e-splittable if for every pair of
extensions �, � of � on T and every n ∈ N, if both Φ�e(n) ↓ and Φ�e (n) ↓, then
Φ�e(n) = Φ

�
e (n).

A set M is said to be e-splittable on T if every prefix of M on the tree T is
e-splittable.
Finally, a tree T is called e-splitting iff for all �, T (�0) and T (�1) e-split.

Henceforth, we drop “function”where it is obvious. The notion of e-splitting trees
is useful for the construction of sets of minimal degrees because of the following
fundamental property.

Lemma 6.2 (Essentially, Spector [18]). Let T be e-splitting andM ∈ [T]. If ΦMe
is total, thenM ≤T ΦMe .
As mentioned earlier, in the classical Spector construction,7 construct a nested
sequence of computable trees 2<� = T−1 ⊇ T0 ⊇ T1 ⊇ · · · , and at step e, see if
we can find a full subtree of Te which is not e-splittable (in which case ΦM will be
computable if it is total), or construct Te+1, an e-splitting subtree of Te . We recall
that this is done inductively. We begin at �, find Te(�0) = �0 left of T0(�1) = �1
and on Te which e-split. Then, we define Te+1(〈i〉) = �i for i = 0, 1, and then find
6More specifically, as we discuss later, we cannot allowRe to move us off a higher priority “e-state”

for M. The point is, if at some stage we define Γ� = � and we see some � ∈ Se,s with � � �, then we
would be forced to makeMs+1 � � if Gs+1 � �. This will generate the key tension in the construction.
7Or at least as re-formulated by Shoenfield [16].

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

AWEAKLY 2-GENERIC WHICH BOUNDS AMINIMAL DEGREE 1333

e-splittings above each of these nodes onTe , creating a perfect subtreeTe+1 ofT −e
which e-splits.

Remark 6.3. We will try to describe the full approximation construction, con-
centrating on the devices we introduce to make it work. One of the difficulties
is that many things are interacting, both dynamically, and simultaneously, so
looking at things in isolation (as one can in an oracle construction) is a bit
misleading.

In the full approximation construction used here, the first difference is that we
focus on some approximation to M, Ms for our attention. So, for example, if we
never see ΦMse (n) ↓ for some n, then we will conclude ΦMe (n) ↑ even though there
might be strings � on the relevant tree Te where Φ�e (n) ↓.
The basic module forN0 is to build a tree T0,s as follows. For any stage s , we set
T−1,s = 2<� . At stage s ,Ms will be a length s (i.e., T−1,s () for some 	 of length
s although this is really not important) path on T0,s . Initially, T0,0 = T−1,0, so that
T0,0(�) = �.At each stage s , we will associate with each node � in dom(T0) a 0-state
which is one of∞ or f. Abusing notation, we also will regard T0,s(�) as having the
0-state of � on T0,s . This 0-state will indicate whether we think that T0,s (�) 0-splits
or not. f means that we don’t think � 0-splits, and∞ means we do. Anticipating
things somewhat, we will use e-states which will be strings of length e + 1 from
{∞, f}e+1 where∞ <L f. “Raising” and “lowering”, “higher” and “lower”, states
refer to this lexicographic ordering. The interpretation of a node � having a 2-state
∞f∞ is that the node with this 2-state is on T2,s , it has two extensions on this tree
which are both 0 and 2-splitting, but also thinks it is is part of T1,s and also T2,s , as
we see, where we believe that we won’t again see a 1-split. The notion of e-state goes
back to Friedberg’s maximal set construction [10]. Their use in full approximation
minimal degree constructions goes back to the original papers of Yates [19] and of
Cooper [6].
This is done in a somewhat obvious inductive way. We will begin with � = �,
the empty string. Initially we have no computations. We give T0,s(�) the 0-state f.8

As the construction proceeds, we monitor ΦMs0 . At the first stage s , if any we see
ΦMs (0) ↓ [s] we will issue a description of ΦM0 (0), and argue that this is correct.
Hence ΦM0 is computable. Notice that this has no effect on T0,s .
More generally, suppose that we have issued descriptions of ΦM0 (m) for m < n,
and we are dealing with some � ≺ Ms of length n. We’d await a stage where
ΦMte � n ↓, and issue a description of ΦM0 (n).
The only time we are wrong is that we see some n where Φ�00 (n) and Φ

�2
0 (n) 0-split

for some �0, �1 on T−1,s . If, at some stage, we observe this, then, supposing wlog
�0 <L �1, we raise the 0-state of � = T0,s(�) to ∞, refining the tree T0,s+1 so that
we define, for all 	 ∈ 2<�, T0,s+1(0̂) = T−1,s(�0 	̂) where T−1,s(�0) is the use of
Φ�00 (n) on T−1,s , and T0,s+1(1̂) = T−1,s (�1 	̂), where T0,s (�1) is the use of Φ

�1
0 (n).

In the T0,s construction, the actual use (here regarded as the whole string up to
the largest number used in the computation) will be on T−1,s as it is initially the

8It is possible to separate the three states, non-halting, all extensions giving the same answer on all
arguments (i.e., ΦM0 computable), or 0-splitting, but using three 0-states the construction even more
elaborate, so we choose to combine the first two possibilities as f.

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

1334 RODNEY G. DOWNEYAND SATYADEVNANDAKUMAR

identity tree. In the inductive strategies, we will use the shortest string extending the
use actually on the tree.
In the full construction, we implement the strategy outlined above with a param-
eter we call Test, or more precisely, Test(α, s), where α will be a guess from the
priority tree, and s is a stage number. Here with one minimality requirement, we
will only need Test(∞, s). In the above, initially Test(∞, s) is set to be the empty
setting �, which is being tested to see if it has a 0-split above it. Should a 0-split be
found, one of the extensions of the split will be the next Test(∞, s). For example,
we will choose Test(∞, s +1) = T0,s+1(0), if no other requirements are around, and
have Ms+1 � Test(∞, s + 1). In the full construction, it might be that genericity
requirements ask that Test(∞, s + 1) = T0,s+1(1), because we think that we might
be able to have the f outcome forR0, and Γ−1(Test(∞, s + 1)) = T0,s+1(1) might
be sympathetic to this cause, as we see below (Fig. 2).
In the real construction, the test parameter α is not for a single procedure 0, but
will be an e-state and this is testing for a split of some kind in matching e − 1-state
on Te−1,s , as well as other issues relating to higher priority Rj ’s. Test locations can
be moved by the interactions of the requirements, but the reader should keep the
following guiding principle. If we have a test location for some e-split at some string
� we are pressing Φe to prove that it e-splits above � on Te−1. If no splits are to be
found, then this gives a global win on Φe since we have that ΦMe is computable or
ΦMe is not total, should we keep the construction within [�] in Te . The play-offs as
to when and how we pursue this pressing strategy is one of the key tensions in the
proof.
The construction is seeking to putM on a 0-splitting partial computable subtree
of T0. At stage s , this corresponds to part of the tree T0,s containingM as one of
its paths, where the 0-state of the initial segments ofM on T0 = lims T0,s is∞, in
the limit. Should we hit some place � on T0,s which is a fixed initial segment ofM
where we can’t raise the 0-state of �, then we will haveM ∈ [�] in T0, and hence
either ΦM0 is partial or it is computable.
As far as the Basic Module is concerned, this will mean that for each s , Ms is
a length s path on T0,s and that at each stage s we will have a shortest � as a test
where T0,s (�) ≺Ms and T0,s (�) has 0-state f.
Figure 1 gives a general position of the construction in the tree T0,s .

Remark 6.4. We point out that this discussion cannot be completely correct as
it would make M Δ02 which is impossible. The reason is that potentially each Te
could limitwise pick some cone forM to be built in. But it is a good “image” for
the reader to keep in mind.

More generally, at each stage s , we now build a sequence of total computable
function trees with the following property: for any stage s and any e, we have a
total computable tree Te,s which represents the s-stage approximation to a tree Te .
Further, we will ensure that (paths in) the trees form a nested sequence as follows.

[T−1,s] ⊇ [T0,s] ⊇ · · · ⊇ [Ts,s].
For any index e, we will consider the following tree constructed in the limit.

Te = lim
s→∞Te,s ,

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

AWEAKLY 2-GENERIC WHICH BOUNDS AMINIMAL DEGREE 1335

Figure 2. Basic module forN0.

where the limit is defined pointwise—i.e., for every string �, Te(�) =
lims→∞ Te,s (�). This has the consequence that the limit tree Te may not be
computable.9

At each stage we will associate with a string � on Te,s(�) an e-state (as we do
with �). These are changed as above according to whether the construction observes
Te,s (�) e-splits on Te,s (i.e., the splitting nodes must be on Te,s). That is, attention
was focused on � ≺Ms by a test, and we saw an e-split of � on Te−1,s with the same
e − 1-state as that of �. We then raise e-states by replacing the last symbol f by∞
if splits are observed and refining the tree Te,s . (In the construction, this is reflected
as follows: if a string � on the priority tree represents Ne and we see a new e-split,
as described above, at a stage where � looks correct, we will say that the stage is a
�̂ ∞ stage, else a �̂ f stage.)
e-states have the nice property that the highest one is the one beginning with∞ in
the first place. Thus, maximizing themmeans that we are placingM on a 0-splitting
tree. If we can do this using the tests above, wewill. Thus, the action ofN0 in refining
T0,s has implications on Te,s for e > 0. To wit: We might see that Te,s (�) raises its
state to α̂ ∞ as we see a split, but later it might be that this split is removed from
the tree Te,t (t > s). If this happens then it will be the case that the state increases to
α̂̂ f for some α̂ <L α where∞ <L f, meaning that some tree Tê,t becomes refined
(ê < e).
We can visualize this using the notion of “boundaries” on the various trees.10 On
tree T0,s , there is a boundary below which every string � is 0-splittable in the sense
here described, and above which T0,s is the full tree. For the tree T1,s , there are four
boundaries. The nodes below the bottom-most boundary consists of nodes which
have 1-splits in the 0-splitting subtree of T0,s . Above that, is a layer of strings which
lie in the 0-splitting part of T0,s , but not the 1-splitting part of T1,s which is also in

9However, we will argue that Te will contain a partial computable function tree T∗
e satisfyingNe .

10Note: Here we refer to the nodes in the domain of the trees.

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

1336 RODNEY G. DOWNEYAND SATYADEVNANDAKUMAR

Figure 3. Boundaries for splitting trees.

the 0-splitting part of T0,s . The third layer from the bottom consists of strings in
the non-0-splitting part of T0,s but in this section have 1-splits in T1,s . The topmost
layer consists of nodes which are neither 0-splittable nor 1-splittable. The reader
should refer to Figure 3.
As with all full approximation constructions, the details are very messy but the
idea is straightforward.

Remark 6.5. We remark in passing that the above is not quite correct when
the inductive strategies are considered, in the sense that there might be play-offs
between the priorities of the actions. For instance, consider the situation that we
have a requirement Ne of lower priority than Rj . The latter might force certain
nodes to remain on Te−1,s for the sake of keeping a witness �(j, s) (for instance) on
the left tree because Γ�(j,s) has an image in Tj,s , and hence Te−1,s . This image string
cannot be removed with priority Rj . So it is unreasonable for Ne to be allowed to
remove it as we think we are currently meeting Rj with it. This is implemented by
where the relevant test string is, at any stage. The point is that wemake e-states finite
strings, and only initially raise e states on Te−1 for nodes Te−1,s (�) with |�| > e.
Higher priority strategies might lengthen the places we are allowed to raise e-states.
In this example, to |�| > |Γ�(1,s)|. More on this later.

§7. The inductive strategies. We will now discuss the inductive strategies, which
Soare [17] refers to as the “α-modules”. Certain modifications, some of which we
have already foreshadowed, are needed to make the requirements live with each
other.
First, consider how a single Re requirement copes with a single Nj of higher
priority. We begin by looking at N0 being of highest overall priority and consider
R0.

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

AWEAKLY 2-GENERIC WHICH BOUNDS AMINIMAL DEGREE 1337

The driver for N0 is to build M in a high 0-state tree T0. It is natural for R0 to
guess the eventual state ofN0, andhence therewill be two versions ofR0, namelyRf0
and R∞

0 . Initially, R0 must guess state f, and Rf0 would have erected a genericity
location � = �0. (ForR0, �0 would be � on the left hand tree.) Asmentioned earlier,
satisfaction is pursued on �̂ 0̂ n and �̂ 1̂ n for n ∈ �.
Now at any one time only four of these nodes are in action. �̂ 0̂ 0 and �̂ 1̂ 0 are
never initialized, and these two are the possible locations we use to meet R∞

0 , that
is, R0 should it turn out that the true outcome of N0 is ∞ so that M lies on a
0-splitting subtree of T0.
The construction will ensure that for every string � in either [�̂ 0̂ 0] and [�̂ 1̂ 0] if
Γ� ↓, then Γ� has 0-state∞ in T0.
Also, at each stage s , there will be two other uncancelled strings of the form �̂ 0̂ n
and �̂ 1̂ n with n �= 0, one which will be currently serving the role of � in the case
that f is the final state ofM in T0. The idea is that one of the form �̂ 0̂ n (n �= 0)
will correspond to a place where we are trying to meet Rf0 . That is, should �̂ 0̂ n be
the current string of interest on the left hand side, we will currently be stuck testing
for the next 0-split above some � extending Γ(�̂ 0̂ 0) in the right hand side (which
will be the current Test(∞, s)). Because of this, precisely as with the basic module,
�̂ 0̂ n will need two extensions, �̂ 0̂ n̂ 0 will be where we will build G should,

• This be the final proof thatRf0 is the correct version, in that no further 0-splits
are found above Γ(�̂ 0̂ 0) in the right hand side, as proven by Test(∞, s).

• Given the first point, there is no permanent extension ofS0 in the cone [�̂ 0̂ n̂ 1].
By the same token, �̂ 0̂ n̂ 1 will be the place we are pursuing the Σ02 outcome ofRf0
provided that we never play the infinite outcome of N0 again. Thus, were this last
condition correct, we will either flip infinitely often to [�̂ 0̂ n̂ 0] or get permanently
stuck in one of [�̂ 0̂ n̂ 0] or [�̂ 0̂ n̂ 1], the latter meaning that we have found a
permanent witness for S0 there.
Similar comments pertain to the strings of the form �̂ 1̂ n̂ 0 and �̂ 1̂ n̂ 1 (n �= 0).
These two correspond to the construction testing for 0-splits above �̂ 1̂ 0, and
guessing that we have reached a stage with the final proof that Rf0 is the correct
version ofR since this test never returns. (This is not quite correct, as we need to have
slightly more testing of Φ0 to prove it is 0-splitting, because of the combinatorics of
the construction and because we want to make the driver “every string � in either
[�̂ 0̂ 0] and [�̂ 1̂ 0] if Γ� ↓, then Γ� has 0-state∞ inT0” correct. This will be discussed
in more detail soon.)
The current string �̂ î n (n �= 0) being used will be denoted by �i,f,s for i ∈ {0, 1}.
The subscript “i” indicates we are currently testing Φ0 above Γ(�̂ î 0), and the “f”
indicates that we are guessing this test won’t return a 0-split on the right. (In the
full construction, this f will be a longer string correlating to a guess.) As indicated,
they have two length 1 extensions, �i,f,s 0̂ and �i,f,s 1̂, eachmapped to incomparable
strings in T0,s extending Test(∞, s).11 These attempt to meetR0, on the assumption
that Γ�i,f,s is now stuck in the low 0-state and ∞ never again looks correct for N0.
That is, while this assumption looks correct, we will play �i,f,s 0̂ when R0 looks
11Strictly speaking this is not quite what is done, as the initialization machinery to later be described,

will mean that only one of these might be used.

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

1338 RODNEY G. DOWNEYAND SATYADEVNANDAKUMAR

like it has the∞ outcome, and �i,f,s 1̂ will be played at stage when we believe that
we have a � ∈ S0,s extending �i,f,s 1̂. We remark that each time the hypothesis that
�i,f,s is being built upon proves false (i.e., Test(∞, s) reveals another 0-split), �i,f,s
is cancelled forever, and a new �i,f,s+1 is picked. Finally, which string of the �̂ î n
will be chosen as the �f,j,s is determined by a series of events in the construction,
and the behaviour of the bothR0 andN0 as described in detail below.
Inmore detail, how this all works is as follows. Initially, �i,f,s = �̂ î 1.Wewill route
the construction through �0,f,s and Γ-map its two extensions �i,f,s ĵ for j ∈ {0, 1}
to incompatible extensions �0|�112 in T0,s . Since this is the first action, we could
simply pick 〈0〉, 〈1〉 as the two �j.
Recall that the version of R0 guessing ∞ is denoted by R∞

0 . While waiting for
the R∞

0 strategy to act, we will work on the assumption that it won’t, and we will
pursue the basic R0-strategy exactly as we discussed it in Section 5, as discussed
above, with �0,f,s taking the role of � there. This is called the Rf0 strategy. That is,
whilst we don’t see a 0-split, we would either extend �0,f,s+1 0̂ infinitely often, where
Rf0 has the∞ outcome, or from some point onwards we extend some � extending
�0,f,s+1 1̂; this all assumes that this is the true version with guess f about N0. We
remark that in the second case, we will also protect �-while it appears in S0,t-from
removal from the left hand tree, by keeping its image in all the right hand trees
(modulo priority) as discussed below in more detail in Remark 7.1 below.

Remark 7.1. In the construction, we will have defined Γ(�) = κ for some κ on
T0,t , or possibly Γ(�) = κ̂ for some � � � and κ̂ � κ. For the discussion below we
regard κ and κ̂ as the same. Anticipating things somewhat (to aid in the meeting of
R0) whilst � remains good,wewould not like lower priorityNq removing κ from any
of the trees Tq . The Nq requirements do this removal via the q-state machinery.13
So we ensure that all such trees contain this κ and only work to raise the q-states
for extensions of κ. We would do this by redefining their Tests, described below, to
extend κ. In the construction, we will do this by initializing all the relevant parts of
the trees Tq,v each time we playR0 with a new �.
Back to the construction, we consider the version ofR0 guessing∞ forN0,R∞

0 .
We define the parameter Test(∞, s) to be �, the empty string, in T0,s . Now, what
the version of R0 guessing∞ is waiting for,
• is to see some 0-split of in T0,s before defining Γ.
This happens in two steps as we now discuss in detail.
First, we see an n where Φ�00 (n) and Φ

�1
0 (n) 0-split � for some �0, �1. In this case,

we refine the T0,s -tree to make T0,s+1, with T0,s+1(j) = �j , and otherwise leave
T0,s unchanged. That is, nothing happens, except we re-define T0,s+1(j) = �j	.
(This formula works because T0,s is initially 2<�. If we wrote this with an eye

12In the construction many such immediate extension strings are labelled 	i for i ∈ {0, 1} and we will
always be meaning that 	0 is left of 	1.Wewill adopt this convention so as not to clutter the construction.
Here �0 <L �1. The idea is that the leftmost path (visited infinitely often) on the right construction will
be mapped by Γ to the leftmost path in the right; and this correlates to the leftmost path of the priority
tree, i.e., the true path, TP.
13It is only theN -requirements which will remove strings from the range of Γ, and consequently the

pre-images from the right hand side.

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

AWEAKLY 2-GENERIC WHICH BOUNDS AMINIMAL DEGREE 1339

Figure 4. Abandonment of paths.

towards the inductive strategies, the formula would beT0,s+1(j) = T0,s (
j) where
T0,s (
j) = �j.)
At this stage, we will not yet play R∞

0 , as our fundamental guiding principle is
that we only allow Γ to be mapped by this strategy to strings in the high state in T0,s
and we don’t yet have proof that either of the T0(j) are in the high state. Thus, our
only actions are to

• Define Γ(�, s + 1) = � (as we know � now has the high state).
• Initialize �i,f,s and define �i,f,s+1 = �̂ 0̂ 〈2〉. (If this was a general step of the
construction, this formula would read as �i,f,s+1 = �̂ î 〈n + 1〉 where �i,f,s =
�̂ î 〈n〉.)

• Set Test(∞, s+1) = 〈0〉. (Now we are testing to see if 〈0〉 (i.e., T0(〈0〉)) 0-splits
in T0.)

• Give �i,f,s+1 for i ∈ {0, 1}, two length 1 extensions, �i,f,s+1 0̂ and �i,f,s+1 1̂, each
mapped to incomparable strings in T0,s extending �i . (Hence, in particular, the
extensions of �0,f,s+1 0̂ extend Test(∞, s + 1).)
Note that [�i,f,s] for i = 0, 1 are now both abandoned forever. In particular,
neitherR∞

0 norRf0 will ever again seek witnesses there. (See Figure 4.)
The second step in the strategy is similar, but in this step we will really only deal
with [�̂ 0], until it is resolved. While we await a further ∞ “confirmation” by N0,
using the new Test(∞, s + 1), we will continue our construction in [�0,f,s+1], as in
the basic module of Section 5 and as above with theRf0 strategy.
We pursue the Rf0 strategy with base �0,f,s+1, until we see a stage where we find
in T0,t a 0-split of Test(∞, s + 1) at some stage t ≥ s + 1. Should no 0-split of
Test(∞, s + 1) occur, then the left construction will be carried out in the cone
[�0,f,s+1], and right construction will be carried out in the cone [Test(∞, s + 1)];
that is, in [�0]. In this case, again we have globally metN0 as we have proof that ΦM0
is not total or ΦM0 is not computable.
Finally, should a 0-split
0,
1 of Test(∞, s + 1) be found in [Test(∞, s + 1)] at
some state t, we

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

1340 RODNEY G. DOWNEYAND SATYADEVNANDAKUMAR

Figure 5. Redefining Test (∞, t + 1).

• Refine T0,t+1 using this 0-split above �0. (i.e., T0,t+1(0i) =
0, for i ∈ {0, 1},
etc.)

• Define Γ(�̂ 0̂ 0, t + 1) = �0 (as we know �0 now has the high state).
• For i ∈ {0, 1}, initialize �i,f,t and define �i,f,t+1 = �̂ 0̂ 〈3〉.14 (If this was a gen-
eral step of the construction, this formula would read as �i,f,t+1 = �̂ î 〈n + 1〉
where �i,f,t = �̂ î 〈n〉.)

• Get ready to redefine Test(∞, t + 1). This is slightly more complex than the
first case and is described below.

• Give �i,f,t+1 for i ∈ {0, 1}, two length 1 extensions, �i,f,t+1 0̂ and �i,f,t+1 1̂, each
mapped to incomparable strings in T0,t+1 extending �i , (e.g.,
0,
1 for �0).

7.1. Redefining Test(∞, t+1). The re-definition of Test(∞, t+1) is slightly more
complex. We first look to see if we should switch to trying to meet R0 via some
� ∈ S0,t extending �̂ 1̂ 0 on the left hand side.
Case 1. If there is no such �, there is no reason to leave our current location, so
we simply set Test(∞, t + 1) =
0, and repeat the above inductively.
See Figure 5 below.
Case 2. The other possibility is that we see some such candidate string �. We
would like to use this string to try to meet R∞

0 , but this necessitates a proof that
� can or will be mapped to something on the right hand side in the high 0-state.
(By the fundamental principle.) Before we can put � into the domain of Γ above
�̂ 1̂ 0, we force this to happen as above on a potential image on the right hand
side.
To wit: In Case 2, we will define Test(∞, t + 1) = �1. The construction will then
proceed in the cone [�1,f,t+1] = [�1,f,s+1] on the left hand side (guessing that no
0-split of �1 is found). If a split α0, α1, is found at stage v, akin to the above, we
will

14Actually, there is no reason in this step to initialize �1,f,t . That is because we will either stay in
[�̂ 0], as we see below, or move to [�̂ 1] for the first time; and we have not yet proven that �1 has a
0-split in T0. However, in the construction, we can regard each time we verify that the∞ outcome for
N0 looks correct, all strategiesRe guessing that it has the f-outcome will be initialized. This make the
presentation of the construction smoother. All we have to say is “initialize strategies right of TPs” to
indicate this action.

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

AWEAKLY 2-GENERIC WHICH BOUNDS AMINIMAL DEGREE 1341

• Refine T0,v+1 to have this 0-split above �1.
• Define Γ(�̂ 1̂ 0) = �1.
• Initialize �1,f,v and make define �1,f,v+1 the next string right, as before for 0,
and map two length 1 extensions to direct extensions αi of �1.
Now, we need to make a decision. Can we still work to win R0 here? Certainly,
we need to see that � has remained in S0,v since for all stages between t + 1 and the
current one v. If the answer is yes, then in this initial attack, we simply ask that the
construction now be carried out in the cone [�] on the left hand side. In this case we
will define Γ(�) = �1. And in this case we’d have Test(∞, v + 1) = α0.
We remark that in subsequent attacks, later in the construction, we might already
have a definition of Γ(�̂) = κ for some longest �̂ � �, or Γ(α) already defined for
some α extending �.
In the former case, the construction will have ensured that κ already has 0-state

∞ in T0,v . Thus, we will also be safe to map Γ(�) = κ.
In the latter case Γ(α) will already have 0-state∞ in T0,v , and there is nothing to
do.
Finally, if � is no longer in S0,v or has entered and left, we move the left
construction back to the cone [�0,f,t+1], and now make Test(∞, v + 1) =
0.
In the case that we found � the construction on the right hand side R∞

0 will
continue to either
(i) work in [�] each time the Test(∞, p) returns a new relevant 0-split, or
(ii) will eventually get stuck on some cone [�1,f,p] mapping to strings in some
cone [Test(∞, p)] on the right hand side in T0 (which is a subcone of [�1]),
or

(iii) discover that � /∈ S0,p for some larger p.
In Case (i), R∞

0 has outcome f and wishes to remain in [�]. However, the rules
of engagement are that in this cone, only strings 	 with 0-state∞ in T0 can be of the
form Γ(α) = 	. The construction will, of course, be making an infinite extension of
�, so part of the construction is to wait for more andmore such 	 to occur. While we
wait for such 	, while � remains good, so that (iii) is not invoked, we will either be
in [�] at a∞-stage for N0, or we will be working in some [�1,f,u] which is cancelled
each time we move above [�]. We then move back to [�1,f,u+1] after playing above �
with a new Test(∞, u + 1) above �1.
In the Case (iii), as above we will move the left construction back to the cone
[�0,f,p+1], and now make Test(∞, p + 1) =
0.
See Figure 5 for the situation at this point, where we are about to consider our
alternatives for �∞ 1̂.
The above is a two-step process on each side. That is because we will initially have
to verify the base � on T0,s . Once this is done the verification process-that the true
outcome of N0 is ∞-will only need one step; verifying that Test(∞, s) 0-splits on
T−1,s .

7.2. Summary. First we might get stuck on some Rf0 strategy, and this will only
happen if N0 has the f-outcome, and we are stuck on the left hand side in some
cone [�i,f,s] from some point onwards. In this case,G � �i,f,s ĵ for some j ∈ {0, 1}.
In the case j = 1 there is some � ∈ Se with �i,f,s 1̂ � � ≺ G , and Γ� has 0-state f
in T0. In the case that j = 0, there is no � ∈ Se extending �i,f,s 1̂, so Se is not dense.

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

1342 RODNEY G. DOWNEYAND SATYADEVNANDAKUMAR

If we don’t get stuck on someRf0 strategy, then theR∞
0 strategy is correct. In this

case, the first possibility is that we only play to try to extend �̂ 1 finitely often. The
first possibility for this case is that from some point onwards, there is some fixed
� ∈ Se,s extending �̂ 1̂ 0, and G � �. Then we will infinitely often alternate between
working above �̂ 1̂ 0 in [�] and working above [�1,f,u]. The {�1,f,u | u ∈ �} have no
limit.
The other possibility for this case is that no stable � is found. Thus Case (iii) is
invoked infinitely often. In this case, G � �̂ 0̂ 0, and there is no � ∈ Se extending
�̂ 1̂ 0.
The remaining case is that we play in [�̂ 0] infinitely often, and in this case there
is no � ∈ Se extending �̂ 1̂ 0.

7.3. More requirements. The only remaining details we need for more strategies
is the discussion of how we allow for the inclusion of more trees etc.
R0 decides how we work with T1. If the true version ofR0 isRf0 then for some i ,
wewill eventually get stuck on some �i,f,s forever, for s ≥ s0. Then Test(∞, s0) never
gets 0-state∞ on T0,s , and Test(∞, s0) =Test(∞, s), s ≥ s0. If the true outcome
ofRf0 is∞, so that we return to �i,f,s0 0̂ infinitely often (including from some point
onwards), then we would be free to try to meet R1, by declaring its version of �,
�1 as �i,f,s0 0̂. This version of R1 has guess f about N0. But it should also have a
guess about N1. What we will do is to define Test(f∞, s0) =Test(∞, s0). This N1
strategy is attempting to refine T1,u for u ≥ s0 to state f∞ by looking for 1-splits
in T0 above Test(f∞, s0). This strategy will refine the T1-tree within the T0-tree.
Assuming that �i,f,s0 0̂ is the final location for theR1-strategy, the strategy works in
exactly the same way as we did forR0, within this cone.
Test(f∞, s) might change infinitely often, but it will always extend Test(∞, s0).
The R1-strategy guessing this follows the same naming pattern and is called the
Rf∞1 -strategy, meaning that it is guessing f forN0 and∞ forR0.
The other possibility in the case that Test(f∞, s0) has reached its limit at some
� extending �i,f,s0 1̂ and the true outcome of Rf0 is f. In this case all of the above
is the same, except that we would try to meet R1, by declaring its version of �,
�1 as � (which extends �1,f,s0 1̂), and declare that Test(f∞, s0) = Γ(�). This latter
condition is to make sure that we don’t remove � from the left hand side by raising
the 1-state of something on the right. We will call this the Rff1 strategy, meaning
that it is guessing f forN0 and f forR0.
The other strategies for R1 and N1 are entirely similar. If they guess the infinite
outcome for N0, then they live in one of the cones provided by the R∞

0 strategy.
The R∞∞

1 strategy will work in �̂ 0̂ 0 and makes �1 equal to that. N0 tries to raise
1-states inside [Γ(�̂ 0̂ 0)] inside of T1. It seeks 1-splits which were already in 0-state
∞ in T0. Test(∞∞, s) � Test(∞, s) at every stage s . As above, precisely where this
test starts from depends on the outcome of R∞

0 . The outcome∞ allows us to use
Γ(�̂ 0̂ 0) as Test(∞∞, s), whereas the outcome f would again need Γ(�) as above.
One subtle point is that there is no reason that the same 1-state will appear above
Γ(�̂ 0̂ i) for both i ∈ {0, 1}. We could have included the outcome of R0 as part of
the 1-states but this adds even more notation.
The rest simply works inductively. We now turn to some details.

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

AWEAKLY 2-GENERIC WHICH BOUNDS AMINIMAL DEGREE 1343

7.4. Construction. The construction proceeds in substeps where we generate a
string TPs+1 ∈ {∞, f} the apparent true path at stage s + 1, which gradually gets
longer with s .
The construction works more or less precisely as described above. Beginning at �
in the priority tree PT , we will see if Test(∞, s) returns a 0-split on T0,s . If so, then
s is an∞-stage, and otherwise it is an f-stage. In the first case we invoke strategy
R∞
0 and otherwiseRf0 , as described above.
More generally, at substep t ≤ s we will have generated TPts+1 which is a string
in {∞, f}t+1. The even bits will correspond to g-states on trees Tg,s for 2g ≤ t. The
odd bits will be the current state of theR�k -strategy where � is the initial segment of
TPts+1 of length 2k + 1.
We first suppose that t = 2e > 0. Let α be the string of length e − 1 consisting
of the first e − 1 even bits of TPts+1. Test(α∞, s)t (i.e., the version at substage t)
will have been determined by the previous substage t − 1. See if Te,s contains two
e-splitting extensions of e − 1-state α. If so, then refine the tree Te,s+1 to have these
two splits, and give Test(α∞, s)t state α∞. Then we will say s + 1 is an TPts+1∞-
stage. The determination of what Test(α∞, s +1) will be will be decided by the next
substage.
If there is no such e-split, then we will say s+1 is anTPts+1f-stage. Test(α∞, s +
1) =Test(α∞, s).
Suppose that t = 2e+1. Let α be the string of even bits of TPts+1 of length e− 1.
Case A. Suppose that substage t says that s + 1 is a � =def TP

t−1
s+1f-stage. Also

we suppose that we have built Gts+1.We invoke theR�e strategy.

(i) If there is no string �αf,s,t already defined, then let this beGts+1, give this two
length 1 extensions �αf,s,t î for i ∈ {0, 1}, and map them to two strings
immediately extending Γ(Gts+1) in Te,s which we claim will have e-state
αf.

(ii) If �αf,s,t is currently defined, we claim thatGts+1 � �αf,s,t .We will play theR�e
strategy, as with the basic module. That is, we seek some extension � ∈ Se,s
of �αf,s,t 1̂.
(iia) If no such � is found, then we will define TPt+1s+1 = �∞ and Gt+1s+1 =

�αf,s,t 0̂. Test(αf∞, s + 1) =Test(αf∞, u), where u is the most recent
�∞-stage.

(iib) If � is found, we will set Gt+1s+1 = �, and define Γ(�) = Γ(�̂) = κ where
�̂ is the longest substring of � with Γ(�̂) ↓ [s], if Γ(�) is not yet defined
for some � � �. In the latter case we need to nothing for Γ(�), and use
κ̂ = Γ(�) in the below. We claim that κ (or κ̂) will have e-state αf on
Te,s .
Subcase 1. The first subcase is that that � ∈ Se,s is unchanged since
the last�f-stage. In this subcase, set Test(αf∞, s+1) =Test(αf∞, v).
Subcase 2. � ∈ Se,s is new and there has been a previous �f-stage,
or there has not been a previous �f-stage.
Set Test(αf∞, s + 1) = κ. (or κ̂.)
In either subcase, declare that s + 1 is a �f-stage. In Subcase 2, this
ends the stage, otherwise we move on to the next substage.

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

1344 RODNEY G. DOWNEYAND SATYADEVNANDAKUMAR

Case B. Suppose that substage t says that s+1 is a � =def TP
t−1
s+1∞-stage. Also we

suppose that we have built Gts+1.We invoke the R�e strategy. Again, this is entirely
analogous to the Basic Module.
Rather than writing out many subcases we will describe theR�e strategy.
If there is no string � = �α∞,s,t already defined, then let this be Gts+1, give this
four length 2 extensions �̂ î k for i, k ∈ {0, 1}.
If this was the first time, we have Test(α∞, s +1) = Γ(Gts+1). This completes the
stage.
Then we test to see whether we can safely define Γ(�̂ 0̂ 0) to a string in the high
e-state α∞. Note that at the next v we visit � (assuming it is not initialized) it will
necessarily be a α-stage.
If this is anαf-stage, thenwe pursueCaseA, using �0,α∞f,v = �̂ 0̂ 1, and defining
Test(αf∞, v) = Γ(�̂ 0̂ 1).
We pursue Case A each time we visit �, until we see a new e-split. We will do
this with the two step process, and hence need e-splits until we will be safe to define
Γ(�0,α∞f,v) = �0 where this is some immediate extension of Test(α∞, s +1) in Tt,v.
If we reach a stage q we finally do this, we need to decide whether to try to
move above �̂ 1̂ 0, according to whether we see some � ∈ Se,s extending �̂ 1̂ 0.
If we do, we pursue the analogous strategy in the cone [�̂ 1]. If not we define
Test(α∞∞, q + 1) =Test(α∞, q + 1) = �0. Then s + 1 would be a TPtq+1∞-stage.
The remainder of the R�e strategy is entirely analogous, and leads to no further
insight.
At the end of the stage, initialize all work based on guesses right of TPs .

7.5. End of construction. Now we verify the construction.
Let TP be the true path of the construction. That is, the leftmost path visited
infinitely often.

Lemma 7.2. TP exists.

Proof. There is nothing to prove for length 1 since the tree is finitely branching,
and one of ∞ or f will be on TP. Inductively, suppose that � ≺ TPs is leftmost
visited infinitely often. Let α be the set of even positions of � .
The only time we don’t construct a length s string for TPs is when we deal with
the R�e -strategies. Thus, let � � TP and let s0 be a stage after which we are never
left of �.
When we next visit � we will erect �’s for R�∞e and R�fe . The ones for �∞ are
never initialized and the ones for �f are initialized each time we visit �∞. One of
�∞ or �f are therefore visited infinitely often, and in the latter case there will be a
final version of �i,�f,s for one of i ∈ {0, 1}.
Because the construction only delays extending the relevant node until the e-state
of the guess is verified for the image to be defined, and this delay can happen at
most 4 times once we have a stable �, we conclude that for almost all stages where
the appropriate guess looks correct and we visit � (in whatever the correct case is),
we will play a proper extension of it. Hence, TP is infinite. �
The remainder of the verification is more or less along the lines of the discussions
of the Basic Modules.

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

AWEAKLY 2-GENERIC WHICH BOUNDS AMINIMAL DEGREE 1345

First we note that the construction maps strings in the leftmost part of the right
construction to the same in the left one.
Let � ≺ TP, and let α be the string of even positions in � .
If � and has odd length 2e + 1, then R�e has one of two outcomes, ∞ or f.
Depending on what α is there is a final � which is visited infinitely often at α-stages
from some point onwards. Then one of either �̂ 0̂ 0 or �̂ 1̂ 0 will meetR�e in the base
that α = α∞, or �̂ 0, �̂ 1 in the other case. Which it is, is determined exactly as in
the Basic Module.
Inductively we can conclude thatR�e meetsRe , andmaps extensions of whichever
length 1 or 2 extensionmeets it to strings of stateα inTe . In the case of anf outcome,
there will be a fixed string � extending one of �̂ 1, �̂ 1̂ 0 (depending on what α is)
and its e-state in Te is α and is protected from raising its e + 1-state.
Finally, if � has length 2e, inductively it will be building a tree within Te−1. First
suppose that � = �f. Let � denote the final � of R�e−1.Without loss of generality,
we suppose that �̂ 1 is the final string, the case �̂ 0̂ 1 entirely analogous. Let � be the
witness string. The Test(α, s) will have been set to be Γ� = κ on Te−1, and this will
not be removed from Te−1.
Thereafter, no extension of κ can ever be removed from Tj,s for any j ≤ e − 1.
By induction, there is a partial computable sub-tree of e − 1-state � within Te−1
where �q = � for some q ∈ {f,∞}. If this q wasf, since this is inductively the final
�, no further e-splits of κ can be found on Te−1 and hence Te and Te−1 agree on
extensions of κ. The final e-state will be α, and we conclude that ΦMe lies in a cone
in Te with no e-splits. Therefore ΦMe is either partial or computable. The case that
q = ∞ is analogously the one where Te in this cone will be e-splitting, and we can
invoke Spector’s Lemma.
Finally, the case that � = �∞ is entirely similar, using extensions with last
bit 0.
This concludes the proof.

§8. Summary and open questions. Wehave constructed a weakly 2-generic degree
computing a minimal one.
Chong and Downey gave a characterization of provides a characterization of
when a set is computable from a 1-generic degree.

Definition 8.1 (Chong and Downey[3,5]). • We say that a computably enu-
merable set of strings S is a proper cover15 of a set X iff for all � ≺ X , there
exists � ∈ S, such that � � �, and no � ∈ S is an initial segment of X .

• We say thatX has a tight cover S if S is a proper cover and for all proper covers
Ŝ, ∃� ∈ S∃� ∈ Ŝ(� � �).
Theorem 8.2 (Chong and Downey-[3,5]). • A set X is computable from a 1-
generic set iff X has no tight cover.

• Moreover, there exists a procedure Φ such that for all sets X , if X has no tight
cover, then there is a 1-generic G ≤T X ′′ such that ΦG = X .

This characterization had certain consequences.

15In the original paper this was called a Σ1-dense set of strings.

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

1346 RODNEY G. DOWNEYAND SATYADEVNANDAKUMAR

The first was the result by Kumabe [13] and independently Chong and Downey
[5]: There is a minimal degree below 0′ computable from a 1-generic degree below 0′′.
Other consequences include:

Theorem 8.3 (Chong and Downey [3]). There is a minimal degree below 0′ not
computable from a 1-generic degree.

Theorem 8.4 (Kurtz-thesis). Almost no degree is computable from a 1-generic.

Clearly Kurtz’s result was first obtained by direct methods. Thus, the question
arises whether there is a similar local characterization of when a set is computable
from a weakly 2-generic. We guess that the answer would be something like

X has no Σ02 “tight proper dense cover”.

The first problem here is to figure out precisely what the condition “tight proper
dense cover” actually means. Having done that the next problem is that the Chong-
Downey proof (even when the slight error was corrected in McInerney’s Thesis
[15]) is already itself full approximation 0′′ argument, and any analoguewould be to
extend theapproximationargument above, aswell. Thus,weguess that any extension
would add another quantifier, making it a 0′′′-full approximation argument; as the
things that need approximating are very complex.
The other question which is implicit in our work is whether the theorem can
be obtained using forcing techniques. In all likelihood, this would give a reduc-
tion M ≤ G with a reduction stronger than ≤T , probably truth-table reductions.
This leads to the obvious question about whether such strong reductions are
possible.
Finally, we believe that the minimal degree deg(M) of our result can also be
made to be of hyperimmune-free degree. This would entail the proof we have given
combined with the methods of Downey [8] where degree of Cantor-Bendixson rank
one is given. Such methods involve the construction of M traversing the relevant
trees from left to right over and over again, each time verifying that computations
converge. Probably this is possible, but the argument would be significantly more
complex than the present one.

§9. Acknowledgments. This research was initiated during a visit to André Nies’
research center at Whiritoa. This research was supported by the Marsden Fund
through grants to Rod Downey and André Nies enabling Nandakumar’s visit to
New Zealand. Nandakumar’s research was partly supported by DST SERB grant
SB/FTP/ETA-0249/2013.

REFERENCES

[1] G. Barmpalias, A. R. Day, and A. E. M. Lewis-Pye, The typical Turing degree. Proceedings of
the London Mathematical Society. Third Series, vol. 109 (2014), no. 1, pp. 1–39.
[2] G. Barmpalias and A. Lewis-Pye, The information content of typical reals, Turing’s Revolution

(G. Summerauga and T. Strahm, editors), Birkhäuser/Springer, Cham, 2015, pp. 207–224.
[3] C. T. Chong and R. G. Downey,Minimal degrees recursive in 1-generic degrees. Annals of Pure

and Applied Logic, vol. 48 (1990), pp. 215–225.
[4] C. T. Chong and C. G. Jockusch, Minimal degrees and 1-generic sets below 0′, Computation

and Proof Theory (Aachen, 1983), Lecture Notes in Mathematics, vol. 1104, Springer, Berlin, 1984, pp.
63–77.

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

AWEAKLY 2-GENERIC WHICH BOUNDS AMINIMAL DEGREE 1347

[5] C. T. Chong and R. G. Downey, Degrees bounding minimal degrees.Mathematical Proceedings
of the Cambridge Philosophical Society, vol. 105 (1989), pp. 211–222.
[6] S. B. Cooper,Minimal degrees and the jump operator, this Journal, vol. 38 (1973), pp. 249–271.
[7] R.Downey andL.Yu,Arithmetical Sacks forcing.Archive forMathematical Logic, vol. 45 (2006),

no. 6, pp. 715–720.
[8] R. G. Downey, On �01 classes and their ranked points. Notre Dame Journal of Formal Logic, vol.

32 (1991), pp. 499–512.
[9] R. G. Downey and D. Hirschfeldt, Algorithmic Randomness and Complexity, Springer, New

York, 2010.
[10] R. M. Friedberg, Three theorems on recursive enumeration. I. Decomposition. II. Maximal set.

III. Enumeration without duplication, this Journal, vol. 23 (1958), pp. 309–316.
[11] C. A. Haught, The degrees below a 1-generic degree <0′, this Journal, vol. 51 (1986), no. 3, pp.

770–777.
[12] C. Jokusch,Degrees of generic sets,RecursionTheory: Its Generalizations and Applications (F. R.

Drake and S. S. Wainer, editors), Cambridge University Press, New York, 1980, pp. 110–139.
[13]M.Kumabe, A 1-generic degree which bounds a minimal degree, this Journal, vol. 55 (1990), pp.

733–743.
[14] S. A. Kurtz, Randomness and genericity in the degrees of unsolvability, Ph.D. thesis, University

of Illinois at Urbana-Champaign, ProQuest LLC, Ann Arbor, MI, 1981.
[15]M.McInerney,Topics in algorithmic randomness and computability theory, Ph.D. thesis,Victoria

University Wellington, New Zealand, 2016.
[16] J. R. Shoenfield, Degrees of Unsolvability, New York, 1971, North-Holland Mathematics

Studies, No. 2.
[17] R. I. Soare, Recursively Enumerable Sets and Degrees, Springer, Berlin, Heidelberg, 1987.
[18] C. Spector,On degrees of recursive unsolvability. Annals of Mathematics. Second Series, vol. 64

(1956), pp. 581–592.
[19] C. E. M. Yates, Initial segments of the degrees of unsolvability Part II: Minimal degrees, this

Journal, vol. 35 (1970), pp. 243–266.

DEPARTMENTOF MATHEMATICS AND STATISTICS
VICTORIA UNIVERSITYWELLINGTON
P. O. BOX 600, WELLINGTON, NEW ZEALAND

E-mail: rod.downey@vuw.ac.nz

DEPARTMENTOF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGYKANPUR
KANPUR 208016, UTTAR PRADESH, INDIA

E-mail: satyadev@cse.iitk.ac.in

https://doi.org/10.1017/jsl.2018.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.68

