
Enhanced SPARQL-based design rationale retrieval

LUYE LI,1,2 SHUMING GAO,2 YING LIU,3 AND XIAOLIAN QIN2

1Nanjing Research Institute of Electronics Technology, Nanjing, China
2State Key Laboratory of CAD and CG, Zhejiang University, Hangzhou, China
3Institute of Mechanical and Manufacturing Engineering, School of Engineering, Cardiff University, Cardiff, United Kingdom

(RECEIVED October 14, 2015; ACCEPTED May 31, 2016)

Abstract

Design rationale (DR) is an important category within design knowledge, and effective reuse of it depends on its successful
retrieval. In this paper, an ontology-based DR retrieval approach is presented, which allows users to search by entering nor-
mal queries such as questions in natural language. First, an ontology-based semantic model of DR is developed based on the
extended issue-based information system-based DR representation in order to effectively utilize the semantics embedded in
DR, and a database of ontology-based DR is constructed, which supports SPARQL queries. Second, two SPARQL query
generation methods are proposed. The first method generates initial SPARQL queries from natural language queries auto-
matically using template matching, and the other generates initial SPARQL queries automatically from DR record-based
queries. In addition, keyword extension and optimization is conducted to enhance the SPARQL-based retrieval. Third, a
design rationale retrieval prototype system is implemented. The experimental results show the advantages of the proposed
approach.

Keywords: Design Rationale Retrieval; Ontology; SPARQL Template; Text Search

1. INTRODUCTION

During the product design process, design engineers carry out
various activities such as analyzing requirements, proposing
and evaluating solutions, and making decisions. To complete
these activities, it is often required to reuse knowledge and ex-
perience from previous proven designs. Design rationale
(DR) contains most of this kind of design knowledge and ex-
perience, because it is an explanation of the product design
process. DR includes all of the background knowledge,
such as deliberating, reasoning, trade-off, and decision mak-
ing in the design process of an artifact: information that can be
valuable, or even critical, to various people who deal with the
artifact (Regli et al., 2000). In recent years, more and more
companies have become aware of the importance of DR re-
trieval, because effective reuse of DR depends on successful
retrieval of relevant and useful DR information.

Research into how to capture, store, and retrieve DR has
been ongoing for more than 40 years, and several tools
have already emerged for DR retrieval. However, research
on ontology-based DR retrieval is still in its infancy because
formal query languages are required, posing two problems.
First, formal query languages for ontology-based DR re-

trieval are difficult to use by end-users. Retrieving DR with
rich semantics needs formal query languages, and formulat-
ing a query using such languages normally requires the
knowledge of domain ontology as well as the syntax of the
language (Kara et al., 2012). Second, formal query languages
are not powerful enough for text searches. Today’s formal
query languages lack the sophisticated text search functional-
ity that is required for the literals in DR ontologies. Without
literals, an RDF (http://www.w3.org/TR/PR-rdf-syntax/)
graph is just a set of interconnected nodes, one element out
of a set of isomorphic graphs where nodes are practically
meaningless (Minack et al., 2008).

SPARQL (http://www.w3.org/TR/rdf-sparql-query/) is a
widely used formal query language for ontology, which can
be used to retrieve and manipulate data stored in RDF format.
In addition, SPARQL can powerfully express the intent of a
user’s query, and can manage a range of user input queries in-
cluding keywords, natural language, and DR records. It is
also well supported by mainstream ontology tools.

In this work, an ontology-based DR retrieval approach
combining SPARQL and text search is presented, which
aims to overcome the problems mentioned above. To retrieve
the ontology-based DR information in an easy to use way,
natural language queries are processed into SPARQL queries
by template matching with domain knowledge, and DR
record-based query is also processed into SPARQL query

Reprint requests to: Shuming Gao, State Key Laboratory of CAD and CG,
Zhejiang University, Hangzhou, China. E-mail: smgao@cad.zju.edu.cn

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2016), 30, 406–423.
Cambridge University Press 2016 0890-0604/16
doi:10.1017/S089006041600038X

406

https://doi.org/10.1017/S089006041600038X Published online by Cambridge University Press

http://www.w3.org/TR/PR-rdf-syntax/
http://www.w3.org/TR/PR-rdf-syntax/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
mailto:smgao@cad.zju.edu.cn
https://doi.org/10.1017/S089006041600038X

by template matching or an automatic ontology-based
SPARQL query generation method. To get more relevant re-
trieval results, keyword extension and optimization is con-
ducted to improve and perfect the SPARQL queries. To en-
hance the retrieval precision, a DR ontology for DR
retrieval and reuse is designed as the semantic model of the
proposed extended issue-based information system (IBIS)-
based DR representation. Based on this DR ontology, the cap-
tured DR records can be transformed to ontology individuals
through an ontology population, and a DR database can be
constructed containing the ontology information.

The rest of this paper is organized as follows. Section 2
presents the state of the art in DR representation and retrieval.
Section 3 gives an overview of our approach. Section 4 details
the semantic model of the extended IBIS-based DR represen-
tation. Our proposed methods of generating SPARQL queries
from natural language queries and DR record-based queries
are reported in Section 5 and Section 6, respectively. After
that, implementation of a prototype system is given in Section
7, and Section 8 describes the experiments and evaluation re-
sults. Finally, Section 9 summarizes our proposed work and
discusses future work.

2. RELATED WORKS

2.1. DR representation

A good representation schema is vital to enable effective de-
sign and reuse (Regli et al., 2000). Research on DR represen-
tation has been reported since the 1970s. Most of the DR rep-
resentation approaches are argumentation-based approaches.
The typical model is IBIS (Kunz & Rittel, 1970), which
uses issues, positions, arguments, and the relationships be-
tween them to represent DR. Several software tools that allow
engineering designers to record DR have been implemented
based on IBIS. For example, Conklin and Begeman (1988)
developed graphical IBIS, and Bracewell et al. (2009) imple-
mented design rationale editor (DRed). In addition, McCall
(1991) proposed the procedural hierarchy of issues model,
which broadens the scope of the concept of “issue” in IBIS.
Another argumentation-based model is question, option,
and criteria (MacLean et al., 1991), which is a type of semi-
formal notation of design space analysis. Liu et al. (2010;
Liang et al., 2012) proposed an issue, solution, and artifact
layer model for DR representation and rationale information
discovery from design archival documents. Fenves et al.
(2008) presented a well-defined core product model that
aims to capture product information shared throughout the
whole product’s life cycle. Liu and Hu (2013) proposed an in-
tent-driven representation model to capture and formalize the
DR and its evolving history to support DR reuse.

In addition, as semantic web technology has developed,
several ontology-based representation schemas for DR infor-
mation have been proposed. Burge and Brown (2008) devel-
oped a software-engineering-using-rationale system, which
extends decision representation language with argument on-

tology. This argument ontology is a hierarchy of common ar-
guments that serve as types of claims. De Medeiros and
Schwabe (2008) proposed the Kuaba ontology, which ex-
tends the argumentation structure of IBIS by explicating the
representation of the decisions made during design and their
justifications, and the relationships between the argumenta-
tion and the generated artifacts. Based on the IBIS model,
Zhang et al. (2013) have proposed an ontology-based seman-
tic representation model for DR information, namely, the in-
tegrated issue, solution, artifact, and argument model, which
introduces an ontology-based semantic representation mode
to the DR representation mode of the DR representation
and expands the conceptual elements of IBIS. To facilitate de-
cision making within collaborative design, Rockwell et al.
(2009) have developed a decision support ontology (DSO),
which includes decision-related information including design
issue, alternatives, evaluation, criteria, and preferences. It
also includes decision rationale and assumptions, as well as
any constraints created by the decision and the decision out-
come. Although DSO, which includes more element types
and relationships, can describe DR in a more explicit manner,
it is not practical to capture such complex DR information,
because the work required to capture this information may in-
terrupt users’ regular design work, and is likely to prevent
users from capturing the DR.

2.2. DR retrieval

A good DR retrieval system should be able to provide com-
prehensive and precise search results for users in a convenient
way. There have been several studies dedicated to DR re-
trieval in recent years. In general, DR retrieval works can
be classified into two main categories depending on whether
or not ontology is used: text-based retrieval and ontology-
based retrieval.

Text-based retrieval does not use ontology, and it is easy to
use. Liang et al. (2010) have proposed a DR search and re-
trieval system that focuses on interactive user interface de-
sign. Their system contains three basic functions: a view func-
tion, which enables engineering designers to intuitively
navigate a DR repository; a search function, which supports
designers in retrieving relevant DR from multiple aspects;
and an analysis function, which suggests some useful DR in-
sights. Kim et al. (2005, 2007) have presented two methods
for the retrieval of DR captured using DRed. The first ap-
proach uses natural language processing techniques to anno-
tate rationale records with nine selected semantic relation-
ships (Kim et al., 2005). The second approach recommends
relevant pieces of DR by analyzing the design task models
of design reuse (Kim et al., 2007). Wang et al. also developed
a keyword-based retrieval tool for DRed files (Wang et al.,
2009), and then later proposed a new DR retrieval system
that makes use of the implicit structures in DRed graphs
(Wang et al., 2012). The general problem with text-based re-
trieval is that various DR records may include semantics such
as types, relationships, and structure, which cannot easily be

Enhanced SPARQL-based design rationale retrieval 407

https://doi.org/10.1017/S089006041600038X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041600038X

taken full advantage of using text-based retrieval, particularly
for implicit semantics.

In comparison, ontology-based retrieval makes better use of
the semantics embedded in DR records than text-based re-
trieval, and hence more comprehensive and more precise results
are obtained from searches. Lim et al. (2010, 2011) have pro-
posed an information search and retrieval framework based
on a semantically annotated multifacet product family ontology,
which exemplified how new product variants can be derived
based on the designer’s query of requirements via faceted
search and retrieval of product family information. López
et al. (2008) have presented NDR ontology to describe non-
functional requirements and DR knowledge, and a multifacet
search was implemented through executing SPARQL queries
over the semantic catalogues of nonfunctional requirements.
Zhu et al. (2010) have retrieved and inferred product data se-
mantics with product engineering ontologies using SWRL
(http://www.w3.org/Submission/SWRL/) and SQWRL (http://
protege.cim3.net/cgi-bin/wiki.pl?CollectionsSQWRL). How-
ever, these approaches cannot easily be used because they re-
quire a relatively complex query language.

In our earlier work (Li et al., 2014), a DR retrieval ap-
proach using ontology-aided indexing was proposed that
fully utilizes the semantics of DR in an easy to use way. How-
ever, its retrieved objects are not ontologies, and it requires
specific index structure, which means that is not easily exten-
sible. In addition, SPARQL queries are not supported. Al-
though it is not very easy to use SPARQL as a formal query
language, its expressivity for the user’s query intent is more
powerful than normal queries such as keyword and natural
language, and it can also be used to express DR records. As
a result, SPARQL-based retrieval is an effective way for de-
sign knowledge reuse.

To use SPARQL in a convenient way, Unger et al. (2012)
have proposed a template-based question answering approach
over RDF data, which translates questions into SPARQL
queries. This approach relies on the parse of the question to
produce a SPARQL template that directly mirrors the internal
structure of the question, and then the template is instantiated
using statistical entity identification and predicate detection.
In addition, Minack et al. (2008) have presented LuceneSail,
a combination of structured queries (SPARQL) with full-text
search.

In summary, the research on DR retrieval is still in its
infancy, and current approaches lack either semantics or con-
venience for users. Our work presents an ontology-based DR
retrieval approach, which takes full advantage of the seman-
tics and provides a new effective way to retrieve DR for indus-
trial use.

3. OVERVIEW OF APPROACH

In this paper, we propose an approach for ontology-based DR
retrieval shown in Figure 1. This approach supports normal
user input query such as natural language query. As shown
in Figure 1, DR records are stored as files according to the
proposed DR representation. The DR ontology contains
classes and properties, and the DR instance ontologies con-
tain individuals and the relationships between individuals.
The proposed DR retrieval approach aims to improve preci-
sion, recall, and convenience of the retrieval. Specifically, on-
tology is used to represent DR information in order to utilize
more semantic information and obtain a higher retrieval
precision. To get a higher retrieval recall, SPARQL query
is enriched by extending and optimizing the keywords. To
make the search more convenient for normal users, key-

Fig. 1. Framework for ontology-based design rationale retrieval.

L. Li et al.408

https://doi.org/10.1017/S089006041600038X Published online by Cambridge University Press

http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
http://protege.cim3.net/cgi-bin/wiki.pl?CollectionsSQWRL
http://protege.cim3.net/cgi-bin/wiki.pl?CollectionsSQWRL
http://protege.cim3.net/cgi-bin/wiki.pl?CollectionsSQWRL
https://doi.org/10.1017/S089006041600038X

word-based query, natural language query, and DR record-
based query are provided.

As shown in Figure 1, our approach contains three main
components: query processing, database constructing, and
searching. Using the SPARQL query and the DR database,
the searching part just needs to execute the query and then ob-
tain the results. We will now give a brief description of each
of the remaining two components.

3.1. Query processing

Query processing starts when a user inputs a query and ends
with the output of a SPARQL query. User input queries can
include keywords, natural languages, and DR records. For
further details on the use of these queries, please refer to Li
et al. (2014). This processing uses domain knowledge of en-
gineering design and sophisticated features of information re-
trieval (IR) techniques such as stemming and synonym ex-
pansion. There are three key steps to this processing: a
SPARQL template is selected automatically according to
the user input query; for a DR record-based query that does
not correspond to an existing template, a corresponding
SPARQL query will be automatically generated based on on-
tology; and a Lucene (http://lucene.apache.org/)-based key-
word extension and optimization method is performed to
fill the template with extended and optimized keywords.
Stemming and synonym expansion are used to extend indi-
vidual keywords into several keywords.

3.2. Database constructing

Database constructing handles every DR record and translates
it into an ontology-based representation, which is then stored
in the DR database. This prior processing minimizes the
search operation, providing fluent human–computer interac-
tion. This component contains three main steps: DR records
are populated to corresponding instance ontologies based
on DR ontology; instance ontologies are enriched using on-
tology reasoning; and all DR ontologies (including the DR
ontology and the DR instance ontologies) are stored in a da-
tabase that supports SPARQL query.

4. ONTOLOGY-BASED DR REPRESENTATION
FOR DR RETRIEVAL

An ontology is an explicit specification of a conceptualization
(Gruber, 1993), which formally represents knowledge as a set
of concepts within a domain, and the relationships between
pairs of concepts. In order to effectively make use of the seman-
tics embedded in DR, a corresponding ontology that contains
the domain knowledge of DR can be designed to help represent-
ing DR. In this work, we develop a DR ontology based on an
extended IBIS-based DR representation for DR retrieval, and
the DR ontology is essentially the semantic model of the pro-
posed DR representation that mainly adopts the relevant con-
cepts defined in the IBIS model (Kunz & Rittel, 1970), issue,

solution, and artifact layer model model (Liu et al., 2010),
DSO (Rockwell et al., 2009), DO (Štorga et al., 2010), and
the work about knowledge needs of designers (Ahmed & Wal-
lace, 2004). Before describing our ontology, the extended IBIS-
based DR representation is briefly introduced.

4.1. DR representation for knowledge retrieval and
reuse

In order to effectively support the retrieval and reuse of de-
sign knowledge, a DR representation should generally have
the following characteristics: expressive enough to represent
the design knowledge generated in the design process; formal
enough to support computation; and easy to be captured (Qin
et al., 2012). However, existing DR representations are not
good enough in these aspects. Traditional DR representations
do not have sufficient expression capabilities, and most of
them are not formal enough to be understood by a computer.

Ahmed and Wallace (2004) performed a comprehensive
analysis of the discourse between novice designers and ex-
perienced designers and identified 11 main types of knowl-
edge needs including how does it work, why, what issues to
consider, when to consider issues, and design process. IBIS
(Kunz & Rittel, 1970) is a traditional DR representation
that starts with issues, and each issue is followed by one or
more solutions that respond to the issue. Arguments either
support or object to a solution. The dashed line box in Figure 2
shows the relationships between three elements in IBIS. In
addition, it can express much of the first 3 knowledge needs;
moreover, we find that Requirement can answer why and
when, Function describes how, and Artifact is highly related
to design process.

Based on the analysis above, we propose an extended IBIS-
based DR representation. As shown in Figure 2, the extended
DR elements are Requirement, Artifact, and Function. De-
sign requirements are specifications of some conditions that
the product needs to meet, which include functional require-
ment and nonfunctional requirement. Functional requirement
can drive the design and lead to some issues; hence, what it
relates to is Issue; meanwhile, nonfunctional requirement
plays the role of design constraint, and what it relates to is Ar-
gument. Artifact and Function provide supplementary infor-
mation that helps the designer to better understand the design
knowledge better as supplements. Functions can be found
from issues; an artifact contains issues, and a solution decides
what an artifact is like. In this paper, we introduce the DR rep-
resentation briefly and propose some concepts and relation-
ships for designing DR ontology.

4.2. DR ontology

Based on the proposed DR representation, a DR ontology is
designed to support the indexing of DR retrieval. The main
class hierarchy of the designed DR ontology is shown in
Figure 3. We create the main concepts according to the ex-
tended IBIS-based DR representation, which are subclasses

Enhanced SPARQL-based design rationale retrieval 409

https://doi.org/10.1017/S089006041600038X Published online by Cambridge University Press

http://lucene.apache.org/)-based
http://lucene.apache.org/)-based
https://doi.org/10.1017/S089006041600038X

of the class DRElement. Then we refine the existing classes
into subclasses. For Issue, Solution, and Argument, we re-
fine them into several types according to their states; for
Function, the function taxonomy of Hirtz et al. (2002), which
contains 39 concepts, is introduced as its subclasses, such as

Branch, Channel, Convert, and Support; and for Require-
ment, the requirements list of Pahl et al. (2007), which con-
tains 119 concepts, is referenced to enrich its subclasses,
such as Assembly, Costs, Ergonomics, and Forces. Moreover,
we add some other concepts according to the basic informa-

Fig. 2. Extended issue-based information system-based design rationale representation.

Fig. 3. Main class hierarchy of design rationale ontology.

L. Li et al.410

https://doi.org/10.1017/S089006041600038X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041600038X

tion of DR records such as author, filename, and so on, and
they are classified as the subclasses of Attribute by referring
to the work of Štorga et al. (2010). Finally, we add relation-
ships between these concepts; for example, the relationship
support is added as an object property for concepts Argument
and Solution. As a result, an ontology containing 184 con-
cepts, 26 object properties, and 6 datatype properties in DR
domain is created, and for the details of our work about DR
ontology, please refer to Li et al. (2014).

It is worth noting that this ontology is specifically created
for DR retrieval, and it is the semantic model of the proposed
DR representation model. However, it is not as comprehen-
sive as some previous ones, such as those developed by Rock-
well et al. (2009), Ahmed and Wallace (2005), and Štorga
et al. (2010). However, in order to improve the DR ontology,
some classes such as ResolvedIssue and InsolubleIssue are
specified to be disjoint, so that an individual (or object)
cannot be an instance of more than one of these classes. In
addition, some properties like hasProArg and support are
specified to be inverse properties of each other. Because
DR ontology contains two parts: DRElement (a simple
structure of DR representation) and Attribute (DR retrieval
specific), it is suitable for users who need to represent or re-
trieve DR.

5. AUTOMATIC TRANSLATION OF NATURAL
LANGUAGE QUERY TO SPARQL QUERY

Formal query languages are required to retrieve ontology in-
formation. However, they are too complex to be used for nor-
mal users. Most people are used to using keyword-based or
natural language-based query because this is how we speak.
Considering that keywords, which have little semantic infor-
mation, cannot make full use of ontology database, natural
language queries are chosen as the user input for our retrieval
approach, and finally turned into SPARQL queries.

To translate natural language queries into SPARQL quer-
ies, domain knowledge of engineering design and IR tech-
niques such as keyword expansion are adopted. The overall
process of SPARQL query generation is shown in Figure 4.
Four SPARQL templates are predefined based on knowledge
query requirements in engineering design, and four corre-
sponding question types are also defined. Then, the natural
language question is classified as one of the four types using
natural language processing techniques, and a SPARQL tem-
plate is matched accordingly. Moreover, a Lucene-based key-
words extending method is performed to enhance the text
searching ability of SPARQL. Finally, a complete SPARQL
query is generated by combining the SPARQL template
with the extended keywords.

5.1. Predefinition of SPARQL templates according
to DR retrieval requirements

A natural language question gives us additional information
on the type of information that is expected as an answer

(Kolomiyets & Moens, 2011). In general, there are many po-
tential answer types for domain-independent knowledge that
make it hard to classify natural language questions. However,
there are a limited number of types of knowledge needs in en-
gineering design domain, which makes it feasible to prede-
fine SPARQL templates according to domain-specific knowl-
edge needs.

During engineering design, a vast amount of knowledge
that has many different types is generated, and the question
arises as to which parts of it are the most concerned and the
most needed by designers. Ahmed et al. (2004) identified
11 main kinds of knowledge needs after a comprehensive
analysis. Of these 11 types, DR can fulfill 4 needs: How
does it work, Why, What issues to consider, and When to con-
sider issues. The remaining 7 types of knowledge needs can-
not currently be directly represented by DR. Therefore, only
these 4 types of knowledge needs are considered for DR re-
trieval, which are listed in Table 1.

For domain-independent knowledge needs, it is hard to
define complete SPARQL templates, because there are
too many types of knowledge needs that contain different
relationships. However, it is a completely different situation
for some specific knowledge needs. According to the
knowledge needs in the engineering design domain that
can be represented by DR, there are four corresponding
SPARQL templates defined, which are also shown in

Fig. 4. Process of SPARQL query generation from natural language query.

Enhanced SPARQL-based design rationale retrieval 411

https://doi.org/10.1017/S089006041600038X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041600038X

Table 1. In these templates, we use the following abbrevia-
tions as the prefixes:

† DR for ,http://www.owl-ontologies.com/DesignRa
tionale.owl\#.

† rdf for ,http://www.w3.org/1999/02/22-rdf-syntax-ns\#.

All of the four different types of knowledge query require-
ments can be fulfilled using DR information. Specifically, for
How does it work, the issues are related to the keywords
(meaning that they contain either the keywords or synonyms
of the keywords), and the results will be the solutions of these
issues; for Why, the solutions are related to the keywords, and
the results are the arguments of the solutions; for What issues
to consider, the issues that are directly related to the keywords
will be shown as results; for When to consider issues, issues
are related to the keywords, and the results can be obtained by
the requirements or solutions that lead to the issue.

Although the aforementioned four knowledge needs can
meet most of the designers’ requirements for DR, there do ex-
ist some other knowledge needs. For completeness of our re-
trieval system, a fifth template is created to handle all of the
remaining knowledge needs, which is also shown in Table 1.
This template will find all of the DR nodes that contain spe-
cific keywords, which is akin to keyword-based retrieval.

5.2. Template-based generation of initial SPARQL
query

SPARQL template matching is a key task in translation of a
natural language query into a SPARQL query, which auto-
matically selects a SPARQL template by analyzing the nat-
ural language query in order to obtain the query requirement.

The designers’ requirements for design knowledge that
were identified by Ahmed et al. (2004) are used to adopt a
question-answering strategy to deal with natural language
query; that is, for each query, the expected answer type is first
identified, and the keywords involved in the query are also ex-
tracted for later use. Generally, the expected answer type is
identified using interrogative words, and the expected answer
type exactly corresponds to one of the knowledge needs men-
tioned in Section 4.1. Therefore, the interrogative words how,
why, what, and when correspond to the four SPARQL tem-
plates respectively.

The specific steps of the SPARQL template-matching pro-
cess are as follows:

1. Parse the natural language query. The Stanford Parser
(http://nlp.stanford.edu/software/index.shtml) is used to
parse the natural language query to achieve POS tag-
ging of each word.

Table 1. SPARQL templates for natural language queries and corresponding knowledge needs

Names SPARQL Templates Descriptors Knowledge Needs

T1 SELECT ?solutionNar
WHERE{ ?solution DR:respondTo ?issue .

?solution DR:narration ?solutionNar .
?issue DR:narration ?issueNar
FILTER regex(?issueNar, “keyword”)

}

“how” How it works

T2 SELECT ?argNar
WHERE{?argument DR:argumentFor ?solution .

?argument DR:narration ?argNar .
?solution DR:narration ?solutionNar
FILTER regex(?solutionNar, “keyword”)

}

“why” Why

T3 SELECT ?issueNar
WHERE{ ?issue rdf:type DR:Issue .

?issue DR:narration ?issueNar .
FILTER regex(?issueNar, “keyword”)

}

“what” What issues to consider

T4 SELECT ?objectNar
WHERE{?issue DR:causedBy ?object .

?object DR:narration ?objectNar .
?issue DR:narration ?issueNar
FILTER regex(?issueNar, “keyword”)

}

“when” When to consider issues

T5 SELECT ?objectNar
WHERE{?object DR:narration ?objectNar.

FILTER regex(?objectNar, “keyword”)
}

— —

Note: T1–5, Templates 1–5.

L. Li et al.412

https://doi.org/10.1017/S089006041600038X Published online by Cambridge University Press

http://www.owl-ontologies.com/DesignRationale.owl
http://www.owl-ontologies.com/DesignRationale.owl
http://www.owl-ontologies.com/DesignRationale.owl
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://nlp.stanford.edu/software/index.shtml
http://nlp.stanford.edu/software/index.shtml
https://doi.org/10.1017/S089006041600038X

2. Identify the expected answer type and select the tem-
plate. Each word tagged by WRB is compared with
the four interrogative words how, why, what, and
when, which correspond to the four SPARQL tem-
plates in Table 1. If one of the four interrogative
words is in the query, the corresponding SPARQL
templates will be selected automatically; otherwise,
the fifth template T5 will be selected. It is noteworthy
that usage of template T5 here ensures that the
retrieval system is robust to all natural language
queries.

3. Extract the keywords. The verbs, nouns, and adjectives
of the natural language query are tagged using labels
VB, VBD, VBG, VBN, JJ, JJR, JJS, or NN and are ex-
tracted as the keywords Qinit for later use.

5.3. Generation of final SPARQL query using
keyword extension and optimization

Due to the limited ability of SPARQL in text search (e.g.,
SPARQL only supports exact string matching), different
word forms and synonyms of a keyword will be ignored by
a SPARQL-based retrieval, which will lower the retrieval re-
call dramatically. To resolve this problem, some sophisticated
features of IR such as stemming and synonym expansion are
utilized. Specifically, Lucene is adopted to realize the key-
word extension.

The overall process of keyword extension includes the fol-
lowing four steps, which are shown in Figure 5 above the dot-
ted line.

1. Read the WordNet (http://wordnet.princeton.edu/) in-
dex Iw first, and then add a stem field for each doc
of the index to produce a new WordNet index Iw’,
which enables synonyms to be searched using
stems.

2. Filter the keyword set Qinit acquired in Section 4.2 using
a stopword filter. This eliminates most of the unimpor-
tant words to generate a keyword set Q.

3. The set of extended keywords Qi will be formed after
repeating step (a) and step (b) for each qi Q (i ¼ 1, 2,
. . . , n).

a. Use a snowball filter to extract the stem of qi, and
then obtain the synonyms of qi through index Iw’.

b. Get stems of all words from Si, and search all the ori-
ginal DR records with these stems to obtain the cor-
responding keywords Qi in raw text.

4. Merge every extended keyword set Qi (i ¼ 1, 2, . . . , n)
to form a new set Qext, which is the set of final extended
keywords of Qinit.

The example at the bottom of Figure 5 shows the keyword
extension process for the word “provide.” The set of extended
keywords includes five different words. Without this key-
word extension process, users would not find the results cor-
responding to “provided” and “providing,” due to the limited
text search ability of SPARQL, not to mention “offer” and
“supplying.” It should be noted that the extended keywords
Qext may not always contain the initial keywords Qinit because
all of the words in Qext appear in raw text while some of the
words in Qinit may not, which will be proven in Section 7
using test case 3.

To obtain a complete SPARQL query with the ability of
text search, the SPARQL template and the extended key-
words should be combined. The Boolean OR has been used
to handle the extended keywords, and then add the set into
the template. Meanwhile, some additional triples have been
added to the template to get more detailed information about
the answer, such as the type, state, and filename. The example
shown below is a complete SPARQL query generated from
the natural language query “How to provide force,” which
has chosen the first template in Table 1 and added the ex-
tended keywords “provide force” into the template. Due to
the extended keywords, the example SPARQL query will
find issues that contain the extended keywords (provide, pro-
vided, offer, providing, supplying, force, etc.), and then re-
turn the solutions of the issues as results. However, without
the extended keywords, the retrieved results would only con-
tain the solutions of issues containing the original keywords
(provide and force). It is noteworthy that there are much more
than three extended keywords of the query; we have only
shown “provide,” “supplying,” and “force” here because of
limited space.

Fig. 5. Main process of keyword extension.

Enhanced SPARQL-based design rationale retrieval 413

https://doi.org/10.1017/S089006041600038X Published online by Cambridge University Press

http://wordnet.princeton.edu/
http://wordnet.princeton.edu/
https://doi.org/10.1017/S089006041600038X

SELECT DISTINCT *

WHEREf ?solution DR:respondToI ?issue .

?solution DR:narration ?solutionNar .

?issue DR:narration ?issueNar .

?solution rdf:type ?type .

?solution DR:hasState ?color.

?solution DR:belongToAFile ?drFile.

?drFile DR:hasFileName ?fileName

FILTER (regex(?issueNar, “provide”) jj regex(?issueNar,
“supplying”) jj

regex(?issueNar, “force”))

g

6. AUTOMATIC TRANSLATION OF DR
RECORD-BASED QUERY TO SPARQL QUERY

Compared with keywords and natural language, DR records
are more structured with more abundant DR semantics, which
can help designers better express their knowledge require-
ments. With this consideration, DR record-based query is
supported in our DR retrieval system as an accurate query
mode. This query mode is imperative for an integrated DR

capture and retrieval system. For example, when a designer
creates a new DR file during his design work, for each issue
that is inserted, the designer wants to determine whether so-
lutions exist in response to this issue in the DR database.
At this point, the DR record-based query can be very helpful
to the user. The purpose of this section is to translate DR record-
based query to SPARQL query automatically.

Figure 6 shows the overall translation process from DR
record-based query to SPARQL query. An attempt is made
to match the query with one of the SPARQL templates. If the
match succeeds, the initial SPARQL query is directly gener-
ated, which will be discussed in more detail in Section 6.2. If
the match fails, the initial SPARQL query is automatically
generated based on ontology, which will be explained in Sec-
tion 6.1. In addition, a Lucene-based keyword extension and
optimization method is used to enhance the text searching
ability of SPARQL. Finally, a complete SPARQL query is
generated by combining the initial SPARQL query with the
extended and optimized keywords.

6.1. Ontology-based SPARQL query generation

Because there is an indefinite number of DR nodes and rela-
tionships within a DR record-based query, it is not feasible to
predefine complete SPARQL templates for the DR record-

Fig. 6. Translation process of design rationale record-based query to SPARQL query.

L. Li et al.414

https://doi.org/10.1017/S089006041600038X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041600038X

based query to match. To ensure that all of the DR record-
based queries can be translated into SPARQL queries, we
propose an ontology-based translation method, which specif-
ically includes following seven steps:

1. Parse the DR record-based query: Extract the DR node
types and the relationships between nodes to obtain the
keywords Qinit for each DR node.

2. Generate SPARQL statements based on the DR node
type: Determine the concept of DR ontology according
to the DR node type, and then generate the correspond-
ing SPARQL statements. In DR ontology, all of the
concepts that correspond to particular node types are
subclasses of DRElement. If the type of the node is
“TYPE,” the corresponding SPARQL statement is
“?node rdf:type DR:TYPE.”

3. Generate SPARQL statements based on the relation-
ships between DR nodes: Determine the object property
of DR ontology according to the relationship between
DR nodes. The types of relationships that exist include
respondTo, argumentFor, causedBy, and relatedArgu-
ment. If the relationship between node1 and node2 is
“RELATIONSHIP,” then the corresponding SPARQL
statement is “?node1 DR:RELATIONSHIP ?node2.”

4. Generate SPARQL statements based on the text content
of the DR node: If a DR node contains some text infor-
mation, then the corresponding SPARQL statements are
“?node DR:hasNarration ?content . FILTER regex(?-
content, ‘keyword’),” where “content” and “keyword”
are consistent with “node” through a certain number.

5. Generate the initial SPARQL query by combining the
generated SPARQL statements: Add a SPARQL state-
ment “SELECT DISTINCT * WHEREfg,” with the
SPARQL statements generated above within the braces.

6. Extend and optimize the keywords: For each DR node,
process the initial keywords Qinit that was created in step
(1) using the keyword extension and optimization algo-
rithm described in Section 4.3, and then get the updated
keywords Qext.

7. Generate the final SPARQL query: Use the extended
keywords Qext to replace “keyword” in the initial
SPARQL query, and use Boolean OR to handle multi-
ple keywords. In addition, in order to display the results
more intuitively, add some SPARQL statements on the
state of the DR node and filename, and so on.

After executing the seven steps above, a corresponding
SPARQL query will be generated for a DR record-based query.
Figure 7 shows an example of the translation process from a
DR record-based query to a SPARQL query, where the seven
numbers correspond to each of the seven steps above.

6.2. Template-based SPARQL query generation

SPARQL template-based translation matches a DR record-
based query with one of the SPARQL templates in a template

library, then extends and optimizes the keywords, thus gener-
ating the final SPARQL query. Compared with the ontology-
based translating method, SPARQL template-based translat-
ing is more effective.

Compared with natural language query, DR record-based
query contains more complex DR node types and relation-
ships between DR nodes, and expresses users’ query require-
ments more effectively. However, the uncertainty of DR
nodes and relationships mean that it is not feasible to prede-
fine complete SPARQL templates for all DR record-based
queries. Therefore, the SPARQL template and its correspond-
ing descriptor for a DR record-based query are extracted
when the ontology-based SPARQL query generation method
described in Section 5.1 is used.

The SPARQL template corresponding to a DR record-
based query expresses the DR node types and the relation-
ships between nodes. Therefore, its descriptor should include
as much information as possible to node types and the rela-
tionships between nodes, and it should be relatively simple
to enhance the efficiency of the template matching. Based
on the above analyses, the descriptor for the SPARQL tem-
plate corresponding to the DR record-based query can be de-
fined as a string formed by the depth-first traversal-ordered
DR node types. Specifically, there are three points that should
be noted. First, for each node of a DR record, its descriptor is
of the form (type(children)), where “type” denotes DR the
node type, and “children” denotes all descendant nodes of
current DR node. If there is no “children,” the current node
is a leaf node. The types of DR node include Issue, Solution,
Argument, and FunctionalRequirement, where the bold let-
ters show the descriptor that is used as an abbreviation of
the DR node type. Second, for the query that is for similar
results, its descriptor can be represented as a type tree. An
example of the descriptor extraction process is shown in
Figure 8. Third, for the query that is for wanted results, its
descriptor can be represented as a type tree adding “?” after
the type abbreviation that corresponds to the blank node.
An example of the descriptor extraction process is shown in
Figure 9.

The following steps are used for template-based SPARQL
query generation from the DR record-based query:

1. Extract the query’s descriptor: The descriptor genera-
tion method described above can be used to extract
the corresponding descriptor for the DR record-based
query that is input by a user. It is worth noting that
this step is the same as the first step in Section 6.1 except
for keyword extraction.

2. Search for a SPARQL template with the descriptor:
Use the descriptor to match to a SPARQL template.
If the matching succeeds, choose the corresponding
SPARQL template as the initial SPARQL query.

3. Extract the keywords: For each DR node, extract the
verbs, nouns, and adjectives (words that are tagged by
the Stanford Parser as VB, VBD, VBG, JJ, JJR, or

Enhanced SPARQL-based design rationale retrieval 415

https://doi.org/10.1017/S089006041600038X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041600038X

NN) from the text information as the initial keywords
Qinit.

4. Extend and optimize the keywords: For each DR node,
process the intial keywords Qinit from step 1 using the key-
word extension and optimization algorithm described in
Section 4.3, and then obtain the updated keywords Qext.

5. Generate the final SPARQL query: Use the extended
keywords Qext to replace “keyword” in the initial
SPARQL query, and use Boolean OR to multiple key-
words. In addition, in order to display the results more
intuitively, add some SPARQL statements relating to
the state of DR node and the file name, and so forth.

Fig. 7. Example of the translation process from design rationale record-based query to SPARQL query.

L. Li et al.416

https://doi.org/10.1017/S089006041600038X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041600038X

7. IMPLEMENTATION

The proposed DR retrieval approach has been implemented
in a multimodule prototype system. The core module
that realizes the retrieval function is developed using
Java, and the user interface module is developed using
Qt 4.7.3, which is integrated with our capture tool (Li
et al., 2013). Moreover, Jena 2.10.1 is used for handling
the OWL files, Jena TDB for constructing database of
ontology-based DR, and Lucene 3.6.2 for the keyword
extension.

The DR records utilized in this study are captured using our
DR capture tool, which has been developed based on the ex-
tended IBIS-based DR representation. The three IBIS ele-
ments are given a “traffic light” status (yellow means open
status; green means resolved issue, accepted solution, or a
pro; and red means insoluble issue, rejected solution, or a
con), which refers to Dred (Bracewell et al., 2009). Currently,
our DR records for retrieval consist of 106 DR files, which are
captured by experienced engineering designers. There are a
total of 1473 DR nodes connected with 1152 edges, after rea-
soning with 18 SWRL rules, an additional 4419 node types,
and 978 relationships.

7.1. SPARQL engine

In order to cope with the growing amount of DR information and
fully exploit the semantics of it, an ontology-based method to
construct the DR database is proposed. The key points are how
to translate DR records captured by engineering designers into
DR instance ontologies, and how to store the large amount of
DR instance ontologies and the proposed DR ontology. DR rec-
ords correspond to separate DR instance ontologies, and retriev-
ing over these ontologies needs to manage them as whole object;
therefore, we need to store these instance ontologies in a database.

The basic process for the DR database constructing is illus-
trated in Figure 10. DR records are instantiated into corre-
sponding DR instance ontologies based on DR ontology.
Then, ontology reasoning is conducted to enrich the instance
ontologies. Finally, DR ontology and related instances are
stored into a database. Meanwhile, the RDF query language
SPARQL is supported for searching the DR database.

7.1.1. Generating of DR instance ontologies through
ontology populating and ontology reasoning

DR ontology is used to automatically translate DR records
into DR instance ontologies through ontology population.

Fig. 8. Example of descriptor extracting process on query for similar results.

Fig. 9. Example of descriptor extracting process on query for wanted results.

Enhanced SPARQL-based design rationale retrieval 417

https://doi.org/10.1017/S089006041600038X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041600038X

Ontology population is a knowledge acquisition activity,
which transforms or maps unstructured, semistructured, and
structured data into instance data. In addition, ontology rea-
soning is conducted to enrich the instance ontologies.

In this work, the DR instance ontologies generation pro-
cess includes the following five steps, of which four steps
are for ontology population and the final step is for ontology
reasoning.

1. Create ontology individuals for DR nodes: An ontology
individual is created for each DR node, and which class
it belongs to depends on the DR node’s type.

2. Create data type properties for DR nodes: Information
inside the DR node such as text and state is added as the
ontology individual’s properties.

3. Create object properties between DR nodes: Once all
DR nodes have been processed using the two steps
above, the relationships between the DR nodes are
added to the instance ontology as object properties of
the individuals.

4. Create ontology individuals and properties for the DR
file: Ontology population is not restricted to the DR
nodes. DR files also contain basic information, includ-
ing authors, creation date, and modification date, which
together with the filenames are also added to the in-
stance ontology by creating OWL individuals and prop-
erties.

5. Infer semantic information using SWRL rules: SWRL
rules are adopted to obtain as much of the inferred se-
mantic information as possible, which can be used to ef-
fectively improve the performance of the DR retrieval.
Some examples are given in Table 2 to illustrate the

benefits of SWRL rules. Rule 1 implies that if an Issue
node’s state is Yellow, its node type could be OpenIs-
sue, and this rule is able to infer more specific type
for an ontology individual according to DR node’s
state. Rule 2 means that if an accepted solution has
both pros and cons at the same time, and there is only
one supporting argument, then we can infer that the
supporting argument is very important. Both Rule 3
and Rule 4 add a relationship between ontology indi-
viduals. Specifically, Rule 3 infers that the relationship
between a ProArgument node and a Solution node is
support; and Rule 4 implies that if an issue i1 has a so-
lution s, and s leads to another issue i2, then it should be
assumed that i2 affects i1.

For the details of our work on translating DR files into
ontologies, ontology population, and ontology reasoning,
please refer to Li et al. (2014).

7.1.2. Creation of DR database supporting SPARQL
query

SPARQL is the most widely used query language for OWL
ontology. However, when there are large scales of ontology
information, it is not possible to load all information into
memory at the same time, so indexing should be performed
before searching. The key point is that when users search
with indexes, SPARQL query should be supported as well.
Fortunately, Jena (http://jena.apache.org/) provides a compo-
nent TDB for RDF storage and query specifically to support
SPARQL.

TDB is a component of Jena for RDF storage and query. It
supports the full range of Jena application programming inter-
faces. TDB can be used for high-performance RDF storage on
a single machine.

7.2. Graphical user interface

Figure 11 shows an example of a DR retrieval with a DR rec-
ord-based query. The red rectangle represents the DR rec-
ord-based query that is input by the user, and the blue rectangle
shows the search results that are returned to the user. The bot-
tom left panel shows the SPARQL query that is generated
from the DR record-based query, and the DR record appears

Fig. 10. Process of design rationale database constructing.

Table 2. Examples of SWRL rules

1. Issue(?i) ^ hasState(?i, Yellow) � OpenIssue(?i)
2. AcceptedSolution(?s) ^ hasConArgNo(?s, ?no1) ^ greaterThan(?no1, 0)

^ hasProArg(?s, ?a) ^ hasProArgNo(?s, ?no2) ^ isEqualTo(?no2, 1) �
DecisiveArgument(?a)

3. ProArgument(?a) ^ Solution(?s) ^ hasArgument(?s, ?a) � support(?a,
?s)

4. Solution(?s) ^ Issue(?i1) ^ Issue(?i2) ^ repondTo(?s, ?i1) ^

leadTo(?s,?i2) � affect(?i2, ?i1)

L. Li et al.418

https://doi.org/10.1017/S089006041600038X Published online by Cambridge University Press

http://jena.apache.org/
http://jena.apache.org/
https://doi.org/10.1017/S089006041600038X

on the right panel. When a single line of the results is double-
clicked, the corresponding DR record will be shown in the
right panel, and the focus will move to the corresponding
DR node. It is worth noting that users can directly input
SPARQL queries into the SPARQL panel, as well as showing
the automatically generated SPARQL query. The example in
Figure 11 also shows the overall process for our proposed
retrieval process. The user input query (red rectangle) is
translated into a SPARQL query (green rectangle), and
then the SPARQL query is executed to get the results (blue
rectangle).

8. EXPERIMENTS AND EVALUATIONS

The DR retrieval approach proposed in this paper takes advan-
tage of both ontology and SPARQL. Ontology plays a key role
in improving the recall and precision of DR retrieval, which is
evaluated in Section 8.1. SPARQL is a commonly used method
of retrieving DR, and our proposed SPARQL that is enhanced
with a text search method greatly improves the retrieval recall,
which is evaluated in Section 8.2. The metrics most commonly
used to assess the effectiveness of IR systems are precision and
recall, which are defined in this work as follows:

precision ¼ the number of relevant DR records

retrieved=the number of retrieved DR records:

recall ¼ the number of relevant DR records retrieved=

the number of relevant DR records in the DR database:

8.1. Evaluation of ontology-based DR retrieval

The retrieval recall and precision of three different methods is
tested in order to evaluate the benefits of ontology in our re-
trieval approach. Method 1 is keyword-based retrieval for the
original DR files, Method 2 is our proposed enhanced
SPARQL-based retrieval without ontology reasoning, and
Method 3 is our proposed enhanced SPARQL-based retrieval
with ontology reasoning.

In order to demonstrate the effectiveness and usefulness of
the proposed approach in industrial practice, more than half of
the test queries shown in Table 3 are taken from real cases in
engineering design. Specifically, three of the queries (Q1,
Q4, and Q5) relate to the design of a maintenance tool for as-
sembling a gas turbine journal bearing. The overall function
of this tool is to move a bearing to the right place, which
can be broken down into four subfunctions: providing driving
force, moving, connecting, and lifting. The queries are
mainly related to providing driving force and moving. Fig-
ure 11 shows some of the DR about this maintenance tool.
In addition, Q7 relates to the design of a rotor’s cooling sys-
tem. There are three alternatives for this design issue: single-
stage internal air cooling, two-stage internal air cooling, or
external cooler. The purpose of Q7 is to search for the pros
of using an external cooler.

The retrieval results are also shown in Table 3. The first
three queries should be considered, which are all keyword-
based queries. There is an obvious increase in the precision
values as more semantic information is captured in the index.
Taking Q1 as an example, it can be seen that when Method 1

Fig. 11. User interface of the design rationale capture and retrieval system.

Enhanced SPARQL-based design rationale retrieval 419

https://doi.org/10.1017/S089006041600038X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041600038X

is used, all types of DR nodes that contain “provide force” are
returned as results. When using Method 2, which contains
some basic types of DR nodes such as Issue, the range of re-
sults is limited to the Issue nodes. Furthermore, when using
Method 3, which contains some more specific types of DR
nodes such as ResolvedIssue, the range of results is further
limited. Therefore, the precision gradually increased with
each method. It can also be seen in Table 3 that the recall val-
ues are increased from Method 2 to Method 3. The reason for
this is that implicit relationships are uncovered by reasoning
with the semantic rules in Table 2.

Our evaluation results show that Method 3 has the best re-
trieval performance, followed by Method 2, with Method 1
having the poorest performance. This is because Method 2
utilizes more semantic information than Method 1, and
Method 3 uses much more inferred semantic information
than either of the other two methods. This proves that the
proposed DR retrieval approach is better than the traditional
keyword-based retrieval method, and ontology reasoning
plays an important role in improving the retrieval perfor-
mance.

8.2. Evaluation of enhanced SPARQL-based retrieval

In order to evaluate the benefits of our proposed SPARQL-
based retrieval approach, the retrieval recall and precision is
tested for three different methods (Method 1 is keyword-
based retrieval, Method 2 is SPARQL-based retrieval, and
Method 3 is our proposed method, namely, SPARQL-based
retrieval with text search). Section 8.1 evaluates the benefits
of processing DR knowledge base with ontology. Based on
this evaluation, this section evaluates the benefits of process-
ing queries with SPARQL with text search.

The experiment is performed with a number of test cases.
Table 4 provides the user input queries for the nine cases,
which includes seven natural language queries and two DR
record-based queries. Based on the results obtained using
the three methods, comparisons of recall and precision were
undertaken and are shown in Figure 12 and Figure 13, respec-
tively. It is noteworthy that Method 1 cannot be used for Case
8 and Case 9.

As shown in these figures, searches using SPARQL with
text search has the best performance in terms of recall and pre-
cision. Specifically, Figure 12 shows that the recall of Method
3 is much higher than the recall of Method 1 for the first five
test cases because keyword-based query cannot fully express
what users really want. However, the recall of the last two
cases shows that Method 1 and Method 3 can get the same
correct results for what questions, for there is no semantic re-
lationship involved. Meanwhile, the recall of Method 3 is
clearly higher than the recall of Method 2 in most cases due
to the keywords extending. As shown in Figure 13, the preci-
sion of Method 2 and Method 3 is much larger than the pre-
cision of Method 1 due to the semantic restriction in
SPARQL. In addition, the precision of Method 2 is larger
than the precision of Method 3 for most cases, because the
keyword extension may introduce some incorrect words.
However, the keyword extension may make the retrieval pre-
cision higher occasionally, such as the precision comparison
of Case 3, in which “carry” can be found by “car” using
SPARQL, but the extended keywords do not include “car”
because the exact word “car” does not appear in the raw
text of the DR files.

Table 3. Retrieval results corresponding to three different retrieval methods

Keyword (Method 1)
Ontology Without

Reasoning (Method 2) Ontology (Method 3)

Test Queries Pre. Rec. Pre. Rec. Pre. Rec.

Q1: provide force (ResolvedIssue) 0.034 1 0.2 1 0.333 1
Q2: sort (OpenSolution) 0.087 1 0.118 1 0.25 1
Q3: install (ConArgument) 0.294 1 0.556 1 1 1
Q4: How to provide force? 0.009 0.105 0.462 0.947 0.288 1
Q5: How to move? 0.007 0.111 0.12 0.333 0.25 1
Q6: Why not choose merge sort? 0 0 0.067 0.333 0.176 1
Q7: Why choose external cooler? 0.039 1 0.033 0.40 0.192 1

Table 4. User input queries for nine test cases

Test Cases User Input Queries

Case 1 How to provide force?
Case 2 How can a car be powered for?
Case 3 Why is the solar suited for powering a car?
Case 4 Why do we use gasoline as energy?
Case 5 When to consider “merge”?
Case 6 What issues to consider about “force”?
Case 7 What issues to consider about “offer”?

Case 8

Case 9

L. Li et al.420

https://doi.org/10.1017/S089006041600038X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041600038X

In summary, the evaluation results show that SPARQL-
based retrieval makes a significant improvement over key-
word-based retrieval in both recall and precision. Moreover,
SPARQL query combined with keyword extension and opti-
mization clearly enhances the recall compared with SPARQL
query alone. Finally, although keyword extension may lower
the retrieval precision, it can be ignored by identifying
methods in the future that can be used to control the quality
of the extended keywords.

9. CONCLUSIONS AND FUTURE WORKS

In this paper, an ontology-based DR retrieval approach com-
bining SPARQL and text search has been presented. This
work makes the following contributions:

1. A template-based SPARQL query generation method
has been proposed, which translates user input queries
to SPARQL queries automatically by matching to pre-

defined templates, and allows normal users to benefit
from SPARQL-based retrieval in a convenient way.

2. An ontology-based SPARQL query generation method
has been proposed for DR record-based queries that
cannot be translated by the template-based method,
which enables normal users to more conveniently ex-
press more complex retrieval intentions.

3. A Lucene-based keywords extension and optimization
method has also been proposed, which combines
SPARQL with text search, thus enhancing the retrieval
recall. A database of ontology-based DR has been con-
structed, which stores DR in a semantic way and sup-
ports structured query languages, enabling more accu-
rate results to be searched.

In the future, several works will be done to improve the DR
retrieval approach presented in this paper:

1. The synonym expansion is currently based on Word-
Net, which is not very accurate for a specific domain.

Fig. 12. Comparison of the retrieval recall for the three methods.

Fig. 13. Comparison of the retrieval precision for the three methods.

Enhanced SPARQL-based design rationale retrieval 421

https://doi.org/10.1017/S089006041600038X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041600038X

To further improve the effect of synonym expansion, it
may be possible to replace WordNet with domain
knowledge of engineering design such as functional
basis.

2. Deeper research will be conducted on database and
ontology. A larger DR database will be constructed to
further prove the effectiveness of our retrieval approach.

3. Ambiguity of parsing natural language will be handled
to improve the accuracy of translation from natural lan-
guage query into SPARQL query.

ACKNOWLEDGMENTS

The authors are very grateful for the financial support from the Na-
tional Science Foundation of China (61572432) and National 863
High Technology Plan (2013AA041301).

REFERENCES

Ahmed, S., & Wallace, K.M. (2004). Understanding the knowledge needs of
novice designers in the aerospace industry. Design Studies 25(2), 155–
173.

Bracewell, R.H., Wallace, K.M., Moss, M., & Knott, D. (2009). Capturing
design rationale. Computer-Aided Design 41(3), 173–186.

Burge, J.E., & Brown, D.C. (2008). Software engineering using RATionale.
Journal of Systems and Software 81(3), 395–413.

Conklin, J., & Begeman, M.L. (1988). gIBIS: a hypertext tool for exploratory
policy discussion. Design Studies 12(4), 303–331.

De Medeiros, A.P., & Schwabe, D. (2008). Kuaba approach: integrating
formal semantics and design rationale representation to support design re-
use. Artificial Intelligence for Engineering Design, Analysis and Manu-
facturing 22(4), 399–419.

Fenves, S.J., Foufou, S., Bock, C., & Sriram, R.D. (2008). A core model for
product data. Journal of Computing and Information Science in Engi-
neering 8(1), 014501.

Gruber, T.R. (1993). A translation approach to portable ontology specifica-
tions. Knowledge Acquisition 5(2), 199–220.

Hirtz, J., Stone, R.B., McAdams, D.A., Szykman, S., & Wood, K.L. (2002).
A functional basis for engineering design: reconciling and evolving pre-
vious efforts. Research in Engineering Design 13(2), 65–82.

Kara, S., Alan, Ö., Sabuncu, O., Akpınar, S., Cicekli, N.K., & Alpaslan, F.N.
(2012). An ontology-based retrieval system using semantic indexing. In-
formation Systems 37(4), 294–305.

Kim, S., Bracewell, R.H., & Wallace, K.M. (2005). A framework for design
rationale retrieval. Proc. Int. Conf. Engineering Design, ICED’05. Mel-
bourne, Australia: Design Society.

Kim, S., Bracewell, R.H., & Wallace, K. M. (2007). Improving design reuse
using context. Proc. Int. Conf. Engineering Design, ICED’07. Paris: De-
sign Society.

Kolomiyets, O., & Moens, M.-F. (2011). A survey on question answering
technology from an information retrieval perspective. Information Sci-
ences 181(24), 5412–5434.

Kunz, W., & Rittel, H.W.J. (1970). Issues as Elements of Information Sys-
tems. Berkeley, CA: University of California at Berkeley.

Li, L., Qin, F., & Gao, S. (2013). An extended design rationale representation
for supporting retrieval and reuse of design knowledge. Journal of Com-
puter-Aided Design & Computer Graphics (Chinese Journal) 25(10),
1514–1522.

Li, L., Qin, F., Gao, S., & Liu, Y. (2014). An approach for design rationale
retrieval using ontology-aided indexing. Journal of Engineering Design
25(7–9), 259–279.

Liang, Y., Liu, Y., Kwong, C.K., & Lee, K.B. (2012). Learning the “Whys”:
discovering design rationale using text mining—an algorithm perspec-
tive. Computer-Aided Design 44(10), 916–930.

Liang, Y., Lu, W.F., Liu, Y., & Lim, S.C.J. (2010). Interactive interface de-
sign for design rationale search and retrieval. Proc. ASME 2010 IDETC &
CIE Conf., Montreal.

Lim, S.C.J., Liu, Y., & Lee, W.B. (2010). Multi-facet product information
search and retrieval using semantically annotated product family ontol-
ogy. Information Processing & Management 46(4), 479–493.

Lim, S.C.J., Liu, Y., & Lee, W.B. (2011). A methodology for building a se-
mantically annotated multi-facet ontology for product family modelling.
Advanced Engineering Informatics 25(2), 147–161.

Liu, J., & Hu, X. (2013). A reuse oriented representation model for capturing
and formalizing the evolving design rationale. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing 27(4), 401–413.

Liu, Y., Liang, Y., Kwong, C.K., & Lee, W.B. (2010). A new design rationale
representation model for rationale mining. Journal of Computing and In-
formation Science in Engineering 10(3), 031009.

López, C., Cysneiros, L.M., & Astudillo, H. (2008). NDR ontology: sharing
and reusing NFR and design rationale knowledge. Proc. 1st Int. Work-
shop on Managing Requirements Knowledge, MARK’08. Barcelona:
IEEE.

MacLean, A., Young, R.M., Bellotti, V.M.E., & Moran, T.P. (1991). Ques-
tions, options, and criteria: elements of design space analysis. Human-
Computer Interaction 6(3), 201–250.

McCall, R.J. (1991). PHI: a conceptual foundation for design hypermedia.
ACM Transactions on Office Information Systems 6(1), 30–41.

Minack, E., Sauermann, L., Grimnes, G., Fluit, C., & Broekstra, J. (2008).
The Sesame LuceneSail: RDF queries with full-text search. Technical Re-
port 1, NEPOMUK Consortium.

Pahl, G., Wallace, K., & Blessing, L. (2007). Engineering Design: A Sys-
tematic Approach, Vol. 157. Berlin: Springer.

Qin, F., Li, L., & Gao, S. (2012). A survey of design rationale. Journal of
Computer-Aided Design & Computer Graphics (Chinese Journal)
24(10), 1283–1293.

Regli, W.C., Hu, X., Atwood, M., & Sun, W. (2000). A survey of design ra-
tionale systems: approaches, representation, capture and retrieval. Engi-
neering With Computers 16(3–4), 209–235.

Rockwell, J., Grosse, I.R., Krishnamurty, S., & Wileden, J.C. (2009). A de-
cision support ontology for collaborative decision making in engineering
design. Proc. 2009 Int. Symp. Collaborative Technologies and Systems,
pp. 1–9, Baltimore, MD, May 18–22.

Štorga, M., Andreasen, M.M., & Marjanović, D. (2010). The design ontol-
ogy: foundation for the design knowledge exchange and management.
Journal of Engineering Design 21(4), 427–454.

Unger, C., Bÿhmann, L., Lehmann, J., Ngonga Ngomo, A.-C., Gerber, D., &
Ciminao, P. (2012). Template-based question answering over RDF data.
Proc. 21st Int. Conf. World Wide Web, pp. 639–648. New York: ACM.

Wang, H., Johonson, A., & Bracewell, R.H. (2009). Supporting design ration-
ale retrieval for design knowledge reuse. Proc. Int. Conf. Engineering
Design, ICET’09. Stanford, CA: Design Society.

Wang, H., Johnson, A.L., & Bracewell, R.H. (2012). The retrieval of struc-
tured design rationale for the re-use of design knowledge with an inte-
grated representation. Advanced Engineering Informatics 26(2), 251–
266.

Zhang, Y., Luo, X., Li, J., & Buis, J.J. (2013). A semantic representation
model for design rationale of products. Advanced Engineering Informat-
ics 27(1), 13–26.

Zhu, L., Jayaram, U., Jayaram, S., & Kim, O. (2010). Querying and reasoning
with product engineering ontologies—moving past modeling. Proc.
ASME 2010 IDETC&CIE Conf., Montreal.

Luye Li obtained his BS in computer science and technology
from Wuhan University and his PhD in computer science and
technology from Zhejiang University. His research is primarily
in design rationale representation and design rationale retrieval.
Dr. Li is also interested in geometry modeling and computer-
aided design/computer-aided engineering integration.

Shuming Gao is a Professor in the State Key Lab of
CAD&CG at Zhejiang University. He received his PhD
from the Applied Mathematics Department of Zhejiang Uni-
versity and was a Visiting Scholar and a Visiting Professor in
the Design Automation Lab of Arizona State University in
1996 and 2001, respectively. In 2002 he won the fund of

L. Li et al.422

https://doi.org/10.1017/S089006041600038X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041600038X

the Trans-Century Training Programme Foundation for Tal-
ents by the Education Ministry of China. His research interest
includes product modeling, CAX integration, Internet-based
collaborative design, virtual reality in design and manufactur-
ing, computer-aided design, concurrent engineering, and mi-
croelectromechanical systems.

Ying Liu is currently an Associate Professor (Senior Lec-
turer) in the Institute of Mechanical and Manufacturing Engi-
neering at the School of Engineering in Cardiff University.
He obtained his Bachelor’s and Master’s degrees in mechan-
ical engineering from Chongqing University and MS and
PhD from the Innovation in Manufacturing Systems and
Technology program under the Singapore MIT Alliance at
Nanyang Technological University and National University

of Singapore, respectively. His research interests focus
primarily on design informatics, manufacturing informatics,
intelligent manufacturing, design methodology and process,
product design, and information and communications
technology in design and manufacturing. He is an Associate
Editor of the Journal of Industrial and Production Engineer-
ing and is on the Editorial Board of Advanced Engineering
Informatics.

Xiaolian Qin obtained his BS in computer science and tech-
nology from Jilin University and is currently pursuing his MS
in computer science and technology at the State Key Lab of
CAD&CG of Zhejiang University. His research is primarily
in geometry modeling, and his other interests are in design ra-
tionale.

Enhanced SPARQL-based design rationale retrieval 423

https://doi.org/10.1017/S089006041600038X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041600038X

	Enhanced SPARQL-based design rationale retrieval
	Abstract
	INTRODUCTION
	RELATED WORKS
	DR representation
	DR retrieval

	OVERVIEW OF APPROACH
	Query processing
	Database constructing

	ONTOLOGY-BASED DR REPRESENTATION FOR DR RETRIEVAL
	DR representation for knowledge retrieval and reuse
	DR ontology

	AUTOMATIC TRANSLATION OF NATURAL LANGUAGE QUERY TO SPARQL QUERY
	Predefinition of SPARQL templates according to DR retrieval requirements
	Template-based generation of initial SPARQL query
	Generation of final SPARQL query using keyword extension and optimization

	AUTOMATIC TRANSLATION OF DR RECORD-BASED QUERY TO SPARQL QUERY
	Ontology-based SPARQL query generation
	Template-based SPARQL query generation

	IMPLEMENTATION
	SPARQL engine
	Generating of DR instance ontologies through ontology populating and ontology reasoning
	Creation of DR database supporting SPARQL query

	Graphical user interface

	EXPERIMENTS AND EVALUATIONS
	Evaluation of ontology-based DR retrieval
	Evaluation of enhanced SPARQL-based retrieval

	CONCLUSIONS AND FUTURE WORKS
	ACKNOWLEDGMENTS
	REFERENCES

