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Abstract. This article is about the interplay between topological dynamics and differential
geometry. One could ask how much information about the geometry is carried in the
dynamics of the geodesic flow. It was proved in Paternain [Expansive geodesic flows on
surfaces. Ergod. Th. & Dynam. Sys. 13 (1993), 153–165] that an expansive geodesic flow
on a surface implies that there exist no conjugate points. Instead of considering concepts
that relate to chaotic behavior (such as expansiveness), we focus on notions for describing
the stability of orbits in dynamical systems, specifically, equicontinuity and distality. In
this paper we give a new sufficient and necessary condition for a compact Riemannian
surface to have all geodesics closed; this is the idea of a P-manifold: (M, g) is a P-
manifold if and only if the geodesic flow SM × R→ SM is equicontinuous. We also
prove a weaker theorem for flows on manifolds of dimension three. Finally, we discuss
some properties of equicontinuous geodesic flows on non-compact surfaces and on higher-
dimensional manifolds.

1. Introduction
Throughout this paper, all geodesics are parametrized by arc length and the geodesic
flow is complete; the manifolds and Riemannian metrics are all assumed to be C∞.
We let π : T M→ M denote the canonical projection. To begin with, we summarize
some facts about recurrent maps and state Theorem 2.7 (due to Boris Kolev and Marie-
Christine Pérouème) concerning the set of fixed points of recurrent maps on surfaces.
In §3, we study the geodesic return map; then, in §4, we prove that equicontinuous
geodesic flows must be periodic. In §5, we prove that if a flow without singularities on
a three-dimensional manifold admits a global Poincaré section and has sufficiently many
periodic orbits, then the flow is pointwise periodic. In the final section, we show that
the existence of an equicontinuous geodesic flow on a compact manifold M implies that
the fundamental group is finite. Moreover, we discuss equicontinuous geodesic flows on
non-compact manifolds.
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1952 C. Pries

2. Recurrent behavior
Definition 2.1. A dynamical system (X, T ) is called distal if inf{d(xt, yt) | t ∈ T } = 0
implies x = y.

A system (X, T ) is called equicontinuous (regular) if for each ε > 0, there exists a
δ(ε) > 0 such that for all x, y with d(x, y) < δ(ε), we have d(xt, yt) < ε for all t ∈ T .

Here is a well-known fact about equicontinuous systems on compact metric spaces.

THEOREM 2.2. An equicontinuous flow 8 : X × R→ X on a compact metric space is
uniformly almost periodic, that is, for every ε > 0 there exists a τ > 0 such that in every
interval I of length τ there is a t ∈ I with d(8(t, x), x) < ε for all x.

Proof. See [1, Theorem 2.2]. 2

A weaker form of uniform almost periodicity for maps is defined as follows.

Definition 2.3. A continuous map f on a metric space (X, d) is recurrent if there exists a
sequence nk→∞ such that supx∈X d( f nk (x), x)→ 0 as k→∞.

Definition 2.4. A continuous map f : X→ X on a metric space (X, d) is said to
be paracompact-recurrent on Y ⊂ X if there exists a sequence nk→∞ such that
supx∈C d( f nk (x), x)→ 0 as k→∞, where C ⊂ Y is any compact subset of X .

Note that in the definition of paracompact-recurrence, the sequence nk is fixed and
does not depend on C ⊂ Y ; note also that paracompact-recurrence and recurrence are
independent of the metric which defines the topology if the space X is compact.

LEMMA 2.5. If f is recurrent, then f m is recurrent.

Proof. Set sk := supx∈X d( f nk (x), x). Then

d( f nk m(x), x) ≤
m−1∑
i=0

d( f (m−i)nk (x), f (m−i−1)nk (x))

≤

m−1∑
i=0

d( f nk ( f (m−i−1)nk (x)), f (m−i−1)nk (x))≤ msk . 2

LEMMA 2.6. Let f be a continuous map on a compact surface S, and let F be a finite
non-empty subset of Fix( f ) (the fixed point set). If f is paracompact-recurrent on S − F,
then f is recurrent.

Proof. Without loss of generality we can suppose that our metric is induced by a
Riemannian metric. Write F = {x1, . . . , xm}; then choose a very small ε > 0 and define

C := S −

(⋃
i

B(xi , ε)

)
.

Each ci = ∂B(xi , ε) defines a simple closed curve. Choose a K := K (ε) such that for all
k > K we have

sup
x∈C

d( f nk (x), x) < 4ε and f nk (ci )⊂ B

(
ci ,

ε

2

)
.
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This is possible because there is a compact subset in S − F that contains ci and C .
Hence, f nk (B(xi , ε))⊂ B(xi , 2ε), and therefore d( f nk (x), x) < 4ε for all x ∈ Cc and

k > K . Consequently, d( f nk (x), x) < 4ε for all x ∈ X and k > K , i.e. f is recurrent. 2

The following nice result is [4, Theorem 1.1].

THEOREM 2.7. A non-trivial orientation-preserving and recurrent homeomorphism of the
sphere S2 has exactly two fixed points.

3. The geodesic return map
A well-known tool for studying geodesic flows on a surface is the geodesic return map.
Let A denote the open annulus.

Suppose that we have an equicontinuous geodesic flow 8 on the unit tangent bundle
SM of an orientable Riemannian surface M . Let γ be a simple closed geodesic, and write
W = SM |γ − T γ (the set of all unit tangent vectors based on γ which are not elements
of T γ ). Note that W is homeomorphic to the union of two open annuli A0 and A1. We
can identify v ∈ A0 with (x, θ), where π(v)= x and θ ∈ (0, 1) is the angle between v and
γ̇ (t) divided by π .

Since every orbit is recurrent, for our flow 8 we can define a map F : A0→ A0 by

F(x, θ)= (x0, θ0),

where x0 = π(8t0(x, θ)) is the next intersection point of {π(8t (x, θ)) | t > 0}with γ such
that 8t0(x, θ)= (x0, θ0) ∈ A0. For simplicity we will just write F : A→ A. The map F
can be extended to a homeomorphism of S2 by two-point compactification. In this case, F
has two fixed points, {∞} and {−∞}, as we shall see. If, for v = (x, θ), we have θ close to
zero, then the geodesic8t (v) stays near γ̇ (by equicontinuity) and hence Fn(x, θ) is close
to zero for all n; thus, {∞} and {−∞} are fixed points. In this paper, we call the extension
of F the geodesic return map and denote it by F : S2

→ S2.

PROPOSITION 3.1. If 8 is equicontinuous, then F is recurrent on S2.

We need only show that F is paracompact-recurrent on S2
− ({∞} ∪ {−∞}), since we

can then apply Lemma 2.6.
For 0< θ0 < θ1 < 1, we set

K (θ0, θ1)= {(x, v) ∈ A | θ0 ≤ v ≤ θ1}.

LEMMA 3.2. For K := K (θ0, θ1) and large N := N (θ0, θ1), the constant

s(θ0, θ1, N ) := inf{t1 − t0 | −N < t0 < t1 < N , 8t0(v) ∈ A, 8t1(v) ∈ A, v ∈ K }

is strictly positive. If v ∈ K , then every geodesic γv intersects γ at least twice in the
forward direction on the interval [0, N ] and at least twice in the backward direction on the
interval [−N , 0].

Proof. Use the compactness of K . 2
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LEMMA 3.3. For every s(θ0, θ1, N )/2> r > 0, large N and K (θ0, θ1), there exists a
constant ν(θ0, θ1, N , r) > 0 such that the following holds.

If, for some w ∈ SM, we have a v ∈ K (θ0, θ1) with d(v, w) < ν(θ0, θ1, N , r), then
there is a unique tw such that |tw|< r and 8tw (w) ∈ A.

Proof. Use the compactness of K . 2

Given v ∈ A, for each integer n we define t (n, v) as the unique element of R such that
8t (n,v)(v)= Fn(v) and t (0, v)= 0. Moreover, given v ∈ A and t ≥ 0, we define

P(v, t) :=max{n ≥ 0 | t (n, v)≤ t}.

Note that we can find a neighbourhood U0 of γ that looks like a strip (because M is
orientable); therefore U0 − γ is the distinct union of two open strips S∗ and S∗. In U0 − γ ,
we can define what lies ‘above’ and what lies ‘below’ γ : the region where the points of A
are directed inward is defined to be S∗ (‘above’), while the other points of U0 − γ are said
to be lying in S∗ (‘below’).

For j ∈ {0, 1} choose sequences (θ j,i )i , with

0< θ0,i+1 < θ0,i < θ1,i < θ1,i+1 < 1,

which converge strictly to j . Set Ki = K (θ0,i , θ1,i ) and fix a v0 ∈
⋂

i Ki .

LEMMA 3.4. There exist sequences Ti →∞, 0< ζi → 0 and 0< βi → 0 such that:
(1) π(8Ti+ζi (v)) ∈ S∗ for all v ∈ Ki ;
(2) π(8Ti−ζi (v)) ∈ S∗ for all v ∈ Ki ;
(3) 8Ti (v0) ∈ A;
(4) d(8Ti+s(v), v) < βi for all v ∈ Ki and |s|< 2ζi ;
(5) for each v ∈ Ki there exists a unique intersection point of γ and π(8Ti+s(v)), where

s ranges over |s|< 4ζi .

Proof. Choose sequences 0< δi → 0, 0< si → 0 and αi → 0 such that if v ∈ Ki and
w ∈ SM with d(v, w) < δi , then:
(i) π(8si (w)) ∈ S∗;
(ii) π(8−si (w)) ∈ S∗;
(iii) d(8t (w), v) < αi for all |t | ≤ 8si ;
(iv) π(8t (w)) has a unique intersection point with γ , where t ranges over |t | ≤ 8si ;
(v) π(8[−20si ,20si ](w))⊂U0.
This can be done easily. First, choose an increasing sequence Ni such that
s(θ0,i+1, θ1,i+1, Ni ) (and hence also s(θ0,i+1, θ1,i+1, Ni+1)) can be defined. Then, choose
a decreasing sequence si → 0 such that

32si <min
{

s(θ0,i+1, θ1,i+1, Ni )

2
,

s(θ0,i , θ1,i , Ni )

2

}
,

followed by another decreasing sequence δi > 0 such that

δi < ν

(
θ0,i , θ1,i , Ni ,

si

2

)
.
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Furthermore, ensure that δi is chosen small enough so that d(w, Ki ) < δi implies that
8tw (w) lies in Ki+1 (this is the same tw as was given by Lemma 3.3). Since si , δi → 0
and our flow8 is defined on a compact space, αi is guaranteed to exist and, by considering
only large i , we have π(8[−20si ,20si ](w))⊂U0. If d(v, w) < δi and v ∈ Ki , then (i), (ii)
and (v) hold. Next, we check that (iv) holds.

Note that for d(v, w) < δi and v ∈ Ki , we have 8tw (w) ∈ Ki+1 and

[−8si , 8si ] ⊂ [−8si − tw, 8si + tw] ⊂ [−9si , 9si ];

therefore 8[−8si ,8si ](w) lies in 8[−9si ,9si ](8tw (w)).
Hence we can conclude that (iv) holds, since 18si < s(θ0,i+1, θ1,i+1, Ni ).
Now choose a sequence Si →∞ such that d(8Si (x), x) < δi for all x (apply

Theorem 2.2). There exists an unique |ri |< si such that 8Si+ri (v0) ∈ A. Set Ti := Si + ri

and ζi := 2si . Given v ∈ Ki , note that

Ti + ζi = Si + ri + 2si > Si + si

and |Ti + ζi − Si |< 3si . From this together with properties (i), (iv) and (v), we conclude
that 8Si+si (v) ∈ S∗ and therefore 8Ti+ζi (v) ∈ S∗. Analogously, we can deduce from
properties (ii), (iv) and (v) that 8Ti−ζi (v) ∈ S∗. Thus, statements (1), (2) and (3) of the
lemma are proven.

If |t | ≤ 2ζi = 4si , then |Ti + t − Si |< 5si ; hence the orbit segment 8[Ti−2ζi ,Ti+2ζi ](v)

lies in the orbit segment 8[Si−8si ,Si+8si ](v) and therefore, by (iv), has an unique
intersection point with γ . This proves statement (5) of the lemma. Since 2ζi → 0,
8Ti (x)→ x uniformly and M is compact, there exists a sequence βi . 2

Proof of Proposition 3.1. Set pi := P(v0, Ti + ζi ). We will show that, for this sequence,
F is paracompact-recurrent. Note that P(v0, Ti + ζi )= P(v0, Ti ) by Lemma 3.4 and
that Ki ⊃ K j if j ≤ i . Given any compact set C ⊂ A, choose I0 such that C ⊂ K I0 .
The functions

Gi : A→ N

defined by Gi (v)= P(v, Ti + ζi ) are constant on K I0 if i ≥ I0.
Indeed, by construction, the functions Gi are locally constant on Ki and hence equal

to the constant pi = P(v0, Ti + ζi ) on the connected set Ki . Therefore, Gi = pi on K I0

if i ≥ I0.
We have |Ti − t (v, Gi (v))|< 2ζi for v ∈ Ki by construction, since we know

from Lemma 3.4(1)–(2) that P(v, Ti − ζi )= pi − 1. Therefore, we conclude from
Lemma 3.4(4) that for all v ∈ K I0 and i ≥ I0, we have d(F pi (v), v)= d(8t (v,pi )

(v), v) < βi . 2

4. Equicontinuous geodesic flows on surfaces

Definition 4.1. (M, g) is called a P-manifold if all geodesics are closed.

The following lemma is easy to prove.
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LEMMA 4.2. If (M, g) is a P-manifold, then the geodesic flow (SM, 8) is
equicontinuous.

Proof. It is a well-known fact that if M is a P-manifold then the flow is periodic (see, for
instance, [8]) and M is compact. Let L denote the smallest period. For ε > 0, choose a
δ > 0 such that d(v, w) < δ implies

d(8t (v), 8t (w)) < ε

for |t |< 2L; then the above holds for all t . 2

To prove our first theorem, we need the following result.

THEOREM 4.3. (Ballmann) Every compact Riemannian manifold (M, g) of dimension
two has at least three simple closed geodesics.

Proof. See [2]. 2

THEOREM 4.4. Given a compact Riemannian manifold (M, g) of dimension two, the
following conditions are equivalent.
(1) M is a P-manifold.
(2) (SM, 8) is equicontinuous.

(1) implies (2) by Lemma 4.2. We will show that (2) implies (1). Take a simple closed
geodesic γ .

LEMMA 4.5. If Z is a compact set in M − γ , then there are 0< θ0,Z < θ1,Z < 1 such that
for every geodesic α intersecting Z, 8(Z × R) ∩ A is a subset of K (θ0,Z , θ1,Z ).

Proof. Choose an open set V around γ such that V ∩ Z = ∅. Choose δ > 0 such that
d(w, T γ ) < δ implies γw ⊂ V . If there were no θ0,Z or θ1,Z , we would be able to find a
geodesic γw ⊂ V but starting in Z . 2

LEMMA 4.6. Every geodesic intersects γ .

Proof. Given a point x ∈ M − γ and w ∈ Sx M , choose a path-connected compact set C
in SM such that Sx M ⊂ C and π(C) ∩ γ = ∅. Apply Lemma 4.5 to Z = π(C). Choose a
curve β in C fromw ∈ Sx M to q ∈ Sx M where γq intersects γ . Cover β with finitely many
(say n) balls Bi such that for any two vectors p, u ∈ Bi we have, for a large N and all t ,

d(8t (u), 8t (p)) < ν(θ0,Z − ε, θ1,Z + ε, N , b),

where b = s(θ0,Z − ε, θ1,Z + ε, N )/4 and ε is small. By induction, we conclude that if
γq(T0) ∈ γ , then γw([T0 − (n + 1)b, T0 + (n + 1)b]) intersects γ . 2

Proof of Theorem 4.4. Since the lifted geodesic flow on the orientable double cover M̃ is
equicontinuous, it suffices to show that the theorem holds for orientable surfaces, otherwise
we can consider the orientable double cover M̃ and conclude that M̃ is a P-manifold.
Apply the construction of F in §3 to (M, g) and γ . By Theorem 4.3 and Lemma 4.6,
we have a periodic point in y ∈ A; thus, for some m, F2m is an orientation-preserving
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homeomorphism with three fixed points (namely {∞},{−∞} and y). From Proposition 3.1,
we know that F2m is recurrent and hence trivial by Theorem 2.7. Lemma 4.6 then implies
that every geodesic is closed. 2

Note that distality of the geodesic flow does not imply that the manifold is a P-manifold.
Take the torus T n with the standard flat metric. The flow is distal. Indeed, for an unit vector
v ∈ Rn define the vector field Xv(x)= v. Note that the solutions of these vector fields are
our lifted geodesics.

If inf{d(xt, yt) | t ∈ T } = 0 for x, y ∈ ST n , then the lifted geodesics xt, yt are
solutions of the same vector field; however, the projected flows on T n of these vector
fields are equicontinuous and, since equicontinuity implies distality (see [1]), it follows that
y = x . Note also that on surfaces of higher genus the geodesic flow has positive entropy,
but distal flows on compact metric spaces always have zero entropy (see [5]); thus, the only
compact surfaces M that can possibly admit distal geodesic flows are S2, RP2, T 2 and the
Klein bottle—and they do.

5. Flows on manifolds of dimension three
Definition 5.1. A global surface of section 6 for a C∞ flow 8 without singularities on a
three-dimensional manifold is a compact submanifold with the following properties.
(1) If 6 has a boundary, then its boundary components are periodic orbits.

(2) The interior of the surface (denoted by
◦

6) is transversal to 8.
(3) The orbit through a point not lying on the boundary of 6 hits the interior in forward

and backward time.
(4) Every orbit intersects 6.

There is a natural compactification of
◦

6 to a closed surface, obtained by collapsing the
boundary components to a point. We call this unique compactification the compactification

of
◦

6 to a closed surface. If the flow is equicontinuous, we can do more.

The return map F :
◦

6→
◦

6 can be extended to the compactification of
◦

6 to a closed
surface by defining the collapsed boundary components to be fixed points. Such an
extension is well-defined, and this can be proven as in the beginning of §3; we call this
map the extended Poincaré section map.

THEOREM 5.2. Let 8 be a C∞ equicontinuous flow without singularities on a three-
dimensional manifold that admits a global surface of section 6. Let X be the

compactification of
◦

6 to a closed surface; then the following properties hold.
(1) If X is homeomorphic to the torus or the Klein bottle and the extended Poincaré

section map on X has at least one periodic point, then the flow is pointwise periodic.
(2) If X is homeomorphic to the sphere and the extended Poincaré section map on X has

at least three periodic points, then the flow is pointwise periodic.
(3) If X is homeomorphic to the projective plane and the extended Poincaré section map

on X has at least two periodic points, then the flow is pointwise periodic.
(4) If X is homeomorphic to a surface of negative Euler characteristic, then the flow is

pointwise periodic.
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The proof is quite similar to that of Theorem 4.4, so we shall only repeat some of the
ideas. Indeed, the proof of Theorem 4.4 was of a topological nature. The following result
will be important.

THEOREM 5.3. A recurrent homeomorphism of a compact surface with negative Euler
characteristic is periodic. If a recurrent homeomorphism on the torus, the annulus, the
Möbius strip or the Klein bottle has a periodic point, then the homeomorphism is periodic.

Proof. See [4, Corollary 4.2 and Remark 4.3]. 2

Proof of Theorem 5.2. Let F :
◦

6→
◦

6 denote the return map. If we can show that our
extension is recurrent, then it follows from our assumptions and Theorem 5.3 that F
is periodic and every orbit of the flow is periodic; thus we only need to show that F
is recurrent.

If the section 6 is a surface with boundary, then
◦

6 denotes the interior. Choose a finite
number (say N ) of connected, compact, orientable surfaces 6 j ( j = 1, . . . , Q) which are
diffeomorphic to discs and are such that

⋃
j 6 j =6. For each j , choose a sequence of

connected, compact, orientable surfaces K j,i such that K j,i ⊂
◦

K j,i+1 and
⋃

i K j,i is an

open set. We construct K j,i in such a way that given any compact set C ⊂
◦

6, we have

that C ⊂
⋃

j K j,I for some large I . Moreover, we suppose that
⋃

i, j K j,i =
◦

6 and that⋃
j K j,i is connected.
For every K j,i , we can find a tubular neighbourhood U j,i which is diffeomorphic

to K j,i × (−1, 1) via a diffeomorphism τi, j . We say that a point in τ−1
i, j (K j,i

× (−1, 0)) lies ‘above’ K j,i and that a point in τ−1
i, j (K j,i × (0, 1)) lies ‘below’ K j,i . Set

U∗,i, j := τi, j (K j,i × (−1, 0)) and U∗i, j := τi, j (K j,i × (0, 1)). We can suppose that
U∗,i, j ⊂U∗,i+1, j and that U∗i, j ⊂U∗i+1, j . Since8 is transversal to the section and does not

have singularities, we conclude that
⋃

j K j,i is an orientable surface. Therefore, we can

define in a tubular neighbourhood of
⋃

j K j,i what lies ‘below’ and and what lies ‘above’.
Similarly, we can again define for K j,i and large N the constant

s( j, i, N ) := inf{|t0 − t1| : −N < t0 < t1 < N , 8t0(v) ∈6, 8t1(v) ∈6, v ∈ K j,i }.

We can also define, in an analogous manner, the constant ν( j, i, N , r) > 0. Given v ∈
◦

6,
for each integer n we define t (n, v) as the unique element of R such that 8t (n,v)(v)

= Fn(v) and t (0, v)= 0. Moreover, given v ∈
◦

6 and t ≥ 0, we define

P(v, t) :=max{n ≥ 0 | t (n, v)≤ t}.

The counterpart of Lemma 3.4 is the following result.

LEMMA 5.4. Fix v j ∈
⋂

i K j,i . There exist sequences Ti →∞, 0< ζi → 0 and

0< βi → 0 such that 8Ti (v1) ∈
◦

6 and, for all j ∈ {1, . . . , Q}:
(1) 8Ti+ζi (v) ∈U∗i+1, j for all v ∈ K j,i ;
(2) π(8Ti−ζi (v)) ∈U∗,i+1, j for all v ∈ K j,i ;
(3) d(8Ti+s(v), v) < βi for all v ∈ K j,i and |s|< 2ζi ;

(4) for every v ∈ K j,i there exists an unique intersection point of
◦

6 and8Ti+s(v), where
s ranges over |s|< 4ζi .
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Proof. This is analogous to the proof of Lemma 3.4. 2

It is now easy to complete the proof of the theorem. Set p j,i := P(v j , Ti + ζi ). The
functions

Gi : A→ N

defined by Gi (v)= P(v, Ti + ζi ) are constant on K j,I0 if i ≥ I0; however, since
⋃

i K j,I0

is connected, we know that p j,i is independent from j , and so p j,i = pi . We deduce that

d(F pi (v), v)= d(8t (v,pi )(v), v) < βi , and thus F is paracompact-recurrent on
◦

6. Since
the collapsed boundary components are fixed points, we conclude from Lemma 2.6 that F
is recurrent on X . 2

COROLLARY 5.5. If 8 is a C∞ equicontinuous flow without singularities on a three-
dimensional manifold that admits a global surface of section 6 and has at least three
distinct periodic orbits, then the flow is pointwise periodic.

6. Non-compact manifolds
In this section we consider non-compact manifolds; therefore, two metrics that generate
the same topology may be non-equivalent. We can prove some facts about pointwise
equicontinuous geodesic flows on non-compact surfaces if we restrict to a canonical metric
for geodesic flows; in our case, this would be the Sasaki metric.

Let M be a surface (which may be non-compact); d will always denote the induced
metric on M of the Riemannian metric and d̃ the induced metric on SM of the Sasaki
metric. Note that, by construction of the Sasaki metric, we have d̃(v, w)≥ d(π(v), π(w)).

Definition 6.1. A system (X, T ) is called pointwise equicontinuous (or pointwise regular)
if for any ε > 0 and any x ∈ X there exists an δ(ε, x) > 0 such that for all y with
d(x, y) < δ(ε, x) we have d(xt, yt) < ε for all t ∈ T .

On compact metric spaces, pointwise equicontinuity implies equicontinuity; but on non-
compact metric spaces this is not true, and pointwise equicontinuity is not independent of
the metric that generates the topology. Moreover, given any compact set K of X , we can
find an δ(ε, x) > 0 in the definition above that is independent of x ∈ K .

LEMMA 6.2. Let (8, SM, d̃) be a geodesic flow that is pointwise equicontinuous. For
any compact set K , there exists a number C(K ) such that for all v, w ∈ K and t ∈ R we
have d(γv0(t), γw(t))≤ C(K ).

Proof. First, choose an open and bounded set O that contains SM |K . For O ,
choose a constant δ(ε) > 0 such that if v, w ∈ SM |K satisfy d(v, w) < δ(ε), then
d(8t (v), 8t (w)) < ε. Cover SM |K with N = N (ε, K ) balls of radius smaller than δ(ε)
such that the union of these balls is connected and lies in O . We conclude that

d(γv(t), γw(t))≤ Nε := C(K )

for all v, w ∈ SM |K and t ∈ R. 2
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PROPOSITION 6.3. If M is compact and the geodesic flow (8, SM) is equicontinuous,
then π1(M) is finite.

Proof. (8, SM) is equicontinuous with respect to the Sasaki metric; therefore the lifted
geodesic flow on the universal covering M̃ is equicontinuous with respect to the lifted
Sasaki metric (denoted by d̃). Since M is compact, we conclude that for each r > 0, there
exists a number Z(r) such that for any point x of M the sphere Sx M can be covered by
Z(r) balls of radius r (with respect to the metric d). Given any point x , and assuming
that M is not compact, choose v ∈ Sx M such that γv : R+→ M is a ray and choose
a sequence ti →∞. Set vi =− ˙γvi (ti ). By the proof of the preceding lemma and the
existence of Z(r), we have that d(γvi (ti ), γ−vi (ti )= γv(2ti ))≤ Z(δ(ε))ε for an ε > 0;
hence 2ti = d(x = γvi (ti ), γv(2ti ))≤ Z(δ(ε))ε, but ti grows. 2

COROLLARY 6.4. If M is non-compact and the geodesic flow (8, SM) is pointwise
equicontinuous with respect to the Sasaki metric, then the following hold.
(1) There is no minimal geodesic (also called a ‘line’) in M.
(2) diam(∂B(x, r)) := sup{d(x, y) | x, y ∈ ∂B(x, r)} is bounded by a constant C(x) for

all x; the constant C(x) can be chosen uniformly on compact sets.

Proof. Suppose γ is minimal; then

2t = d(γ (t), γ (−t))≤ C,

for some constant C , and therefore γ cannot be minimal.
If diam(∂B(x, r)) is not bounded, choose sequences ai and bi such that ai , bi

∈ ∂B(x, ri ) and d(ai , bi )→∞ as ri →∞. For each ai , choose a vi ∈ Sx M such that γvi :

[0, d(x, ai )] is a minimal geodesic segement that starts in x and ends in ai . Without loss
of generality we can suppose that vi → v; therefore γv is a ray and, from equicontinuity,
we conclude that d(γv(ri ), ai )→ 0. We repeat the construction for bi to get a ray γw such
that d(γw(ri ), bi )→ 0. The flow is equicontinuous and therefore we have, by Lemma 6.2,
that d(γv(ri ), γw(ri )) is bounded and hence that d(ai , bi ) is bounded. It follows from the
proof that C(x) can be chosen uniformly on compact sets. 2

One might conjecture that Theorem 4.4 holds in higher-dimensional cases, but it seems
that there are no tools to prove such a conjecture. Proposition 6.3 holds for P-manifolds
(see [3, Theorem 7.37]) and, using the Morse index theorem, one can see that non-compact
manifolds with strictly positive sectional curvature have no line; thus, there are some
reasons to conjecture this.

We now discuss whether there exists an equicontinuous (or even a pointwise
equicontinuous) geodesic flow with respect to the Sasaki metric on a non-compact surface.

Here is a sub-result.

PROPOSITION 6.5. Let (M, g) be a Riemannian manifold of dimension two, and suppose
that the geodesic flow (8, SM) is pointwise equicontinuous with respect to the Sasaki
metric; then M is homeomorphic to the plane.

Our proof of this proposition is based on the following theorem.
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THEOREM 6.6. Every surface is homeomorphic to a surface formed from a sphere S by
first removing a closed totally disconnected set X from S, then removing the interiors
of a finite or infinite sequence Di of non-overlapping closed discs in S − X, and finally
identifying in a suitable way the boundaries of these discs in pairs. It may be necessary
to identify the boundary of one disc with itself to produce a ‘cross cap’. The sequence Di

approaches X in the sense that, for any open set U in S containing X, all but a finite
number of the Di are contained in U.

Proof. See [7]. 2

Proof of Proposition 6.5. Recall that d is the metric induced by the Riemannian metric.
We first prove that M has genus zero. Suppose that M is not diffeomorphic to S2

− X .
Choose a curve β that is not contractible and lies on a ‘handle’ or ‘crosscap’ such that we
can find a compact set O which contains β and is diffeomorphic to a closed disc where
a cylinder or a crosscap is glued in. Let [β] denote the free homotopy class. If there is
a sequence βi such that βi ∈ [β] and L(βi )→ 0, then, since βi always intersects O , we
conclude that βi is contractible for large i . Now, let βi be a sequence such that βi ∈ [β] and
L(βi )→ infc∈[β] L(c) > 0. Again, we know that βi must always intersect O . If βi lies in
a compact subset of M , then we know that a subsequence converges to a closed geodesic;
however, it is clear that βi lies in a compact subset K of M , since otherwise there would be
xi ∈ βi that tends to infinity, and hence L(βi ) would not be bounded. Therefore, we have
found a closed geodesic β. Since there exists a ray starting at a point of β, we conclude
from Lemma 6.2 that the ray does not tend to infinity, and thus we get a contradiction.

We prove now that X is just a simple point. We endow S2 with a metric d0 that generates
the standard topology of S2. Let −∞ and ∞ be two different points of X . Choose
sequences ai and bi such that ai →−∞ and bi →∞ with respect to d0. We want to
show that d(ai , bi ) tends to infinity for a subsequence. Suppose that d(ai , bi ) is bounded.
Let δi : [0, d(ai , bi )] → M be a minimal geodesic segment from ai to bi . Let Ki denote
the image of δi . Define

lim(Ki ) := {y ∈ S2
| ∃xi ∈ Ki such that d0(xi , y)→ 0}.

It is easy to see that K := lim(Ki ) is closed and connected.
Assume that a point of M lies in K . Then, without loss of generality, a tangent vector vi

of δi converges to a vector v of SM . Since we are supposing that d(ai , bi ) is bounded by a
constant C , γv will be a geodesic that meets −∞ and∞ on the interval [−2C, 2C], since
δi [0, C] converges to a segment of γv[−2C, 2C] with respect to d. Hence K is a subset
of X , but this means that K is reduced to a point; so d0(ai , bi )→ 0, and therefore we have
obtained a contradiction to the fact that d(ai , bi ) is bounded. Thus, given any sequence
ai →−∞ and bi →∞, d1(ai , bi ) tends to infinity for a subsequence, as claimed.

We now construct sequences ni →−∞ and mi →∞ such that d(ni , mi ) is bounded,
and thus derive a contradiction to the fact that X contains more than one point. Define

ω(v) := {y ∈ S2
| ∃ti →∞ such that d0(γv(ti ), y)→ 0}.

It is easy to see that ω(v) is closed and connected in S2. If, for a ray γv , the set ω(v) is
not a subset of X , then there is a sequence ti →∞ such that γ̇v(ti ) converges to a vector
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v∗ of SM and hence γv∗ will be a minimal geodesic, since γv is a ray. This contradicts
Corollary 6.4, and therefore ω(v) is a subset of X . Hence, for a ray γv , the set ω(v) is
reduced to a point of X (X is totally disconnected).

Take sequences ai →−∞ and bi →∞. For ai , choose vi ∈ Sx M such that γvi :

[0, d(x, ai )] is a minimal geodesic segment that starts in x and ends in ai . The sequence
vi tends to a vector v. The curve γv will be a ray and therefore ω(v) will be a point.
We show that −∞= ω(v). Note that d(ai , γv(ti ))→ 0, since our flow is equicontinuous
in x . Suppose that d0(γv(ti ), q)→ 0 for a point q ∈ S2. If q 6= −∞, then choose a minimal
geodesic segment δi : [0, d(ai , γv(ti ))] → M that starts in ai and ends in γv(ti ). We denote
the image of δi by Ki . Again we conclude, as above, that lim(Ki ) will be a connected
subset of X , and therefore q =−∞.

Thus, we get a ray γv that starts in x and converges to −∞. By repeating this
construction, we can generate a ray γw that starts in x and converges to ∞. From
Lemma 6.2, we then know that d(ni := γv(i), mi := γw(i)) is bounded. 2

We end this paper by showing that a pointwise equicontinuous geodesic flow with
respect to a metric d1 exists. This metric d1 is not equivalent to the induced metric of
the Sasaki metric of h (h will be defined later). Let g0 be the standard metric on R2,
let d0 be the metric induced by g0, and identify R2 with C. Choose a diffeomorphism
f : [0,∞)→ [0,∞) such that f |[0,1/2) = Id and f (t)= exp(t) for r ≥ 1. Let F denote a
diffeomorphism from R>0

× S1 to R2
− {0}, defined by F(r, φ)= ( f (r), φ) where (r, φ)

are the standard polar coordinates. The pull-back of the metric g0 under F defines a new
metric h on R2 whose geodesic flow is complete. Consider the metric d1 on SR2 defined
by d1((x, v), (y, w))= ‖x − y‖ + ‖v − w‖. We show that the geodesic flow of (R2, h)
will be pointwise equicontinuous with respect to d1.

Consider the coordinate system F : R2
− {0} → R2

− {0}. Given a vector v at a point x ,
we consider the geodesic gx,v(t)= x + tv of the metric g0. Let us fix a point x = a0 + ib0

and a vector v = a1 + ib1. Since our metric is invariant with respect to revolutions, we
can assume that a1 6= 0. For a small ε > 0, choose a M > 0 and a δ(ε) > 0 such that
d0(ġx,v(t), ḣy,w(t)) < ε whenever t ∈ [−M, M] and d((x, v), (y, w)) < δ(ε). If M is
large and δ(ε) > 0 is small enough, then the geodesic hy,w(t) lies outside the compact
set F([0, 2], R) for t /∈ [−M, M].

Note that |g(t)| = g(t) cos φ(t)+ ig(t) sin φ(t), where

φ(t)= arctan
(

b0 + tb1

a0 + ta1

)
, |g(t)|2 = (a0 + ta1)

2
+ (b0 + tb1)

2.

Note that

F−1
= g∗x,v(t) :=

(
f −1(|gx,v(t)|), arctan

(
b0 + tb1

a0 + ta1

))
will be a geodesic of our manifold (R2, h).

We show that if ε > 0 is small enough, the distance d1(ġ∗x,v(t), ḣ∗y,w(t)) remains
arbitrarily small for all t . A calculation shows that for t /∈ [−M, M], we have

ġ∗x,v(t)=

(
a1(a0 + ta1)+ b1(b0 + tb1)

|g(t)|2
,

b1(a0 + ta1)+ a1(b0 + tb1)

(1+ ((b0 + tb1)/(a0 + ta1))2)(a0 + ta1)2

)
.
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Hence, for a small ε > 0 and large M , we have ‖ġ∗x,v(t)− ḣ∗y,w(t)‖ small for t /∈ [−M, M].
Let hy,w(t)= y + tw = n0 + im0 + t (n1 + im1); then one can compute that

‖hy,w(t)− gx,y(t)‖ ≤ ‖ f −1(|g(t)|)− f −1(|h(t)|)‖

+

∥∥∥∥arctan
(

b0 + tb1

a0 + ta1

)
− arctan

(
m0 + tm1

n0 + tn1

)∥∥∥∥.
In the same way, we conclude that for a small ε > 0 and large M , we will have the second
term small for t /∈ [−M, M]. Another computation shows that

‖ f −1(|g(t)|)− f −1(|h(t)|)‖

=

∥∥∥∥1
2

ln
(
(a2

0 + b2
0)/t2

+ (2(a0a1 + b0b1))/t + a2
1 + b2

1

(n2
0 + m2

0)/t2 + (2(n0n1 + m0m1))/t + n2
1 + m2

1

)∥∥∥∥,
but this term will be small for small ε > 0, large M and t /∈ [−M, M]. Therefore, we
know that the geodesic flow is equicontinuous with respect to the metric d1. The metric
is not equivalent to the induced metric of h, since the Riemannian distance between two
geodesics of different directions grows.
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