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Abstract
We prove that the semantics of intuitionistic linear logic in vector spaces which uses cofree coalgebras is
also a model of differential linear logic, and that the Cartesian closed category of cofree coalgebras is a
model of the simply typed differential λ-calculus.
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In the discrete world of computing, there is no meaningful metric in which ‘small’ changes and
‘small’ effects go hand in hand, and there never will be.

E.W. Dijkstra, On the cruelty of really teaching computer science

1. Introduction
The idea of taking derivatives of programs is an old one (Paige and Koenig 1982, Section 2) with
manifestations including automatic differentiation of algorithms computing real-valued func-
tions (Corliss 1991) and incremental computation (Ramalingam and Reps 1993). However, these
approaches are limited to restricted classes of computations, and it is only recently with the devel-
opment of the differential λ-calculus by Ehrhard–Regnier (Ehrhard and Regnier 2003) and its
refinement by differential linear logic (Blute et al. 2006; Ehrhard 2016) that derivatives have been
defined for general higher-order programs. These theories assign to each program P another pro-
gram ∂P, the derivative, which (in some sense) computes the infinitesimal change in the output of
P resulting from an infinitesimal change to its input.

The connection between the Ehrhard–Regnier derivative and ordinary calculus is made explicit
in the semantics of differential λ-calculus and differential linear logic, with the standard examples
being the Köthe and finiteness space semantics of Ehrhard (2002; 2005) and the semantics of
Blute–Ehrhard–Tasson (Blute et al. 2010) in convenient vector spaces. In this paper, we explain
how the simplest semantics of intuitionistic linear logic in vector spaces (Hyland and Schalk 2003;
Murfet 2014) is already a model of differential linear logic: tangent vectors and derivatives appear
automatically when we use the cofree coalgebra to model the exponential.

Here is a sketch of the key point: let �−� denotes the natural semantics of linear logic in
C-vector spaces and suppose we are given a proof π in linear logic computing a function from
inputs of type A to outputs of type B:

π

...

!A� B .
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The space of inputs to �π� is �A�, which for the sake of simplicity let us assume is finite-
dimensional. A small change in the input starting from P ∈ �A� is a tangent vector v at the point
P. We may identify v with a vector in �A�, so that a representative infinitesimal curve segment of
this tangent vector is

(−1, 1)−→ �A� , t �−→ P + tv .
From the point of view on algebraic geometry given by Grothendieck’s theory of schemes
(Eisenbud and Harris 2000; Hartshorne 1977), tangent vectors are morphisms of (co)algebras
involving the algebra C[ε]/ε2 and its dual coalgebra (C[ε]/ε2)∗. We review this connection in
Section 2.3, but in short, a pair of vectors (P, v) in �A� is the same data as a linear map

C1∗ ⊕Cε∗ �� �A� (1)

with 1∗ �→ P, ε∗ �→ v, and so our tangent vector is associated to a linear map from the underlying
vector space of the coalgebra (C[ε]/ε2)∗ to �A� (where the coalgebra structure on (C[ε]/ε2)∗
has comultiplication 1∗ �→ 1∗ ⊗ 1∗ and ε∗ �→ 1∗ ⊗ ε∗ + ε∗ ⊗ 1∗). However, there is a universal
pair consisting of a cocommutative coalgebra !�A� equipped with a linear map !�A� −→ �A�. The
universal property means that the linear map (1) encoding our tangent vector lifts uniquely to a
morphism of coalgebras

(C[ε]/ε2)∗ �� !�A� . (2)

The function assigning to (P, v) this morphism of coalgebras is a bijection between pairs consisting
of a point in �A� and a tangent vector, and morphisms of coalgebras (2).

Here is where π enters the story. In the semantics of linear logic in vector spaces, the denotation
of !A is !�A�, and the denotation of π is a linear map �π� : �!A� −→ �B�which lifts by the universal
property to a morphism of coalgebras !�A� −→ !�B�. This lifting may be composed with (2) to give
a morphism of coalgebras

(C[ε]/ε2)∗ �� !�A� �� !�B� . (3)

Working the bijection between tangent vectors and coalgebra morphisms in reverse, we see that
(3) uniquely specifies a point in �B� and a tangent vector. The point in �B� is just the output of the
algorithm π on the given input, while the tangent vector gives the infinitesimal variation of the
output, when the input is varied in the direction v.

The formal statement is that for any algebraically closed field k of characteristic zero, the
semantics of intuitionistic linear logic in k-vector spaces defined using cofree coalgebras is a model
of differential linear logic (Theorem 3.3). We refer to this as the Sweedler semantics, since the
explicit description of this universal coalgebra is due to him (Murfet 2014; Sweedler 1969). The
proof is elementary and we make no claim here to technical novelty; the link between the sym-
metric coalgebra and differential calculus is well known. Perhaps our main contribution is to give
several detailed examples showing how to compute these derivatives (Section 4) and to check that
this model of differential linear logic gives rise to a model of differential λ-calculus in the category
of cofree coalgebras (Theorem 5.17).

We conclude this introduction with a sketch of one such example and a comparison of our
work to other semantics of differential linear logic. To elaborate a little more on the notation: for
any type A of linear logic (which for us has only connectives ⊗,�, !) there is a vector space �A�,
and for any proof π of A� B there is a linear map �π� : �A� −→ �B�. In particular, every proof
ξ of type A has a denotation �ξ� ∈ �A�, and the promotion of ξ is a proof of type !A which has
for its denotation a vector in the cofree coalgebra �!A� = !�A� which we denote |∅〉�ξ� ∈ �!A�, see
Definition 2.14 below.

For any binary sequence S ∈ {0, 1}∗, there is an encoding of S as a proof S of type
bintA = !(A�A)�

(!(A�A)� (A�A)
)
.
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The idea is that such a proof encodes the algorithm which takes two endomorphisms α, β and
returns the result of composing them according to the pattern contained in the binary sequence S
(see Section 4.9). Repetition of sequences can be encoded as a proof

repeat
...

!bintA � bintA .
The denotation is a linear map �!bintA� −→ �bintA� sending |∅〉�S� to �SS�. The derivative of
repeat according to the theory of differential linear logic is another a proof

∂repeat
...

!bintA, bintA � bintA
which can be derived from repeat by new deduction rules called codereliction, cocontraction and
coweakening (see Section 3.1). We prove in Section 4.2 that the denotation of this derivative in
the Sweedler semantics is the linear map

�∂repeat� : �!bintA� ⊗ �bintA� −→ �bintA� ,
|∅〉�S� ⊗ �T� �−→ �ST� + �TS�

whose value on the tensor |∅〉�S� ⊗ �T� we interpret as the derivative of the repeat program at the
sequence S in the direction T. This can be justified informally by the following calculation using
an infinitesimal ε

(S+ εT)(S+ εT)= SS+ ε(ST + TS)+ ε2TT,

which says that varying the sequence infinitesimally from S in the direction T causes a variation
of the repetition in the direction ST + TS.

The Sweedler semantics is far from the first semantics of differential linear logic: basic examples
include the categories of sets and relations (Blute et al. 2006, Section 2.5.1) and suplattices (Blute
et al. 2006, Section 2.5.2). The examples of Köthe and finiteness spaces (Ehrhard 2002; 2005) and
convenient vector spaces (Blute et al. 2010; Frolicher and Kriegl 1988) have already been men-
tioned. These papers explain that the geometric ‘avatar’ of the exponential connective of linear
logic is the functor sending a space X to the space of distributions on X (for a precise statement,
see Remark 2.19). This remarkable analogy between logic and geometry deserves further study.

Conceptually, the Sweedler semantics is similar to these examples in that the exponential is
modelled by a space of distributions (with finite support) but it is purely algebraic and there are
simple explicit formulas for all the structure maps, which makes it suitable for concrete calcu-
lations with proof denotations. Moreover, in the algebraic approach, the differential structure
emerges naturally from the exponential structure, rather than being ‘baked in’. The downside
is that the smoothness of proof denotations in our semantics is obscured; in particular, in the case
k=C, some extra work is required to see the relation between our differential structure and the
derivatives in the usual sense.

2. Sweedler semantics
We review the Sweedler semantics of multiplicative exponential intuitionistic linear logic (hence-
forth, simply linear logic) in the category of vector spaces V over an algebraically closed field1 k of
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characteristic zero (e.g., k=C) in Section 2.4. This was introduced in Hyland and Schalk (2003)
and revisited inMurfet (2014) with a focus on explicit formulas for the involved structures (Murfet
2015). For background material on linear logic and its semantics, see Girard (1987), Girard et al.
(1989), Melliès (2009). The multiplicative connectives ⊗ and� have the obvious interpretation;
the only nontrivial ingredient in the Sweedler semantics is the cofree coalgebra which interprets
the exponential. We begin this section with a review of cofree coalgebras (Section 2.1) and how to
think about points (Section 2.2) and tangent vectors (Section 2.3) in coalgebraic language.

Let Algk denote the category of commutative unital k-algebras and Coalgk the category of
cocommutative counital k-coalgebras. Unless otherwise indicated, all algebras are commutative
and unital, and all coalgebras are cocommutative and counital. Throughout, ⊗ = ⊗k and 	, ε
denote, respectively, the comultiplication and counit of a coalgebra.

2.1 Cofree coalgebras
The following construction is from Sweedler (1969, Chapter VI):

Definition 2.1. The Hopf dual or continuous linear dual A◦ of an algebra A is the subspace of
A∗ =Homk (A, k) consisting of linear maps A−→ k which factor as a composite

A �� A/I �� k

where I ⊆A is an ideal, the first map is the quotient and A/I is finite-dimensional.

The dualA◦ is sometimes denotedHomcont (A, k), as for example inMurfet (2015). In Sweedler
(1969, Lemma 6.0.1), it is proven that the canonical injectivemapA∗ ⊗A∗ −→ (A⊗A)∗ identifies
the subspace A◦ ⊗A◦ with (A⊗A)◦ and that the dual of the multiplication

M∗ :A∗ −→ (A⊗A)∗

satisfiesM∗(A◦)⊆ (A⊗A)◦. Identifying the codomain with A◦ ⊗A◦ defines a linear map

	 :A◦ −→A◦ ⊗A◦

and in this way (A◦,	, ε) is a cocommutative coalgebra (Sweedler 1969, Proposition 6.0.2) where
the counit ε :A◦ −→ k is evaluation at the identity 1 ∈A. Clearly, if A is finite-dimensional then
A◦ =A∗. The fundamental theorem about the Hopf dual is

Theorem 2.2. (Sweedler). Given an algebra A and coalgebra C, there is a natural bijection

Algk(A, C
∗)∼=Coalgk(C,A

◦) .

Proof. See Sweedler (1969, Theorem 6.0.5).

An important example is the Hopf dual of the symmetric algebra A= Sym(V∗) over a finite-
dimensional vector space V . Suppose V has basis e1, . . . , en with dual basis xi = e∗i so that
Sym(V∗) is isomorphic to k[x1, . . . , xn]. In this case, the linear map

η : k−→V ⊗V∗ −→V ⊗ Sym(V∗)

1 �→
n∑

i=1
ei ⊗ xi

which is independent of the choice of basis gives rise to a linear map

cV : Sym(V∗)◦ −→V
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which sends θ ∈ Sym(V∗)◦ to the vector cV (θ) computed by the composite

k
η �� V ⊗ Sym(V∗) 1⊗θ �� V ⊗ k∼=V .

In terms of our chosen basis

cV (θ)=
n∑

i=1
θ(xi)ei .

The pair (Sym(V∗)◦, cV ) is the cofree coalgebra generated by V , more precisely:

Theorem 2.3. For a finite-dimensional vector space V, the pair (Sym(V∗)◦, cV ) is universal among
pairs consisting of a (cocommutative) coalgebra and a linear map from that coalgebra to V, in the
sense that the map

Coalgk(C, Sym(V∗)◦)−→Homk(C,V) ,
ϕ �−→ cV ◦ ϕ

is a bijection for any coalgebra C.

Proof. See Sweedler (1969, Theorems 6.4.1, 6.4.3) orMurfet (2015, Theorem 2.20). Here is a sketch
of the proof: since any coalgebra is a colimit of finite-dimensional subcoalgebras (Sweedler 1969,
Theorem 2.2.1), we can reduce to the case of C finite-dimensional, where by Theorem 2.2

Coalgk(C, Sym(V∗)◦)∼=Algk( Sym(V∗), C∗)
∼=Homk (V∗, C∗)
∼=Homk (C,V)

as claimed.

So much is immediate from Sweedler (1969). However, from the point of view of having a
semantics of linear logic (or differential linear logic) in which one can actually do calculations, it
is essential to have an explicit description of Sym(V∗)◦ and cV . Providing such a description was
the purpose of Murfet (2015) and we now give a (partially new) exposition of the relevant facts.

In the following, let V be a finite-dimensional vector space.

Definition 2.4. For P ∈V, we define the linear map
P : Sym(V)−→ Sym(V∗)◦ (4)

using a choice of basis e1, . . . , en of V by

P(ea11 · · · eann )( f )= ∂a1

∂xa11
· · · ∂

an

∂xann
( f )

∣∣∣
x1=P1,...,xn=Pn

where xi = e∗i is the dual basis, P = ∑n
i=1 Piei. Writing SymP (V) for a copy of Sym(V)

 :
⊕
P∈V

SymP (V)−→ Sym(V∗)◦

is the linear map withP as its components.

There are two things that need to be checked, for this to be well defined:

Lemma 2.5.  is independent of the choice of basis used to define it.
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Proof. A change of coordinates affects eaii in the same way as it affects ∂ai

∂xaii
.

Lemma 2.6. Given P ∈V and a1, . . . , an ≥ 0, the functional

P(ea11 · · · eann ) ∈ Sym(V∗)∗

belongs to the subspace Sym(V∗)◦.

Proof. We prove θ =P(ea11 · · · eann ) vanishes on (x1 − P1, . . . , xn − Pn)
∑

i ai+1. Suppose given a
monomial f = (x1 − P1)b1 · · · (xn − Pn)bn with

∑
i bi >

∑
i ai. Then the derivative of f involved

in θ( f ) will be divisible by some xi − Pi and so vanishes at P.

Theorem 2.7.  is an isomorphism of vector spaces.

Proof. Set R= Sym(V∗) and given P ∈V let mP = (x1 − P1, . . . , xn − Pn) denote the maximal
ideal of R consisting of all polynomials f (x1, . . . , xn) with f (P1, . . . , Pn)= 0. By the Chinese
remainder theorem (see the proof of Murfet 2015, Lemma A.1) for any functional θ ∈ R◦, there is
a unique P ∈V such that for some j> 0 the map θ factors as

R−→ R/mj
P −→ k .

Since RmP/m
j
PRmP

∼= R/mj
P, we have

(RmP )
◦ = lim−→

j>0
Homk(R/m

j
P, k) .

One way to restate the consequence of the Chinese remainder theorem is that every θ ∈ R◦ belongs
to (RmP )◦ for a unique P, that is, there is an isomorphism

⊕
P∈V (RmP )◦

∼= �� R◦ .

The proof of Lemma 2.6 shows that the image ofP lies in the subspace (RmP )◦ ⊆ R◦, so it suffices
to show that for every P ∈V the map

P : SymP (V)−→(Rm)◦

is a bijection. But the left-hand side is a direct limit of subspaces SymP (V)≤j spanned by monomi-
als of degree≤ j and the right-hand side is a direct limit of subspaces Homk (R/mj+1, k).Moreover,
there is a commutative diagram

SymP (V)
P �� (Rm)◦

SymP (V)≤j

��


j
P

�� Homk(R/mj+1, k)

��

where the vertical maps are inclusions. So it suffices to prove j
P is an isomorphism for each j. But

this is clearly true for j= 0 and for j> 0 we proceed by induction. We have an exact sequence

0 �� mj/mj+1 �� R/mj+1 �� R/mj �� 0
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and hence a commutative diagram with exact rows

0 �� Homk(R/mj, k) �� Homk(R/mj+1, k) �� Homk(mj/mj+1, k) �� 0

0 �� SymP(V)≤j−1

∼=
��

�� SymP(V)≤j


j
P

��

�� SymP(V)≤j/ SymP(V)≤j−1

̄
j
P

��

�� 0

where ̄ j
P is the inducedmap on the quotients, and the leftmost vertical map is an isomorphism by

the inductive hypothesis. So it suffices to prove that ̄ j
P is an isomorphism (by the Five Lemma).

But the domain and codomain both pick out ‘monomials’ of degree j, in one case by removing
from monomials of degree ≤ j all those of degree ≤ j− 1 and in the other case by removing from
monomials of degree ≥ j all those of degree ≥ j+ 1.

More formally, we may directly calculate that

̄
j
P(e

a1
1 · · · eann )=

∑
b1+···+bn=j

∂a1

∂xa11
· · · ∂

an

∂xann

(
ωb

)∣∣∣
P

·ω∗
b

= a1! · · · an! ·ω∗
a

where for b= (b1, . . . , bn) we write ωb = ∏n
j=1 (xj − Pj)bj which under the restriction |b| ≤ j give

a k-basis formj with dual basis ω∗
b.

Remark 2.8. In the notation of Murfet (2015), the mapP is the composite of the isomorphisms
in Murfet (2015, Lemma 2.12) and Murfet (2015, Theorem 2.6)

SymP (V)
∼= �� LC (V , P)

∼= �� Sym(V∗)◦mP

defined by (set zi = xi − Pi)

ea11 · · · eann �−→ a1! · · · an!
[

f
za11 , . . . , zann

dz
z

]
�−→ ∂a1

∂xa11
· · · ∂

an

∂xann
(−)

∣∣∣
P

where LC (V , P)=Hn
P(R,�

n
R/k) is a local cohomology module, see Section 2.5.

For any vector space V (not necessarily finite-dimensional), the underlying vector space of the
symmetric algebra Sym(V) is naturally equipped with the structure of a coalgebra (the symmetric
coalgebra) with comultiplication	 defined by

	(v1 · · · vn)=
∑

I⊆{1,...,n}
vI ⊗ vIc

where vi ∈V for 1≤ i≤ n and for I ⊆ {1, . . . , n} we denote by vI the tensor which is the product
in Sym(V) of the set {vi |i ∈ I}. By convention if I = ∅ then vI = 1. The counit ε : Sym(V)−→
k satisfies ε(1)= 1 and vanishes on monomials of positive degree; for the details see Bourbaki
(Bourbaki 1989, III Section 11) (our coalgebras are their coassociative counital cogebras).

Proposition 2.9.  is an isomorphism of coalgebras.

Proof. It suffices to show that


j
P : SymP (V)≤j −→Homk(R/m

j+1
P , k)

is a morphism of coalgebras, where SymP (V)≤j is a subcoalgebra of the symmetric coal-
gebra SymP (V) and Homk (R/m

j+1
P , k) is given the coalgebra structure as the dual of the
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finite-dimensional algebra R/mj+1
P . Given θ : R/mj+1

P −→ k, we have

	(θ)=
∑

|b|≤j,|b′|≤j
θ(ωb ·ωb′) ·ω∗

b ⊗ω∗
b′

where ωb = ∏n
i=1 (xi − Pi)bj and |b| = ∑

i bi. Hence,

	(ω∗
c )=

∑
b+b′=c

ω∗
b ⊗ω∗

b′ .

Now, we have already calculated that

P(ea11 · · · eann )= a1! · · · an! ·ω∗
a

so we have

(P ⊗P)	(ea11 · · · eann )= (P ⊗P)
∑

b+b′=a

(
a1
b1

)
· · ·

(
an
bn

)
eb11 · · · ebnn ⊗ eb

′
1
1 · · · eb′

n
n

=
∑

b+b′=a

(
a1
b1

)
· · ·

(
an
bn

)
b1! · · · bn!(b′

1)! · · · (b′
n)!ω∗

b ⊗ω∗
b′

= a1! · · · an!
∑

b+b′=a
ω∗
b ⊗ω∗

b′

=	P(ea11 · · · eann )

proving the claim. The compatibility of the counits is clear.

The vector space SymP (V)=
⊕

i≥0 Symi
P (V) is graded, where Sym

i
P (V) is the image in the

symmetric algebra of V⊗i. The projection from this graded vector space to its components k⊕V
of degree ≤ 1 followed by the map (λ, v) �→ λP + v defines

SymP (V) �� �� k⊕V ( P, 1V ) �� V

and as P varies these maps give the components of the linear map

dV :
⊕
P∈V

SymP (V)−→V , dV |SymP (V)(v0, v1, v2, . . . )= v0P + v1 .

Recall the linear map cV , which we may compute in our basis to be

cV : Sym(V∗)◦ −→V , cV (θ)=
n∑

i=1
θ(xi)ei .

Lemma 2.10. For a finite-dimensional vector space V, the diagram⊕
P SymP (V)

dV ����
���

���
���

�


∼=
�� Sym(V∗)◦

cV
�����

���
���

��

V

commutes, and hence the pair
(⊕

P SymP (V), dV
)
is also universal among pairs consisting of a

(cocommutative) coalgebra and a linear map from that coalgebra to V.
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Proof. We have cVP(1)= ∑
i Piei = P and

cVP(ej)=
∑
i
P(ej)(xi)ei =

∑
i

∂

∂xj
(xi)ei = ej

whereas for a monomialm ∈ SymP (V) of degree> 1, both legs of the diagram vanish.

In summary, there is a linear map dV from the coproduct of copies of the symmetric coalgebra
indexed by the points ofV . By the universal property of the Hopf dual, there is a uniquemorphism
of coalgebrasmaking the diagram of Lemma 2.10 commute, andwhat we have done in the above
is compute explicitly this unique morphism of coalgebras in terms of differential operators, and
prove that it is an isomorphism.

In the above, we have focused on finite-dimensional vector spaces V because in this case the
role of differential operators is most transparent. But the symmetric coalgebra Sym(V) is defined
for any vector space V , with the same formulas for 	, ε as those given above, and the coprod-
uct

⊕
P∈V SymP (V) is therefore still a coalgebra. The linear map dV defined above remains well

defined, even if V is infinite-dimensional.

Proposition 2.11. For any vector space V (not necessarily finite-dimensional), the pair

!V := ( ⊕
P∈V

SymP (V), dV
)

is universal among pairs consisting of a cocommutative coalgebra and a linear map to V.

Proof. This is already implicit in Sweedler, as explained in Murfet (2015, Appendix B), but we
give here another argument. Let C be a coalgebra and ϕ : C −→V a linear map. We write C as
a direct limit of its finite-dimensional subcoalgebras {Ci}i∈I (Sweedler 1969, Theorem 2.2.1). For
each i ∈ I, letVi be the finite-dimensional subspace ϕ(Ci) ofV and ϕi : Ci −→Vi be the restriction
of ϕ. By Lemma 2.10, there is a unique morphism of coalgebras�i making

Ci
�i ��

ϕi
����

���
���

���
���

���
�

⊕
P∈Vi SymP (Vi)

dVi
��
Vi

commute. The inclusions Vi ⊆V induce morphisms of algebras SymP (Vi)−→ SymP (V) which
are easily checked to be injective morphisms of coalgebras. We let �′

i denote the composite with
the direct sum of these inclusions:

Ci
�i �� ⊕

P∈Vi SymP (Vi) �� ⊕
P∈Vi SymP (V)⊆

⊕
P∈V SymP (V) .

These morphisms are compatible with inclusions Ci ⊆ Cj and so induce a morphism of coalge-
bras � : C −→ ⊕

P∈V SymP (V) which satisfies dV ◦�= ϕ. To show that � is unique with this
property, let �′ be some other morphism of coalgebras satisfying dV ◦�′ = ϕ. For each i ∈ I, the
restriction�′|Ci factors as a morphism of coalgebras through

SymP1 (V)⊕ · · · ⊕ SymPn (V)

for some finite set of points P1, . . . , Pn ∈V (depending on i) since Ci is finite-dimensional.
Moreover, �′|Ci must factor further through a finite-dimensional subspace of this sum, so there
exists a finite-dimensional subspace Wi ⊆V such that P1, . . . , Pn ∈Wi and �′|Ci factors as
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follows:

Ci
�′|Ci ��

i
����

���
���

���
�

⊕
P∈V SymP (V)

⊕
P∈Wi SymPj (Wi)

		��������������

Wemay without loss of generality assume Vi ⊆Wi so that this factorisationi and the composite
of �i with the inclusion into

⊕
P∈Wi SymP (Wi) are two morphisms of coalgebras which agree

when post-composed with dWi (since dV ◦�′ = ϕ). By the universal property, we conclude that
they agree, and hence�′|Ci =�|Ci . It follows that�′ =�.

Definition 2.12. The pair (!V , dV ) is referred to as the cofree coalgebra generated by V.

The cofree coalgebra is used to model the exponential connective of linear logic in the Sweedler
semantics, as explained in Section 2.4 below. For this reason, we refer to dV as the dereliction map.
If there is no chance of confusion, we will often write d for dV . Note that the comultiplication	 on
!V and the counit ε are derived from the comultiplication and counit on the summands SymP (V)
in the obvious fashion; see Sweedler (1969, p. 50).

In the remainder of this section, V is an arbitrary vector space.

Definition 2.13. For an integer n> 0, set [n]= {1, . . . , n}.

Definition 2.14. (Ket notation). For P, v1, . . . , vs ∈V, we write

|v1, . . . , vs〉P ∈ SymP (V)⊆ !V (5)

for the image in SymP (V) of v1 ⊗ · · · ⊗ vs ∈V⊗s. Since such tensors span SymP (V), the kets in (5)
span the vector space !V as P ranges over all points of V. The identity 1 ∈ SymP (V) is denoted as
|∅〉P. Given I = {i1, . . . , it} ⊆ [s], we write

|vI〉P := |vi1 , . . . , vit 〉P . (6)

In this notation, the formulas for the comultiplication, dereliction and counit are

	 : !V −→ !V ⊗ !V 	|v1, . . . , vs〉P =
∑
I⊆[s]

|vI〉P ⊗ |vIc〉P , (7)

d : !V −→V d|v1, . . . , vs〉P = δs=0 · P + δs=1v1 , (8)
ε : !V −→ k ε|v1, . . . , vs〉P = δs=0 · 1 (9)

where in the formula for 	, Ic denotes the complement in [s] and I ranges over all subsets,
including the empty set. In particular,	|∅〉P = |∅〉P ⊗ |∅〉P, d|v〉P = v and ε|∅〉P = 1.

2.2 Group-like elements are points
In algebraic geometry, a k-point of an algebra A is by definition a morphism of algebras A−→ k,
or equivalently a morphism of schemes Spec(k)−→ Spec(A). In the case where A= Sym(V∗) for
V finite-dimensional, such points are canonically identified with V itself:

Algk(Sym(V∗), k)∼=Homk (V∗, k)∼=V∗∗ ∼=V .
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This bijection identifies a point P = (P1, . . . , Pn) in V with coordinates Pi ∈ k in a chosen basis
e1, . . . , en for V with the maximal ideal

mP = (x1 − P1, . . . , xn − Pn)⊆ Sym(V∗)

where as above we write xi = e∗i for the dual basis. From the coalgebraic point of view, a k-point
of a coalgebra C is a morphism of coalgebras k−→ C. Such morphisms are in canonical bijection
with the group-like elements (Sweedler 1969, p. 57) of C

G(C)= {x ∈ C |	(x)= x⊗ x and ε(x)= 1}
via the bijection

Coalgk(k, C)−→G(C)
ϕ �−→ ϕ(1) .

The points of a k-algebra A are related to the points of A◦ since by Theorem 2.2

Algk(A, k)∼=Coalgk(k,A
◦)

and so in particular

V ∼=Algk( Sym(V∗), k)∼=Coalgk(k, Sym(V∗)◦)∼=Coalgk(k, !V)∼=G(!V) .

2.3 Primitive elements are tangent vectors
From the point of view of algebraic geometry, a tangent vector at a k-point of an algebra A is
a morphism of algebras ϕ :A−→ k[ε]/(ε2) (Hartshorne 1977, Example II.2.8), (Eisenbud and
Harris 2000, II.3.1). The point of A at which such a tangent vector is ‘attached’ is given by the
composite

A
ϕ �� k[ε]/(ε2) �� k (10)

where in the second map, ε �→ 0. The appropriateness of this definition can be seen readily in the
caseA= Sym(V∗) forV finite-dimensional where, using the coordinates xi of the previous section
to identify A with k[x1, . . . , xn], tangent vectors

v=
n∑

i=1
vi
∂

∂xi
vi ∈ k

at a point P = (P1, . . . , Pn) are in bijective correspondence with k-algebra morphisms

ϕv : k[x1, . . . , xn]−→ k[ε]/(ε2)

f (x1, . . . , xn) �−→ f (P) · 1+
n∑
i=1

vi
∂f
∂xi

∣∣∣
P

· ε .

From the coalgebraic point of view, a tangent vector at a k-point of a coalgebra C is a morphism
of coalgebras ϕ : (k[ε]/(ε2))∗ −→ C. We set T = (k[ε]/(ε2))∗. The k-point at which the tangent
vector is attached is given by the composite

k �� T ϕ �� C

where the first map is the dual of the second map in (10). Such morphisms are in canonical
bijection with the primitive elements of C (Sweedler 1969, p. 199)

Prim(C)= {x ∈ C |	(x)= x⊗ g + g ⊗ x for some g ∈G(C)}
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via the bijection

Coalgk(T , C)−→ Prim(C)
ϕ �−→ ϕ(ε∗) .

The tangent vectors at points of a k-algebra A are related to tangent vectors at points of the
coalgebra A◦ via Theorem 2.2

Algk(A, k[ε]/(ε
2))∼=Algk(A, (k[ε]/(ε

2))∗∗)∼=Coalgk(T ,A◦)

and in particular there is a canonical bijection

Prim(!V)∼=Coalgk(T , !V)
∼=Coalgk(T , Sym(V∗)◦)
∼=Algk( Sym(V∗), k[ε]/(ε2))
∼=Homk (V∗, k[ε]/(ε2))
∼=V ⊗ (k⊕ kε)
∼=V ⊕Vε .

Given P, v ∈V , the morphism of coalgebras T −→ !V corresponding to the pair (P, vε) under this
bijection is precisely the morphism (2) alluded to in the introduction.

2.4 Definition of the Sweedler semantics
With the notation for the cofree coalgebra !V and universal map dV as introduced above (see
Definition 2.12), we now recall the definition of the Sweedler semantics �−� in the category V of
k-vector spaces from Hyland and Schalk (2003) and Murfet (2014, Sections 5.1 and 5.3). This is
a Lafont model of intuitionistic linear logic in the sense of Melliès (2009, Section 7.2). For each
atomic formula x of the logic, we choose a vector space �x�. For formulas A, B, define

• �A⊗ B� = �A� ⊗ �B�,
• �A� B� =Homk (�A�, �B�),
• �!A� = !�A� .

If � is A1, ...,An, then we define ��� = �A1� ⊗ ...⊗ �An�. Given a linear map π : C −→V with
C a coalgebra, we write prom (π) : C −→ !V for the unique morphism of coalgebras with dV ◦
prom (π)= π and we use the same notation in the syntax for the proof obtained from a proof π
of !� � B by applying the promotion rule to obtain a proof of !� � !B.

Definition 2.15. The denotation �π� of a proof π : � � B is a linear map �π� : ��� → �B� defined
recursively on the structure of proofs. The proof π must match one of the proofs in the first column
of Table 1, and the second column gives its denotation. Here, d denotes the dereliction map, 	 the
comultiplication and ε the counit:

Definition 2.16. For a vector space V, we denote by

δV : !V −→ !!V
the unique morphism of coalgebras satisfying d!V ◦ δV = 1!V. Where there is no possibility of
confusion, we write δ for δV.
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Table 1. Denotations of proofs in the Sweedler semantics

axiom
A�A �π�(a)= a

π1...
�,A, B,	� C

exch
�, B,A,	� C

�π�(γ ⊗ b⊗ a⊗ δ)= �π1�(γ ⊗ a⊗ b⊗ δ)

π1...
� �A

π2...
	,A� B

cut
�,	� B

�π�(γ ⊗ δ)= �π2�(δ⊗ �π1�(γ ))

π1...
�,A, B� C ⊗L
�,A⊗ B� C

�π�(γ ⊗ (a⊗ b))= �π1�(γ ⊗ a⊗ b)

π1...
� �A

π2...
	� B ⊗R

�,	�A⊗ B

�π�(γ ⊗ δ)= �π1�(γ )⊗ �π2�(δ)

π1...
� �A

π2...
	, B� C

� L
�,	,A� B� C

�π�(γ ⊗ δ⊗ ϕ)= �π2�(δ⊗ ϕ ◦ �π1�(γ ))

π1...
�,A� B

� R
� �A� B

�π�(γ )= {a �→ �π1�(γ ⊗ a)}

π1...
�,A� B

der
�, !A� B

�π�(γ ⊗ a)= �π1�(γ ⊗ d(a))

π1...
!� �A prom!� � !A

�π� = prom�π1�

π1...
� � B

weak
�, !A� B

�π�(γ ⊗ a)= ε(a)�π1�(γ )

π1...
�, !A, !A� B

ctr
�, !A� B

�π�(γ ⊗ a)= �π1�(γ ⊗	(a))
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Given P, v1, . . . , vs ∈V , we have by Murfet (2015, Theorem 2.22)

δ|v1, . . . , vs〉P =
∑

{C1,...,Cl}∈P[s]

∣∣∣ |vC1〉P, . . . , |vCl〉P
〉
Q

(11)

where P[s] denotes the set of partitions of [s]= {1, . . . , s} and Q= |∅〉P. Our partitions do not
contain the empty set. As a special case δ|∅〉P = |∅〉Q.

Given a linear map f :V −→W, there is a unique morphism of coalgebras !f : !V −→ !W with
the property that dW ◦ !f = f ◦ dV and this makes ! into a functor ! : V −→ V . In fact, this functor
is a comonad on V , when equipped with the natural transformations δ : ! −→ !! and d : ! −→ idV
which are component-wise the morphisms δV and dV defined above. If we let 	, ε denote the
assignment of comultiplication and counit maps to all the vector spaces !V then, by construction,
we have in the sense of Blute et al. (2006, Definition 2.1):

Lemma 2.17. The tuple (!, δ, d,	, ε) is a coalgebra modality on V .

2.5 Local cohomology and distributions
In this section, we explain how the cofree coalgebra arises in algebraic geometry, since this con-
nection gives a useful context for the differential structure of the Sweedler semantics; the contents
of this section will however not be used in the sequel. For a finite-dimensional vector space V of
dimension n with R= Sym(V∗), one proves using local duality (Murfet 2015, Theorem 2.6) that
there is an isomorphism ⊕

P∈V
Hn
P(R,�

n
R/k)∼= Sym(V∗)◦ (12)

where Hn
P denotes local cohomology at P (Hartshorne 1966). This isomorphism is defined by

sending a class τ in the local cohomology at P to the functional f �→ ResP( f τ ) where ResP denotes
the generalised residue and f τ the action by R on local cohomology. The isomorphism (12) arises
from isomorphisms Hn

P(R,�
n
R/k)∼= SymP (V) identifying the identity |∅〉P in SymP (V) with the

class of the meromorphic differential form (Murfet 2015, Definition 2.9)[
dx1 ∧ · · · ∧ dxn

(x1 − P1), . . . , (xn − Pn)

]
∈Hn

P(R,�
n
R/k) . (13)

It is easy to see that

ResP
(
f |v〉P

)
= ∂v(f )|x=P , (14)

and more generally that (Murfet 2015, Lemma 2.13)

ResP
(
f |v1, . . . , vs〉P

)
= ∂v1 · · · ∂vs(f )|x=P . (15)

Thus, wemay identify elements of !V with functionals on the space of polynomial functions, given
by evaluating derivatives at points of V .

Remark 2.18. When k=Cwith V =Cv and z = v∗ the generator of R=C[z], this is nothing but
the Cauchy integral formula since under the isomorphisms of Remark 2.8 we have the following
identifications (of vectors in SymP (V) written in ket notation, with classes in local cohomology)

|∅〉P =
[

dz
z − P

]
, |v〉P =

[
dz

(z − P)2

]
(16)
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and the Cauchy formula says

f ′(P)= 1
2π i

∮
γ

f (z)
(z − P)2

dz .

Remark 2.19. When k=R this agrees with the analytic theory of distributions, since by
Friedlander and Joshi (1998, Theorem 3.2.1) the C-vector space of distributions on the real
manifold V supported at a point P is spanned by the functions

f �−→ ∂v1 · · · ∂vs( f )|x=P

as s≥ 0 and v1, . . . , vs varies over all sequences in V . So, in this case, we can identify the coalgebra
!V ⊗R C with the space of distributions on V with finite support.

In the semantics of differential linear logic defined using finiteness spaces (Ehrhard 2005) and
convenient vector spaces (Blute et al. 2010), the space !V is a closure of the linear span of Dirac
distributions (in our notation, |∅〉P) on V . More precisely, if V is a finite-dimensional convenient
vector space, then !V consists of distributions of compact support. For example, see Blute et al.
(2006, Theorem 5.7) for the limit defining the distribution |v〉0 in our notation. There is a similar
role for Dirac distributions in the Coherent Banach space semantics of linear logic in Girard (1999,
Section 3.2).

It is interesting to note that functional programs extended with Dirac distributions have already
been considered in the literature on automatic differentiation; see Nilsson (2003). For an abstract
categorical theory of distributions via monads, see Kock (2012).

Remark 2.20. Any cocommutative coalgebra is the direct limit of finite-dimensional coalgebras,
and the category of finite-dimensional cocommutative coalgebras is isomorphic to the category of
zero-dimensional schemes over k. This is taken as the starting point of one approach to noncom-
mutative geometry which has been influential in the study of A∞-algebras, where one posits that
an arbitrary coalgebra is the coalgebra of distributions on a ‘noncommutative space’ (Kontsevich
and Soibelman 2008, p. 15; Kontsevich and Soibelman 2002; Le Bruyn 2008).

3. Differential Linear Logic
Let k be an algebraically closed field of characteristic zero and V the category of k-vector spaces.
This is a model of linear logic (see Section 2.4) when equipped with the comonad ! arising from
the cofree coalgebra. We now explain how to equip this category with the structure necessary to
make it a model of differential linear logic, following Blute et al. (2006).

Given vector spacesV ,W, we write σV ,W :V ⊗W −→W ⊗V for the linear swap map defined
on tensors by σV ,W(x⊗ y)= y⊗ x. By Blute et al. (2006, Proposition 2.6) to equip V with the
coalgebra modality (!, δ, d,	, ε) of Lemma 2.17 as a differential category, we need to define a
deriving transformation in the sense of Blute et al. (2006, Definition 2.5).

Definition 3.1. A deriving transformation for (V , !, δ, d,	, ε) is a family of linear maps

DV : !V ⊗V −→ !V
defined for all V ∈ V and natural in V, satisfying the following properties:

(D.1) ε ◦D= 0, that is,

!V ⊗V DV �� !V ε �� k = 0 . (17)
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(D.2) 	 ◦D= (1⊗D) ◦ (	⊗ 1)+ (D⊗ 1) ◦ (1⊗ σ ) ◦ (	⊗ 1), that is,

!V ⊗V DV �� !V 	 �� !V ⊗ !V (18)

is equal to the sum

!V ⊗V 	⊗1 �� !V ⊗ !V ⊗V 1⊗DV �� !V ⊗ !V +
!V ⊗V 	⊗1 �� !V ⊗ !V ⊗V

1⊗σ!V ,V
∼=

�� !V ⊗V ⊗ !V DV⊗1 �� !V ⊗ !V

(D.3) d ◦D= a ◦ (ε⊗ 1), that is,

!V ⊗V DV �� !V d �� V = !V ⊗V ε⊗1 �� k⊗V a
∼=

�� V
(19)

where a(λ⊗ x)= λx.
(D.4) δ ◦D=D ◦ (δ⊗D) ◦ (	⊗ 1), that is,

!V ⊗V DV �� !V δ �� !!V (20)

is equal to

!V ⊗V 	⊗1 �� !V ⊗ !V ⊗V δ⊗DV �� !!V ⊗ !V D!V �� !!V . (21)

We refer to Blute et al. (2006, Section 2.2) for an explanation of these axioms. Briefly, (D.1)
says the derivative of constant maps is zero, (D.2) is the product rule, (D.3) says the derivative of
a linear map is constant and (D.4) is the chain rule. Clearly, the rules specify how to commute
D past the structural maps δ, d,	, ε. Here d stands for the dereliction rule in linear logic, 	 for
contraction and ε for weakening. The map δ stands for promotion, since for a linear map φ :
!V −→W the unique lifting to a morphism of coalgebras � : !V −→ !W can be obtained as the
composite

!V δ �� !!V !φ �� !W . (22)

Definition 3.2. We define the k-linear map DV : !V ⊗V −→ !V by

DV
(|v1, . . . , vs〉P ⊗ v

) = |v, v1, . . . , vs〉P . (23)

Theorem 3.3. DV is a deriving transformation for any vector space V.

We split the proof of the theorem into lemmas.We prefer to give the proofs without first choos-
ing a basis of V , but if one is willing to do so, then the connection between these identities and
the usual rules of calculus follows from writing the formula for the comultiplication 	 as a kind
of Taylor expansion; see for example Seiler (2009, (B.65)). Throughout, we use the ket notation of
Definition 2.14.

Lemma 3.4. (D.1) holds for V.

Proof. This is clear, since the counit ε : !V −→ k vanishes on |v1, . . . , vs〉P if s> 0.

Lemma 3.5. (D.2) holds for V.
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Proof. Setting v0 = v we have (recall the notational conventions of Definition 2.14)

	D
(|v1, . . . , vs〉P ⊗ v

) =	|v, v1, . . . , vs〉P
=

∑
I⊆{0,1,...,s}

|vI〉P ⊗ |vIc〉P

=
∑
0∈I

|vI〉P ⊗ |vIc〉P +
∑
0/∈I

|vI〉P ⊗ |vIc〉P

=
∑

J⊆{1,...,s}
|v, vJ〉P ⊗ |vJc〉P +

∑
J⊆{1,...,s}

|vJ〉P ⊗ |v, vJc〉P

=
∑

J⊆{1,...,s}

{
D

(|vJ〉P ⊗ v
) ⊗ |vJc〉P + |vJ〉P ⊗D

(|vJc〉P ⊗ v
)}

as claimed, where for I ⊆ {0, 1, . . . , s} we write Ic for {0, . . . , s} \ I and for J ⊆ {1, . . . , s}, we write
Jc for {1, . . . , s} \ J.

Lemma 3.6. (D.3) holds for V.

Proof. We have

dD
(|v1, . . . , vs〉P ⊗ v

) = d|v, v1, . . . , vs〉P = δs=0v

while

a(ε⊗ 1)
(|v1, . . . , vs〉P ⊗ v

) = ε|v1, . . . , vs〉P · v= δs=0v .

Lemma 3.7. (D.4) holds for V.

Proof. The trivial case is, with Q= |∅〉P,
δD(|∅〉P ⊗ v)= δ|v〉P = ∣∣ |v〉P

〉
Q

and on the other side

D!V (δ⊗D)(	⊗ 1)(|∅〉P ⊗ v)=D!V (δ⊗D)(|∅〉P ⊗ |∅〉P ⊗ v)
=D!V (|∅〉Q ⊗ |v〉P)
= ∣∣ |v〉P

〉
Q .

Now, we consider the case s> 0. Putting v0 = v, we have

δD
(|v1, . . . , vs〉P ⊗ v

) =
∑

X∈P{0,1,...,s}

∣∣∣ ∏
x∈X

|vx〉P
〉
Q

where for a partitionX = {x1, . . . , xt} the notationmeansmultiplication in the symmetric algebra,
that is, ∣∣∣ ∏

x∈X
|vx〉P

〉
Q

=
∣∣∣ |vx1〉P, . . . , |vxt 〉P

〉
Q
.

There is a surjective function

θ :P{0,1,...,s} −→P{1,...,s}
θ(X)= {

x \ {0} |x ∈ X and x �= {0}}
https://doi.org/10.1017/S0960129520000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000134


Mathematical Structures in Computer Science 433

and given a partition X = {x1, . . . , xt} of {1, . . . , s},
θ−1(X)=

{
{x1 ∪ {0}, x2, . . . , xt},

{x1, x2 ∪ {0}, . . . , xt},
. . . ,
{x1, x2, . . . , xt−1, xt ∪ {0}}
{x1, x2, . . . , xt , {0}}

}
.

With this in mind we have, writing
∏

x′ �=x|vx′ 〉P for the product in the symmetric algebra of |vx′ 〉P
as x′ ranges over elements of X \ {x}, that δD(|v1, . . . , vs〉P ⊗ v

)
is equal to∑

X∈P{1,...,s}

{ ∑
x∈X

∣∣∣ |v, vx〉P ,
∏
x′ �=x

|vx′ 〉P
〉
Q

+
∣∣∣ |v〉P ,

∏
x∈X

|vx〉P
〉
Q

}
. (24)

Note that when X = {{1, . . . , s}}, the summand is∣∣∣ |v, v1, . . . , vs〉P
〉
Q

+
∣∣∣ |v〉P, |v1, . . . , vs〉P

〉
Q
.

On the other hand, the right-hand side (21) of the (D.4) identity is

D!V (δ⊗D)(	⊗ 1)
(|v1, . . . , vs〉P ⊗ v

)
=

∑
I⊆{1,...,s}

D!V (δ⊗D)
(
|vI〉P ⊗ |vIc〉P ⊗ v

)
=

∑
I⊆{1,...,s}

D!V
(
δ|vI〉P ⊗ |v, vIc〉P

)
=D!V

(
δ|∅〉P ⊗ |v, v1, . . . , vs〉P

)
+

∑
∅⊂I

∑
Y∈PI

D!V
(∣∣ ∏

y∈Y
|vy〉P

〉
Q ⊗ |v, vIc〉P

)

=
∣∣∣ |v, v1, . . . , vs〉P

〉
Q

+
∑
∅⊂I

∑
Y∈PI

∣∣∣ |v, vIc〉P ,
∏
y∈Y

|vy〉P
〉
Q

=
∣∣∣ |v, v1, . . . , vs〉P

〉
Q

+
∑

Y∈P{1,...,s}

∣∣∣ |v〉P ,
∏
y∈Y

|vy〉P
〉
Q

+
∑

∅⊂I⊂{1,...,s}

∑
Y∈PI

∣∣∣ |v, vIc〉P ,
∏
y∈Y

|vy〉P
〉
Q

which matches (24) since the last sum can be rewritten as∑
X∈P{1,...,s}
with |X|>1

∑
x∈X

∣∣∣ |v, vx〉P ,
∏
x′ �=x

|vx′ 〉P
〉
Q
.

Together the previous lemmas complete the proof of Theorem 3.3.

Corollary 3.8. V is a differential category.

Proof. This follows from Blute et al. (2006, Proposition 2.6).
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We are grateful to the referee who pointed out to us (see Cockett and Lemay 2018, Section 4.1)
that an additional axiom is now routinely added to deriving transformations:

Lemma 3.9. For any vector space V, the diagram

!V ⊗V ⊗V !V ⊗V ⊗V !V ⊗V

!V ⊗V !V

DV⊗1

1⊗σV ,V DV⊗1

DV

DV

commutes.

Proof. We compute
DV (DV ⊗ 1)(1⊗ σ )

(|v1, ..., vs〉P ⊗ v⊗ v′) =DV (DV ⊗ 1)
(|v1, ..., vs〉P ⊗ v′ ⊗ v

)
=DV

(|v′, v1, ..., vs〉P ⊗ v
)

= |v, v′, v1, ..., vs〉P
= |v′, v, v1, ..., vs〉P
= |v, v1, ..., vs〉P ⊗ v′

=DV
(|v, v1, ..., vs〉P ⊗ v′)

=DV (DV ⊗ 1)
(|v1, ..., vs〉P ⊗ v⊗ v′) .

Remark 3.10. From the geometric point of view (see Section 2.5), the definition of DV is justified
as follows: adding v to a ket contributes, inside a residue, a partial derivative in the direction v
by (15). To state this more formally, let D(R) denote the algebra of k-linear differential operators
on R= Sym(V∗) and observe that there is a canonical map ι :V −→D(R) sending v ∈V to the
differential operator ∂v and we have a map

Hn
P(R,�

n
R/k)⊗V 1⊗ι �� Hn

P(R,�
n
R/k)⊗D(R) a �� Hn

P(R,�
n
R/k) (25)

where a denotes the action of the ring D(R) on local cohomology (Murfet 2015, Lemma 2.7).
These maps assemble in the colimit (12) to give (23).

3.1 Codereliction, cocontraction and coweakening
An alternative formulation of the differential structure in differential linear logic is in terms of
codereliction, cocontraction and coweakening maps; see Fiore (2007) and Blute et al. (2010, Section
5.1). This has the advantage of providing an appealing symmetry to the formulation of the syntax.
In this section, we briefly sketch the definition of these maps in the Sweedler semantics.

First, we recall the canonical commutative Hopf structure on !V of Sweedler (1969, Section
6.4).

Lemma 3.11. Given vector spaces V1,V2, then there is an isomorphism of coalgebras
� : !V1 ⊗ !V2 −→ !(V1 ⊕V2) ,

|v1, . . . , vs〉P ⊗ |w1, . . . ,wt〉Q �−→ |v1, . . . , vs,w1, . . . ,wt〉(P,Q) .
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Proof. The existence of this isomorphism is due to Sweedler, for the explicit calculation of the map
see Sweedler (1969, Remark 2.19).

Using this and the definitions in Sweedler (1969), it is easy to check that the product ∇ is

∇ : !V ⊗ !V −→ !V ,
|v1, . . . , vs〉P ⊗ |w1, . . . ,wt〉Q �−→ |v1, . . . , vs,w1, . . . ,wt〉P+Q ,

while the antipode S is

S : !V −→ !V ,
|v1, . . . , vs〉P �−→ |−v1, . . . ,−vs〉−P

and the unit u : k−→ !V is u(1)= |∅〉0. By Sweedler (1969, Theorem 6.4.8), these maps make !V
into a commutative (and cocommutative) Hopf algebra. In the terminology of Ehrhard (2016), the
map ∇ is the cocontractionmap and u is the coweakening map (the antipode seems not to have a
formal role in differential linear logic). Finally,

Definition 3.12. The codereliction d̄ is the composite

V ∼= k⊗V u⊗1 �� !V ⊗V D �� !V
which is given by v �→ |v〉0.

Note that we can recover D as

!V ⊗V 1⊗d̄ �� !V ⊗ !V ∇ �� !V
|v1, . . . , vs〉P ⊗ v �→ |v1, . . . , vs〉P ⊗ |v〉0 �→ |v, v1, . . . , vs〉P .

It seems more convenient to model differentiation syntactically using the codereliction, cocon-
traction and coweakening maps, rather than the deriving transformation D itself. We briefly
sketch how this works, following Ehrhard (2016). In the sequent calculus for linear logic, one
introduces three new deduction rules ‘dual’ to dereliction, contraction and weakening:

�, !A,	� B(Codereliction): coder
�,A,	� B

�, !A,	� B(Cocontraction): coctr
�, !A, !A,	� B

�, !A,	� B(Coweakening): coweak
�,	� B

together with new cut-elimination rules (Ehrhard 2016, Section 1.4.3).

Definition 3.13. Given a proof π of !A� B in linear logic, the derivative ∂π is the proof
π

...

!A� B
coctr

!A, !A� B
coder

!A,A� B

(26)
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whose denotation is, by our earlier remark, the composite

!�A� ⊗ �A�
D �� !�A�

�π� �� �B� . (27)

Remark 3.14. Given π as above, we have the function (Murfet 2014, Definition 5.10)

�π�nl : �A� −→ �B� , P �−→ �π�|∅〉P , (28)

and for P, v ∈ �A� we interpret the vector

�π�D(|∅〉P ⊗ v)= �π�|v〉P ∈ �B� (29)

as the derivative of �π�nl at the point P in the direction v. Here, we implicitly identify �A� with the
tangent space TP�A� and �B� with the tangent space T�π�nl(P)�B�. This interpretation is justified
by the following elaboration of the remarks in the Introduction.

Let prom (π) denote the promotion of π , which has for its denotation the unique morphism
of coalgebras �prom (π)� : !�A� −→ !�B� with d ◦ �prom (π)� = �π�. Let γ : (k[ε]/ε2)∗ −→ !�A�
be the morphism of coalgebras as in Section 2.3 corresponding to the tangent vector v at a point
P ∈ �A�. Then the morphism of coalgebras

�prom (π)� ◦ γ : (k[ε]/ε2)∗ −→ !�B� (30)

has the following values, writing Q= �π�nl(P), we have by Murfet (2015, Theorem 2.22)

�prom (π)�γ (1)= �prom (π)�|∅〉P = |∅〉Q ,

�prom (π)�γ (ε∗)= �prom (π)�|v〉P =
∣∣∣ �π�|v〉P

〉
Q
.

Under the bijection of Section 2.3, the morphism of coalgebras (30) therefore corresponds to the
tangent vector �π�|v〉P ∈ �B� at Q.

It is easy using the formulas for ∇ ,D to check that the ∇-rule of Blute et al. (2006, Section 4.3)
is satisfied:

Lemma 3.15. The diagram

V ⊗ !V ⊗ !V

σV ,!V⊗1

��

1⊗∇ �� V ⊗ !V σV ,!V �� !V ⊗V

D

��
!V ⊗V ⊗ !V

D⊗1
�� !V ⊗ !V ∇

�� !V

(31)

commutes.

This, together with Blute et al. (2006, Theorem 4.12), shows that V with the comonad ! and
deriving transformation D is a model of the differential calculus in the sense of Blute et al. (2006,
Definition 4.11).

Corollary 3.16. V is a categorical model of the differential calculus.
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4. Examples
In this section, we give various examples of proofs π and the derivatives �π� ◦D of their denota-
tions, according to Definition 3.13. The encoding of integers and binary sequences in linear logic
is based on the following encoding of the composition rule.

Definition 4.1. For any formula A, let C1
A denote the proof

A�A A�A � L
A,A�A�A

We define recursively for n> 1 a proof Cn
A of A, (A�A)n �A, where (A�A)n denotes a sequence

of n copies of A�A, to be

A�A

Cn−1
A
...

A, (A�A)n−1 �A
� L

A, (A�A)n �A

Definition 4.2. For n≥ 1, let compnA denote the proof

Cn
A
...

A, (A�A)n �A
� R

(A�A)n �A�A

We define comp0A to be the proof

A�A � R�A�A

Remark 4.3. If V = �A� and αi ∈ �A�A� = Endk (V) for 1≤ i≤ n, then

�compnA�(α1 ⊗ · · · ⊗ αn)= αn ◦ · · · ◦ α1 , (32)

while �comp0A� = 1V . Note the reversed ordering on the right-hand side!

4.1 Church numerals
Definition 4.4. The type of integers on A (Girard 1987, Section 5.3.2) is

intA = !(A�A)� (A�A) .

For n≥ 0, we define the Church numeral nA to be the proof
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compnA
...

(A�A)n �A�A
n× der!(A�A)n �A�A
n× ctr!(A�A)�A�A
� R� intA

Generally, we omit the final step, since it is irrelevant semantically. In the case n= 0, the formula
!(A�A) is introduced on the left by a weakening rule.

Example 4.5. The proof 2A (see e.g., Murfet 2014, Example 5.9) is

A�A
A�A A�A � L
A,A�A�A

� L
A,A�A,A�A�A

� R
A�A,A�A�A�A

der!(A�A),A�A�A�A
der!(A�A), !(A�A)�A�A
ctr!(A�A)�A�A

From now on, A is fixed and we write n for nA. Let V = �A� so �A�A� = Endk (V). In the
notation of Remark 3.14, there is a function

�n�nl : Endk (V)−→ Endk (V) . (33)

Lemma 4.6. For n≥ 0 and α ∈ Endk (V), we have �n�|∅〉α = αn so �n�nl(α)= αn.

Proof. This is an easy exercise, see Murfet (2014) for the case n= 2.

The derivative ∂n of Definition 3.13 is a proof of !(A�A),A�A�A�A and for α, v ∈
Endk (V) the value of its denotation �∂n� = �n� ◦D on |∅〉α ⊗ v, that is, the derivative of n at α in
the direction v, is �n�|v〉α .

Lemma 4.7. �n�|v〉α = ∑n
i=1 α

i−1vαn−i.

Proof. This may be easily computed using the formulas (7), (8) for the comultiplication and
dereliction. For example, in the case n= 2, the image of |v〉α under �n� is given by

|v〉α ctr�−−−−−→ |v〉α ⊗ |∅〉α + |∅〉α ⊗ |v〉α
2× der�−−−−−→ v⊗ α + α⊗ v
− ◦ −�−−−−−→ α ◦ v+ v ◦ α ,

as claimed.

Remark 4.8. When k=C, V is r-dimensional and ϕ = �n�nl, the vector �n�|v〉α agrees with the
image of v under the usual tangent map of the smooth map ϕ
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Mr(C)∼= Tα Endk (V)
Tαϕ �� Tαn Endk (V)∼=Mr(C) .

This justifies in this case the interpretation of �n�|v〉α as the derivative.

4.2 Binary integers
Definition 4.9. The type of binary integers on A (Girard 1995, Section 2.5.3) is

bintA = !(A�A)� (!(A�A)� (A�A)).
Given a sequence S ∈ {0, 1}∗, we define a proof SA of bintA as follows. Let l≥ 0 be the length of S. The
proof tree for SA matches that of the Church numeral l up to the step where we perform contractions,
that is,

complA
...

(A�A)l �A�A
n× der

!(A�A)l �A�A

(34)

We match each copy of !(A�A) on the left with the corresponding position in S, and using a series
of contractions we identify all copies corresponding to a position in which 0 appears in S, and likewise
all copies corresponding to positions with a 1. After these contractions, there will be two copies of
!(A�A) on the left (the first being by convention the remnant of all the 0-associated copies) unless
S contains only 0’s or only 1’s. In this case, we use further a weakening rule to introduce the ‘missing’
!(A�A), giving finally the desired proof SA:

complA
...

(A�A)l �A�A
n× der

!(A�A)l �A�A
ctr and possibly weak!(A�A), !(A�A)�A�A
2×� R� bintA

In the final right� R introduction rules, the second copy of !(A�A) (associated with the 1’s in S)
is moved across the turnstile first. If S is the empty sequence, then l= 0 and the proof is a pair of
weakenings on the left followed by the� R introduction rules.

For the rest of this section, A is fixed and we write S for SA.

Example 4.10. The proof 001 is

A�A
A�A

A�A A�A � L
A,A�A�A

� L
A,A�A,A�A�A

� L
A,A�A,A�A,A�A�A

� R
A�A,A�A,A�A�A�A

3× der!(A�A), !(A�A), !(A�A)�A�A
ctr!(A�A), !(A�A)�A�A

2×� R� bintA
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where the colouring indicates which copies of !(A�A) are contracted. Using (32),

�001�
(|∅〉γ ⊗ |∅〉δ

) = �comp3A�
(|∅〉γ ⊗ |∅〉γ ⊗ |∅〉δ

) = δ ◦ γ ◦ γ . (35)

Generalising the calculation of Section 4.1, we now describe the derivatives of binary integers.
The general formula computes, for S ∈ {0, 1}∗, the linear operator

�S�
(|α1, . . . , αr〉γ ⊗ |β1, . . . , βs〉δ

) ∈ Endk (V) .
Informally, this operator is described by inserting γ for 0 and δ for 1 in (the reversal of) S, and
then summing over all ways of replacing r of the γ ’s in this composite with αi’s, and t of the δ’s
with βj’s. Let Inj (P,Q) denote the set of injective functions P −→Q, and write [s]= {1, . . . , s}.

Lemma 4.11. Let S= alal−1 · · · a1 with ai ∈ {0, 1} be a binary sequence, and set
N0 = {j |aj = 0} , N1 = {j |aj = 1} .

Then we have
�S�

(|α1, . . . , αs〉γ ⊗ |β1, . . . , βr〉δ
) =

∑
f∈Inj ([s],N0)

∑
g∈Inj ([r],N1)

�
f ,g
1 ◦ · · · ◦ �f ,g

l , (36)

where

�
f ,g
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ i ∈N0 \ Im ( f ) ,
δ i ∈N1 \ Im (g) ,
αj if i ∈ Im ( f ) and f (j)= i ,
βj if i ∈ Im (g) and g(j)= i .

In particular, this vanishes if s> |N0| or r> |N1|.

Proof. Since �S� applies n= |N0| coproducts to |α1, . . . , αs〉γ yielding∑
J1,...,Jn

pairwise disjoint, s.t.
J1∪···∪Jn={1,...,s}

|αJ1〉γ ⊗ · · · ⊗ |αJn〉γ ,

to which the dereliction operator d⊗n is applied, which annihilates those tuples (J1, . . . , Jn) where
any Ji contains more than one element. The resulting sum is over f ∈ Int ([s],N0) and each sum-
mand is γ ⊗ · · · ⊗ ασ (1) ⊗ · · · ⊗ γ ⊗ · · · ασ (s) ⊗ · · · ⊗ γ for a permutation σ . The same is true of
|β1, . . . , βr〉δ , and after the two resulting tensors are intertwined the final step is compose all the
operators, yielding (36).

Example 4.12. For S= 001, we have
�001�

(|α〉γ ⊗ |∅〉δ
) = δ ◦ α ◦ γ + δ ◦ γ ◦ α ,

�001�
(|α1, α2〉γ ⊗ |∅〉δ

) = δ ◦ α1 ◦ α2 + δ ◦ α2 ◦ α1 ,
�001�

(|∅〉γ ⊗ |β〉δ
) = β ◦ γ ◦ γ ,

�001�
(|α〉γ ⊗ |β〉δ

) = β ◦ α ◦ γ + β ◦ γ ◦ α ,
�001�

(|α1, α2〉γ ⊗ |β〉δ
) = β ◦ α1 ◦ α2 + β ◦ α2 ◦ α1 .

and zero for all other inputs.

More interestingly, we can also compute the derivatives of proofs of !bintA � bintA. In what
follows, A is fixed and E=A�A.
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Definition 4.13. The proof repeat is

!E� !E
!E � !E

!E � !E
!E � !E

comp2A
...

E, E� E
� L!E, !E� E, E� E

� L!E, !E, bintA, E� E
� L!E, !E, !E, bintA, !E� E� E

� L!E, !E, !E, !E, bintA, bintA � E
ctr!E, !E, !E, bintA, bintA � E

ctr!E, !E, bintA, bintA � E
2×� R

bintA, bintA � bintA
2× der!bintA, !bintA � bintA ctr!bintA � bintA

which repeats a binary sequence in the sense that the cutting it against the promotion of S is
equivalent under cut-elimination to SS. In particular, �repeat�|∅〉�S� = �SS�.

Given S, T ∈ {0, 1}∗, the derivative of repeat at S in the direction T is

�repeat�|�T�〉�S� ∈ �bintA� =Homk (! Endk (V)⊗ ! Endk (V), Endk (V)) , (37)

and as promised in the Introduction:

Lemma 4.14. �repeat�|�T�〉�S� = �ST� + �TS�.

Proof. The value of the left-hand side on a tensor |α1, . . . , αs〉γ ⊗ |β1, . . . , βr〉δ is computed by
reading the proof tree for repeat from bottom to top:

|�T�〉�S� ctr�−−−−−→ |�T�〉�S� ⊗ |∅〉�S� + |∅〉�S� ⊗ |�T�〉�S�
2× der�−−−−−→ �T� ⊗ �S� + �S� ⊗ �T�
2×R��−−−−−→ |α1, . . . , αs〉γ ⊗ |β1, . . . , βr〉δ ⊗ (

�T� ⊗ �S� + �S� ⊗ �T�
)

2× ctr�−−−−−→
∑
I,J

|αI〉γ ⊗ |βJ〉δ ⊗ |αIc〉γ ⊗ |βJc〉δ ⊗ (
�T� ⊗ �S� + �S� ⊗ �T�

)
�−−−−−→

∑
I,J

�S�
(|αI〉γ ⊗ |βJ〉δ

) ◦ �T�
(|αIc〉γ ⊗ |βJc〉δ

)
+

∑
I,J

�T�
(|αI〉γ ⊗ |βJ〉δ

) ◦ �S�
(|αIc〉γ ⊗ |βJc〉δ

)
which agrees with �ST� + �TS� on |α1, . . . , αs〉γ ⊗ |β1, . . . , βr〉δ by Lemma 4.11.

4.3 Multiplication
The multiplication of Church numerals is encoded by a proof multA of !intA, intA � intA, see
for example Girard (1995, Section 2.5.2). To construct the proof tree, it will be convenient to
introduce the following intermediate proof γ , writing E=A�A as above:
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!E� !E E� E � L!E, intA � E
der!E, !intA � E
prom!E, !intA � !E

Then �γ � : ! Endk (V)⊗ !�intA� → ! Endk (V) is a morphism of coalgebras such that

�γ �(t ⊗ |∅〉α)= |∅〉α(t) and �γ �(t ⊗ |v〉α)= |v(t)〉α(t),
for α, v ∈ �intA� =Homk (! Endk (V), Endk (V)) and t ∈ ! Endk (V). The proof multA is

γ

...

!E, !intA � !E E � E
� L!E, !intA, intA � E

� R!intA, intA � intA

Let l,m, n≥ 0 be integers. We write multA(−, n) for the proof of !intA � intA obtained from the
above by cutting against the proof n of � intA. The derivative of this proof at α = �l� in the
direction v= �m� is the element of �intA� given on t ∈ ! Endk (V) by

�multA�
(|v〉α ⊗ �n�

)
(t)= �n�

(|v(t)〉α(t)) =
n∑

i=1
α(t)i−1v(t)α(t)n−i

using Lemma 4.7 in the last step. When t = |∅〉x for x ∈ Endk (V), this evaluates to
n∑

i=1
α(t)i−1v(t)α(t)n−i =

n∑
i=1

xl(i−1)xmxl(n−i) = nxl(n−1)+m.

This result agrees with a more traditional calculus approach using limits:

lim
h→0

�multA�(|∅〉�l�+h�m� ⊗ �n�)|∅〉x − �multA�(|∅〉�l� ⊗ �n�)|∅〉x
h

= lim
h→0

�n�|∅〉xl+hxm − �n�|∅〉xl
h

= lim
h→0

(xl + hxm)n − xln

h
= nxl(n−1)+m.

5. Differential Lambda Calculus
Categorically speaking λ-calculi are modelled by Cartesian closed categories (Lambek and Scott
1986) and any model of linear logic gives rise to a Cartesian closed category by taking the Kleisli
category of the comonad interpreting the exponential connective; see Melliès (2009, Section 7).
There is a parallel relationship between differential λ-calculus and differential linear logic, which
has been worked out in the language of Cartesian differential categories (Blute et al. 2009;
Bucciarelli et al. 2010).
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As above k is an algebraically closed field of characteristic zero, and V is the category of k-vector
spaces. In this section, we explain how the category of cofree coalgebras over k gives a model of
differential λ-calculus, by

• checking that V is a differential storage category with biproducts, so that
• by Blute et al. (2009, Proposition 3.2.1), the Kleisli category V! of (V , !) is a Cartesian
differential category,

• and we check that V! is a differential λ-category in the sense of Bucciarelli et al. (2010,
Definition 4.4).

We have already checked that the comonad ! arising from the cofree coalgebra construction
defines a coalgebra modality in the sense of Blute et al. (2006, Definition 2.1), and that we have
deriving transformations DV : !V ⊗V −→ !V . By Corollary 3.8, the tuple (V , !, δ, d,	, ε,D) is a
differential category in the sense of Blute et al. (2006, Definition 2.4). We now prove further that
this is an example of a differential storage category.

For this, we need to understand ! : V −→ V as a monoidal functor.

Definition 5.1. Given vector spaces V ,W, let mV ,W be the unique morphism of coalgebras which
makes the following diagram commute:

!V ⊗ !W !(V ⊗W)

V ⊗W
dV⊗dW

mV ,W

dV⊗W

Lemma 5.2. The morphism of coalgebras mV ,W is natural in V ,W.

Proof. If ϕ :V −→V ′ and ψ :W −→W′ are linear, then the outside diagram in

!V ⊗ !W !V ′ ⊗ !W′

V ⊗W V ′ ⊗W′

!(V ⊗W) !(V ′ ⊗W′)

dV⊗dW

!ϕ⊗!ψ

mV ,W mV′ ,W′

dV′⊗dW′

ϕ⊗ψ

dV⊗W

!(ϕ⊗ψ)

dV⊗W

commutes, by virtue of each of the sub-diagrams commuting.

Definition 5.3. Let u : k−→ !k be the unique morphism of coalgebras with the property that dk ◦
u= 1k. Explicitly, u(1)= |∅〉1.

Lemma 5.4. The data {mV ,W}V ,W∈V and u make ! : V −→ V a lax monoidal functor.
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Proof. We have to check commutativity of the outer square in

(!A⊗ !B)⊗ !C !A⊗ (!B⊗ !C)

!(A⊗ B)⊗ !C (A⊗ B)⊗ C A⊗ (B⊗ C) !A⊗ !(B⊗ C)

!((A⊗ B)⊗ C) !(A⊗ (B⊗ C))

mA,B⊗1

α

d⊗3
1⊗mB,C

d⊗3

mA⊗B,C

d⊗2 α d⊗2

mA,B⊗C

!α

d d

and the outer squares in

!A⊗ k !A⊗ !k

A A⊗ k

!A !(A⊗ k)

1⊗u

∼=

d⊗1

mA,k

d⊗d

∼=
d

∼=

d

k⊗ !A !k⊗ !A

A k⊗A

!A !(k⊗A)

u⊗1

∼=

1⊗d

mk,A

d⊗d

∼=
d

∼=

d

but from the given decompositions of these squares, this is clear.

Lemma 5.5. The tuple (!,m, u) is a symmetric monoidal functor on (V ,⊗, k).

Proof. This means that the following diagram commutes

!V ⊗ !W !(V ⊗W)

V ⊗W

W ⊗V

!W ⊗ !V !(W ⊗V)

m

σ

d⊗d

!σ

d

σ

d⊗d

m

d

which is clear from the given decomposition.

Lemma 5.6. The natural transformations δ : ! −→ !! and d : ! −→ idV are lax monoidal.
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Proof. We need to check commutativity of

!A⊗ !B !!A⊗ !!B !(!A⊗ !B)

!A⊗ !B

!(A⊗ B)

!(A⊗ B) !!(A⊗ B)

δA⊗δB

1

mA,B

d⊗d

m!A,!B

d

!mA,BmA,B

1

δA⊗B

d

and also

k

k !k

!k !k

!!k

1 u

u

u
d

!u
δk

1

d

and

!A⊗ !B A⊗ B

!(A⊗ B) A⊗ B

d⊗d

mA,B 1

dA⊗B

k !k

k

u

1
d

which are all clear from the given decompositions.

The above results together prove that:

Lemma 5.7. (!, δ, d,m, u) is a symmetric monoidal comonad.

Now each !A is by construction a cocommutative comonoid in the category of vector
spaces, and the comultiplication 	 : !A−→ !A⊗ !A and counit ε : !A−→ k are morphisms of
!-coalgebras in the following sense. Recall that a coalgebra (Borceux 1994, Section 4.1) for the
comonad (!, δ, d) (henceforth called a !-coalgebra) is a vector spaceV and linear map ϕ :V −→ !V
with the property that the diagrams

V !V

V

ϕ

1
dV

V !V

!V !!V

ϕ

ϕ δV

!ϕ

(38)
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commute. We make !A⊗ !A into a !-coalgebra by

!A⊗ !A !!A⊗ !!A !(!A⊗ !A)δA⊗δA m!A,!A

and k is a coalgebra via u : k−→ !k. Then (see Blute et al. 2006, Definition 4.1):

Lemma 5.8. The tuple (!, δ, d) is a storage modality on (V ,⊗, k) when we take the canonical
comonoid structures (!A,	, ε).

Proof. We need only check 	, ε are morphisms of !-coalgebras. In the first case, consider the
commutative diagram

!A⊗ !A !!A⊗ !!A !(!A⊗ !A)

!A⊗ !A

!A

!A !!A

δA⊗δA

1 d⊗d

m!A,!A

d

	

1

δA

	

d

!	

Now since !A is cocommutative 	 is a morphism of coalgebras, so we may use the universal
property of !(!A⊗ !A) as indicated. The fact that ε : !A−→ k is a morphism of !-coalgebras is
exhibited by the diagram

!!A !k

!A k

!A k

d

!ε

d
ε

δA

1

ε

1

u

where we use that ε is a morphism of coalgebras.

We conclude that V has the structure of a differential storage category, in the sense of Blute et
al. (2006, Definition 4.10).

Theorem 5.9. With the above structure V is a differential storage category.

Proof. We have shown V is an additive storage category (Blute et al. 2006, Definition 4.4), with a
deriving transformation satisfying the ∇-rule (Lemma 3.15) so we are done.

5.1 Cartesian differential categories
The Kleisli category of the comonad ! on V is equivalent to the category of cofree coalgebras; for
the reader’s convenience, we recall the proof in Appendix A. Under this equivalence, the tensor
product of coalgebras, which gives the categorical product inCoalgk by Sweedler (1969, p. 49, 65),
corresponds to the product (X, Y) �→ X ⊕ Y on the Kleisli category.
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By Blute et al. (2009, Proposition 3.2.1), the Kleisli category V! is a Cartesian differential
category. In order to describe the Cartesian differential structure, recall that there is a bijection

Coalgk(!X, !Y)
∼= �� Homk (!X, Y)= V!(X, Y)

F �−→ dY ◦ F .

The Cartesian differential operator on V! prescribed by Blute et al. (2009) is a function

DX,Y : V!(X, Y)−→ V!(X × X, Y)

which may be viewed as a function

Homk (!X, Y)−→Homk (!(X ⊕ X), Y)

or equivalently as a function

Coalgk(!X, !Y)−→Coalgk(!X ⊗ !X, !Y) .

In the following, we write DX for both the deriving transformation !X ⊗ X −→ !X and the map
obtained from DX by precomposing with the swap σ!X,X . By definition DX,Y assigns to a linear
map f : !X −→ Y the composite

!X ⊗ !X
∼=�

��

Y

!(X ⊕ X)
	

�� !(X ⊕ X)⊗ !(X ⊕ X) !π0⊗!π1
�� !X ⊗ !X

dX⊗1
�� X ⊗ !X

DX
�� !X

f

��

where DX is the deriving transformation, � is the canonical isomorphism of Lemma 3.11 and
πi : X ⊕ X −→ X denote the projections. In our case, we can simplify this definition. Recall that
a Cartesian differential category (Blute et al. 2009, Definition 2.1.4) is a Cartesian left additive
category equipped with a Cartesian differential operator, denoted here by D. The left additive
structure plus (−,−) on V! is given by Blute et al. (2009, Proposition 1.3.3) from the Cartesian
and additive structure on V (the usual ⊕ and +) as follows: given F,G ∈Coalgk(!X, !Y) we define
plus (F,G) ∈Coalgk(!X, !Y) to be the unique morphism of coalgebras with

dY ◦ plus (F,G)= dY ◦ (F +G) .

Lemma 5.10. The composite

!X ⊗ !X �

∼=
�� !(X ⊕ X) 	 �� !(X ⊕ X)⊗ !(X ⊕ X) !π0⊗!π1 �� !X ⊗ !X

is the identity map.

https://doi.org/10.1017/S0960129520000134 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000134


448 J. Clift and D. Murfet

Proof. We can see this by direct calculation (see Definition 2.14 for notation):
(!π0 ⊗ !π1) ◦	 ◦� (|v1, ..., vs〉P ⊗ |w1, ...,wt〉Q

)
= (!π0 ⊗ !π1) ◦	

(|(v1, 0), ..., (vs, 0), (0,w1), ..., (0,wt)〉(P,Q)
)

= (!π0 ⊗ !π1)
∑
I⊆[s]

∑
J⊆[t]

|vI ,wJ〉(P,Q) ⊗ |vIc ,wJc〉(P,Q)

=
∑
I⊆[s]

∑
J⊆[t]

δJ=∅|vI〉P ⊗ δIc=∅|wJc〉Q

=
∑
I⊆[s]

∑
J⊆[t]

δJc=[t]δI=[s]|vI〉P ⊗ |wJc〉Q

= |v1, ..., vs〉P ⊗ |w1, ...,wt〉Q
which proves the claim.

The upshot is that (Blute et al. 2009, Proposition 3.2.1) implies the following Cartesian
differential operator makes V! into a Cartesian differential category:

Definition 5.11. The Cartesian differential operator
DX,Y : V!(X, Y)−→ V!(X × X, Y)

sends a linear map f : !X −→ Y to the linear map

!(X ⊕ X) �−1

∼=
�� !X ⊗ !X dX⊗1 �� X ⊗ !X DX �� !X f �� Y

Direct computation shows that
DX,Y ( f )

(|v1, ..., vs〉P ⊗ |w1, ...,wt〉Q
)

= fD(d ⊗ 1)
(|v1, ..., vs〉P ⊗ |w1, ...,wt〉Q

)
= fD(δs=0P ⊗ |w1, ...,wt〉Q + δs=1v1 ⊗ |w1, ...,wt〉Q)
= δs=0f |P,w1, ...,wt〉Q + δs=1f |v1,w1, ...,wt〉Q.

and the lifting of DX,Y ( f ) to a morphism of coalgebras !(X ⊕ X)−→ !Y may be described
explicitly using Murfet (2015, Theorem 2.22).

Next, we show that V! together with the mapsDX,Y is a Cartesian closed differential category in
the sense of Blute et al. (2009, Section 1.4). First, we recall the closed structure on V!. The closed
structure on the Kleisli category is well known, see for example, the general treatment in Blute
et al. (2015). Throughout, A, B denote arbitrary vector spaces.

Definition 5.12. Let �A,B denote the unique morphism of coalgebras making

!A⊗ !Homk(!A, B) !A⊗Homk(!A, B)

!B B

1⊗d

�A,B ev

d

commute, where we take the usual coalgebra structure on the tensor product.

Definition 5.13. We define
HOM(A, B)=Homk(!A, B) .
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Given a morphism f ∈ V!(B, B′), that is a linear map f : !B−→ B′, we define
HOM(A, f ) ∈ V!(HOM(A, B), HOM(A, B′))=Homk

(!Homk (!A, B), Homk (!A, B′)
)

to be the linear map corresponding under the Hom-tensor adjunction to f ◦ �A,B.

Again, this may be computed explicitly using Murfet (2015, Theorem 2.22), but we will not
need the formulas here.

Lemma 5.14. HOM(A,−) is a functor V! −→ V!.

Proof. To show HOM(A, 1B)= 1HOM(A,B), we have to show that ev ◦(1⊗ d) corresponds under
the Hom-tensor adjunction to the dereliction d : !Homk(!A, B)−→Homk(!A, B). This we can do
by direct calculation: the map ev ◦(1⊗ d) is

|v1, ..., vs〉P ⊗ |ζ1, ..., ζt〉α �→ δt=0α|v1, ..., vs〉P + δt=1ζ1|v1, ..., vs〉P, (39)

which agrees with the dereliction on !Homk(!A, B). Now suppose given linear maps g : !B′ −→ B′′
and f : !B−→ B′, and let • denote the Kleisli composition. To show that

HOM(A, g) •HOM(A, f )=HOM(A, g • f ), (40)

we first observe g • f is the linear map

!B δ−−−−−−→ !!B !f−−−−−−→ !B′ g−−−−−−→ B′′

and the left-hand side of (40) is the composite

!Homk(!A, B) δ−−−−−−→ !!Homk(!A, B) !HOM(A,f )−−−−−−→ !Homk(!A, B′)
HOM(A,g)−−−−−−→Homk(!A, B′′)

which corresponds under the Hom-tensor adjunction to the left-hand vertical composite in the
following commutative diagram

!A⊗ !Homk(!A, B)

!A⊗ !!Homk(!A, B) !A⊗ !Homk(!A, B)

!A⊗ !Homk(!A, B′) !A⊗Homk(!A, B′)

!A⊗Homk(!A, B′′) B′

B′′ !B′

1⊗δ 1

1⊗d

1⊗!HOM(A,f ) 1⊗HOM(A,f )

1⊗d

�A,B′

1⊗HOM(A,g) ev

ev d

g

So to prove (40), it suffices to show

�A,B′ ◦ (1⊗ !HOM(A, f )) ◦ (1⊗ δ)= !f ◦ δ ◦ �A,B.
But both sides are morphisms of coalgebras, so we may compare them after post-composition
with d, and this reduces to ev ◦(1⊗HOM(A, f ))= f ◦ �A,B which is true by definition.
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Lemma 5.15. The functorHOM(A,−) : V! −→ V! is right adjoint to − ×A.

Proof. Recall that − ×A as a functor on V! sends f : !B−→ B′ to the linear map

f ×A : !(B⊕A)∼= !B⊗ !A F⊗1−−−−−−→ !B′ ⊗ !A∼= !(B′ ⊕A) d−−−−−−→ B′ ⊕A

where F is the morphism of coalgebras lifting f , given explicitly by Murfet (2015, Theorem
2.22). Given v1, ..., vs, P ∈A and ω1, ...,ωt ,Q ∈ B and writing P[t] for the set of partitions of
[t]= {1, . . . , t} we may calculate f ×A as the map

|w1, ...,wt〉Q ⊗ |v1, ..., vs〉P F⊗1�−−−−→
∑

C∈P[t]

∣∣∣∣∣∏
c∈C

f |wc〉Q
〉
f |∅〉Q

⊗ |v1, ..., vs〉P

��−−−−→
∑

C∈P[t]

∣∣∣∣∣∏
c∈C

f |wc〉Q, v1, ..., vs
〉
( f |∅〉Q,P)

d�−−−−→ δs=t=0( f |∅〉Q, P)+ δs=0,t>0( f |w1, ...,wt〉Q, 0)
+ δs=1,t=0(0, v1).

So in summary:

( f ×A)(|w1, ...,wt〉Q ⊗ |v1, ..., vs〉P)
= (
δs=t=0f |∅〉Q + δs=0,t>0f |w1, ...,wt〉Q, δs=t=0P + δs=1,t=0v1

)
.

We have bijections for vector spaces A, B, C

Coalgk(!C ⊗ !A, !B)∼=Homk(!C ⊗ !A, B)
∼=Homk(!C, Homk(!A, B))
∼=Coalgk(!C, !Homk(!A, B))
=Coalgk(!C, !HOM(A, B)),

and hence a bijection

V!(C ×A, B)∼= V!(C, HOM(A, B)). (41)

The question that remains is whether these bijections are natural in C, B. Clearly, they are natural
in C. To prove naturality in B, we have to show that for a linear map f : !B−→ B′

V!(C ×A, B) V!(C, HOM(A, B))

V!(C ×A, B′) V!(C, HOM(A, B′))

∼=

V!(1,f ) V!(1,HOM(A,f ))

∼=

commutes. That is, given a morphism of coalgebras γ : !C ⊗ !A−→ !B, we have to show

HOM(A, f ) ◦ prom (d̃ ◦ γ )= ˜f ◦ γ : !C −→Homk(!A, B′) (42)

where z̃ denotes the morphism corresponding to z under the Hom-tensor adjunction. For this,
consider the diagram
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!A⊗ !C

!A⊗Homk(!A, B) !A⊗ !Homk(!A, B)

B !A⊗Homk(!A, B′)

!B B′

γ

1⊗prom (̃d◦γ )
1⊗̃d◦γ

ev 1⊗HOM(A,f )

1⊗d

�A,B

evd

f

From the calculation

d ◦ �A,B ◦ (1⊗ prom (d̃ ◦ γ ))= ev ◦(1⊗ d) ◦ prom (d̃ ◦ γ )
= ev ◦(1⊗ d̃ ◦ γ )
= d ◦ γ

we deduce that�A,B ◦ (1⊗ prom (d̃ ◦ γ ))= γ since both sides are morphisms of coalgebras. From
this and the above diagram, we easily deduce (42).

Lemma 5.16. With the above structure V! is a Cartesian closed left additive category.

Proof. We need to show that

V!(A× B, C)
∼=−−−−−−→ V!(A, HOM(B, C))

is an isomorphism of monoids. But this map is the Hom-tensor adjunction

Homk(!A⊗ !B, C) ∼=−−−−−−→Homk(!A, Homk(!B, C))
which is linear, so this is clear.

Theorem 5.17. V! is a differential λ-category (Bucciarelli et al. 2010, Definition 4.4) and thus a
model of the simply typed differential λ-calculus (Bucciarelli et al. 2010, Section 4.3).

Proof. First, we observe that V! is a Cartesian closed differential category in the sense of Bucciarelli
et al. (2010, Definition 4.2). It is a Cartesian closed left additive category, and we have already
observed in Section 5.1 it has an operatorDX,Y (−) satisfying the axioms of a Cartesian differential
category. It remains to check the axiom (D-Curry) which says given f : C ×A−→ B in V! and
denoting currying by�, that

D(�f )=�(D( f ) ◦ 〈π1 × 0A, π2 × 1A〉). (43)

Here�f : C −→HOM(A, B) and so D(�f ) : C × C −→HOM(A, B), whereas the right-hand side
corresponds under adjunction to

(C × C)×A 〈π1×0A,π2×1A〉−−−−−−−−−→ (C ×A)× (C ×A)
D( f )−−−−−−→ B. (44)
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In V , this map is the composition of (where 0A denotes the lift of 0 : !A−→A)

!C ⊗ !C ⊗ !A
∼=
��

!C ⊗ !A⊗ !C ⊗ !A

!(C ⊕ C)⊗ !A
	⊗	

��
!(C ⊕ C)⊗ !(C ⊕ C)⊗ !A⊗ !A ∼=

�� !(C ⊕ C)⊗ !A⊗ !(C ⊕ C)⊗ !A

!π1⊗!0A⊗!π2⊗1!A

��

with D( f ) which is

!C ⊗ !A⊗ !C ⊗ !A
∼=
��

B

!(C ⊕A)⊗ !(C ⊕A)

dC⊕A⊗1
��

(C ⊕A)⊗ !(C ⊕A)
DC⊕A �� !(C ⊕A)

f

��

As above we write [n]= {1, . . . , n}. This composite is the linear map !C ⊗ !C ⊗ !A−→ B given by
the formula

|α1, ..., αr〉P ⊗ |β1, ..., βs〉Q ⊗ |γ1, . . . , γt〉R
�−→ |α1, ..., αr , β1, ..., βs〉(P,Q) ⊗ |γ1, . . . , γt〉R
	⊗	�−−−−→

∑
A⊆[r]

∑
B⊆[s]

∑
C⊆[t]

|αA, βB〉(P,Q) ⊗ |αAc , βBc〉(P,Q) ⊗ |γC〉R ⊗ |γCc〉R

�−→
∑
A,B,C

|αA, βB〉(P,Q) ⊗ |γC〉R ⊗ |αAc , βBc〉(P,Q) ⊗ |γ c
C〉R

�−→
∑
A,B,C

δB=∅|αA〉P ⊗ δC=∅|∅〉0 ⊗ δAc=∅|βBc〉Q ⊗ |γ c
C〉R

= |α1, . . . , αr〉P ⊗ |∅〉0 ⊗ |β1, . . . , βs〉Q ⊗ |γ1, . . . , γt〉R
�−→ |α1, . . . , αr〉(P,0) ⊗ |β1, . . . , βs, γ1, . . . , γt〉(Q,R)

d⊗1�−−−−→ δr=0(P, 0)⊗ |β1, . . . , βs, γ1, . . . , γt〉(Q,R)
+ δr=1α⊗ |β1, . . . , βs, γ1, . . . , γt〉(Q,R)

D�−−−−→ δr=0|P, β1, . . . , βs, γ1, . . . , γt〉(Q,R)
+ δr=1|α, β1, . . . , βs, γ1, . . . , γt〉(Q,R)

f�−−−−→ δr=0f |P, β1, . . . , βs, γ1, . . . , γt〉(Q,R)
+ δr=1f |α, β1, . . . , βs, γ1, . . . , γt〉(Q,R) .

On the other hand, D(�f ) is the linear map

!C ⊗ !C d⊗1 �� C ⊗ !C D �� !C �f �� Homk (!A, B)
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which sends |α1, ..., αr〉P ⊗ |β1, ..., βs〉Q to the linear map

|γ1, . . . , γt〉R �−→ f
((
δr=0|P, β1, . . . , βs〉Q + δr=1|α, β1, . . . , βs〉Q

) ⊗ |γ1, . . . , γt〉R
)

This corresponds under adjunction to the linear map !C ⊗ !C ⊗ !A−→ B computed above,
completing the proof.

Notes
1 The formal theory of coalgebras is simpler over algebraically closed fields, which explains whywe use k=C in our examples,
but this is not really important: one could work over k=R by taking C-points into account in the explicit description of the
cofree coalgebra.

Acknowledgements. Thanks to Kazushige Terui, who stimulated this project by asking if the cofree coalgebra gave a model
of differential linear logic, and the anonymous referees whose suggestions improved the exposition.
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Appendix A. Kleisli Categories and Coalgebras
For background on (co)monads and their (co)algebras, see Borceux (1994, Section 4.1). Let
! : V −→ V be the comonad discussed above, and δ : ! −→ !! the natural transformation of
Definition 2.16.

Lemma A.1. Given a vector space V, there is a bijection between cocommutative counital coalgebra
structures on V and !-coalgebra structures on V.

Proof. Suppose (V ,	, ε) is such a coalgebra. There is a unique morphism of coalgebras ϕ	,ε :
V −→ !V such that dV ◦ ϕ	,ε = 1V , and moreover,

V !V

!V !!V

ϕ	,ε

ϕ	,ε δV

!ϕ	,ε

is easily seen to commute, so (V , ϕ	,ε) is a !-coalgebra. Then (	, ε) �→ ϕ	,ε is our claimed
bijection. Given a !-coalgebra (V , ϕ) define	 as the composite

V !V !V ⊗ !V V ⊗V ,ϕ 	 d⊗d

and ε as

V !V k.ϕ ε

From commutativity of

V !V

V
1

ϕ

d

V !V

!V !!V

ϕ

ϕ δV

!ϕ
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we deduce commutativity of

V !V !V ⊗ !V

!V !!V !!V ⊗ !!V

!V ⊗ !V V ⊗V !V ⊗ !V

ϕ

ϕ

	

δV δV⊗δV 1!ϕ

	

	

d⊗d!ϕ⊗!ϕ

d⊗d ϕ⊗ϕ
That is,

	 ◦ ϕ = (ϕ ⊗ ϕ) ◦ (d ⊗ d) ◦	 ◦ ϕ (A1)
We use this to prove coassociativity of (V ,	, ε) as follows. We must show that

V !V !V ⊗ !V V ⊗V

!V !V ⊗V

!V ⊗ !V !V ⊗ !V ⊗V

V ⊗V V ⊗ !V V ⊗ !V ⊗ !V V ⊗V ⊗V

ϕ

ϕ

	 d⊗d

ϕ⊗1

	 	⊗1

d⊗d d⊗d⊗1

1⊗ϕ 1⊗	 1⊗d⊗d

commutes, or stated differently, that the two ways around the outside of the following diagram
agree when precomposed with (d ⊗ d) ◦	 ◦ ϕ:

V ⊗V V ⊗ !V V ⊗ !V ⊗ !V

!V ⊗ !V !V ⊗ !V ⊗ !V

!V ⊗ !V ⊗ !V

!V ⊗V !V ⊗ !V ⊗V V ⊗V ⊗V

1⊗ϕ

ϕ⊗1

1⊗	

ϕ⊗1

1⊗d⊗d

1⊗	

	⊗1

( † )

d⊗1⊗1

1⊗1⊗d

1
1⊗ϕ

	⊗1 d⊗d⊗1

In this diagram every square but the one marked ( † ) commutes. Now precomposing both ways
around this diagram with (d ⊗ d) ◦	 ◦ ϕ amounts to precomposing the two ways around the
triangle ( † ) with the right hand side of (A1) and therefore to precomposing with 	 ◦ ϕ. But by
coassociativity of 	, the two ways around ( † ) agree when precomposed with 	. The usphot is
that the above diagram commutes, when precomposed with (d ⊗ d) ◦	 ◦ ϕ.

For counitality we need

V !V !V ⊗ !V V ⊗V

!V k⊗ !V !V ⊗V

V k⊗V

ϕ

1

	

1

d⊗d

ε⊗1
1⊗d

ϕ⊗1
∼=

d 1⊗d
ε⊗1

∼=
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to commute, which is clear from the given decomposition. For cocommutativity of 	 we need
commutativity of

V !V !V ⊗ !V V ⊗V

!V !V ⊗ !V V ⊗V

ϕ

ϕ

	

1

d⊗d

σ σ

	 d⊗d

which is again clear. We have now assigned to any !-coalgebra structure ϕ on V a coalgebra
structure	ϕ , εϕ . Next we observe that the assignments

(	, ε) �−→ ϕ	,ε , ϕ �−→ (	ϕ , εϕ)
are mutually inverse. Clearly given (	, ε) the diagrams

V !V !V ⊗ !V V ⊗V

V ⊗V

ϕ	,ε

	

	 d⊗d

ϕ	,ε⊗ϕ	,ε

1

V !V kϕ	,ε

ε

ε

show that	ϕ	,ε =	 and εϕ	,ε = ε. Given ϕ we observe that ϕ : (V ,	ϕ , εϕ)−→ !V is a morphism
of coalgebras and satisfies d ◦ ϕ = 1, which completes the proof.

Lemma A.2. Let (V , ϕ), (W,ψ) be !-coalgebras and (V ,	ϕ , εϕ), (W,	ψ , εψ ) the associated coal-
gebras. A linear map f :V −→W is a morphism of !-coalgebras if and only if it is a morphism of
coalgebras.

Proof. To say f is a morphism of !-coalgebras is to say
V !V

W !W

ϕ

f !f

ψ

(*)

commutes, whereas to say f is a morphism of coalgebras is to say

V V ⊗V

W W ⊗W

	ϕ

f f⊗f

	ψ

V k

W

f

εϕ

εψ
(†)

commute. If ( ∗ ) commutes it is clear that the diagrams in ( † ) commute. Conversely suppose the
diagrams in ( † ) commute. We know then that ϕ,ψ are morphisms of coalgebras, so it suffices to
check ( ∗ ) commutes after post composition by d, which is trivial.

Recall that for a comonad T on a category C we have the Kleisli category CT and the Eilenberg-
Moore category C T (Borceux 1994, Section 4.1). Note that a comonad on C is the same thing as a
monad on Cop. Explicitly, CT is the category with

• obCT = obC ,
• CT(x, y)= C (Tx, y),
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• idCT
x ∈ C (Tx, x) is the counit ε,

• CT(y, z)× CT(x, y)−→ CT(x, z) is (g, f ) �→ g ◦ T( f ) ◦ δX , where δ : T −→ TT.

while C T is category of coalgebras for T as defined in (38). There is a fully faithful functor CT −→
C T defined by X �→ (TX, δX).

Proposition A.3. V ! is isomorphic to Coalgk.

Proof. We define F : V ! −→Coalgk by F(V , ϕ)= (V ,	ϕ , εϕ) and G :Coalgk −→ V ! by
G(V ,	, ε)= (V , ϕ	,ε) in the above notation. On morphism sets both of F and G are the identity
(Lemma A.2). Clearly F ◦G= 1 and G ◦ F = 1.

Corollary A.4. V! is equivalent to the full subcategory of cofree coalgebras in Coalgk.

Proof. This is immediate from the above but can also be seen directly using
Coalgk(!A, !B)∼=Homk (!A, B)∼= V!(A, B).

Cite this article: Clift J and Murfet D (2020). Cofree coalgebras and differential linear logic. Mathematical Structures in
Computer Science 30, 416–457. https://doi.org/10.1017/S0960129520000134
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