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This paper concerns a relatively new combinatorial structure called staircase tableaux. They

were introduced in the context of the asymmetric exclusion process and Askey–Wilson

polynomials; however, their purely combinatorial properties have gained considerable

interest in the past few years.

In this paper we further study combinatorial properties of staircase tableaux. We consider

a general model of random staircase tableaux in which symbols (Greek letters) that appear

in staircase tableaux may have arbitrary positive weights. (We consider only the case with

the parameters u = q = 1.) Under this general model we derive a number of results. Some

of our results concern the limiting laws for the number of appearances of symbols in a

random staircase tableaux. They generalize and subsume earlier results that were obtained

for specific values of the weights.

One advantage of our generality is that we may let the weights approach extreme values

of zero or infinity, which covers further special cases appearing earlier in the literature.

Furthermore, our generality allows us to analyse the structure of random staircase tableaux,

and we obtain several results in this direction.

One of the tools we use is the generating functions of the parameters of interest. This

leads us to a two-parameter family of polynomials, generalizing the classical Eulerian

polynomials.

We also briefly discuss the relation of staircase tableaux to the asymmetric exclusion

process, to other recently introduced types of tableaux, and to an urn model studied by a

number of researchers, including Philippe Flajolet.
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Figure 1. A staircase tableau of size 8; its weight is α5β2δ3γ3.

1. Introduction

This paper considers a combinatorial structure introduced recently by Corteel and

Williams [17, 18] and called staircase tableaux. (The definition is given below.) The original

motivations were in connection with the asymmetric exclusion process (ASEP) on a one-

dimensional lattice with open boundaries, an important model in statistical mechanics

(see below for a brief summary and [18] for the full story). The generating function

for staircase tableaux was also used to give a combinatorial formula for the moments

of the Askey–Wilson polynomials (see [18, 14] for details). Further work includes [11]

where special situations in which the generating function of staircase tableaux took a

particularly simple form were considered. Furthermore, [19] deals with the analysis of

various parameters associated with appearances of the Greek letters α, β, δ, and γ in

a randomly chosen staircase tableau (see below, or [18, Section 2], for example, for the

definitions and the meaning of these symbols).

The purpose of this paper is to continue the study of properties of staircase tableaux,

regarding them as interesting combinatorial objects in themselves.

We recall the definition of a staircase tableau introduced in [17, 18].

Definition 1.1. A staircase tableau of size n is a Young diagram of shape (n, n− 1, . . . , 2, 1)

whose boxes are filled according to the following rules:

(Si) each box is either empty or contains one of the letters α, β, δ, or γ,

(Sii) no box on the diagonal is empty,

(Siii) all boxes in the same row and to the left of a β or a δ are empty,

(Siv) all boxes in the same column and above an α or a γ are empty.

An example of a staircase tableau is given in Figure 1.

The set of all staircase tableaux of size n will be denoted by Sn. There are several proofs

of the fact that the number of staircase tableaux |Sn| = 4nn!; see, e.g., [14, 11, 19] for

some of them, or (1.5) below and its proof in Section 5.

Given a staircase tableau S , we let Nα,Nβ,Nγ,Nδ be the numbers of symbols α, β, γ, δ

in S (we also use the notation Nα(S), . . . ). By (Siv), each column contains at most one α

or γ, and thus Nα + Nγ � n. Similarly, by (Siii), each row contains at most one β or δ so

Nβ + Nδ � n. Together with (Sii) this yields

n � Nα + Nβ + Nγ + Nδ � 2n. (1.1)
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Figure 2. The staircase tableau in Figure 1 filled with us and qs and its type;

the weight is α5β2δ3γ3u13q10 and the type is ◦ ◦ ◦ • • • ◦ •.

In fact, as is seen from (1.5) below, the maximum of Nα + Nβ + Nγ + Nδ is 2n− 1; see

also Example 3.7 and Section 8. Note that there are n(n + 1)/2 boxes in a staircase tableau

in Sn. Hence, in a large staircase tableau, only a small proportion of the boxes are filled.

As mentioned earlier, staircase tableaux were introduced in [17, 18] in connection with

the asymmetric exclusion process (ASEP); as a background, we give some details here.

The ASEP is a Markov process describing a system of particles on a line with n sites

1, . . . , n; each site may contain at most one particle. Particles jump one step to the right

with intensity u and to the left with intensity q, provided the move is to a site that is

empty; moreover, new particles enter site 1 with intensity α and site n with intensity δ,

provided these sites are empty, and particles at site 1 and n leave the system at rates γ

and β, respectively. (There is also a discrete-time version.) See further [18], which also

contains references and information on applications and connections to other branches

of science.

Explicit expressions for the steady-state probabilities of the ASEP were first given in

[20]. Corteel and Williams [18] gave an expression using staircase tableaux, their weight

wt(S) and their generating function. We first fill the tableau S by labelling the empty

boxes of S with us and qs as follows. First, we fill all the boxes to the left of a β with us,

and all the boxes to the left of a δ with qs. Then, we fill the remaining boxes above an

α or a δ with us, and the remaining boxes above a β or a γ with qs. When the tableau

is filled, its weight, wt(S), is defined as the product of labels of the boxes of S; this is

thus a monomial of degree n(n + 1)/2 in α, β, γ, δ, u and q. For example, Figure 2 shows

the tableau in Figure 1 filled with us and qs; its weight is α5β2δ3γ3u13q10. We then let

Zn(α, β, γ, δ, q, u) be the total weight of all filled staircase tableaux of size n, i.e.,

Zn(α, β, γ, δ, q, u) =
∑
S∈Sn

wt(S). (1.2)

We define the type of a staircase tableau S of size n to be a word of the same size

on the alphabet {•, ◦} (representing occupied and unoccupied sites, respectively) obtained

by reading the diagonal boxes from northeast (NE) to southwest (SW) and writing • for

each α or δ, and ◦ for each β or γ. (Thus a type of a tableau is a possible state for the

ASEP.) Figure 2 shows the tableau of Figure 1 and its type: ◦ ◦ ◦ • • • ◦ •.
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As Corteel and Williams [18, 17] have shown, the steady-state probability that the

ASEP is in state σ is

Zσ(α, β, γ, δ, q, u)

Zn(α, β, γ, δ, q, u)
,

where

Zσ(α, β, γ, δ, q, u) =
∑

S of type σ

wt(S).

In the present paper, we will study staircase tableaux and the Greek letters in them,

ignoring the u and q in the connection to ASEP above (i.e., we consider Figure 1 rather

than Figure 2). We will thus use the simplified versions of wt(S) and Zn obtained by

putting u = q = 1. That is, we let

wt(S) := αNαβNβ γNγδNδ . (1.3)

The generating function

Zn(α, β, γ, δ) :=
∑
S∈Sn

wt(S) (1.4)

has a particularly simple form, that is (see [14, 11]),

Zn(α, β, δ, γ) =

n−1∏
i=0

(
α + β + δ + γ + i(α + γ)(β + δ)

)
. (1.5)

(A proof is included in Section 5.) In particular, the number of staircase tableaux of size

n is

Zn(1, 1, 1, 1) =

n−1∏
i=0

(4 + 4i) = 4nn!,

as stated above. (We use α, β, γ, δ as fixed symbols in the tableaux, and in Nα, . . . , Nδ , but

otherwise as variables or real-valued parameters. This should not cause any confusion.)

Other special cases for which there is a simple form are discussed in [11] and [14].

Note that the symbols α and γ have exactly the same role in the definition above of

staircase tableaux, and so do β and δ. (This is no longer true in the connection to the

ASEP, which is the reason for using four different symbols in the definition.) We say

that a staircase tableau using only the symbols α and β is an α/β-staircase tableau, and

we let S̄n ⊂ Sn be the set of all α/β-staircase tableaux of size n. We thus see that any

staircase tableau can be obtained from an α/β-staircase tableau by replacing some (or

no) α by γ and some (or no) β by δ; conversely, any staircase tableau can be reduced to

an α/β-staircase tableau by replacing every γ by α and every δ by β.

There are also connections with other types of tableaux, namely permutation tableaux

(see, e.g., [48, 13, 15, 16, 12, 33]), alternative tableaux [39] and tree-like tableaux [1]. These

tableaux are Young diagrams (of arbitrary shape) with some symbols added according

to specific rules; for definitions see the references given above. The size of one of these

is measured by its length, which is the sum of the number of rows and the number of

columns. There are bijections between the α/β-staircase tableaux of size n, the alternative

tableaux of length n and the permutation tableaux of length n + 1 [18, Appendix], as
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Table 1. Some correspondences between different types of tableaux

Alternative Permutation Tree-like Staircase

tableaux tableaux tableaux tableaux

# rows # rows −1 # rows −1 A

# columns # columns # columns −1 B

# free rows # unrestricted rows −1 # left points n−Nβ

# free columns # top ones # top points n−Nα

#← # restricted rows −1 # empty left cells Nβ − B

# ↑ # top zeros # empty top cells Nα − A

well as between these and the tree-like tableaux of length n + 2 [1]. (In particular, the

numbers of tableaux of these four types are the same, i.e., (n + 1)!. In fact, there are also

several bijections between these objects and permutations of size n + 1 [48, 13, 39, 11, 1].)

Some parameters are easily translated by these bijections: Table 1 gives some important

examples from [18, 1]. (See these references for definitions; A and B denote, as below, the

numbers of α and β on the diagonal in a staircase tableaux.) Further, see Example 3.3

below.

We define the generating function of α/β-staircase tableaux by

Zn(α, β) :=
∑
S∈S̄n

wt(S) = Zn(α, β, 0, 0), (1.6)

and note that the relabelling argument just given implies

Zn(α, β, γ, δ) = Zn(α + γ, β + δ). (1.7)

We let xn denote the rising factorial defined by

xn := x(x + 1) · · · (x + n− 1) = Γ(x + n)/Γ(x), (1.8)

and note that by (1.5),

Zn(α, β) = Zn(α, β, 0, 0) =

n−1∏
i=0

(α + β + iαβ) = αnβn(α−1 + β−1)n

= αnβn Γ(n + α−1 + β−1)

Γ(α−1 + β−1)
.

(1.9)

In particular, as noted in [11] and [14], the number of α/β-staircase tableaux is

Zn(1, 1) = 2n = (n + 1)!.

Dasse-Hartaut and Hitczenko [19] studied random staircase tableaux obtained by

picking a staircase tableau in Sn uniformly at random. We can obtain the same result by

picking an α/β-staircase tableau in S̄n at random with probability proportional to 2Nα+Nβ

and then randomly replacing some symbols; each α is replaced by γ with probability 1/2,

and each β by δ with probability 1/2, with all replacements independent. Note that the

weight 2Nα+Nβ is the weight (1.3) if we choose the parameters α = β = 2. The purpose of

this paper, more generally, is to study random α/β-staircase tableaux defined similarly

with weights of this type for arbitrary parameters α, β � 0. (As we will see in Section 3,

this includes several cases considered earlier. It will also be useful in studying the structure

of random staircase tableaux; see Section 6.) We generalize several results from [19].
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Definition 1.2. Let n � 1 and let α, β ∈ [0,∞) with (α, β) 	= (0, 0). Then Sn,α,β is the random

α/β-staircase tableau in S̄n with the distribution

Pα,β(Sn,α,β = S) =
wt(S)

Zn(α, β)
=

αNα(S )βNβ (S )

Zn(α, β)
, S ∈ S̄n. (1.10)

We also allow the parameters α = ∞ or β = ∞; in this case (1.10) is interpreted as the limit

when α→∞ or β →∞, with the other parameters fixed. Similarly, we allow α = β = ∞;

in this case (1.10) is interpreted as the limit when α = β → ∞. See also Examples 3.5–3.7

and Section 8. (In the case α = β = ∞, we tacitly assume n � 2 or sometimes even n � 3

to avoid trivial complications.)

Remark 1.3. There is a symmetry (involution) S �→ S† of staircase tableaux defined by

reflection in the NW–SE diagonal, thus interchanging rows and columns, together with

an exchange of the symbols by α↔ β and γ ↔ δ; see also [11]. This maps S̄n onto itself,

and maps the random α/β-staircase tableau Sn,α,β to Sn,β,α; the parameters α and β thus

play symmetric roles.

Remark 1.4. We can similarly define a random staircase tableaux Sn,α,β,γ,δ , with four para-

meters α, β, γ, δ � 0, by picking a staircase tableau S ∈ Sn with probability

wt(S)/Zn(α, β, γ, δ). By the argument above, this is the same as taking a random Sn,α+γ,β+δ

and randomly replacing each symbol α by γ with probability γ/(α + γ), and each β by

δ with probability δ/(β + δ). (The case α = β = γ = δ = 1 was mentioned above.) Our

results can thus be translated to results for Sn,α,β,γ,δ , but we leave this to the reader.

Remark 1.5. For convenience (as a base case in inductions) we also allow n = 0; S0 = S̄0

contains a single, empty staircase tableaux with Nα = Nβ = Nγ = Nδ = 0 and thus weight

wt = 1, so Z0 = 1. (In some places, e.g. in Section 8, we assume n � 1 to avoid trivial

complications.)

Remark 1.6. It seems natural to use the parameters α and β as above in Definition 1.2.

However, in many of our results it is more convenient, and sometimes perhaps more

natural, to use α−1 and β−1 instead. We will generally use the notations a := α−1 and

b := β−1, and formulate results in terms of these parameters whenever convenient.

We state the main results in Section 2 and discuss some examples in Section 3.

Section 4 contains further preliminaries, and the proofs of the theorems are given in

Section 5. Sections 6 and 7 contain further results on subtableaux and on the positions of

the symbols in a random staircase tableau. Finally, the limiting case α = β = ∞ is studied

in greater detail in Section 8.

2. Main results

We are interested in the distribution of various parameters of Sn,α,β . In particular, we

define A(S) and B(S) as the numbers of α and β, respectively, on the diagonal of
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Table 2. The coefficients va,b(n, k) of Pn,a,b for small n

n\k 0 1 2 3

0 1

1 a b

2 a2 a + b + 2ab b2

3 a3 a + b + 3a2 + 3ab + 3a2b a + b + 3ab + 3b2 + 3ab2 b3

an α/β-staircase tableau S , and consider the random variables An,α,β := A(Sn,α,β) and

Bn,α,β := B(Sn,α,β); note that An,α,β + Bn,α,β = n by (Sii), so it suffices to consider one of

these. Moreover, by Remark 1.3, Bn,α,β
d
= An,β,α.

In order to describe the distribution of An,α,β , we need some further notation. Define

numbers va,b(n, k), for a, b ∈ R, k ∈ Z and n = 0, 1, . . . , by the recursion

va,b(n, k) = (k + a)va,b(n− 1, k) + (n− k + b)va,b(n− 1, k − 1), n � 1, (2.1)

with va,b(0, 0) = 1 and va,b(0, k) = 0 for k 	= 0: see Table 2. (It is convenient to define va,b(n, k)

for all integers k ∈ Z, but note that va,b(n, k) = 0 for k < 0 and k > n, for all n � 0, so it

really suffices to consider 0 � k � n.) These numbers were defined and studied by Carlitz

and Scoville [9]. (Their notation is A(n− k, k | a, b).) Furthermore, define polynomials

Pn,a,b(x) :=

n∑
k=0

va,b(n, k)xk =

∞∑
k=−∞

va,b(n, k)xk. (2.2)

Thus, P0,a,b(x) = 1. Moreover, the recursion (2.1) is easily seen to be equivalent to the

recursion

Pn,a,b(x) =
(
(n− 1 + b)x + a

)
Pn−1,a,b(x) + x(1− x)P ′n−1,a,b(x), n � 1. (2.3)

In the cases (a, b) = (1, 0), (0, 1) and (1, 1), the numbers va,b(n, k) are the Eulerian numbers

and Pn,a,b(x) are the Eulerian polynomials (in different versions). We can thus see va,b(n, k)

and Pn,a,b(x) as generalizations of Eulerian numbers and polynomials. Some properties of

these numbers and polynomials are given in Section 4, where we also discuss some other

special cases.

In the case a = b = 0, we trivially have v0,0(n, k) = 0 and Pn,0,0 = 0 for all n � 1; in this

case we define the substitutes, for n � 2,

ṽ0,0(n, k) := v1,1(n− 2, k − 1) (2.4)

and

P̃n,0,0(x) :=

n∑
k=0

ṽ0,0(n, k)xk = xPn−2,1,1(x). (2.5)

See also Lemmas 4.10 and 4.11.

Our main results are as follows. Proofs are given in Section 5.
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Theorem 2.1. Let α, β ∈ (0,∞] and let a := α−1, b := β−1. If (α, β) 	= (∞,∞), then the

probability generating function gA(x) of the random variable An,α,β is given by

gA(x) := E xAn,α,β =

n∑
k=0

P(An,α,β = k)xk

=
Pn,a,b(x)

Pn,a,b(1)
=

Pn,a,b(x)

(a + b)n
=

Γ(a + b)

Γ(n + a + b)
Pn,a,b(x).

(2.6)

Equivalently,

P(An,α,β = k) =
va,b(n, k)

Pn,a,b(1)
=

va,b(n, k)

(a + b)n
=

Γ(a + b)

Γ(n + a + b)
va,b(n, k). (2.7)

In the case α = β = ∞, and n � 2, we instead have

gA(x) :=

n∑
k=0

P(An,α,β = k)xk =
P̃n,0,0(x)

P̃n,0,0(1)
=

P̃n,0,0(x)

(n− 1)!
, (2.8)

P(An,α,β = k) =
ṽ0,0(n, k)

P̃n,0,0(1)
=

ṽ0,0(n, k)

(n− 1)!
. (2.9)

Remark 2.2. Consider the following generalized Pólya urn model (an instance of the

so-called Friedman’s urn [28, 27], which was studied by Bernstein [4, 5]; see also Flajolet,

Dumas and Puyhaubert [25]). An urn contains white and black balls. There are initially

a white and b black balls. At times 1, 2, . . . , one ball is drawn at random from the urn

and then replaced, together with a new ball of the opposite colour.

Let An [Bn] be the number of white [black] balls added in the n first draws; we thus

have An + Bn = n. Furthermore, after n draws there are An + a white and Bn + b black

balls in the urn, and thus

P(An+1 = k) =
a + k

n + a + b
P(An = k) +

n− (k − 1) + b

n + a + b
P(An = k − 1). (2.10)

Comparing (2.10) to (2.1), we find by induction

P(An = k) =
va,b(n, k)

(a + b)n
. (2.11)

In the description of the urn model, it is natural to assume that a and b are integers.

However, urn models of this type can easily be extended to allow fractional balls and

thus non-integer ‘numbers’ of balls; see, e.g., [34]. (It is then perhaps better to talk about

weights instead of numbers, allowing balls of different weights.) We may thus allow the

initial numbers a and b to be any non-negative real numbers with a + b > 0; we still add

one (whole) ball each time. Equation (2.11) still holds, which by Theorem 2.1 shows the

following.

Theorem 2.3. Let α, β ∈ (0,∞], with (α, β) 	= (∞,∞). Then (An,α,β , Bn,α,β) has the same dis-

tribution as (An, Bn) in the urn model above, for every n � 0, starting with a := α−1 white

and b := β−1 black balls.
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We now state further consequences of Theorem 2.1.

Theorem 2.4. Let α, β ∈ (0,∞] and let a := α−1 and b := β−1. Then

E(An,α,β) =
n(n + 2b− 1)

2(n + a + b− 1)

and

Var(An,α,β) = n
(n− 1)(n− 2)(n + 4a + 4b− 1) + 6(n− 1)(a + b)2 + 12ab(a + b− 1)

12(n + a + b− 1)2(n + a + b− 2)
.

Remark 2.5. In the symmetric case α = β we thus obtain E(An,α,α) = n/2; this is also

obvious by symmetry, since An,α,α
d
= Bn,α,α by Remark 1.3.

Theorem 2.6. The probability generating function gA(x) of the random variable An,α,β has

all its roots simple and on the negative half-line (−∞, 0]. As a consequence, for any given

n, α, β there exist p1, . . . , pn ∈ [0, 1] such that

An,α,β
d
=

n∑
i=1

Be(pi), (2.12)

where Be(pi) is a Bernoulli random variable with parameter pi and the summands are

independent. It follows that the distribution of An,α,β and the sequence va,b(n, k), k ∈ Z, are

unimodal and log-concave.

These results lead to a central limit theorem.

Theorem 2.7. Let α, β ∈ (0,∞] be fixed and let n→ ∞. Then An,α,β is asymptotically normal,

An,α,β − EAn,α,β

(VarAn,α,β)1/2

d−→ N(0, 1), (2.13)

or, more explicitly,

An,α,β − n/2√
n

d−→ N(0, 1/12). (2.14)

Moreover, a corresponding local limit theorem holds:

P(An,α,β = k) =
(
2π VarAn,α,β

)−1/2
(

exp

(
− (k − EAn,α,β)2

2 VarAn,α,β

)
+ o(1)

)
, (2.15)

as n→∞, uniformly in k ∈ Z, or, more explicitly,

P(An,α,β = k) =

√
6

πn

(
e−6(k−n/2)2/n + o(1)

)
, (2.16)

as n→∞, uniformly in k ∈ Z.

Remark 2.8. The proof shows that the central limit theorem in the forms (2.13) and (2.15)

also holds if α and β are allowed to depend on n, provided only that Var(An,α,β)→∞,

https://doi.org/10.1017/S0963548314000327 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000327


Weighted Random Staircase Tableaux 1123

which by Theorem 2.4 holds as soon as n2/(a + b)→ ∞ or nab/(a + b)2 → ∞; hence this

holds except when a or b is ∞ or tends to ∞ rapidly, i.e., unless α or β is 0 or tends to 0

rapidly. Example 3.8 illustrates that asymptotic normality may fail in extreme cases.

Remark 2.9. Asymptotic normality (2.13) is well known for many generalized Pólya urn

models, including the one discussed above [4, 5, 27, 34]. We do not know any general

local limit theorems for such urn models.

We can also study the total numbers Nα and Nβ of symbols α and β in a random Sn,α,β .

This is simpler, and follows directly from (1.9), as we show in Section 5. (Recall that in

Nα and Nβ , α and β are symbols and not parameter values.)

Theorem 2.10. Let α, β ∈ (0,∞], and let a := α−1, b := β−1. The joint probability generat-

ing function of Nα and Nβ for the random staircase tableau Sn,α,β is

Eα,β

(
xNαyNβ

)
=

n−1∏
i=0

αx + βy + iαβxy

α + β + iαβ
=

n−1∏
i=0

bx + ay + ixy

a + b + i
. (2.17)

In other words,

(
Nα,Nβ

) d
=

(n−1∑
i=0

Ii,

n−1∑
i=0

Ji

)
, (2.18)

where (Ii, Ji) are independent pairs of 0/1-variables with the distributions

P(Ii = ι, Ji = ι′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (ι, ι′) = (0, 0),
b

(a + b + i)
(ι, ι′) = (1, 0),

a

(a + b + i)
(ι, ι′) = (0, 1),

i

(a + b + i)
(ι, ι′) = (1, 1).

(2.19)

In particular, the marginal distributions are

Ii ∼ Be

(
1− a

a + b + i

)
, Ji ∼ Be

(
1− b

a + b + i

)
. (2.20)

Hence,

ENα =

n−1∑
i=0

(
1− a

a + b + i

)
= n−

n−1∑
i=0

a

a + b + i
, (2.21)

VarNα =

n−1∑
i=0

a

a + b + i

(
1− a

a + b + i

)
, (2.22)

Cov(Nα,Nβ) = −
n−1∑
i=0

ab

(a + b + i)2
. (2.23)
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In the case α = β = ∞ (a = b = 0) and i = 0, we interpret

a

a + b + i
=

b

a + b + i
=

1

2
and

i

a + b + i
= 0

in (2.19)–(2.23), and the factor in (2.17) as (x + y)/2.

Theorem 2.11. Let α, β ∈ (0,∞] be fixed and let n→∞. Then, with a := α−1 and b := β−1,

ENα = n− a log n + O(1), (2.24)

VarNα = a log n + O(1), (2.25)

Cov(Nα,Nβ) = O(1). (2.26)

Furthermore,

Nα − ENα√
log n

d−→ N(0, a), (2.27)

Nβ − ENβ√
log n

d−→ N(0, b), (2.28)

jointly, with independent limits.

Remark 2.12. A local limit theorem holds too. Moreover, Theorem 2.10 implies that n−
Nα can be approximated in the total variation sense by a Poisson distribution P(n− ENα);

see, e.g., [2, Theorem 2.M]. We omit the details.

Remark 2.13. We can similarly also study the joint distribution of Nα and A, for example

(the total number of αs and the number on the diagonal), but we leave this to the reader.

The results above show that the effects of changing the parameters α and β are

surprisingly small. Typically, probability weights of the type (1.3) (which are common in

statistical physics) shift the distributions of the random variables considerably, but here

the effects in Theorems 2.4 and 2.11, for example, are only second-order. The reason seems

to be that the variables are so constrained; we have Nα,Nβ � n and by Theorem 2.10,

both are close to their maximum and thus the weights do not differ as much between

different random staircase tableaux as might be expected.

Remark 2.14. In order to get stronger effects, we may let the weights tend to 0 as n→∞.

For example, taking α = 1/(sn) and β = 1/(tn) for some fixed s, t > 0, and thus a = sn,

b = tn, we obtain by Theorem 2.4

E(An,α,β) =
2t + 1

2(s + t + 1)
n + O(1), (2.29)

Var(An,α,β) =
1 + 4s + 4t + 6(s + t)2 + 12st(s + t)

12(s + t + 1)3
n + O(1). (2.30)

A central limit theorem holds by Remark 2.8. Similarly, one easily shows joint asymptotic

normality for Nα,Nβ in this case too; unlike the case of fixed α and β in Theorem 2.11, the

limits are now dependent normal variables. We omit the details. Note that by Theorem 6.1,
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the central part of a uniformly random α/β-staircase tableau, say the part comprising the

middle third of the rows and columns, is an example of this type.

Finally, we note a correspondence with permutations; it would be interesting to find

a bijective proof. Given a permutation σ of [n], we say that i is an ascent (descent) if

1 � i � n− 1 and σ(i) < σ(i + 1) (σ(i) > σ(i + 1)), and that i is a left (right) record (or

maximum) if 1 � i � n and σ(i) > σ(j) for every j < i (j > i).

Theorem 2.15. The number of α/β-staircase tableau of size n with parameters A = k,

B = n− k, Nα = r and Nβ = s equals the number of permutations of [n + 1] with k ascents,

n− k descents, n + 1− s left records and n + 1− r right records.

3. Special cases

Example 3.1 (α = β = 2). This yields the uniformly random staircase tableaux studied

by Dasse-Hartaut and Hitczenko [19], as stated above. More precisely, in the notation of

Remark 1.4, the uniformly random staircase tableaux is Sn,1,1,1,1, which is obtained from

Sn,2,2 by a simple random replacement of symbols.

The main results of [19] can be recovered as special cases of the theorems above, with

a = b = 1/2. Note that in this case, the formulas in Theorem 2.4 simplify to E(An,2,2) = n/2

(see Remark 2.5) and Var(An,2,2) = (n + 1)/12.

Example 3.2 (α = β = 1). This yields the uniformly random α/β-staircase tableau Sn,1,1.

As stated above, the number of α/β-staircase tableaux of size n is Zn(1, 1) = (n + 1)!.

Indeed, Corteel and Williams [18] gave a bijection between α/β-staircase tableaux of

size n and permutation tableaux of size (length) n + 1, and there are several bijections

between the latter and permutations of size n + 1 [48, 13]; α/β-staircase tableaux are

further studied in [14, 11].

The theorems above, with a = b = 1, yield results on uniformly random α/β-staircase

tableaux. For example, Theorem 2.1 shows, using (4.5), that the distribution of An,1,1 is

given by the Eulerian numbers

P(An,1,1 = k) =
v1,1(n, k)

(n + 1)!
=

〈
n+1
k

〉
(n + 1)!

. (3.1)

In other words, the number of α/β-staircase tableaux of size n with k αs on the diagonal is〈
n+1
k

〉
. (This also follows by the bijections mentioned above between α/β-staircase tableaux

and permutation tableaux [18] and between the latter and permutations [13].) Theorems

2.6 and 2.7 give in this case well-known results for Eulerian numbers; see [29] and [8],

respectively.

Furthermore, the formulas in Theorem 2.4 simplify and yield EAn,1,1 = n/2 (see

Remark 2.5) and VarAn,1,1 = (n + 2)/12. As another example, Theorem 2.10 shows that

n−Nα
d
=

n−1∑
i=0

(1− Ii) ∼
n−1∑
i=0

Be

(
1

i + 2

)
=

n+1∑
i=2

Be

(
1

i

)
, (3.2)
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with the summands independent; note that this has the same distribution as Cn+1 − 1,

where Cn+1 is the number of cycles in a random permutation of size n + 1, or, equivalently,

the number of maxima (records) in such a random permutation. (Again, a bijective proof

can be given using the bijections with permutation tableaux and permutations in [18] and

[13].)

Similarly, several of the results for permutation tableaux in [33] can be recovered from

our results.

Furthermore, deleting the top row of a staircase tableau corresponds for the alternative

tableau to deleting the first step on its SE boundary; this means deleting its last column

if it is empty, and otherwise deleting the first row. (And similarly for deleting the first

column.) Hence, for example, our Theorem 6.1 translates to a result on subtableaux of

random alternative tableaux.

Example 3.3 (α = 1). As stated above, there are several bijections between various types

of tableaux and permutations of size n + 1. In particular (see [13] and [24, Section 6]),

one of these bijections yields a correspondence between the number of cycles in the

permutation, and the number of unrestricted rows in the permutation tableaux; by Table

2, this equals n + 1−Nβ in the staircase tableaux. Hence, our random staircase tableau

Sn,1,β corresponds to a random permutation of size n + 1 with probability proportional to

θ#cycles, where θ = 1/β; this is a much-studied distribution of permutations, in particular

in connection with the Ewens sampling formula [23]. Moreover, Féray [24] shows that

under this bijection, the sequence of weak exceedances in the permutation corresponds

to the shape of the permutation tableau; translated to the staircase tableau, the diagonal

element in row i in the staircase tableau is α if and only if i + 1 is a weak exceedance (i.e.,

σ(i + 1) � i + 1) in the permutation.

Example 3.4 (α = 2, β = 1). This corresponds to staircase tableaux without δs briefly

studied in [14]. The number of such staircase tableaux is, by (1.9),

Zn(2, 1) = 2n(3/2)n =

n−1∏
i=0

(3 + 2i) = (2n + 1)!! (3.3)

(see [14, 11]). Our theorems yield results on random δ-free staircase tableaux.

Example 3.5 (α = ∞). This means that we take the limit as α→∞ in (1.10), which

means that we have a non-zero probability only for staircase tableaux with the maximum

number of symbols α, i.e., with Nα = n. For such α/β-staircase tableaux, the probability is

proportional to βNβ .

We let S∗n ⊂ S̄n be the set of such α/β-staircase tableaux of size n; by (Siv), these are

the α/β-staircase tableaux of size n with exactly one α in each column. (Such staircase

tableaux were studied in [11].) We define the corresponding generating function

Z∗n (β) :=
∑
S∈S∗n

βNβ = lim
α→∞

α−nZn(α, β) =

n−1∏
i=0

(1 + iβ), (3.4)
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where the final equality follows from (1.9). Thus, Sn,∞,β is the random element of S∗n with

the distribution P(Sn,∞,β = S) = βNβ (S )/Z∗n (β).

Example 3.6 (α = ∞, β = 1). As a special case of the preceding example, Sn,∞,1 is a

uniformly random element of S∗n . By (3.4), the number of α/β-staircase tableaux of size n

with n αs is

Z∗n (1) = n!. (3.5)

Hence, the probability that a uniformly random α/β-staircase tableau has the maximum

number n of αs is Z∗n (1)/Zn(1, 1) = n!/(n + 1)! = 1/(n + 1). (See also Theorem 2.10 and

(3.2).)

The theorems above, with a = 0 and b = 1, yield results on uniformly random α/β-

staircase tableaux with n αs (i.e., one in each column). For example, Theorem 2.1 shows,

using (4.4), that the distribution of An,∞,1 is given by the Eulerian numbers

P(An,∞,1 = k) =
v0,1(n, k)

n!
=

〈
n

k−1

〉
n!

. (3.6)

In other words, the number of α/β-staircase tableaux of size n with n αs, of which k

are on the diagonal, is
〈

n
k−1

〉
. (A bijective proof is given in [11].) By symmetry, counting

instead the number of βs on the diagonal, by (4.2),

P(Bn,∞,1 = k) = P(An,1,∞ = k) =
v1,0(n, k)

n!
=

〈
n
k

〉
n!

. (3.7)

Compare with Example 3.2, where the distributions of A and B
d
= A are also given by

Eulerian numbers. By (3.6)–(3.7) and (3.1), we see that An,∞,1
d
= An−1,1,1 + 1 and Bn,∞,1

d
=

An,∞,1 − 1
d
= An−1,1,1

d
= Bn−1,1,1.

The formulas in Theorem 2.4 simplify and yield EAn,∞,1 = (n + 1)/2 and VarAn,∞,1 =

(n + 1)/12. As another example, Theorem 2.10 shows that

n−Nβ
d
=

n−1∑
i=0

(1− Ji) ∼
n−1∑
i=0

Be

(
1

i + 1

)
=

n∑
i=1

Be

(
1

i

)
, (3.8)

with the summands independent; this has the same distribution as Cn, with Cn as in the

corresponding result in Example 3.2. (A bijective proof is given in [11].)

Example 3.7 (α = β = ∞). This means that we take the limit as α = β → ∞ in (1.10),

which means that we have a non-zero probability only for α/β-staircase tableau with the

maximum number of symbols. These tableaux correspond to the terms with maximal total

degree in Zn(α, β), and it follows from (1.9) that they have 2n− 1 symbols. (We assume

n � 1.)

We let S∗∗n ⊂ S̄n be the set of α/β-staircase tableaux with Nα + Nβ = 2n− 1; thus Sn,∞,∞
is a uniformly random element of S∗∗n .

We further define the corresponding generating function

Z∗∗n (α, β) :=
∑
S∈S∗∗n

αNαβNβ . (3.9)

https://doi.org/10.1017/S0963548314000327 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000327


1128 P. Hitczenko and S. Janson

This can be obtained by extracting the terms with largest degrees in (1.9), and thus

Z∗∗n (α, β) = (α + β)

n−1∏
i=1

(iαβ) = (n− 1)!
(
αnβn−1 + αn−1βn

)
. (3.10)

Hence there are 2(n− 1)! tableaux in S∗∗n ; (n− 1)! with n αs and n− 1 βs, and (n− 1)!

with n− 1 αs and n βs. See also Section 8. (It follows that the corresponding number of

staircase tableaux with 2n− 1 symbols α, β, γ, δ is 22n(n− 1)!: see [11].)

By Theorem 2.1 and (4.7) below, assuming n � 2,

P
(
An,∞,∞ = k

)
=

ṽ0,0(n, k)

(n− 1)!
=

〈
n−1
k−1

〉
(n− 1)!

, (3.11)

and thus by (3.1), An,∞,∞
d
= An−2,1,1 + 1.

Example 3.8 (β = 0). This gives weight 0 to any staircase tableaux with a symbol β, so

only tableaux with just the symbol α may occur. By (Sii) and (Siv) in the definition, the

only such tableau is the one with α in every diagonal box, and no other symbols. This

limiting case is thus trivial, with Sn,α,0 deterministic (and independent of the parameter α),

and Nα = An,α,β = n, Nβ = Bn,α,β = 0, and Zn(α, 0) = αn.

This case (and the symmetric α = 0) is excluded from most of our results, but since it

is trivial, the reader can easily supplement corresponding, trivial, results for it. Note that

this case occurs as a natural limiting case when β → 0.

Example 3.9 (α = β = 0). This case is really excluded, since it would give weight 0 to

every α/β-staircase tableau. However, we can define it as the limit as α = β → 0. This

gives a non-zero probability only to α/β-staircase tableaux with a minimum number of

symbols, i.e., with n symbols on the diagonal and no others. There are 2n such α/β-staircase

tableaux, and all get the same probability, so Sn,0,0 is obtained by putting a random symbol

in each diagonal box, uniformly and independently. This leads to a classical case and we

will not discuss it any further.

More generally, taking the limit as α, β → 0 with α/(α + β)→ ρ ∈ [0, 1] yields an α/β-

staircase tableau with symbols only on the diagonal and each diagonal box having symbol

α with probability ρ, independently of the other boxes (cf. Theorem 8.4).

4. The polynomials Pn,a,b

The numbers va,b(n, k) and polynomials Pn,a,b(x) are defined by (2.1)–(2.3) for all real (or

complex) a and b, but for our purposes we are only interested in a, b � 0. We regard a

and b as fixed parameters, but we note that the numbers va,b(n, k) are polynomials in a

and b (of degree exactly n in the non-trivial case 0 � k � n).

The case a = b = 0 is trivial: by (2.1) or (2.3) and induction,

v0,0(n, k) = 0 and Pn,0,0(x) = 0 for all n � 1. (4.1)
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For a = 1, b = 0, the recursion (2.1) is the standard recursion for Eulerian numbers
〈
n
k

〉
(see, e.g., [31, Section 6.2], [40, §26.14], [41, A008292]). Thus

v1,0(n, k) =

〈
n

k

〉
. (4.2)

(These are often defined as the number of permutations of n elements with k descents (or

ascents). See, e.g., [47, Section 1.3], where other relations to permutations are given.) The

corresponding polynomials

Pn,1,0(x) =

n∑
k=0

〈
n

k

〉
xk (4.3)

are known as Eulerian polynomials: see Euler [21, 22].

Furthermore, the cases (a, b) = (0, 1) and (1, 1) also lead to Eulerian numbers, with

different indexing. By (2.1) and induction, or by (4.16) below,

v0,1(n, k) = v1,0(n, n− k) =

〈
n

n− k

〉
=

〈
n

k − 1

〉
, n � 1 (4.4)

(which is non-zero for 1 � k � n). Similarly, by (2.1) and induction,

v1,1(n, k) = v1,0(n + 1, k) =

〈
n + 1

k

〉
, n � 0. (4.5)

Equivalently,

Pn,0,1(x) = xPn,1,0(x), Pn,1,1(x) = Pn+1,1,0(x). (4.6)

Similarly, by the definition (2.4) and (4.5),

ṽ0,0(n, k) =

〈
n− 1

k − 1

〉
, n � 2, (4.7)

and by (2.5) and (4.6),

P̃n,0,0(x) = Pn−1,0,1(x) = xPn−1,1,0(x). (4.8)

Returning to the general case, when a = 0 or b = 0 we have the following simple

relations, generalizing the results for Eulerian numbers and polynomials in (4.4)–(4.6).

Lemma 4.1. For all n � 1,

va,0(n, k) = ava,1(n− 1, k), (4.9)

v0,b(n, k) = bv1,b(n− 1, k − 1), (4.10)

and, equivalently,

Pn,a,0(x) = aPn−1,a,1(x), (4.11)

Pn,0,b(x) = bxPn−1,1,b(x). (4.12)

Proof. We use induction, with (2.1) or (2.3).
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We collect some further properties in the following theorems.

Theorem 4.2. For all a, b and n � 0,

Pn,a,b(0) = va,b(n, 0) = an, (4.13)

va,b(n, n) = bn, (4.14)

Pn,a,b(1) =

n∑
k=0

va,b(n, k) = (a + b)n =
Γ(n + a + b)

Γ(a + b)
. (4.15)

Furthermore, we have the symmetry

va,b(n, k) = vb,a(n, n− k) (4.16)

and thus

Pn,a,b(x) = xnPn,b,a(1/x). (4.17)

Proof. We use induction, with (2.1) or (2.3).

Remark 4.3. The symmetries (4.16)–(4.17) between a and b are more evident if we define

the homogeneous two-variable polynomials

P̂n,a,b(x, y) :=

n∑
k=0

va,b(n, k)xkyn−k, (4.18)

which satisfy the recursion

P̂n,a,b(x, y) =

(
bx + ay + xy

∂

∂x
+ xy

∂

∂y

)
P̂n−1,a,b(x, y), n � 1, (4.19)

and the symmetry

P̂n,a,b(x, y) = P̂n,b,a(y, x).

(Note that P̂n,a,b(x, y) = ynPn,a,b(x/y) and Pn,a,b(x) = P̂n,a,b(x, 1).)

Then (2.6) can be written in the symmetric form

E xAn,α,β yBn,α,β =

n∑
k=0

P(An,α,β = k)xkyn−k =
Γ(a + b)

Γ(n + a + b)
P̂n,a,b(x, y). (4.20)

However, we find it more convenient to work with polynomials in one variable.

Theorem 4.4. For all a, b and n � 0,

P ′n,a,b(1) =

n∑
k=0

kva,b(n, k) =
n(n + 2b− 1)

2
(a + b)n−1 (4.21)
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and

P ′′n,a,b(1) =

n∑
k=0

k(k − 1)va,b(n, k)

=
n(n− 1)(3n2 + (12b− 11)n + 12b2 − 24b + 10)

12
(a + b)n−2.

(4.22)

Proof. This can be shown by induction, differentiating (2.3) once or twice and then

taking x = 1. We omit the details, and instead give another proof in Section 5.

Theorem 4.5.

(i) If a, b > 0, then va,b(n, k) > 0 for 0 � k � n, and Pn,a,b(x) is a polynomial of degree n

with n simple negative roots.

(ii) If a > b = 0, then va,b(n, k) > 0 for 0 � k < n, and Pn,a,b(x) is a polynomial of degree

n− 1 with n− 1 simple negative roots.

(iii) If a = 0 < b, then va,b(n, k) > 0 for 1 � k � n, and Pn,a,b(x) is a polynomial of degree n

with n simple roots in (−∞, 0]. One of the roots is 0, provided n > 0.

(iv) If a = b = 0, then ṽ0,0(n, k) > 0 for 1 � k � n− 1, and P̃n,0,0(x) is a polynomial of degree

n− 1 with n− 1 simple roots in (−∞, 0]. One of the roots is 0, provided n � 2.

Proof. (i) Induction shows that va,b(n, k) > 0 for 0 � k � n, so Pn,a,b has degree exactly

n. The fact that all roots are negative and simple follows from (2.3), as noted already

by Frobenius [29] for the Eulerian polynomials; this can be seen by the following

standard argument. Suppose, by induction, that Pn−1,a,b has n− 1 simple roots −∞ <

xn−1 < · · · < x1 < 0. Then Pn−1,a,b changes sign at each root, with a non-zero derivative,

and since Pn−1,a,b(0) > 0 by (4.13), we have sign(P ′n−1,a,b(xi)) = (−1)i−1, i = 1, . . . , n− 1.

Since (2.3) yields Pn,a,b(xi) = xi(1− xi)P
′
n−1,a,b(xi) and xi < 0, this implies sign(Pn,a,b(xi)) =

(−1)i, i = 1, . . . , n− 1. Moreover, sign(Pn,a,b(0)) = +1 and limx→−∞ sign(Pn,a,b(x)) = (−1)n

sign(va,b(n, n)) = (−1)n by (4.13) and (4.14). Hence Pn,a,b changes sign at least n times in

(−∞, 0), and thus has at least n roots there. Since Pn,a,b has degree n, these are all the

roots, and they are all simple.

(ii, iii) These follow from (i) and Lemma 4.1. (Alternatively, the proof above works with

minor modifications.)

(iv) This follows from (i) and the definitions (2.4)–(2.5).

The proof also shows that the roots of Pn−1,a,b and Pn,a,b are interlaced (except that 0 is

a common root when a = 0). For more general results of this kind, see, e.g., [50] and [36,

Proposition 3.5].

Remark 4.6. As stated in the Introduction, va,b(n, k) equals the number A(n− k, k | a, b)

defined by Carlitz and Scoville [9], who used the generating function (in our notation)

∑
n,k�0

va,b(n, k)
xn−kyk

n!
=

∞∑
n=0

P̂n,a,b(y, x)

n!
=

(
1 + xF(x, y)

)a(
1 + yF(x, y)

)b
, (4.23)
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where

F(x, y) :=
ex − ey

xey − yex
(4.24)

(interpreted as its limit 1/(1− x) when x = y); this can also be written as

∑
n,k�0

va,b(n, k)
xn−kyktn

n!
=

∞∑
n=0

P̂n,a,b(y, x)tn

n!
= eatx+bty

(
x− y

xety − yetx

)a+b

. (4.25)

Example 4.7. The case a = b = 1/2 appeared in [19]; see Example 3.1. In this case, it

is more convenient to study the numbers B(n, k) := 2nv1/2,1/2(n, k) which are integers and

satisfy the recursion

B(n, k) = (2k + 1)B(n− 1, k) + (2n− 2k + 1)B(n− 1, k − 1), n � 1. (4.26)

These are called Eulerian numbers of type B [41, A060187]. The numbers B(n, k) seem

to have been introduced by MacMahon [37, p. 331] in number theory. They also

have combinatorial interpretations, for example as the numbers of descents in signed

permutations, i.e., in the hyperoctahedral group [6, 10, 45].

Note that this case is a special case of both of the following examples.

Example 4.8. Franssens [26] studied numbers and polynomials equivalent to the case

a = b of ours; more precisely, his Bn,k(c) = 2nvc/2,c/2(n, k), as is seen by comparing his

recursion formula to (2.1), and thus his Bn(x, y; c) = 2nP̂n,c/2,c/2(x, y), using the notation

(4.18). The generating function in [26, Proposition 3.1] thus yields (for small |t|)
∞∑
n=0

P̂n,a,a(x, y)
tn

n!
= B(x, y, t)2a, (4.27)

with

B(x, y, t) :=

⎧⎪⎨
⎪⎩

x− y

xe−(x−y)t/2 − ye(x−y)t/2
x 	= y,

1

1− xt
x = y,

(4.28)

which is a special case of (4.25).

Example 4.9. The case a + b = 1 yields polynomials Pn,a,1−a(x) generalizing the Eulerian

polynomials (the case a = 1, or a = 0); they satisfy (extending results by Euler [22,

Chapter II.7])

∞∑
k=0

(k + a)nxk =
Pn,a,1−a(x)

(1− x)n+1
(4.29)

and (as follows from (4.25))

∞∑
n=0

Pn,a,1−a(x)
zn

n!
=

(1− x)eaz(1−x)

1− xez(1−x)
. (4.30)
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These polynomials are sometimes called (generalized) Euler–Frobenius polynomials and

appear, for example, in spline theory; see [38, 49, 43, 44, 46, 30, 35]. The function

Pn,1−a,a(x)/(x− 1)n was studied by Carlitz [7] (there denoted Hn(a | x)).

We defined in (2.4)–(2.5) ṽ0,0(n, k) and P̃n,0,0(x) as substitutes for the vanishing v0,0(n, k)

and Pn,0,0(x). To justify this, we first note that these numbers and polynomials satisfy the

recursions obtained by putting a = b = 0 in (2.1) and (2.3).

Lemma 4.10. We have

ṽ0,0(n, k) = kṽ0,0(n− 1, k) + (n− k)ṽ0,0(n− 1, k − 1), n � 3, (4.31)

with ṽ0,0(2, 1) = 1 and ṽ0,0(2, k) = 0 for k 	= 1. Similarly,

P̃n,0,0(x) = (n− 1)xP̃n−1,0,0(x) + x(1− x)P̃ ′n−1,0,0(x), n � 3. (4.32)

with P̃2,0,0(x) = x.

Proof. This follows easily by substituting the definitions (2.4) and (2.5) in (2.1) and (2.3).

Moreover, these numbers and polynomials appear as limits as a, b→ 0 if we renormalize.

Lemma 4.11. For any n � 2 and k ∈ Z or x ∈ R, as a, b↘ 0,

va,b(n, k)

a + b
→ ṽ0,0(n, k), (4.33)

Pn,a,b(x)

a + b
→ P̃n,0,0(x). (4.34)

Proof. We first verify (4.33) for n = 2 by inspection: see Table 2. For n > 2 we divide

(2.1) by a + b, let a, b↘ 0 and use induction together with (4.31).

Finally, (4.34) follows from (4.33) by (2.5) and (2.2).

Remark 4.12. More general numbers, defined by a more general version of the recursion

formula (2.1), are studied in [50].

5. Proofs of Theorems 2.1–2.15

To prove Theorem 2.1 we use induction on the size n, where we extend a staircase tableau

of size n− 1 by adding a column of length n to the left and consider all possible ways

of filling it out with the symbols. This method was used, in a probabilistic context, in

[19] and its origins seem to go back to [14, Remark 3.14]; see also [11]. For permutation

tableaux an analogous technique was used in [12] and [33].

In order to do the necessary recursive analysis, we introduce a suitable generating

function with an additional ‘catalytic’ parameter, which we now define.
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We say that a row of a staircase tableau is indexed by α if its leftmost entry is α. Thus,

for example, in the tableau depicted in Figure 1, the first, third and eighth rows are

indexed by α. The number of rows indexed by α in a staircase tableau S will be denoted

by r = r(S).

We introduce the generating function for the pair of parameters (A, r):

Dn(x, z) :=
∑
S∈S̄n

wt(S)xA(S )zr(S ) =
∑
S∈S̄n

αNαβNβxAzr. (5.1)

We regard α and β as fixed in this section, and for simplicity we omit them from the

notation Dn(x, z). We assume that 0 < α, β < ∞.

Remark 5.1. In an α/β-staircase tableau, a row containing a β must by (Siii) have the β

as its leftmost entry; hence it is not indexed by α. Conversely, a row without β is necessarily

indexed by α. Since no row contains more than one β, it follows that r = n−Nβ [19]. We

thus have Dn(x, z) = znD̃n(x, α, β/z), where

D̃n(x, α, β) :=
∑
S∈S̄n

αNαβNβxA = Dn(x, 1). (5.2)

Hence it is possible to avoid r and instead argue with the simpler D̃n(x, α, β) and a varying

β. However, we find it more convenient to keep α and β fixed and to use r in the argument

below.

Trivially, D0(x, z) = 1 (see Remark 1.5).

Lemma 5.2. Dn satisfies the recursion, for n � 1,

Dn(x, z) = αz(x− 1)Dn−1(x, z) + (αz + β)Dn−1(x, z + β). (5.3)

Proof. Fix an α/β-staircase tableau S of size n− 1 with parameters Nα, Nβ , A, r, and

consider all ways to extend it to a tableau of size n by adding a column of length n on

the left and filling some boxes in it. There are three cases (see [11, 19]).

(i) We put α in the bottom box of the added column. By (Siv), no other boxes in the new

column can be filled, so this gives a single staircase tableau of size n; this tableau has

parameters Nα + 1, Nβ , A + 1 and r + 1, so its contribution to Dn(x, z) is

αNα+1βNβxA+1zr+1 = αxz αNαβNβxAzr. (5.4)

(ii) We put β in the bottom box of the added column; we may also put α or β in some

other boxes in the new column, and we consider first the case when we put no α, so

only βs are added. By (Siii), we may put a β only in the rows indexed by α (apart

from the bottom box). For 0 � k � r, there are thus
(
r
k

)
possibilities to add k further

β; each choice yields a staircase tableau with parameters Nα, Nβ + 1 + k, A, r − k,

and their total contribution to Dn(x, z) is

r∑
k=0

(
r

k

)
αNαβNβ+1+kxAzr−k = αNαβNβ+1xA(z + β)r. (5.5)
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(iii) We put β in the bottom box of the added column and α or β in some other boxes

in the new column, including an α. By (Siv), we may add only one α, and it has to

be the top one of the added symbols. Again, the new symbols may (apart from the

bottom box) only be added in rows indexed by α. For 1 � k � r, there are thus
(
r
k

)
possibilities to add k − 1 further β and one α; each choice yields a staircase tableau

with parameters Nα + 1, Nβ + k, A, r − k + 1, and their total contribution to Dn(x, z)

is
r∑

k=1

(
r

k

)
αNα+1βNβ+kxAzr−k+1 = αNα+1βNβxAz

(
(z + β)r − zr

)
. (5.6)

Combining (5.4)–(5.6), we obtain the total contribution from extensions of S to be

αxz αNαβNβxAzr + (β + αz)αNαβNβxA(z + β)r − αz αNαβNβxAzr, (5.7)

and summing over all S ∈ S̄n−1 yields (5.3).

Iterating (5.3), we obtain the following, recalling that x� denotes the rising factorial and

that a = α−1 and b = β−1.

Lemma 5.3. Assume 0 < α, β < ∞. For 0 � m � n,

Dn(x, z) = (αβ)m
m∑

�=0

cm,�(z)(a + bz)�(x− 1)m−�Dn−m(x, z + �β), (5.8)

where c0,0(z) = 1 and, for m � 0, with cm,−1(z) = cm,m+1(z) = 0,

cm+1,�(z) = (� + bz)cm,�(z) + cm,�−1(z), 0 � � � m + 1. (5.9)

Proof. The case m = 0 is trivial. Suppose that (5.8) holds for some m � 0 and all n � m.

If n > m, we use Lemma 5.2 on the right-hand side of (5.8) and obtain

(αβ)−mDn(x, z)

=

m∑
�=0

cm,�(z)(a + bz)�(x− 1)m−�
(
α(z + �β)(x− 1)Dn−m−1(x, z + �β)

+ (αz + α�β + β)Dn−m−1(x, z + �β + β)
)

= αβ

m∑
�=0

cm,�(z)(a + bz)�(x− 1)m+1−�(bz + �)Dn−m−1(x, z + �β)

+ αβ

m∑
�=0

cm,�(z)(a + bz)�(x− 1)m−�(bz + � + a)Dn−m−1(x, z + �β + β)

= αβ

m∑
�=0

(� + bz)cm,�(z)(a + bz)�(x− 1)m+1−�Dn−m−1(x, z + �β)

+ αβ

m+1∑
j=1

cm,j−1(z)(a + bz)j(x− 1)m+1−jDn−m−1(x, z + jβ).

The result for m + 1 follows, and the lemma follows by induction.
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We now take z = 1, thus forgetting r. (We will not use r further. If desired, r can be

recovered by Remark 5.1.) This yields the following formula for the generating function

Dn(x, 1) for A. We write cn,� = cn,�(1).

Lemma 5.4. Assume 0 < α, β < ∞. For n � 0,

Dn(x, 1) = (αβ)n
n∑

�=0

cn,�(a + b)�(x− 1)n−�, (5.10)

where c0,0 = 1 and, for n � 0, with cn,−1 = cn,n+1 = 0,

cn+1,� = (� + b)cn,� + cn,�−1, 0 � � � n + 1. (5.11)

Proof. Take z = 1 and m = n in Lemma 5.3, recalling that D0 = 1, so the factor

Dn−m(x, z + �β) on the right-hand side of (5.8) disappears.

We have found a formula for Dn(x, 1) as a polynomial in x− 1. We can identify it as

Pn,a,b(x) (up to a constant factor).

Lemma 5.5. Assume 0 < α, β < ∞. For n � 0,

Dn(x, 1) = (αβ)nPn,a,b(x). (5.12)

Proof. Define D̂n(x) := (αβ)−nDn(x, 1). Clearly, D̂0(x) = 1 = P0,a,b(x). We show that D̂n

satisfies the recursion (2.3), which implies that D̂n = Pn,a,b for all n � 0 and thus completes

the proof. By Lemma 5.4,

((n + b)x + a)D̂n(x) + x(1− x)D̂′n(x)

=

n∑
�=0

(
nx + bx + a− (n− �)x

)
cn,�(a + b)�(x− 1)n−�

=

n∑
�=0

(
(� + b)(x− 1) + � + b + a

)
cn,�(a + b)�(x− 1)n−�

=

n∑
�=0

(� + b)cn,�(a + b)�(x− 1)n+1−� +

n∑
�=0

(a + b + �)cn,�(a + b)�(x− 1)n−�

=

n∑
�=0

(� + b)cn,�(a + b)�(x− 1)n+1−� +

n+1∑
j=1

cn,j−1(a + b)j(x− 1)n+1−j

=

n+1∑
j=0

cn+1,�(a + b)�(x− 1)n+1−� = D̂n+1(x),

where we used (5.11) and (5.10) in the last line.

Proof of Theorem 2.1. Assume α, β ∈ (0,∞). We have Dn(1, 1) = Zn(α, β) by (5.1)

and (1.6). Moreover, it follows immediately from An,α,β = A(Sn,α,β) and the definitions
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(2.6) and (1.10) that

gA(x) =
∑
S∈S̄n

xA(S )
P(Sn,α,β = S) =

∑
S∈S̄n

xA(S ) wt(S)

Zn(α, β)
=

Dn(x, 1)

Dn(1, 1)
. (5.13)

Hence, Lemma 5.5 yields

gA(x) =
Pn,a,b(x)

Pn,a,b(1)
, (5.14)

which shows (2.6), using (4.15). Extracting coefficients yields (2.7).

The case α = ∞ or β = ∞ follows by taking limits as α→∞ (β →∞).

The case α = β = ∞ follows similarly by taking limits as α = β → ∞, using Lemma 4.11.

The proof above contains (as a simpler special case) the calculation of Zn in [11]; we

record this for completeness.

Proof of (1.5) and (1.9). Taking x = 1 in Lemma 5.4, we obtain

Zn(α, β) = Dn(1, 1) = (αβ)ncn,n(a + b)n = (αβ)ncn,n(a + b)n, (5.15)

since cn,n = 1 by (5.11) and induction. (Alternatively, we may use Lemma 5.5 and (4.15).)

This yields (1.9), and (1.5) follows by (1.7).

Proof of Theorem 4.4. We assume a, b > 0; the general case then follows since all

quantities are polynomials in a and b. By Lemmas 5.5 and 5.4, for any k � 0,

dk

dxk
Pn,a,b(1) = k! cn,n−k(a + b)n−k (5.16)

(with cn,� = 0 for � < 0). In particular, for k = 1 we have by (5.11)

cn+1,n = (n + b)cn,n + cn,n−1 = n + b + cn,n−1, (5.17)

and a simple induction yields

cn,n−1 =

n−1∑
m=0

(m + b) =
n(n + 2b− 1)

2
, (5.18)

which by (5.16) yields (4.21).

Similarly,

cn,n−2 =

n∑
m=1

(m + b− 2)cm−1,m−2

=
n(n− 1)(3n2 + (12b− 11)n + 12b2 − 24b + 10)

24
,

(5.19)

which by (5.16) yields (4.22).
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Proof of Theorem 2.4. Assume first (a, b) 	= (0, 0). Then (2.6) yields

EAn,α,β = g′A(1) =
P ′n,a,b(1)

Pn,a,b(1)

and

VarAn,α,β = g′′A(1) + g′A(1)−
(
g′A(1)

)2
=

P ′′n,a,b(1) + P ′n,a,b(1)

Pn,a,b(1)
−

P ′n,a,b(1)2

Pn,a,b(1)2

and the result follows from Theorem 4.4 and (4.15) (after some calculations).

The case a = b = 0 follows by continuity.

Proof of Theorem 2.6. The first claim is immediate by Theorems 2.1 and 4.5. This implies

(2.12) and the following claims by standard arguments: If gA(x) has roots −ξ1, . . . ,−ξn � 0,

then, using gA(1) = 1,

gA(x) =

∏n
i=1(x + ξi)∏n
i=1(1 + ξi)

=

n∏
i=1

(
ξi

1 + ξi
+

1

1 + ξi
x

)
, (5.20)

which equals the probability generating function of
∑n

i=1 Be(pi) for independent Be(pi)

with pi = 1/(1 + ξi); this verifies (2.12). If b = 0 so gA(x) has only n− 1 roots, the same

holds with pn = 0. (We may then formally set ξn = ∞.)

The fact that the distribution of An,a,b is log-concave and thus unimodal follows easily

from (2.12) by induction; the same holds for the sequence va,b(n, k), k ∈ Z, by (2.7).

Proof of Theorem 2.7. By Theorem 2.6,

An,α,β
d
=

n∑
i=1

Ii, (5.21)

with Ii ∼ Be(pi) independent. Note that then

EAn,α,β =

n∑
i=1

pi and VarAn,α,β =

n∑
i=1

pi(1− pi).

Moreover,

n∑
i=1

E |Ii − pi|3 �
n∑

i=1

E |Ii − pi|2 = VarAn,α,β . (5.22)

The central limit theorem with Lyapunov’s condition (see, e.g., [32, Theorem 7.2.2]) shows

that any sequence of sums of this type is asymptotically normal, provided the variance

tends to infinity, which holds in our case by Theorem 2.4. Theorem 2.4 further shows

EAn,α,β = n/2 + O(1), (5.23)

VarAn,α,β = n/12 + O(1), (5.24)

which implies that the versions (2.13) and (2.14) are equivalent.
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Finally, [42, Theorem VII.3] shows that a local limit theorem (2.15) also holds for any

sum of the type (5.21); again we use (5.23)–(5.24) to simplify the result and obtain (2.16).

Proof of Theorem 2.10. Assume first α, β < ∞. The joint probability generating function

of (Nα,Nβ) is by definition∑
S∈S̄n

wt(S)xNαyNβ

Zn(α, β)
=

∑
S∈S̄n

αNαβNβxNαyNβ

Zn(α, β)
=

Zn(αx, βy)

Zn(α, β)
, (5.25)

and (2.17) follows from (1.9).

Since (Ii, Ji) defined by (2.19) has the probability generating function

bx + ay + ixy

a + b + i
,

the distributional identity (2.18) follows from (2.17). Thus

ENα =

n−1∑
i=0

E Ii, VarNα =

n−1∑
i=0

Var Ii and Cov(Nα,Nβ) =

n−1∑
i=0

Cov(Ii, Ji),

which yield (2.21)–(2.23).

The case when α = ∞ or β = ∞, or both, follows by taking limits.

Proof of Theorem 2.11. The estimates (2.24)–(2.26) follow from (2.21)–(2.23).

The central limit theorem (2.27)–(2.28) follows from the representation (2.18) in

Theorem 2.10 as in the proof of Theorem 2.7; note that (2.26) implies Cov(Nα,Nβ)/ log n→
0, which yields the independence of the limits in (2.27)–(2.28).

Proof of Theorem 2.15. The generating function (i.e., the total weight) for α/β-staircase

tableaux with A = k and B = n− k is, using (2.7) and (1.9),

P(An,α,β = k)Zn(α, β) = va,b(n, k)αnβn.

On the other hand, using the notation of Carlitz and Scoville [9] (see Remark 4.6, and

their [9, Theorem 9]),

va,b(n, k) = A(n− k, k | a, b) = A(k, n− k | b, a)

=
∑
t,u

P (k, n− k; t, u)bt−1au−1 =
∑
t,u

P (k, n− k; t, u)α1−uβ1−t,

where P (k, n− k; t, u) is the number of permutations with k ascents, n− k descents, t left

records and u right records. (Note that [9] counts one ascent (rise) and one descent (fall)

more than we do.) The result follows by identifying the coefficients of αrβs.

6. Subtableaux

We number the rows and columns of a staircase tableau by 1, . . . , n starting at the NW

corner (as in a matrix); the boxes are thus labelled by (i, j) with i, j � 1 and i + j � n + 1.
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The diagonal boxes are (i, n + 1− i), i = 1, . . . , n, going from NE to SW. We denote the

symbol in box (i, j) of a staircase tableau S by S(i, j), with S(i, j) = 0 if the box is empty.

If we delete the first rows or columns from a staircase tableau, we obtain a new,

smaller, staircase tableau. For S ∈ Sn and a box (i, j) in S (so i + j � n + 1), let S[i, j]

be the subtableau with (i, j) as its top left box, i.e., the subtableau obtained by deleting

the first i− 1 rows and the first j − 1 columns. Note that S[i, j] ∈ Sn−i−j+2. (Conditions

(Si)–(Siv) are clearly satisfied.)

Theorem 6.1. Let α, β ∈ (0,∞] and i + j � n + 1. The subtableau Sn,α,β[i, j] of Sn,α,β has the

same distribution as Sn−i−j+2,α̂,β̂ , where α̂−1 = α−1 + i− 1 and β̂−1 = β−1 + j − 1.

Proof. Consider first the case i = 1 and j = 2, where we only delete the first (leftmost)

column. Let S ∈ S̄n−1. The probability that Sn,α,β[1, 2] = S is proportional to the sum of

the weights of all extensions of S to a staircase tableau in S̄n. By the proof of Lemma 5.2,

with x = z = 1, this sum equals (see (5.7))

(β + α)αNαβNβ (1 + β)r = (β + α)αNαβNβ (1 + β)n−Nβ

= (β + α)(1 + β)nαNα

(
β

1 + β

)Nβ

,
(6.1)

so P(Sn,α,β[1, 2] = S) is proportional to αNα β̂Nβ with β̂ := β/(β + 1), i.e., β̂−1 = β−1 + 1.

Hence, Sn,α,β[1, 2]
d
= Sn−1,α,β̂ , so the theorem holds in this case.

Next, the case i = 2, j = 1, where we delete the top row, follows by symmetry: see

Remark 1.3.

Finally, the general case follows by induction, deleting one row or column at a time.

7. The positions of the symbols

We have so far considered the numbers of the symbols α and β in a random α/β-staircase

tableau, and the numbers of them on the diagonal. Now we consider the position of the

symbols. We begin by considering the symbols on the diagonal, where every box is filled

with α or β.

Theorem 7.1. Let α, β ∈ (0,∞] and let a := α−1, b := β−1. The probability that the ith

diagonal box contains α is

P
(
Sn,α,β(i, n + 1− i) = α

)
=

n− i + b

n + a + b− 1
, 1 � i � n. (7.1)

Proof. If n = 1, this follows directly from the definition and α/(α + β) = b/(a + b).

In general, we use Theorem 6.1 with j = n + 1− i, which shows that Sn,α,β[i, n + 1− i]
d
=

S1,α̂,β̂ with α̂ := α̂−1 = a + i− 1, β̂ := β̂−1 = b + n− i, which yields

P
(
Sn,α,β(i, n + 1− i) = α

)
= P

(
S1,α̂,β̂(1, 1) = α

)
=

α̂

α̂ + β̂
=

n− i + b

n + a + b− 1
.
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The probability of an α thus decreases linearly as we go from NE to SW, from

approximately 1 to approximately 0 for large n. Hence the top part of the diagonal

contains mainly αs and the bottom part mainly βs. (This is very reasonable, since these

choices give fewer restrictions by (Siii) and (Siv).)

Non-diagonal boxes are often empty. The distribution of a given box is as follows.

Theorem 7.2. Let α, β and a, b be as in Theorem 7.1. The probability that the non-diagonal

box (i, j) contains α or β is

P
(
Sn,α,β(i, j) = α

)
=

j − 1 + b

(i + j + a + b− 1)(i + j + a + b− 2)
, (7.2)

P
(
Sn,α,β(i, j) = β

)
=

i− 1 + a

(i + j + a + b− 1)(i + j + a + b− 2)
, (7.3)

and thus

P
(
Sn,α,β(i, j) 	= 0

)
=

1

i + j + a + b− 1
. (7.4)

For α = β = ∞ and i = j = 1, we interpret (7.2) and (7.3) as 1/2.

Proof. Consider first the case i = j = 1. By Theorem 2.10, the expected total number of

symbols α in S = Sn,α,β is

ENα =

n−1∑
i=0

(
1− a

a + b + i

)
. (7.5)

If we delete the first column, the remaining part S[1, 2] is by Theorem 6.1 an Sn−1,α1 ,β1

with a1 := α−1
1 = a and b1 := β−1

1 = b + 1; hence Theorem 2.10 shows that the expected

number of symbols in S[1, 2] is

n−2∑
i=0

(
1− a1

a1 + b1 + i

)
=

n−2∑
i=0

(
1− a

a + b + 1 + i

)
=

n−1∑
i=1

(
1− a

a + b + i

)
. (7.6)

Taking the difference of (7.5) and (7.6), we see that

E
(
#α in the first column

)
= 1− a

a + b
=

b

a + b
. (7.7)

Now delete the first row of S . By Theorem 6.1, the remainder S[2, 1] is an Sn−1,α2 ,β2
with

a2 := α−1
2 = a + 1 and b2 := β−1

2 = b. Hence (7.7) applied to this subtableau shows that

E
(
#α in boxes (2, 1), . . . , (n, 1)

)
=

b2

a2 + b2
=

b

a + b + 1
, (7.8)

and taking the difference of (7.7) and (7.8) we obtain

P
(
Sn,α,β(1, 1) = α

)
=

b

a + b
− b

a + b + 1
=

b

(a + b)(a + b + 1)
. (7.9)

(This argument is valid also for n = 2, since (7.7) also holds for n = 1, by Theorem 7.1 or

by noting that (7.6) also holds, trivially, for n = 1.)

We have shown (7.9), which is (7.2) for i = j = 1. The general case of (7.2) follows by

Theorem 6.1, (7.3) follows by symmetry (Remark 1.3) and (7.4) follows by summing.
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Example 7.3. For 2 � k � n, the expected total number of symbols in the boxes on the

line i + j = k parallel to the diagonal is

k−1∑
i=1

1

k + a + b− 1
=

k − 1

k + a + b− 1
. (7.10)

Thus, for k large there is on average about one symbol on each such line that is not too

short. (In the case α = β = ∞, the expectation equals 1 for every such line.) We do not

know the distribution of symbols on the line i + j = k, and leave that as an open problem.

We conjecture that the distribution is asymptotically Poisson as n, k →∞.

Example 7.4. The expected number of αs on the line i + j = k, with 2 � k � n, is

k−1∑
i=1

j − 1 + b

(k + a + b− 1)(k + a + b− 2)
=

(k − 1)(k + 2b− 2)

2(k + a + b− 1)(k + a + b− 2)
, (7.11)

which is about 1/2 for large k (with equality when α = β = ∞). Again, we do not know

the distribution, but we conjecture that it is asymptotically Poisson as n, k → ∞.

We can also consider the joint distribution for several boxes. We consider only boxes

on the diagonal, leaving non-diagonal boxes as an open problem. Our key tool is the

following simple lemma. Compare to Theorem 6.1 with no conditioning and (in this case)

a shift of β.

Lemma 7.5. If we condition Sn,α,β on the bottom box Sn,α,β(n, 1) = α, then the subtableau

Sn,α,β[1, 2] obtained by deleting the first column has the distribution of Sn−1,α,β .

Proof. If S is an α/β-staircase tableau such that the bottom box S(n, 1) = α, then the

first column is otherwise empty by (Siv), and the remainder, i.e. S[1, 2], is an arbitrary

α/β-staircase tableau of size n− 1. Introducing weights (1.3), if we condition Sn,α,β on

Sn,α,β(n, 1) = α and then delete the first column, then we obtain a copy of Sn−1,α,β as

asserted.

The following theorem gives a complete description of the distribution of the boxes on

the diagonal. For convenience, we use a simplified notation, letting Sn(j) be the symbol

of the random Sn,α,β in the diagonal box in column j, i.e.,

Sn(j) := Sn,α,β(n + 1− j, j). (7.12)

Theorem 7.6. Let α, β and a, b be as in Theorem 7.1, and let 1 � j1 < · · · < j� � n. Then

P
(
Sn(j1) = · · · = Sn(j�) = α

)
=

�∏
k=1

jk − k + b

n− k + a + b
. (7.13)

For � = 1, this is Theorem 7.1.
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Proof. We use induction on n. (Induction on � is also possible.)

If j1 > 1, we may delete the first column, which decreases n and each jk by 1 and,

by Theorem 6.1, increases b by the same amount. Thus (7.13) follows by the inductive

hypothesis.

If j1 = 1, we use Lemma 7.5 and obtain by Theorem 7.1 and induction

P
(
Sn(j1) = · · · = Sn(j�) = α

)
= P(Sn(1) = α) P

(
Sn(j2) = · · · = Sn(j�) = α | Sn(1) = α

)
= P(Sn(1) = α) P

(
Sn−1(j2 − 1) = · · · = Sn−1(j� − 1) = α

)
=

b

n + a + b− 1

�−1∏
k=1

jk+1 − 1− k + b

n− 1− k + a + b
,

which shows (7.13) in this case too.

The case � = 2 can also be expressed as a covariance formula.

Corollary 7.7. If 1 � j < k � n, then

Cov
(
1{Sn(j) = α}, 1{Sn(k) = α}

)
= − (j − 1 + b)(n− k + a)

(n + a + b− 1)2(n + a + b− 2)
.

Proof. By Theorem 7.6, the covariance is

j − 1 + b

n− 1 + a + b
· k − 2 + b

n− 2 + a + b
− j − 1 + b

n− 1 + a + b
· k − 1 + b

n− 1 + a + b

=
j − 1 + b

n− 1 + a + b

(
k − 2 + b

n− 2 + a + b
− k − 1 + b

n− 1 + a + b

)
,

and the result follows.

Remark 7.8. Barbour and Janson [3] studied the profile of a random permutation tableau,

which by the bijection discussed in the Introduction and Example 3.2 is equivalent

to studying the sequence of partial sums
∑k

j=1 1{Sn(j) = α}, k = 1, . . . , n, in the case

α = β = 1; it is shown in [3] that after rescaling, this sequence converges to a Gaussian

process. This is extended to the case α = 1 with arbitrary β > 0 by Féray [24]. It would

be interesting to extend this further to general α and β.

8. The case α = β = ∞

The limiting case α = β = ∞ was studied in Example 3.7, where we saw that Sn,∞,∞ is

a uniformly random element of S∗∗n , the set of α/β-staircase tableau with the maximal

number, 2n− 1, of symbols α and β. We study these α/β-staircase tableaux further.

Lemma 8.1. A staircase tableau S ∈ S∗∗n always has box (1, 1) filled with a symbol.
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Proof. This follows from (7.4) in Theorem 7.2, taking α = β = ∞ and thus a = b = 0,

which shows that the random staircase tableau Sn,∞,∞ has a symbol in box (1, 1) with

probability 1; recall from Example 3.7 that Sn,∞,∞ is uniformly distributed in S∗∗n .

Alternatively, we can give a combinatorial proof as follows. Suppose that S ∈ S∗∗n has

box (1, 1) empty. We may replace any α in the first column by β, and any β in the first

row by α, without violating (Si)–(Siv), and we may then add α (or β) in box (1, 1), yielding

a staircase tableau with one more symbol, which is a contradiction since S∗∗n consists of

the α/β-staircase tableaux with a maximum number of symbols.

Given a staircase tableau S ∈ S∗∗n , we let as above S(1, 1) be the symbol in (1, 1), and

we let S ′ be the staircase tableau obtained by removing this symbol from S .

Lemma 8.2. If S ∈ S∗∗n , then S ′ has n− 1 αs and n− 1 βs.

More precisely, S ′ has an α in each column except the first, and a β in each row except

the first.

Proof. By (Siv), S has at most one α in each column; moreover, since (1, 1) is filled, the

first column cannot contain an α in any other box. Hence, S ′ contains no α in the first

column, and at most one α in every other column. Similarly, S ′ contains no β in the first

row and at most one in every other row.

Consequently, Nα(S
′) + Nβ(S ′) � (n− 1) + (n− 1) = 2n− 2. On the other hand, S con-

tains 2n− 1 symbols so S ′ contains 2n− 2 symbols and we must have equality.

Conversely, if S0 ∈ S̄n has n− 1 αs and n− 1 βs distributed as described in Lemma 8.2,

then box (1, 1) is empty and we may add any of α or β to (1, 1) and obtain a staircase

tableau in S∗∗n . Let S∗∗′n := {S ′ : S ∈ S∗∗n } be the set of α/β-staircase tableaux described in

Lemma 8.2. The mapping S �→ S ′ is thus a 2–1 map of S∗∗n onto S∗∗′n .

Given ρ ∈ [0, 1], we define a random α/β-staircase tableau Sn,∞,∞,ρ by picking a random,

uniformly distributed, S ′ ∈ S∗∗′n and adding a random symbol, independent of S ′, in box

(1, 1), with probability ρ of adding α. In particular, Sn,∞,∞,1/2 has the uniform distribution

on S∗∗n , i.e., Sn,∞,∞,1/2 = Sn,∞,∞; see Example 3.7.

Lemma 8.3. Let α, β ∈ (0,∞). Then the random tableau Sn,α,β conditioned to have the max-

imum number 2n− 1 of symbols has the distribution of Sn,∞,∞,ρ with ρ = α/(α + β).

Proof. A staircase tableau S ∈ S∗∗n has weight αwt(S ′) when S(1, 1) = α and β wt(S ′)

when S(1, 1) = β. By Lemma 8.2, all staircase tableaux S ′ ∈ S∗∗′n have the same weight

αn−1βn−1, and hence the result follows.

We have defined Sn,∞,∞ by letting α = β →∞. What happens if we let α→∞ and

β →∞, but with different rates?

Theorem 8.4. Let α→ ∞ and β →∞ such that α/(α + β)→ ρ ∈ [0, 1], and let n � 1 be

fixed. Then Sn,α,β
d−→ Sn,∞,∞,ρ.
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Proof. The weight of every α/β-staircase tableau in S̄n \ S∗∗n is at most, assuming as we

may α, β � 1,

αnβn−2 + αn−2βn = o
(
αnβn−1 + αn−1βn

)
= o

(
Zn(α, β)

)
. (8.1)

Hence P(Sn,α,β /∈ S∗∗n )→ 0, so it suffices to consider Sn,α,β conditioned on being in S∗∗n , and

the result follows by Lemma 8.3.

Thus, although the limiting distribution depends on the size of α/β, it is only the

distribution of the top left symbol S(1, 1) that is affected; S ′n,α,β has a unique limit

distribution for all α, β →∞. In particular, the distribution of the symbols on the diagonal

has a unique limiting distribution.
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