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The deformation of elementary fluid volumes by velocity gradients is a key process
for scalar mixing, chemical reactions and biological processes in flows. Whilst
fluid deformation in unsteady, turbulent flow has gained much attention over the
past half-century, deformation in steady random flows with complex structure –
such as flow through heterogeneous porous media – has received significantly less
attention. In contrast to turbulent flow, the steady nature of these flows constrains
fluid deformation to be anisotropic with respect to the fluid velocity, with significant
implications for e.g. longitudinal and transverse mixing and dispersion. In this study
we derive an ab initio coupled continuous-time random walk (CTRW) model of fluid
deformation in random steady three-dimensional flow that is based upon a streamline
coordinate transform which renders the velocity gradient and fluid deformation
tensors upper triangular. We apply this coupled CTRW model to several model
flows and find that these exhibit a remarkably simple deformation structure in the
streamline coordinate frame, facilitating solution of the stochastic deformation tensor
components. These results show that the evolution of longitudinal and transverse
fluid deformation for chaotic flows is governed by both the Lyapunov exponent and
power-law exponent of the velocity probability distribution function at small velocities,
whereas algebraic deformation in non-chaotic flows arises from the intermittency of
shear events following similar dynamics as that for steady two-dimensional flow.

Key words: chaotic advection, mixing and dispersion, porous media

1. Introduction

Whilst the majority of complex fluid flows are inherently unsteady due to the
ubiquity of fluid turbulence, there also exist an important class of steady flows
which possess complex flow structure. Such viscous-dominated flows typically occur
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Fluid deformation in random steady three-dimensional flow 771

FIGURE 1. (Colour online) Evolution of a two-dimensional (2-D) material surface H2D
(light grey sheet, blue online) with the mean flow direction 〈v〉 (black arrow) arising from
a continuously injected 1-D line source H(1)

1D (black line). A 1-D cross-section H(3)
1D (dark

grey line, blue online) of this surface is only subject to transverse deformation, whereas
a pulsed injection along H(1)

1D subsequently forms the 1-D line H(2)
1D (light grey line, red

online) which is subject to both transverse and longitudinal fluid deformation.

in complex domains through natural or engineered materials, including porous and
fractured rocks and soils, granular matter, biological tissue and sintered media. The
heterogeneous nature of these materials can impart complex flow dynamics over a
range of scales (Cushman 2013). These heterogeneities (whether at e.g. the pore scale
or Darcy scale) arise as spatial fluctuations in material properties (e.g. permeability),
and so the velocity field structure of the attendant steady flows is directly informed
by these fluctuations. These flows play host to a wide range of physical, chemical and
biological processes, where transport, mixing and dispersion govern such fluid-borne
phenomena. An outstanding challenge is the development of models of mixing,
dilution and dispersion which are couched in terms of the statistical measures of the
material properties such as hydraulic conductivity variance and correlation structure.
As fluid deformation governs transport, mixing and dispersion, a critical step in the
development of upscaled models of physical phenomena is the determination of fluid
deformation as a function of these material properties.

Whilst fluid deformation in unsteady, turbulent flows has been widely studied
for over half a century (Cocke 1969; Ashurst et al. 1987; Girimaji & Pope 1990;
Meneveau 2011; Thalabard, Krstulovic & Bec 2014), much less attention has been
paid to deformation in random steady flows, which have a distinctly different character.
The steady nature of these flows imposes an important constraint upon the evolution
of fluid deformation in that one of the principal stretches of the deformation gradient
tensor must coincide with the local velocity direction (Tabor 1992). Furthermore, the
magnitude of this principal deformation is directly proportional to the local velocity,
hence there is no net fluid stretching along the flow direction. This constraint,
henceforth referred to as the steady flow constraint, means that fluid deformation
of material lines and surfaces can be highly anisotropic with respect to the flow
direction, leading to e.g. different mixing dynamics longitudinal and transverse to the
mean flow direction.

This difference in deformation dynamics is illustrated by the evolution of material
elements in the mean translational flow shown in figure 1. Here a continuously
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injected material line H(1)
1D (green line) evolves with the mean flow direction 〈v〉 to

form the steady two-dimensional (2-D) material sheet H2D, the cross-section of which
H(3)

1D (blue line) can evolve into a complex lamellar shape due to fluid deformation
transverse to the mean velocity field. In contrast, if we consider the material line
H(1)

1D to be instantaneously injected at the inlet plane, this line evolves into the 1-D
material line H(2)

1D (red line) which resides within the 2-D surface H2D. The line H(2)
1D

deforms due to fluid deformation parallel to the local flow direction, leading to the
fingering pattern observed in figure 1, whereas H(3)

1D evolves solely due to stretching
transverse to the mean flow direction.

We denote fluid deformation in the longitudinal and transverse directions as
Λl, Λt respectively, which directly govern longitudinal and transverse mixing and
dispersion. In steady 2-D flow, deformation transverse to the local flow direction
(Λt) only fluctuates with time, whilst longitudinal deformation (Λl) can grow without
bound (Attinger, Dentz & Kinzelbach 2004). Due to the steady flow constraint, fluid
deformation evolves via different mechanisms depending upon whether it is parallel
or transverse to the local velocity direction. These differences mean that in general,
fluid deformation in steady 3-D flows cannot be described in terms of a single scalar
quantity (such as mean stretching rate).

As such, models of fluid mixing longitudinal and transverse to the mean flow
must reference appropriate components of the fluid deformation tensor, and these can
have very different evolution rates. For example, Le Borgne, Dentz & Villermaux
(2013, 2015) show that longitudinal deformation Λl governs mixing of a pulsed
tracer injection in steady 2-D Darcy flow. Conversely, Lester, Dentz & Le Borgne
(2016) illustrate that transverse fluid deformation Λt governs mixing of a continuously
injected source in a steady 3-D flow at the pore scale, and Cirpka et al. (2011) show
that the same holds for continuously injected sources in two dimensions at the Darcy
scale.

In contrast, the unsteady nature of turbulent flows means that the deformation
dynamics is largely isotropic with respect to the flow direction, whilst quantities such
as vorticity tend to align with principal strain directions (Meneveau 2011). As a result,
stochastic modelling of material deformation has focused on the measurement and
development of stochastic models for orientation-invariant measures of deformation,
typically in terms of invariants of the strain rate and velocity gradient tensors
(Meneveau 2011; Thalabard et al. 2014). Hence these models are not capable of
resolving the constraints associated with steady flows. Conversely, whilst deformation
in steady flow has been the subject of a number of studies (Adachi 1983; Finnigan
1983; Adachi 1986; Finnigan 1990; Tabor 1992), the development of stochastic
models of deformation in these flows is an outstanding problem.

To address this shortcoming, in this study we derive an ab initio stochastic model
of fluid deformation in steady, random 3-D flows that fully resolve the longitudinal
Λl and transverse Λt deformations. Rather than develop empirical models of fluid
deformation in specific flows, we analyse the kinematics of deformation in steady 3-D
flows and derive a generic framework applicable to all such flows. This stochastic
model takes the form of a coupled continuous-time random walk (CTRW) along fluid
streamlines, and represents an extension of previous work by Dentz et al. (2016b) on
stochastic modelling of fluid deformation in steady 2-D flows.

We apply this model to several model flows and show that it accurately resolves
the deformation dynamics and provides a valuable link between the Eulerian flow
properties and Lagrangian deformation structure. As this CTRW model may be
readily applied to existent numerical or experimental datasets, it provides a means to
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fully characterise and predict Lagrangian fluid deformation in complex steady flows
from the Eulerian velocity and velocity gradient statistics. In the context of porous
media flow (e.g. pore- and Darcy-scale flow simulations or experiments) this link
provides an important building block for the development of fluid transport, mixing
and reaction models which may be couched directly in terms of medium properties,
such as heterogeneity controls in Darcy-scale flow (e.g. de Barros et al. 2012; Le
Borgne et al. 2015).

To begin we first outline the stochastic modelling approach utilised in this study in
§ 2, and identify a moving streamline coordinate frame, termed a Protean frame, to
couch this model. In § 3 we consider evolution of fluid deformation in the Protean
frame and derive expressions for evolution of the deformation tensor components in
this frame. In § 4 we derive and solve the coupled CTRW model for fluid deformation
in the Protean frame coordinates and apply the stochastic model to several model
steady flows. In § 5 the velocity and velocity gradient statistics of several model flows
in the Protean frame are examined, and model predictions are compared with direct
computations. These results are discussed and then conclusions are made in § 6.

2. Stochastic modelling of fluid deformation in steady flows

Steady flows, whether in two or three dimensions, involve topological and kinematic
constraints (Tabor 1992) which impact the deformation of material elements. To
develop a general stochastic modelling framework which honours these constraints, it
is necessary to resolve the deformation tensor in a frame relative to the local velocity
field. By utilising a coordinate frame which aligns with the streamlines of the flow,
the topological constraints upon fluid deformation associated with steady flow are
automatically imposed, and the stretching and shear contributions to deformation are
clearly resolved. Specifically, we seek to develop stochastic models for the evolution
of Λt and Λl in various flow regimes and across time scales which observe these
kinematic constraints.

There exist several choices for streamline coordinate frames in steady flows,
ranging from moving Cartesian coordinate frames to curvilinear streamline coordinate
systems and convected coordinates. Adachi (1983, 1986) presents a rotating Cartesian
coordinate frame, termed a Protean coordinate frame, to study fluid deformation
in 2-D planar and axisymmetric flows. Similar to other streamline coordinate
frames (such as Frenet–Serret coordinates (Finnigan 1990) or curvilinear streamline
coordinates), this frame automatically imposes the topological and kinematic
constraints outlined in § 1 that are inherent to steady flows.

In contrast to these coordinate systems, the moving Protean coordinate frame
renders the velocity gradient tensor upper triangular. As shown in appendix B,
orthogonal streamline coordinate systems do not possess this property, and moreover
it appears difficult to define a consistent streamline coordinate system for chaotic flows
(Finnigan 1990). The upper triangular form of the velocity gradient in the Protean
frame greatly simplifies solution of the deformation gradient tensor, which may now
be expressed in terms of definite integrals of the velocity gradient components (Adachi
1983, 1986). This representation then facilitates the development of stochastic models
of fluid deformation, based upon solution of these integrals as a random walk process
along fluid streamlines. Dentz et al. (2016b) used the Protean frame as the basis for
the development of a stochastic model of fluid deformation in random steady 2-D
flows. In this study we are concerned with the extension of this approach to random
steady 3-D flow.
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Unlike steady 2-D flow, the moving streamline coordinate frame is not unique for
steady 3-D flow due to the additional degree of freedom associated with orientation of
the frame about a streamline. As will be shown in § 3.2, the velocity gradient tensor
is also no longer upper triangular for any arbitrary orientation about a streamline.
However, we extend the Protean coordinate frame of Adachi (1983, 1986) to
arbitrary steady 3-D flows by choosing the orientation angle that renders the velocity
gradient upper triangular, recovering the integral solutions for the deformation tensor
components. In some sense this 3-D Protean frame for calculating fluid deformation
in steady flow is analogous to continuous QR decomposition methods (Dieci, Russell
& Van Vleck 1997; Dieci & Vleck 2008) for autonomous dynamical systems, which
automatically recover constraints such as regularity and volume preservation of phase
space.

In contrast to 2-D flow, 3-D steady flow also admits the possibility of chaotic
fluid trajectories and exponential fluid deformation. In this context, an appropriate
framework is needed which can also correctly capture either the Lyapunov exponents
(exponential stretching rates) associated with chaotic flows or the power-law indices
associated with algebraic fluid stretching in non-chaotic flows (such as isotropic
Darcy flow). In § 3.2 we show that the ensemble average of the diagonal components
of the velocity gradient in the Protean frame correspond directly to the Lyapunov
exponents of the flow. With respect to non-chaotic flows, special care is also required
to suppress spurious exponential stretching in stochastic models, even for steady
2-D flows. For example, Duplat, Innocenti & Villermaux (2010) discuss a series
of stretching mechanisms to explain observed sub-exponential (algebraic) stretching
across a broad range of flow. Rather, algebraic stretching is inherent to steady 2-D
flow as a direct result of the topological constraints of these flows (associated with the
Poincaré–Bendixson theorem). Dentz et al. (2016b) show that the use of streamline
coordinates for 2-D flows automatically recovers these constraints without resort to
any specialised stretching mechanism. In appendix B we show that certain components
of the velocity gradient tensor are rendered zero for non-chaotic 3-D flows such as
complex lamellar (Finnigan 1983; Kelvin 1884) or zero-helicity-density (Moffatt
1969) flows, automatically recovering the kinematic constraints associated with these
steady flows. Hence the Protean frame automatically adheres to the topological and
kinematic constraints associated with chaotic and non-chaotic steady flows, so seems
well suited to the development of stochastic models of fluid deformation in these
flows.

In steady random flows, Lagrangian velocities along streamlines fluctuate on a scale
set by the random flow spatial structure. Hence, both the fluid velocity and velocity
gradient tend to follow a spatial Markov process along streamlines (Le Borgne,
Dentz & Carrera 2008a,b), as these properties decorrelate in space. By exploiting
this property and the Protean coordinate frame, we derive a stochastic deformation
model in steady random flows as a coupled continuous-time random walk (CTRW).
The CTRW framework allows accounting for the broad velocity distributions that
characterise steady random flows and lead to anomalous transport behaviour (Dentz
et al. 2016a). A similar approach has been applied previously by Dentz et al. (2016b)
to steady 2-D flows, leading to significant insights into the mechanisms which control
fluid deformation in steady flow, namely that fluid deformation evolves as a coupled
Lévy process due to the coupling between shear deformation and velocity fluctuations
along streamlines.

For 3-D flows, the possibility of exponential fluid stretching augments the couplings
between shear, stretching, velocity and deformation leading to wholly new deformation
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Fluid deformation in random steady three-dimensional flow 775

dynamics in steady 3-D flows, which is captured by the presented CTRW model. By
solving this CTRW model, we can then make quantitative predictions of longitudinal
Λl and transverse Λt fluid deformation in steady 3-D random flows from statistical
characterisation of the fluid velocity and velocity gradients. This facilitates the
quantification of fluid deformation (and hence mixing, reaction and dispersion) directly
from e.g. experimental or computational flow datasets. We begin by consideration of
fluid deformation in the Protean frame.

3. Fluid deformation in the Protean coordinate frame

In this section we extend the Protean coordinate frame of Adachi (1983, 1986) to
3-D steady flows and derive the evolution equations for the deformation gradient in
streamline coordinates.

3.1. General development
The evolution of the location x(t) of fluid element in the steady spatially heterogeneous
flow field u(x) is given by the advection equation

dx(t;X)
dt

= v(t), v(t;X)≡ u[x(t;X)], (3.1a,b)

where we denote the reference material vectors in the Eulerian and Lagrangian frames
by x(t) and X, respectively. The deformation gradient tensor F (t) quantifies how the
infinitesimal vector dx(t;X) deforms from its reference state dx(t= 0;X)= dX as

dx= F (t) · dX (3.2)

and equivalently

F ij(t)≡
∂xi(t;X)
∂Xj

. (3.3)

Following this definition, the deformation gradient tensor F (t) evolves with travel time
t along a Lagrangian trajectory (streamline) as

dF (t)
dt
= ε(t)F (t), F (0)= 1, (3.4)

where the velocity gradient tensor ε(t) = ∇v(t)> ≡ ∇u[x(t; X)]> and the superscript
> denotes the transpose. Rather than use a curvilinear streamline coordinate system,
we consider the transform of a fixed orthogonal Cartesian coordinate system into the
Protean coordinate frame which consists of moving Cartesian coordinates. We denote
spatial coordinates in the fixed Cartesian coordinate system as x= (x1, x2, x3)

>, and the
reoriented Protean coordinate system by x′ = (x′1, x′2, x′3)

>, where the velocity vector
v(x) = (v1, v2, v3)

> in the Cartesian frame transforms to v′(x′) = (v, 0, 0)> in the
Protean frame, with v= |v|. These two frames are related by the transform (Truesdell
& Noll 1992)

x′ = x0(t)+Q>(t)x, (3.5)

where x0(t) is an arbitrary translation vector, and Q(t) is a rotation matrix (or proper
orthogonal transformation): Q>(t) ·Q(t)= 1, det[Q(t)] = 1. From (3.5) the differential
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elements dx, dX transform respectively as dx′=Q>(t) dx, dX′=Q>(0) dX, and so from
(3.2) the deformation gradient tensor then transforms as

F ′(t)=Q>(t)F (t)Q(0). (3.6)

Formally, F (t) is a pseudo-tensor (Truesdell & Noll 1992), as it is not objective as
per (3.6), F ′(t) 6=Q>(t)F (t)Q(t) (Ottino 1989). Differentiating (3.6) with respect to the
Lagrangian travel time t yields

dF ′

dt
= Q̇

>

(t)F (t)Q(0)+Q>(t)ε(t)F (t)Q(0)= ε ′(t)F ′(t), (3.7)

where the transformed rate of strain tensor ε ′(t) is defined as

ε ′(t)≡Q>(t)ε(t)Q(t)+ A(t), (3.8)

and the contribution due to a moving coordinate frame is A(t)≡ Q̇
>

(t)Q(t). As Q(t) is
orthogonal, then Q̇

>

(t)Q(t)+Q>(t)Q̇(t)= 0 and so A(t) is skew-symmetric. Note that
the velocity vector v(t) = dx/dt also transforms as v′(t) = Q>(t)v(t). The basic idea
of the Protean coordinate frame is to find an appropriate local reorientation Q(t) that
renders the transformed velocity gradient ε ′(t) upper triangular, simplifying solution
of the deformation tensor F in (3.7).

3.2. Fluid deformation in 3-D Protean coordinates
Adachi (1983, 1986) shows that for steady 2-D flow, reorientation into streamline
coordinates automatically yields an upper triangular velocity gradient tensor, hence the
reorientation matrix Q(t) is simply given in terms of the velocity v= [v1, v2]

> in the
fixed Cartesian frame as

Q(t)=
1
v

(
v1 −v2
v2 v1

)
, (3.9)

hence v′ = [v, 0]>, where v =
√
v2

1 + v
2
2 .

In contrast to steady 2-D flow, the additional spatial dimension of steady 3-D
flows admits an additional degree of freedom for the specification of streamline
coordinates. In 3-D streamline coordinates, the base vector e′1(t) aligns with the
velocity vector v(t), such that v′(t)= [v(t), 0, 0]>, but the transverse vectors e′2(t) and
e′3(t) are arbitrary up to a rotation about e′1(t). As these base vectors are not material
coordinates, this degree of freedom does not impact the governing kinematics.

For the Protean coordinate frame it is required to reorient the rate of strain tensor
ε ′(t) such that it is upper triangular, yielding explicit closed-form solution for the
deformation gradient tensor F ′(t) and elucidating the deformation dynamics. Whilst all
square matrices are unitarily similar (mathematically equivalent) to an upper triangular
matrix, it is unclear whether such a similarity transform is orthogonal, or corresponds
to a reorientation of frame, or indeed corresponds to a reorientation into streamline
coordinates. As demonstrated by Adachi (1983, 1986), this condition is satisfied for
all steady 2-D flows, but this is still an open question for steady 3-D flows.

For reasons that will become apparent, we develop the 3-D Protean coordinate frame
by decomposing the reorientation matrix Q(t) into two sequential reorientations Q1(t),
Q2(t) as

Q(t)≡Q2(t)Q1(t), (3.10)
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where Q1(t) is a reorientation that aligns the velocity vector v with the Protean base
vector e′1(t), and Q2(t) is a subsequent reorientation of the Protean frame about e′1(t).
As such, the reorientation Q1(t) renders the Protean frame a streamline coordinate
frame, and Q2 represents a (currently) arbitrary reorientation of this streamline frame
about the velocity vector.

We begin by considering the 3-D rotation matrix Q1(t) which is defined in terms
of the unit rotation axis q(t) (which is orthogonal to both the velocity and e1 vectors),
and the associated reorientation angle θ(t), both of which are given in terms of the
local velocity vector v(t)= [v1, v2, v3]

> as

q(t)=
e1 × v

‖e1 × v‖
=

1√
v2

2 + v
2
3

{0, v3,−v2}, (3.11)

cos θ(t)=
e1 · v

‖e1 · v‖
=
v1

v
. (3.12)

The rotation tensor Q1(t) then is given by

Q1(t)= cos θ(t)I + sin θ(t)(q)>
×
+ [1− cos θ(t)]q(t)⊗ q(t), (3.13)

where I is the identity matrix, (·)× denotes the cross-product matrix and ‖ · ‖ is the `2-
norm. The second reorientation matrix Q2(t) corresponds to an arbitrary reorientation
(of angle α(t)) about the e′1 axis, which is explicitly

Q2(t)=

1 0 0
0 cos α(t) −sinα(t)
0 sin α(t) cos α(t)

 . (3.14)

Whilst the algebraic expressions (in terms of α, v1, v2, v3) for the components of the
composition rotation matrix Q(t)=Q2(t)Q1(t) are somewhat complicated, it is useful
to note that Q(t) may be expressed in terms of the Protean frame basis vectors as

Q(t)= [e′1(t), e′2(t), e′3(t)], (3.15)

hence the moving coordinate contribution A(t) is given by

A(t)= Q̇
>

(t)Q(t)=

 0 e′2(t) · ė
′

1(t) e′3(t) · ė
′

1(t)
−e′2(t) · ė

′

1(t) 0 e′3(t) · ė
′

2(t)
−e′3(t) · ė

′

1(t) −e′3(t) · ė
′

2(t) 0

 . (3.16)

Defining the Protean velocity gradient in the absence of this contribution as ε̃(t),

ε̃(t)≡Q>(t)ε(t)Q(t)= ε ′(t)− A(t), (3.17)

we find the components of A(t) may be related to ε̃(t) as follows. From (3.17) and
(3.15), ε̃ij(t)= e′i(t)ε(t)e′j(t), and since v̇(t)= ε(t) · v(t), e′1(t)= v(t)/v(t), then

e′2(t) · ė
′

1(t)= e′2(t) · ε(t) · e
′

1(t)= ε̃21(t), (3.18)
e′3(t) · ė

′

1(t)= e′3(t) · ε(t) · e
′

1(t)= ε̃31(t). (3.19)
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From these relationships the Protean velocity gradient tensor ε ′(t)= ε̃+A(t) is then

ε ′(t)=

ε̃11 ε̃12 + ε̃21 ε̃13 + ε̃31
0 ε̃22 ε̃23 + A23(t)
0 ε̃32 − A23(t) −ε̃22 − ε̃11

 , (3.20)

where A23(t) = e′3(t) · ė′2(t). As the reorientation Q2 (3.14) only impacts the ε ′22, ε ′23,
ε ′32, ε ′33 components, reorientation (via Q1(t)) into streamline coordinates automatically
renders the ε ′21, ε ′31 components of the velocity gradient tensor zero. It is this transform
which renders the Protean velocity gradient upper triangular for 2-D steady flows.

Whilst ε ′32= ε̃32−A23 is non-zero in general, ε ′(t) may be rendered upper triangular
by appropriate manipulation of the arbitrary reorientation angle α(t) such that A23= ε̃32.
In a similar manner to (3.18), (3.19), we may express A23 in terms of the components
of ε(t) as

e′3(t) · ė
′

2(t)= v(t)e
′

3(t)
[
∂e′2(t)
∂v

ε(t)
]

e′1(t)+ e′3(t) ·
∂e′2(t)
∂α(t)

dα
dt
, (3.21)

where from (3.13), (3.14)

ve′3 ·
∂e′2
∂v
=

1
v + v1

{0, v3,−v2} =
v3 cos α − v2 sin α

v + v1
e′2 −

v2 cos α + v3 sin α
v + v1

e′3, (3.22)

e′3 ·
∂e′2
∂α
=−1, (3.23)

and so A23(t) is then

A23(t)= e′3 · ė
′

2 =
v3 cos α − v2 sin α

v + v1
ε̃21 −

v2 cos α + v3 sin α
v + v1

ε̃31 −
dα
dt
. (3.24)

Hence the equation A23(t) = ε̃32 defines an ordinary differential equation (ODE) for
the arbitrary orientation angle α(t) which renders ε ′(t) upper triangular. Although the
components of ε̃(t) vary with α, these may be expressed in terms of the components
of ε(1) (which are independent of α), defined as

ε(1)(t)≡Q>1 (t)ε(t)Q1(t), (3.25)

where the components of ε̃(t) and ε(1)(t) are related as

ε̃21 = ε
(1)
21 cos α + ε(1)31 sin α, (3.26)

ε̃31 = ε
(1)
31 cos α − ε(1)21 sin α, (3.27)

ε̃32 = ε
(1)
32 cos2 α − ε

(1)
23 sin2 α + (ε

(1)
33 − ε

(1)
22 ) cos α sin α. (3.28)

Hence the condition A23 = ε̃32 is satisfied by the ODE
dα
dt
= g(α, t)

= a(t) cos2 α + b(t) sin2 α + c(t) cos α sin α, (3.29)

where

a(t)=−ε(1)32 −
v2

v + v1
ε
(1)
31 −

v3

v + v1
ε
(1)
21 , (3.30)

b(t)= ε(1)23 +
v2

v + v1
ε
(1)
31 +

v3

v + v1
ε
(1)
21 , (3.31)

c(t)= ε(1)22 − ε
(1)
33 +

2v2

v + v1
ε
(1)
21 −

2v3

v + v1
ε
(1)
31 . (3.32)
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FIGURE 2. (a) Convergence of the transverse orientation angle α(t) for different initial
conditions α(0)= α0 (thin black lines) toward the attracting trajectory M(t)= α(t; α0,∞)
(thick grey line) for the ABC flow. Note the correspondence between M(t) and the
transverse angle α(t) associated with minimum (grey dashed line) divergence ∂g/∂α(α, t)
responsible for creation of the attracting trajectory. The maximum divergence is also
shown (black dashed line). (b) Convergence of the initial angle associated with the
approximate attracting trajectory α0,τ toward the infinite-time limit α0,∞.

3.2.1. Evolution of Protean orientation angle α(t)
Equation (3.29) describes a first-order ODE for the transverse orientation angle α(t)

along a streamline which renders ε ′(t) upper triangular. Here the temporal derivative
for α(t) is associated with both change in flow structure along a streamline and
impact of a moving coordinate transform as encoded by A(t). This is analogous
to the ODE system (A 5) for the continuous QR method (appendix A), with the
important difference that the Protean reorientation gives a closed-form solution for
e1 = v/v which constrains two degrees of freedom (d.o.f) for the Protean frame and
an ODE for the remaining d.o.f characterised by α(t), whereas the continuous QR
method involves solution of the three-degree-of-freedom (3-d.o.f.) ODE system (A 5),
and requires unitary integrators to preserve orthogonality of Q. These methods differ
with respect to the initial conditions Q(0)= I , Q(0)= Q1(0) · Q2(0), where Q1(0) is
given explicitly by (3.13), and Q2(0) is dependent upon the initial condition α(0)=α0
as per (3.14), (3.29).

Whilst the ODE (3.29) may be satisfied for any arbitrary initial condition α(0)=α0,
resulting in non-uniqueness of ε ′(t), this non-autonomous ODE is locally dissipative
as reflected by the divergence

∂g
∂α
= [b(t)− a(t)] sin 2α + c(t) cos 2α, (3.33)

which admits maxima and minima of magnitude ±c(t)
√

1+ [b(t)− a(t)/c(t)]2
respectively at

α(t)=
1
2

arctan
[

b(t)− a(t)
c(t)

]
+

π

2
sgn c(t)∓ 1

2
. (3.34)

Hence for c(t) 6= 0, the ODE (3.29) admits an attracting trajectory M(t), which
attracts solutions from all initial conditions α0 as illustrated in figure 2(a). As this
trajectory is also a solution of (3.29), it may be expressed as M(t) = α(t; α0,∞),
where α0,∞ is the initial condition at t = 0 which is already on M(t). Whilst all
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solutions of (3.29) render ε ′(t) upper triangular, only solutions along the attracting
trajectory M(t) represent asymptotic dynamics independent of the initial condition α0,
hence we define the Protean frame as that which corresponds to M(t)= α(t; α0,∞).

As the attracting trajectory M(t) maximises dissipation −∂g/∂α over long times,
the associated initial condition α0,∞ is quantified by the limit α0,∞ = limτ→∞ α0,τ ,
where

α0,τ (t)= arg min
α0

∫ τ

0

∂g(α(t′; α0), t′)
∂α

dt′. (3.35)

Whilst M(t) can be identified by evolving (3.29) until acceptable convergence is
obtained, M(t) may be identified at shorter times τ ∼ 1/|c| via the approximation
(3.35), as shown in figure 2(b). This approach is particularly useful when Lagrangian
data are only available over short times and explicitly identifies the inertial initial
orientation angle α0,∞, allowing the Protean transform to be determined uniquely
from t= 0.

3.2.2. Longitudinal and transverse deformation in 3-D steady flow
Given solution of (3.29) (such that A23 = ε̃32), reorientation into the Protean frame

renders the streamline velocity gradient tensor ε ′(t) upper triangular. From (3.7) it
follows that F ′(t) is also upper triangular, with diagonal components

F ′11(t)=
v(t)
v(0)

, (3.36a)

F ′ii(t)= exp
[∫ t

0
dt′ε ′ii(t

′)

]
, (3.36b)

for i= 2, 3. The off-diagonal elements are F ij(t)= 0 for i> j and else

F ′12(t)= v(t)
∫ t

0
dt′
ε ′12(t

′)F ′22(t
′)

v(t′)
, (3.36c)

F ′23(t)= F ′22(t)
∫ t

0
dt′
ε ′23(t

′)F ′33(t
′)

F ′22(t′)
, (3.36d)

F ′13(t)= v(t)
∫ t

0
dt′
ε ′12(t

′)F ′23(t
′)+ ε ′13(t

′)F ′33(t
′)

v(t′)
. (3.36e)

Here the upper triangular form of ε ′(t) simplifies solution of the deformation tensor
F ′(t) such that the integrals (3.36) can be solved sequentially, rather than the coupled
ODE (3.4). It is interesting to note that the integrands of the shear deformations
F ′12(t) and F ′13(t) are weighted by the inverse velocity. This implies that episodes
of low velocity lead to an enhancement of shear-induced deformation; see also the
discussion in Dentz et al. (2016b) for 2-D steady random flows. The impact of
intermittent shear events in low velocity zones can be quantified using a stochastic
deformation model based on continuous time random walks, as outlined in the next
section. For compactness of notation we henceforth omit these primes, with the
understanding that all quantities are in the Protean frame unless specified otherwise.

To illustrate how the deformation tensor controls longitudinal and transverse
stretching of fluid elements, we decompose F into longitudinal and transverse
components respectively as F (t)= F l + F t, where

F l ≡ diag(e1) · F =

F 11 F 12 F 13
0 0 0
0 0 0

 , (3.37)
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Fluid deformation in random steady three-dimensional flow 781

F t ≡ diag(e2 + e3) · F =

0 0 0
0 F 22 F 23
0 0 F 33

 , (3.38)

where diag(a) is a diagonal matrix comprising the vector a along the diagonal. From
(3.2), a differential fluid line element δl(X, t) at Lagrangian position X then evolves
with time t as

δl(X, t) = F (X, t) · δl(X, 0)
= F l(X, t) · δl(X, 0)+ F t(X, t) · δl(X, 0)= δll(X, t)+ δlt(X, t), (3.39)

where the line element may also be decomposed into the longitudinal and transverse
components as δll= δll+ δlt. Due to the upper triangular nature of F the length δl of
these line elements can also be decomposed as

δl(X, t)≡ |δl(X, t)| =
√
δl(X, 0) · F>(X, t) · F (X, t) · δl(X, 0)

=

√
δl(X, 0) · (F>l (X, t) · F l(X, t)+ F>t (X, t) · F t(X, t)) · δl(X, 0)

=

√
δll(X, t)2 + δlt(X, t)2. (3.40)

Hence the total length of the line element is decomposed into longitudinal and
transverse contributions as

δl2
= δl2

l + δl
2
t . (3.41)

We denote the length of the 1-D lines H(2)
1D, H(3)

1D in figure 1 respectively as l(2)(t),
l(3)(x̄1), where the respective arguments t, x̄1 reflect the fact that the 1-D line H(2)

1D

occurs at fixed time t since injection, whereas the 1-D line H(3)
1D occurs at fixed

distance x̄1 downstream in the mean flow direction. Following the decomposition
(3.41), l(2)(t) and l(3)(x̄1) are then given by the contour integrals along the injection
line H(1)

1D in Lagrangian space as

l(2)(t)=
∫
H(1)

1D

√
δll(X, t)2 + δlt(X, t)2 ds, (3.42)

l(3)(x̄1)=

∫
H(1)

1D

δll(X, t1(X, x̄1)) ds, (3.43)

where t̄1(X, x̄1) is the time at which the fluid streamline at Lagrangian coordinate
X reaches x̄1, and ds is a differential increment associated with changes in X along
H(1)

1D. Hence stretching of the 1-D material line H(2)
1D in figure 1 is governed by both

the transverse and longitudinal deformations F l, F t, whereas stretching of the 1-D
line H(2)

1D transverse to the mean flow direction is solely governed by the transverse
deformation F t.

As discussed in § 1, the deformation of these different lines is important for various
applications. For example, Le Borgne et al. (2013, 2015) use the growth rate of l(2)(t)
to predict the mixing of a pulsed tracer injection (illustrated as H(2)

1D in figure 1) in a
steady 2-D Darcy flow. Conversely, Lester et al. (2016) use the growth rate of l(3)(t) to
predict mixing of a continuously injected source in steady 3-D pore-scale flow. These
different deformation rates indicate that a single scalar cannot be used to characterise
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fluid deformation in steady random 3-D flow. Instead it is necessary to characterise
both longitudinal and transverse fluid deformation in such flows.

As such, we characterise longitudinal Λl(t) and transverse Λt(t) fluid deformation
in terms of the corresponding deformation tensors as

Λl(t)≡ 〈‖F l(t)‖〉 = 〈
√

F 11(t)2 + F 12(t)2 + F 13(t)2〉, (3.44)

Λt(t)≡ 〈‖F t(t)‖〉 = 〈
√

F 22(t)2 + F 23(t)2 + F 33(t)2〉, (3.45)

where the angled brackets denote an ensemble average over multiple realisations of a
3-D steady random flow. We also define the ensemble-averaged length of an arbitrary
fluid line as

`(t)≡ 〈δl(X, t)〉, (3.46)

and in § 4, we seek to derive stochastic models for the growth of Λl(t), Λt(t) and `(t)
in steady random 3-D flows. In 2-D steady flow, topological constraints (associated
with conservation of area) prevent persistent growth of transverse deformation which
simply fluctuates as Λt(t) = 〈F 22(t)〉 = 1/〈F 11(t)〉 = 〈v(0)/v(t)〉 = 1. Conversely,
longitudinal deformation can grow persistently as Λl(t) ∼ F 12(t)2, and Dentz et al.
(2016b) derive stochastic models for the evolution of Λl(t) from velocity field
statistical properties as a CTRW. In § 4 we extend this approach to steady random
3-D flows to yield stochastic models for Λl(t), Λt(t) and `(t), which act as important
inputs for models of fluid mixing and dispersion.

For illustration, we briefly consider the deformation along the axis of the streamline
coordinate system. For a fluid element z(t) initially aligned with the 1-direction of the
Protean coordinate system, i.e. z(0)= (z0, 0, 0)> we obtain the elongation `(t)=

√
z(t)2

`(t)= z0
v(t)
v(0)

. (3.47)

For ergodic flows (i.e. where any streamline eventually samples all of the flow
structure), the average stretching is zero and elongation will tend asymptotically
toward a constant. For a material element initially orientated along the 2-direction of
the Protean coordinate system, i.e. z(0)= (0, z0, 0)>, we obtain the elongation

`(t)= z0

√
F 12(t)2 + F 22(t)2. (3.48)

For an initial alignment with the 3-direction, z(0)= (0, 0, z0)
>

`(t)= z0

√
F 13(t)2 + F 23(t)2 + F 33(t)2. (3.49)

In general, we have

`(t)=
√

z0F>(t)F (t)z0, (3.50)

where z(t = 0) ≡ z0. Thus, net elongation is only achieved for initial orientations
away from the velocity tangent. For both chaotic and non-chaotic flows, the explicit
structure of F ′(t) facilitates the identification of the stochastic dynamics of fluid
deformation in steady random flows and its quantification in terms of the fluid
velocity and velocity gradient statistics.
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3.3. Zero-helicity-density flows
One important class of steady D= 3 dimensional flows are zero helicity density (or
complex lamellar (Finnigan 1983)) flows such as the isotropic Darcy flow (Sposito
2001)

v(x)=−k(x)∇φ(x), (3.51)

which is commonly used to model Darcy-scale flow in heterogeneous porous media.
Here v(x) is the specific discharge, the scalar k(x) represents hydraulic conductivity
and φ(x) is the flow potential (or velocity head). For such flows the helicity density
(Moffatt 1969) which measures the helical motion of the flow,

h(x)≡ v ·ω= k(x)∇φ(x) · (∇k(x)×∇φ(x)), (3.52)

is identically zero (where ω is the vorticity vector). As shown by Kelvin (1884),
all 3-D zero-helicity-density flows are complex lamellar, and so may be posed in
the form of an isotropic Darcy flow v(x) = −k(x)∇φ, where for porous media flow
φ is the flow potential and k(x) represents the (possibly heterogeneous) hydraulic
conductivity. Arnol’d (1965, 1966) shows that streamlines in complex lamellar steady
zero-helicity-density flows are confined to a set of two orthogonal D= 2 dimensional
integral surfaces which can be interpreted as level sets of two stream functions ψ1,
ψ2, with ∇ψ1 · ∇ψ2 = 0. As such, all zero helicity density flows may be represented
as

v(x)=−k(x)∇φ =∇ψ1 ×∇ψ2. (3.53)

As the gradients ∇φ, ∇ψ1, ∇ψ2 are all mutually orthogonal, zero-helicity-density
flows admit an orthogonal streamline coordinate system (φ, ψ1, ψ2) with unit base
vectors

ê1 =−
∇φ

‖∇φ‖
=

v

‖v‖
, ê2 =

∇ψ1

‖∇ψ1‖
, ê3 =

∇ψ2

‖∇ψ2‖
. (3.54a−c)

If the streamfunctions ψ1, ψ2 are known, there is no need to explicitly solve the
orientation angle α(t) via (3.29), but rather the Protean frame can be determined from
the coordinate directions given by (3.54). Note that the moving Protean coordinate
frame differs from an orthogonal curvilinear streamline coordinate system based on
(3.54), and we show in appendix B that such a coordinate system does not yield an
upper triangular velocity gradient.

The zero-helicity-density condition imposes important constraints upon the
Lagrangian kinematics of these flows. First, as steady zero helicity-density flows
must be non-chaotic due to integrability of the streamsurfaces ψ1, ψ2 (Holm &
Kimura 1991), hence fluid deformation must be sub-exponential (algebraic). From
(3.36b), the ensemble average of the principal components εii of the velocity gradient
deformation (which correspond to the Lyapunov exponents of the flow) must be zero.
Secondly, zero-helicity flows constrain the velocity gradient components such that
ε̃23 = ε̃32, due to the identity

h= v ·ω= v · (εijk : ε)= ṽ · (εijk : ε̃)= v(ε̃23 − ε̃32)= 0, (3.55)

where εijk is the Levi-Civita tensor. Whilst (3.55) shows ε̃23 = ε̃32 in general for zero
helicity flows, there exists a specific value of α, denoted α̃, which renders both ε̃23 and
ε̃32 zero. This form of the velocity gradient (namely zero (2,3) and (3,2) components)
is reflected by its representation in the curvilinear streamline coordinate system shown
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in appendix B, and can lead to a decoupling of fluid deformation between the (1,2)
and (1,3) planes. However, as the Protean frame is a moving coordinate system, there
is a non-zero contribution from A(t) to the (2,3) and (3,2) components of the velocity
gradient. Typically, a different value of α is used than α̃ to render ε ′32= 0, and so for
zero helicity flow

ε ′23 = 2ε̃23, (3.56)

which is typically non-zero, hence F ′23 6= 0 in general. Note that as both the
Protean coordinate frame and the curvilinear streamline coordinate system render
the deformation tensor component F 23 non-zero (see appendix B for details), the
coupling between fluid deformation in the (1,2) and (1,3) planes is retained in both
coordinate frames, hence this is not purely an artefact of the moving coordinate
system.

The confinement of streamlines to integral streamsurfaces given by the level
sets of ψ1, ψ2 effectively means that steady 3-D zero-helicity-density flows can be
considered as two superposed steady D = 2 dimensional flows. This has several
impacts upon the transport and deformation dynamics. First, as the 2-D integral
surfaces are topological cylinders or tori, streamlines confined within these surfaces
cannot diverge exponentially in space. Thus, the principal transverse deformations
F 22, F 33 in the Protean frame may only fluctuate about the unit mean as

〈F ii〉 = 1, i= 1, 2, 3, (3.57)

and so the only persistent growth of fluid deformation in steady zero helicity flows
only occurs via the longitudinal and transverse shear deformations F 12, F 13, F 23.
Secondly, as the streamlines of this steady flow are confined to 2-D integral surfaces,
exponential fluid stretching (such as occurs in chaotic advection) is not possible
due to constraints associated with the Poincaré–Bendixson theorem. Hence the shear
deformations may only grow algebraically in time, i.e.

lim
t→∞
〈F 12(s)〉 ∼ tr12, (3.58)

lim
t→∞
〈F 13(s)〉 ∼ tr13, (3.59)

lim
t→∞
〈F 23(s)〉 ∼ tr23 . (3.60)

Dentz et al. (2016b) develop a CTRW model for shear deformation in steady random
incompressible 2-D flows and uncover algebraic stretching of F 12 ∼ tr (again in
Protean coordinates) and show that the index r depends upon the coupling between
shear deformation and velocity fluctuations long streamlines, ranging from diffusive
r= 1/2 to superdiffusive r= 2 stretching.

Hence fluid deformation is constrained to be algebraic in steady 3-D zero-helicity-
density flow, and evolves in a similar fashion to steady 2-D flow,

Λt(t)∼ tr23, (3.61)
Λl(t)∼ tmax(r12,r13), (3.62)

where the indices r are governed by intermittency of the fluid shear events (Dentz
et al. 2016b). We note that these constraints do not apply to anisotropic Darcy flows
(i.e. v(x) = −K(x) · ∇φ(x), where K(x) is the tensorial hydraulic conductivity), as
these no longer correspond to zero-helicity-density flows. Indeed, as demonstrated
by Ye et al. (2015), these flows can give rise to chaotic advection and exponential
stretching of material elements. We consider fluid deformation in such steady chaotic
flows in the following section.
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3.3.1. Fluid deformation along stagnation lines
For streamlines which connect with a stagnation point (termed stagnation lines),

the solution of the deformation tensor (3.36) diverges in the neighbourhood of the
stagnation point as v→ 0. To circumvent this issue, we consider fluid deformation
along a stagnation line in the neighbourhood of a stagnation point xp, where
the velocity gradient may be approximated as ε(t) ≈ ε0 ≡ ε|x=xp . Note that for
streamlines approaching a stagnation point from upstream, ε11,0 must necessarily
be negative. In the neighbourhood of the stagnation point, the velocity evolves as
v(t)/v(t0) ≈ exp(ε11,0(t − t0)), and the deformation gradient tensor can be solved
directly from (3.4) as

F (t)≈ F (t0) · exp(ε0(t− t0)), (3.63)

where t0 is the time at which the fluid element enters the neighbourhood of the
stagnation point (defined as the region for which ε(t)≈ ε0). Note that (3.36) represents
an explicit solution of the matrix exponential above, via the substitutions t 7→ t − t0,
v(t) 7→ v(t0) exp(ε11,0(t − t0)), ε(t) 7→ ε0. Whilst the stochastic model for fluid
deformation developed herein does apply to points of zero fluid velocity, the impact
of deformation local to stagnation points can be included a posteriori via (3.63).

4. Stochastic fluid deformation in steady random 3-D flow
In this section, we develop a stochastic model for fluid deformation along

streamlines in steady D = 3 dimensional flows that exhibit chaotic advection and
exponential fluid stretching. This model is based on a continuous-time random walk
(CTRW) framework for particle transport in steady random flows, which is briefly
summarised in the following.

4.1. Continous-time random walks for fluid velocities
The travel distance s(t) of a fluid particle along a streamline is given by

ds(t)
dt
= vs[s(t)],

dt(s)
ds
=

1
vs(s)

, (4.1a,b)

where vs(s) = v[t(s)]. We note that fluid velocities vs(s) can be represented as a
Markov process that evolves with distance along fluid streamlines (Dentz et al.
2016a) for flow through heterogeneous porous and fractured media from pore to
Darcy and regional scales (Berkowitz et al. 2006; Fiori et al. 2007; Le Borgne et al.
2008a,b; Bijeljic, Mostaghimi & Blunt 2011; De Anna et al. 2013; Holzner et al.
2015; Kang et al. 2015). This property stems from the fact that fluid velocities evolve
on characteristic spatial scales imprinted in the spatial flow structure. Streamwise
velocities vs(s) are correlated on the correlation scale `c. For distances larger than `c
subsequent particle velocities can be considered independent. Thus, particle motion
along streamlines can be represented by the recursion relations

sn+1 = sn + `c, tn+1 = tn +
`c

vn
, (4.2a,b)

where we defined vn = v(sn) for the nth step. The position s(t) along a streamline
is given in terms of (4.2) by s(t) = snt , where nt = sup(n|tn 6 t), the particle speed
is given by v(t) = nnt . This coarse-grained picture is valid for times larger than the
advection time scale τu = `c/u, where u is the mean flow velocity. We consider flow
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fields that are characterised by open ergodic streamlines. Thus, vn can be modelled
as independent identically distributed random variables that are characterised by ps(v).
The latter is related to the probability density function (PDF) pe(v) of Eulerian
velocities ve through flux weighting as (Dentz et al. 2016a)

ps(v)=
vpe(v)

〈ve〉
. (4.3)

The advective transition time over the characteristic distance `c is defined by

τn =
`c

vn
. (4.4)

Its distribution ψ(t) is obtained from (4.3) in terms of the Eulerian PDF pe(v) as

ψ(t)=
`cpe(`c/t)
〈ve〉t3

. (4.5)

Equations (4.2) constitute a continuous-time random walk (CTRW) in that the time
increment τn ≡ `c/vn at the nth random walk step is a continuous random variable,
unlike for discrete time random walks, which describe Markov processes in time. The
CTRW is also called a semi-Markovian framework because the governing equations
(4.2) are Markovian in step number, while any Markovian process An when projected
on time as A(t)= Ant is non-Markovian.

In order to illustrate this notion, we consider the joint evolution of a process An
and time tn along a streamline (Scher & Lax 1973),

An+1 = An +1An, tn+1 = tn + τn. (4.6a,b)

The increments (1A, τ ) are stepwise independent and in general coupled. They are
characterised by the joint PDF ψa(a, t), which can be written as

ψa(a, t)=ψa(a|t)ψ(t), (4.7)

The PDF pa(a, t) of A(t) is then given by

pa(a, t)=
∫ t

0
dt′R(a, t′)

∫
∞

t−t′
dt′′ψ(t), (4.8)

where R(a, t) denotes the probability per time that A(t) has just assumed the value
a. Thus, equation (4.8) can be read as follows. The probability pa(a, t) that A(t) has
the value a at time t is equal to the probability per time R(a, t′) that A(t) has arrived
at a times the probability that the next transition takes longer than t− t′. The R(a, t)
satisfies the Chapman–Kolmogorov-type equation

R(a, t)= R0(a, t)+
∫ t

0
dt′
∫

daψ(a− a′, t− t′)R(a′, t′), (4.9)

where R0(a, t) is the joint distribution of A0 and t0. Equations (4.8) and (4.9) can
be combined into the following generalised master equation (Kenkre, Montroll &
Shlesinger 1973) for the evolution of pa(t):

∂pa(a, t)
∂t

=

∫ t

0
dt′
∫

daΦ(a− a′, t− t′)[pa(a′, t′)− pa(a, t′)], (4.10)
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Fluid deformation in random steady three-dimensional flow 787

where Φ(a, t) is defined in Laplace space as

Φ∗(a, λ)=
λψ∗a (a, λ)
1−ψ∗(λ)

. (4.11)

The general master equation (4.10) expresses the non-Markovian character of the
evolution of the statistics of A(t).

In the following, we develop a stochastic model for deformation based on these
relations. We anticipate that the velocity gradient statistics also follow a spatial
Markov process with similar correlation structure. Spatial Markovianity of both the
fluid velocity and velocity gradient then provides a basis for stochastic modelling
of the deformation equations (3.36b,e) as a coupled continuous-time random walk
(coupled CTRW) along streamlines, in a similar fashion to that developed by Dentz
et al. (2016b) for deformation in steady 2-D random flow. Based on the explicit
expressions (3.36) of the deformation tensor, this stochastic approach is derived from
first principles and so provides a link to Lagrangian velocity and deformation, which
in turn may be linked to the Eulerian flow properties and medium characteristics
(Fiori et al. 2007; Edery et al. 2014; Dentz et al. 2016a; Tyukhova et al. 2016).

To this end, we recast (3.36) in terms of the distance along the streamline by using
the transformation (4.1) from t to s. This gives for the diagonal components of F̂ (s)=
F [t(s)]

F̂ 11(s)=
vs(s)
vs(0)

, (4.12a)

F̂ ii(s)= exp
[∫ s

0
ds′
ε̂ii(s′)
vs(s′)

]
, (4.12b)

with i= 2, 3. For the off-diagonal elements, we obtain

F̂ 12(s)= vs(s)
∫ s

0
ds′
ε̂12(s′)F̂ 22(s′)
vs(s′)2

, (4.12c)

F̂ 23(s)= F̂ 22(s)
∫ s

0
ds′
ε̂23(s′)F̂ 33(s′)
vs(s′)F 22(s′)

, (4.12d)

F̂ 13(s)= vs(s)
∫ s

0
ds′
ε̂12(s′)F̂ 23(s′)+ ε̂13(s′)F̂ 33(s′)

vs(s′)2
, (4.12e)

while F̂ ij(s)= 0 for i> j. We denote ε̂ij(s)= εij[t(s)]. In the following, we investigate
the evolution of stretching in different time regimes for chaotic steady random flow.

4.2. Chaotic steady random flow
For chaotic flows, the infinite-time Lyapunov exponent is defined by

λ≡ lim
t→∞

lim
z0→0

1
2t

ln
[
`(t)2

`(0)2

]
. (4.13)

In the limit of t� λ−1, we may set

F 11(t)= 1, F 22(t)= exp(εt), F 33(t)= exp(−εt), (4.14a−c)
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where we defined

ε = lim
t→∞

1
t

∫ t

0
dt′ε22(t′)=− lim

t→∞

1
t

∫ t

0
dt′ε33(t′). (4.15)

The last equation is due to volume conservation. The long-time behaviour is fully
dominated by exponential stretching. The characteristic stretching time scale for
exponential stretching is given by τε = 1/ε, while the characteristic advection scale
is τu = `c/u with u the mean and `c the correlation scale of the steady random
flow field u(x). The latter sets the end of the ballistic regimes: see below. If τε
and τu are well separated, τε � τu, we observe a subexponential stretching regime
that is dominated by heterogeneous shear action. In the following, we analyse the
behaviour of deformation for time t� τε . We first briefly discuss the ballistic regime
for which t� τu. Then, we develop a CTRW based approach for deformation in the
pre-exponential regime τu� t� τε .

4.2.1. Ballistic regime: t� τu

We first consider the ballistic short-time regime, for which t� τu. In this regime,
the flow properties are essentially constant and we obtain the approximation for the
deformation tensor (3.36),

F ii(t)= 1, (4.16a)

for i= 1, 2, 3 and for the off-diagonal elements with i> j,

F 12(t)= ε12t, F 23(t)= ε23t, F 13(t)= (ε12ε23t/2+ ε13)t. (4.16b−d)

As εij∼ 1/τu, in this regime the transverse (3.45) and longitudinal (3.44) deformations
as well as the arbitrary fluid element `(t) all evolve ballistically to leading order: Λt(t),
Λl(t), `(t)∝ t.

4.2.2. Exponential stretching regime t� τε
In the stretching regime, for times much larger than τε , the principal deformations

scale as

F 11(t)= 1, F 22(t)= exp(εt), F 33(t)= exp(−εt). (4.17a−c)

In this regime the expressions for the off-diagonal elements of F (t) in (3.36) can be
approximated by

F 12(t)≈
ε ′12(t) exp(εt)

ε
, (4.18)

F 23(t)≈ exp(εt)
∫ t

0
dt′ε ′23(t

′) exp(−2εt′), (4.19)

F 13(t)≈ F 12(t)ε12(t)
∫ t

0
dt′ε ′23(t

′) exp(−2εt′). (4.20)

Note that the integrals above are dominated through the exponential by the upper
limit, which gives these approximations. In this regime the longitudinal (3.44) and
transverse deformations (3.45), along with the elongation of a material element (3.50)
all increase exponentially with time: Λl(t), Λt(t), `(t) ∝ exp(εt). From (4.13) the
Lyapunov exponent is then λ≡ ε.
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4.2.3. Intermediate regime t> τu

For times t > τu, we develop a CTRW approach to describe the impact of flow
heterogeneity on the evolution of the deformation tensor, based on (4.2) and (4.12).
In this regime, we approximate F̂ 11(s)≈ 1, F̂ 22(s)≈ exp[λt(s)] and F 33 ≈ exp[−λt(s)].
The off-diagonal components are then expressed as

F̂ 12(s)=
vs(s)
`c

r2(s), F̂ 23(s)= F̂ 22(s)p(s), (4.21a,b)

F̂ 13(s)= vs(s)
∫ s

0
ds′
ε̂12(s′)F̂ 23(s′)
vs(s′)2

+
v(s)
`c

r3(s), (4.21c)

where we defined the auxiliary functions

dri(s)
ds
= `c

ε̂1i(s)F̂ ii(s)
vs(s)2

, i= 2, 3,
dp(s)

ds
=
ε̂23(s)F̂ 33(s)
vs(s)F 22(s)

, (4.22a,b)

with ri(s = 0) = 0 and p(s = 0) = 0. We approximated the off-diagonal components
ε̂ij(s) for i> j as being δ-correlated on the scales of interest such that

ε̂ij(s)=

√
σ 2

ij

`c
ξij(s), (4.23)

where ξ(s) denotes white noise with zero mean and correlation 〈ξij(s)ξij(s′)〉= δ(s− s′),
and the σij are characteristic deformation rates. We assume here that the deformation
rates are independent of velocity magnitude, an assumption that can be easily relaxed.
Discretising (4.22) on the scale `c such that sn = n`c and using (4.23), we obtain

ri,n+1 = ri,n + τ
2
n σ1i exp[(−1)iλtn]ξ1i,n, i= 2, 3, (4.24a)

pn+1 = pn + τnσ23 exp(−2λtn)ξ23,n. (4.24b)

These recursive relations describe a fully coupled continuous time random walk
(Zaburdaev, Denisov & Klafter 2015) with non-stationary increments due to the
explicit dependence on time tn. Note that F ij(t)= F̂ ij[snt ] = F̂ ij(nt`c). Thus, from (4.24)
we obtain for the mean square deformations

〈F 12(t)2〉 =
σ 2

12〈v
2
〉

`2
c

B(t), (4.25)

〈F 23(t)2〉 =
σ 2

23〈τ
2
〉

4λ
exp(2λt)[1− exp(−4λt)], (4.26)

〈F 13(t)2〉 =
〈v2
〉σ 2

12σ
2
23〈τ

2
〉

4λ`2
c

A(t)+
〈v2
〉σ 2

13

`c
B(t), (4.27)

where we define

A(t)=

〈
nt−1∑
i=0

τ 4
i exp(2λi〈τ 〉)[1− exp(−4λi〈τ 〉)]

〉
, (4.28)

B(t)=

〈
nt−1∑
i=0

τ 4
i exp(2λi〈τ 〉)

〉
. (4.29)
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In order to further develop these expressions, we consider heavy-tailed velocity
distributions that behave as

ps(v)∝ v
β−1, (4.30)

for v < v0 with v0 a characteristic velocity and β > 1. Such power-law type behaviour
of the velocity PDF for small velocities is characteristic of observed transport
behaviour in heterogeneous porous media (Berkowitz et al. 2006). From (4.30), the
transition time PDF behaves as ψ(t)∝ t−1−β for large t. Note that the moments 〈τ k

〉

of ψ(t) are finite for k < bβc, where b·c denotes the floor function. For illustration,
here we consider the case β > 2, which implies 〈τ 2

〉<∞.

Shear-dominated regime (τu� t� τε). We now determine the stretching behaviour in
the shear-dominated time regime τu � t � τε . In this time regime, we approximate
(4.28) as

A(t)= 4λ

〈
nt−1∑
i=0

iτ 4
i

〉
, B(t)=

〈
nt−1∑
i=0

τ 4
i

〉
. (4.31a,b)

These expressions may be estimated as follows. We note that transitions that contribute
to the elongation at time t must have durations shorter than t, i.e. τn < t because tnt =∑nt−1

i=0 τi < t. Thus, we can approximate

A(t)≈ 4λ
∫ t

0
dt′t′4ψ(t′)

〈nt〉−1∑
i=0

i∝ t6−β, (4.32)

where we approximated 〈nt〉≈ t/〈τ 〉. Using the same approximations for B(t) in (4.31)
gives B(t) ∝ t5−β . These scalings are consistent with the ones known for coupled
continuous-time random walks (Dentz et al. 2015). Hence, in the regime τu�t�τε
the transverse (3.45) deformation evolves linearly with time, 〈Λt(t)2〉 ∝ t, because
F 22(t) and F 33(t) are approximately constant whilst 〈F 23(t)2〉 ∝ t according to (4.26).
The longitudinal (3.44) and material (3.50) deformations evolve nonlinearly to leading
order as 〈Λl(t)2〉 ∝ 〈`(t)2〉t6−β according to (4.32).

Cross-over (t & τε). We now focus on the cross-over from the power-law to
exponential stretching regimes. For t & τε , we approximate A(t) ≈ B(t) in (4.28)
because the second term is exponentially small, and B(t) is given by (4.29). Along
the same lines as above, we derive for B(t)

B(t)=
∫ t

0
dt′t′4ψ(t′)

〈nt〉−1∑
i=0

exp(2λi〈τ 〉)∝ t4−β
[exp(2λt)− 1]. (4.33)

To test these expressions developed throughout this section, we simulate the non-
stationary coupled CTRW (4.24) for 105 fluid particles over 500 spatial steps over
the range of Lyapunov exponents λ ∈ (10−1, 10−2, 10−3). The velocity gradients ε̂22,
ε̂12 are modelled as Gaussian variables with mean λ and zero respectively, the mean
travel time 〈τ 〉= 10−1, and the variances σ 2

22=σ
2
12= 1. Here the velocity PDF is given

by the Nakagami distribution

pv(v; k, θ)=
2

Γ (k)

(
k
θ

)k

v2k−1e−kv2/θ , v > 0, (4.34)

with the parameters k = 1, θ = 10. The PDFs of the velocities in the numerical test
cases used in § 5 are very well characterised by this distribution. As such the PDF of
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FIGURE 3. (Colour online) Comparison between analytic predictions of B(t) (4.29) for
t> τu (grey dashed) with numerical simulations from the synthetic coupled CTRW (4.24)
(solid dark grey, solid blue online) for β ∈ (1.5, 2.5, 3.5) (plots are offset for clarity with
β increasing from bottom to top) and (a) λ= 10−3, σ22 = 10−3, (b) λ= 10−2, σ22 = 10−2,
(c) λ= 10−1, σ22 = 10−1.

τ = `c/v is then

ψ(τ)=
`c

τ 2
pv(`c/τ), (4.35)

hence ψ(t)∝ t−1−β with β= 2k for t>τu. The transition from algebraic to exponential
growth is clearly shown in figure 3(b), where some deviation from the predicted
exponential growth is observed for small β due to the heavy-tailed nature of ψ(τ).

5. Fluid deformation in a model random 3-D flow
To study fluid deformation in flow where the stretching regimes described in

§§ 4.2.1–4.2.3 overlap, we consider a steady incompressible random flow with variable
exponential stretching, the variable-helicity (VH) flow. This flow is similar to that
introduced by Dean, Drummond & Horgan (2001), which involves the helicity
parameter ψ ∈ [0, π/2] which controls the ensemble averaged helicity 〈v · ω〉 of the
random flow. The velocity field of the VH flow is given by

v(x;ψ)=
N∑

n=1

[χn(ψ)× kn cos(k(ψ) · (x+Ωn))+ χn(ψ)× kn sin(k(ψ) · (x+Ωn))],

(5.1)
where the phase angle Ω is a random vector with independent, uniformly distributed
components in [0, 2π], and χ(ψ), k(ψ) are the random vectors

χ(ψ)= (sin(θ sinψ) sin φ, sin(θ sinψ) cos φ, cos(θ sinψ)), (5.2)
k(ψ)= (sin(θ sinψ) sin φ, sin(θ sinψ) cos φ, cos(θ sinψ)), (5.3)

where θ , φ are the independent, uniformly distributed variables θ ∈ [−π/2,π/2], φ ∈
[−π, π]. This flow is divergence-free, and converges to a multi-Gaussian field with
sufficiently large N; we use N = 64 throughout. For ψ = 0, the VH flow is two-
dimensional and constrained to the x1, x2 plane, and for ψ =π/2 the flow is a fully
3-D flow. Hence fluid stretching increases monotonically from non-chaotic λ = 0 to
globally chaotic λ≈ ln 2 over the range ψ ∈[0,π/2]. We consider fluid deformation for
the two cases ψ =π/64, ψ =π/2, which corresponds to weak and strong exponential
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FIGURE 4. (Colour online) Typical particle trajectory in a realisation of the variable
helicity flow for (a) ψ = π/2, (c) ψ = π/64, and contour plot of velocity magnitude
distribution in x3 = 0 plane for (b) ψ =π/2, (d) ψ =π/64.

stretching respectively. Representative streamlines and velocity contours for both of
these cases are shown in figure 4, which clearly illustrates the quasi-2-D and fully
3-D flow structures for ψ =π/64, ψ =π/2 respectively.

We consider 105 realisations of the VH flow for ψ = π/2, ψ = π/64, and for
each realisation a particle trajectory is calculated over the time period t ∈ [0, 102

] to
precision 10−14 via an implicit Gauss–Legendre method. The associated deformation
tensor in the Eulerian frame is calculated via solution of (3.4) to the same precision
via the discrete QR decomposition method (due to the large associated deformations,
in excess of 10100). The Protean velocity gradient tensor ε ′(t) is then computed along
these trajectories by solution of the attracting trajectory M(t) (3.29) via an explicit
Runge–Kutta method over a fixed time step (1t= 10−3) and the Protean deformation
gradient tensor F ′(t) is calculated by direct evaluation of the integrals (4.12). These
results are compared with direct computation of the deformation tensor via (3.4) in
the Cartesian frame, and the error between these methods is found to be of the same
order as the integration precision.

As shown in figure 5(a), the velocity v(s) for both values of ψ is well described by
the Nakagami distribution (4.34), which exhibits power-law scaling pv(v)∼ v−1+2k in
the limit of small v. The long waiting times associated with this power-law scaling has
significant implications for anomalous transport and stretching dynamics, as will be
shown. The autocorrelation structure of the velocity field along streamlines is shown
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FIGURE 5. (a) Velocity probability distribution function (solid) with fitted Nakagami PDF
(dashed), and (b) autocorrelation structure of fluid velocity v(s) for the variable helical
flow with ψ =π/2 (light) and ψ =π/64 (dark).

in figure 5(b), indicating exponential decay which may be modelled as a first-order
process for the correlation function

R(s)= 〈v(s′)v(s′ − s)〉 ≈ exp(−s/lc), (5.4)

where the correlation length scale `c is estimated as `c=
∫
∞

0 dsR(s). This observation
is consistent with the hypothesis used in (4.2) that steady random flows exhibit spatial
Markovianity along streamlines (Le Borgne et al. 2008a,b).

The distributions of the components of the velocity gradient tensor ε ′ for both
ψ = π/2 and ψ = π/64 are shown in figure 6, where for ψ = π/2 all of the
components are Gaussian-distributed. The diagonal components have approximately
the same variance σ 2

ij ≡ 〈(ε
′

ij − 〈ε
′

ij〉)
2
〉 and mean 〈ε ′ii〉 = (0, λ, −λ) for i = 1 : 3,

with the Lyapunov exponent λ ≈ 0.679, indicating exponential fluid stretching
close to the theoretical limit ln 2 for autonomous and continuous 3-d.o.f. systems.
All the components of ε ′(t) are essentially uncorrelated (where the correlation
|r(ε ′ij, ε

′

kl)|< 10−4), except for the diagonal components which are negatively correlated
due to the constraint of incompressibility: r(ε ′11, ε

′

22) = −0.618, r(ε ′11, ε
′

33) = −0.475,
r(ε ′22, ε

′

33)=−0.398.
We observe similar behaviour for the velocity and velocity gradient distributions,

cross-correlation and autocorrelation functions for ψ = π/64, with the exception
that the PDFs of ε ′ii and ε ′ij are no longer Gaussian, but rather exhibit exponentially
decaying tails. As these distributions still possess finite moments, then via the central
limit theorem the same approach can be employed as for ψ = π/2 to develop
stochastic models of fluid deformation. As expected, fluid stretching is significantly
weaker for the reduced helicity case ψ = π/64, where again 〈ε ′ii〉 = (0, λ, −λ) with
λ ≈ 0.069. Whilst not shown, the autocorrelation structure of the velocity gradient
components for ψ = π/2 and ψ = π/64 follows a similar first-order process to that
of the fluid velocity, indicating that fluid deformation also follows a Markov process
in space.

Along with spatial Markovianity of the Lagrangian velocity (and velocity gradient),
the remarkably simple deformation structure (strongly decorrelated velocity gradient
components) of the VH flow in the Protean frame facilitates explicit solution of the
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FIGURE 6. Distribution of the diagonal reoriented rate of strain components ε ′ii(t) (ε ′11
(dark grey), ε ′22 (medium grey), ε ′33 (light grey)) for the variable-helicity flow with
(a) ψ = π/2 and (b) ψ = π/64. Distribution of the off-diagonal reoriented rate of
strain components ε ′ij(t) (ε ′12 (dark grey), ε ′13 (medium grey), ε ′23 (light grey)) for the
variable-helicity flow with (c) ψ =π/2, (d) ψ =π/64.

fluid deformation tensor as a CTRW using the methods outlined in § 4. Although not
shown here, we observe similar behaviour (spatial Markovianity, strongly decorrelated
velocity gradient) for other steady random 3-D flows, including the Kraichnan flow
(Kraichnan 1970) and a steady random flow defined as v(x)≡∇g1(x)×∇g2(x), where
g1(x), g2(x) are random steady fields.

The observation of largely uncorrelated velocity gradient components arises as the
diagonal and off-diagonal components of the Protean velocity gradient characterise
distinctly different deformations (fluid stretching and shear respectively). As the
Protean frame separates transverse deformation into orthogonal contracting (ê3) and
expanding (ê2) directions, the associated longitudinal ε12 and ε13 fluid shears are also
independent. Similarly, the transverse shear ε23, which characterises the helicity of
the flow, is also independent of these longitudinal shears. These observations suggest
that the CTRW model of fluid deformation outlined in §§ 3 and 4 can be applied to
a wide range of steady random 3-D flows.

Given the difference in Lyapunov exponent for the strong (ψ = π/2) and weakly
(ψ =π/64) VH flow (λ≈ 0.679, λ≈ 0.069 respectively), we expect a larger separation
between the advective τu and stretching τε = 1/ε time scales for the less chaotic VH
flow, ψ =π/64. Figure 7 shows the transition from ballistic (t� τu) to shear-induced
stretching (τu� t� τε) regimes, where the latter appears to persist beyond τε for the
strongly helical (ψ = π/2) VH flow. To clearly observe the transition from power-
law to exponential stretching as predicted by (4.33), we compare this prediction with
numerical calculations of fluid deformation for both cases of the variable helicity flow
in figure 8 and the corresponding CTRW (4.24).
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FIGURE 7. (Colour online) Growth of the mean squares A(t) (black), B(t) (dark grey, blue
online), 〈x23(t)2〉 (grey) with time t in the ballistic (t� τu) and shear-induced stretching
(τu � t� τε) regimes for the VH flow with (a) ψ = π/2, (b) ψ = π/64. The analytic
scalings 〈xij(t)2〉 ∼ t2 from (4.16b-d), and A(t) ∼ t6−β from (4.32) for these regimes are
shown by the dashed grey lines.
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FIGURE 8. (Colour online) Comparison between analytic prediction of B(t) (4.33) (grey
dashed line), numerical simulations from the synthetic CTRW (4.24) (black solid line) and
deformation in the variable helicity flow (dark grey, blue online) with (a) ψ = π/2, (b)
ψ =π/64. The dotted line in (b) also depicts the algebraic growth of 〈F 12(t)2〉 ∼ t2 from
(4.16b-d) in the ballistic regime (t� τu).

5.1. Evolution of finite-time Lyapunov exponents
From § 4 we may also approximate evolution of the finite-time Lyapunov exponent
(FTLE) in chaotic flows as

ν(t)≡
1
2t

lnµ(t), (5.5)

where µ(t) is the leading eigenvalue of the Cauchy–Green tensor C ′(t)= F ′(t)> · F ′(t).
Under the approximations F ′11(t) ∼ 0, F ′33(t) ∼ 0, F ′22(t), |F

′

23(t)| ∼ exp(λt + σ22ξ(t)),
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FIGURE 9. (Colour online) Comparison between analytic prediction of the mean FTLE
〈ν(t)〉 (5.7) (grey, dashed), the infinite-time Lyapunov exponent λ (black, dashed) and
〈ν(t)〉 computed directly (dark grey, blue online) for the variable-helicity flow with (a)
ψ =π/2, (b) ψ =π/64.

|F ′12(t)|, |F
′

13(t)| ∼ t2−β/2 exp(λt+ σ22ξ(t)), where ξ(t) is a Gaussian white noise with
zero mean and unit variance, then to leading order

µ(t)∼ exp(2λt+ σ22ξ(t))(1+ t4−β). (5.6)

As such, the average FTLE then evolves as

〈ν(t)〉 ≈ λ+
(

2−
β

2

)
ln t
t
, (5.7)

and so as expected the FTLE converges to the infinite-time Lyapunov exponent λ at
rate given by the velocity PDF power-law exponent β. We may also compute the
variance of ν(t) as

σ 2
ν (t)= 〈(ν(t)− 〈ν(t)〉)

2
〉 =

σ 2
22

t
. (5.8)

As expected, both of these expressions provide accurate estimates of the FTLE mean
and variance for all but short times, as reflected in figures 9 and 10 respectively. Here
the explicit role of algebraic stretching at times t<τε is shown to govern convergence
of the ensemble average of the FTLE toward its infinite-time value λ.

6. Conclusions
We have studied the kinematics of fluid deformation in steady 3-D random

flows such as pore- and Darcy-scale flows in heterogeneous porous media. We
have developed an ab initio stochastic model which predicts evolution of the fluid
deformation gradient tensor F (t) as coupled continuous-time random walk (CTRW)
from the velocity and velocity gradient statistics. One important way in which steady
flow differs from its unsteady counterpart is that steady flow imposes constraints
upon the kinematics of fluid deformation, namely zero mean extensional deformation
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FIGURE 10. (Colour online) Comparison between analytic prediction of the FTLE
variance 〈σ 2

ν (t)〉 (5.8) (grey, dashed) and σ 2
ν (t) computed directly (dark grey, blue online)

for the variable-helicity flow with (a) ψ =π/2, (b) ψ =π/64.

in the streamwise direction. This constraint then renders fluid deformation in steady
flows anisotropic with respect to the velocity direction, and so fluid deformation in
steady 3-D flow cannot be characterised in terms of a single scalar quantity. This
anisotropy may be characterised in terms of the fluid deformation longitudinal Λl(t)
and transverse Λt(t) to the mean flow direction, which respectively act as inputs to
models of longitudinal (Le Borgne et al. 2015) and transverse (Lester et al. 2016)
mixing in steady random 3-D flows. As such, fluid deformation in such flows cannot
be characterised in terms of a single scalar value.

Under an appropriate streamline coordinate system both the velocity gradient and
deformation gradient tensor are upper triangular, where the diagonal components
correspond to fluid stretching, and the off-diagonal terms correspond to fluid
shear. This upper triangular form of the velocity gradient tensor greatly simplifies
solution of the deformation gradient tensor ODE, and facilitates derivation of an
ab initio stochastic model of fluid deformation in random steady 3-D flows. This
approach differs significantly from conventional, empirical stochastic models of fluid
deformation.

We apply this framework to several model flows and show that the statistics of
the velocity gradient components are remarkably simple, with many components
uncorrelated and Gaussian-distributed. Similar to previous studies (Le Borgne et al.
2008a,b; Dentz et al. 2016b) we find that the fluid velocity and velocity gradient
components follow a spatial Markov process, which forms the basis for a stochastic
model for fluid deformation as a coupled CTRW along streamlines.

We develop analytic solutions to these CTRWs over various temporal regimes in
both chaotic and non-chaotic flows, and these solutions show excellent agreement with
direct numerical simulations. These solutions provide a concrete means of predicting
transverse Λt(t) and longitudinal Λl(t) fluid deformation in random, steady flows
from pointwise velocity statistics. We show that fluid deformation over all temporal
regimes only depends upon three statistical parameters: the Lyapunov exponent λ,
velocity PDF scaling β : limv→0 pv(v)∼ v−1+β , and shear exponent α : ε12, ε13 ∼ v

5/2−α.
For non-chaotic steady flows (such as isotropic Darcy flow), only β and α need
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to be quantified. These parameters can be determined directly from high-resolution
experimental (e.g. Holzner et al. (2015)) or computational (e.g. de Carvalho et al.
(2017)) studies, or some (such as the velocity PDF scaling) may be estimated from
e.g. breakthrough curve data (Tyukhova et al. 2016).

These statistical parameters completely quantify the growth rates of transverse Λt(t)
and longitudinal Λl(t) fluid deformation. This quantitative link between the velocity
field statistics and fluid deformation is especially useful for application porous media
flows, where recent advances (i) quantitatively link fluid mixing to fluid deformation
(de Barros et al. 2012; Le Borgne et al. 2015; Lester et al. 2016; Dentz et al. 2018),
and (ii) quantitatively link medium properties (such as heterogeneity controls in Darcy-
scale flow) to velocity field statistics (Fiori et al. 2007; Edery et al. 2014; Dentz et al.
2016a; Tyukhova et al. 2016).

Solution of the governing CTRW uncovers a rich array of fluid deformation
behaviour across the various regimes, ranging from linear and power-law to
exponential and super-exponential growth. In most cases there are marked differences
between longitudinal Λl(t) and transverse Λt(t) deformation, reflecting the strong
deformation anisotropy that results from the constraints inherent to steady 3-D flows.
For chaotic flows, Λl(t) and Λt(t) respectively grow quadratically and linearly with
time in the ballistic regime t � τu, and both of these grow exponentially in the
exponential regime t � τε . In the shear-induced stretching regime τu � t � τε ,
transverse deformation grows exponentially, whereas longitudinal deformation
transitions from power-law to super-exponential growth due to coupling between
shear and stretching. For non-chaotic, steady zero-helicity flows (such as isotropic
Darcy flow), transverse and longitudinal fluid deformation both grows algebraically as
power-laws via similar mechanisms to that of 2-D steady flows (Dentz et al. 2016b),
namely the intermittency of shear events.

These results uncover and quantify the evolution of transverse and longitudinal fluid
deformation in steady random 3-D flows, as illustrated in figure 1. The ad innate
stochastic model of fluid deformation identifies and quantifies the statistical parameters
of the flow field which govern fluid deformation. The deformation measures Λt(t),
Λl(t) provide critical inputs to models of fluid mixing and transport in heterogeneous
steady flows. This approach provides a means to develop upscaled models of fluid
mixing and transport in e.g. porous media flows which may be couched in terms of
physical properties of the host medium.
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Appendix A. Analogy to continuous QR decomposition
As the Protean coordinate frame renders the transformed velocity gradient tensor

ε ′(t) upper triangular, this method is directly analogous to the continuous QR
decomposition method for a d-dimensional autonomous nonlinear dynamical system

dx
dt
= f (x), (A 1)
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which may be considered as the generalisation of the advection equation ẋ=v(x) for a
steady flow field. For a given solution trajectory x(t), the Lyapunov exponents of (A 1)
are given by the eigenvalues of the fundamental solutions Y(t) of the linear variational
equation

dY
dt
=A(t) ·Y(t), Y(0)= I, (A 2a,b)

which is the generalisation of (3.4), where A(t) = ∂f/∂x is the Jacobian along the
trajectory x(t). The continuous QR method considers the decomposition

Y(t)=Q(t) ·R(t), (A 3)

where Q(t) is orthogonal and R(t) upper triangular, and satisfy the auxiliary
equations

dR
dt
=A′ ·R(t), R(0)= I, (A 4)

dQ
dt
=Q(t) ·H(t), Q(0)= I, (A 5)

where, similar to (3.6)–(3.8),

A′(t) :=Q>(t) ·A(t) ·Q(t)−Q>(t) · Q̇, (A 6)

H(t) :=Q>(t) · Q̇=


[Q>(t) ·A(t) ·Q(t)]ij, i> j,
0, i= j,
−[Q>(t) ·A(t) ·Q(t)]ji, i< j.

(A 7)

Hence the evolution equations for the orthogonal and upper triangular matrices Q(t),
A′(t), R(t) for the continuous QR method are directly analogous to the reorientation
operator Q(t), Protean rate of strain ε ′(t) and Protean deformation gradient F ′(t)
tensors for the Protean transform method. However, the actual values differ in that
the initial condition for the QR method corresponds to the unrotated frame (Q(0)= I),
whereas the Protean frame always aligns with the flow direction as per (3.13). Due
to the temporal derivative in the reoriented Jacobian (A 6) for the QR decomposition
method, solutions to Q(t) which render A′(t) upper triangular are not unique.

Whilst Q(t) asymptotically converges to the Protean coordinate frame (due to the
dissipative nature of (A 5)), for finite times the continuous QR method does not
align with the streamlines of the flow and hence inferences regarding topological and
kinematic constraints upon the dynamics do not universally hold. Moreover, for 2-D
steady flows (and analogous dynamical systems), the Protean transform provides a
simple closed solution (3.13) for Q(t), hence it is not necessary to explicitly solve
the ODE system (A 5) or employ unitary integration routines (Dieci et al. 1997) to
preserve orthogonality of Q(t).

Appendix B. Velocity gradient tensor in orthogonal curvilinear streamline
coordinates

It is instructive to contrast the moving Protean coordinate frame with a curvilinear
streamline coordinate system, such as that proposed by Finnigan (1990). This is most
easily achieved for zero helicity flows, as they admit lamellar integral surfaces which
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serve as a convenient coordinate basis (φ, ψ1, ψ2) with attendant Cartesian unit base
vectors êi defined in (3.54).

These coordinates can also be used to define an orthogonal curvilinear streamline
coordinate system. Similar to the Protean frame, in this system the velocity gradient
tensor (denoted ε ′′) is somewhat simplified. The unit covariant base vectors ĝi of
this coordinate system are directly equivalent to the Protean unit vectors êi, and the
coordinates of the curvilinear streamline coordinate system are then

ξ 1
= φ = φ(x′1), ξ 2

=ψ1 =ψ1(x′2), ξ 3
=ψ2 =ψ2(x′3), (B 1a−c)

where x′i denote the distance along the coordinate ξ i. The differential arc length ds
then satisfies ds2

= gαβ dξαdξβ = dx′α dx′β , and the metric tensor for the orthogonal
coordinate system is then

gαβ =

h2
1 0 0

0 h2
2 0

0 0 h2
3

 . (B 2)

Note that as the components of the covariant gαβ and contravariant gαβ metric tensors
transform as

g′ij(x
′)=

∂xk

∂x′i
∂xl

∂x′j
g′kl(x), (B 3)

g′ij(x′)=
∂x′i

∂xk

∂x′j

∂xl
g′kl(x), (B 4)

and as g−1
αβ = gαβ , then the scale factors hi are then

hi =

√(
∂x1

∂ξ i

)2

+

(
∂x2

∂ξ i

)2

+

(
∂x3

∂ξ i

)2

=
1
|∇ξ i|

=
∂x′i
∂ξ i

. (B 5)

From the isotropic Darcy equation (3.53) and coordinate definitions (B 1), these scale
factors can be written without loss of generality as

h1 =
∂x′1
∂φ
=

k
v
, h2 =

∂x′2
∂ψ
=

m
√
v
, h3 =

∂x′3
∂ζ
=

1
m
√
v
, (B 6a−c)

where m is an arbitrary scalar which quantifies the local spacing of Lamb surfaces.
Following Batchelor (2000), the components of the velocity gradient tensor ε ′′ are
then

ε ′′ii =
1
hi

∂vi

∂ξ j
+

∑
j 6=i

vj

hihj

∂hj

∂ξ i
, (B 7)

ε ′ij =
1
hj

∂vi

∂ξ j
−

vj

hihj

∂hj

∂ζ i
, (B 8)

and from (B 5) the velocity gradient in the streamline coordinate frame is

ε ′′ =

ε
′′

11 ε ′′12 ε ′′13

ε ′′21 ε ′′22 0
ε ′′31 0 ε ′′33

=

∂v

∂x′1
γ̇2 −ω2 γ̇3 −ω3

γ̇2 −
1
2
∂v

∂x′1
+
v

m
∂m
∂x′1

0

γ̇3 0 −
1
2
∂v

∂x′1
−
v

m
∂m
∂x′1

 , (B 9)
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where the longitudinal shear rate γ̇i and vorticity components ωi (with ω =
(0,−ω3, ω2)) are respectively

γ̇i =
∂v

∂x′i
, (B 10)

ωi = v
∂ ln k
∂x′i

. (B 11)

From (B 9), the curvilinear velocity gradient satisfies the divergence-free condition∑
i ε
′′

ii = 0 due to the form of the scale factors (B 5). Transverse stretching (as
quantified by ε ′′22, ε ′′33) in the zero-helicity flow is due to both velocity fluctuations (as
quantified by ∂v/∂x′1) and transient stretching fluctuations (as quantified by ∂m/∂x′1)
which are equal and opposite between the 2, 3 directions. These latter fluctuations
have zero mean due to the non-chaotic nature of the flow.

By construction of the curvilinear streamline coordinate system the transverse shear
components ε ′′23, ε ′′32 are both zero, but in contrast to the Protean frame the components
ε ′′21, ε ′′31 are non-zero, and are respectively equal to the longitudinal shear terms γ̇2,
γ̇3. As these terms are non-zero the corresponding deformation tensor F ′′ is dense.
Conversely, in the Protean coordinate frame, the components ε ′21, ε ′31 are both zero and
their contributions are added to the upper triangular terms via the moving coordinate
contribution A(t) to yield

ε ′12 = 2γ̇2 −ω2, ε ′13 = 2γ̇3 −ω3. (B 12a,b)

The reason for this difference is that the shears γ̇i result in a material deformation
which is reflected in the curvilinear coordinate system as a contribution to ε ′′i1, but for
the rotated Cartesian coordinate system this results as a contribution to ε ′1i. Note also
that the total longitudinal shear (as quantified by ε ′1i) comprises contributions from
pure shear (i.e. γ̇i) and streamline curvature (as quantified by vorticity ωi). Hence
an orthogonal curvilinear streamline coordinate system does not generate an upper
triangular velocity gradient tensor, a result which extends to steady chaotic flows in
general.
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