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Abstract

An integral equation-fast Fourier transform (IE-FFT) algorithm is applied to the electromag-
netic solutions of the combined field integral equation (CFIE) for scattering problems by an
arbitrary-shaped three-dimensional perfect electric conducting object. The IE-FFT with CFIE
uses a Cartesian grid for known Green’s function to considerably reduce memory storage
and speed up CPU time for both matrix fill-in and matrix vector multiplication when used
with a generalized minimal residual method. The uniform interpolation of the Green’s function
on an equally spaced Cartesian grid allows a global FFT for field interaction terms. However, the
near interaction terms do not take care for the singularity of the Green’s function and should be
adequately corrected. The IE-FFT with CFIE does not always require a suitable preconditioner
for electrically large problems. It is shown that the complexity of the IE-FFT with CFIE is found
to be approximately O(N1.5) and O(N1.5log N ) for memory and CPU time, respectively.

Introduction

The method of moments (MoM) [1] solutions of surface integral equations have been demon-
strated to be very effective in analyzing the electromagnetic (EM) radiation and scattering pro-
blems. The electric field integral equation (EFIE), the magnetic field integral equation (MFIE),
and the combined field integral equation (CFIE) have been popular choices for an arbitrary
three-dimensional (3-D) perfect electric conducting (PEC) object. However, conventional
MoM solutions suffer from O(N2) storage for matrix fill-in and O(N2) operations per iteration
for matrix vector multiplication (MVM) with an iterative matrix solver. Both the EFIE and the
MFIE suffer from the interior resonance problem. To overcome these difficulties, this paper
proposes an integral equation-fast Fourier transform (IE-FFT) algorithm with CFIE as the
extension of the IE-FFT algorithm [2] without the help of a preconditioner. The conventional
IE-FFT with EFIE should have a preconditioner for electrically large structures.

One of the fastest and most efficient algorithms for the MoM solutions is the multilevel fast
multipole method [3], which reduces the computational complexity from O(N2) to O(Nlog N ).
Unfortunately, the strong dependence of multipole-based methods on integral kernels makes
the methods inadequate for general kernel-independent techniques. To avoid the kernel-
dependence, algebraically mathematical algorithms such as integral equation-QR factorization
[4] and adaptive cross approximation (ACA) [5] have been proposed. Nevertheless, the
numerical complexity of these algorithms may not be clear whether it is O(N1.5) or not.

There is another physical class of fast IE methods based on grid-based approaches such as
the adaptive integral method (AIM) [6], the precorrected-FFT (p-FFT) [7, 8], and the IE-FFT.
The AIM and the p-FFT algorithms need unknown “equivalent” source approximation on a
Cartesian grid. Unlike these algorithms, the IE-FFT applies known Green’s function interpol-
ation on a Cartesian grid. The IE-FFT algorithm uses one global FFT for field interaction
terms [2, 9]. However, the near-field interaction terms do not take care of the singularity of
the Green’s function and are adequately corrected by the traditional MoM. Recently, a couple
of the IE-FFT papers with CFIE [10, 11] have been published. One IE-FFT with CFIE [10] is to
use the gradient of Rao–Wilton–Glisson (RWG) basis function. The weakness of the paper
should have the second order of the RWG basis function to obtain the same order of accuracy
with the conventional MoM. To overcome this problem, another IE-FFT with CFIE [11] is
proposed. However, the paper uses two coefficient matrices of Green’s function, which is
the most dominant numerical complexity in the IE-FFT. The proposed IE-FFT algorithm
with CFIE follows the basic guidelines from the original IE-FFT paper [2]. The uniqueness
of the IE-FFT algorithm lies on the simplicity and the rigorous error control. The Lagrange
interpolation of Green’s function simplifies the formulation and enables an efficient algorith-
mic implementation. The proposed IE-FFT algorithm with CFIE not only has better conver-
gence rate but also removes the interior resonance. The IE-FFT with CFIE does not always
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need to have an appropriate preconditioner. Also, it works
algebraically simple Lagrange polynomials on a 3-D uniform
Cartesian grid. The proposed algorithm definitely guarantees
O(N1.5) complexity for memory requirement and O(N1.5log N )
complexity for MVM.

CFIE formulation

The CFIE formulation is well known for an arbitrarily shaped 3-D
PEC objects. The resulting matrix equation can be written as

ZCFIE · J = VCFIE, (1)

where ZCFIE is the impedance matrix, J is the unknown surface
current vector, and VCFIE is right-hand side (RHS) vector. The
impedance matrix is rewritten as

ZCFIE = rZEFIE + h0(1− r)ZMFIE , (2)

where ρ is the weighting constant of the CFIE and η0 is the intrin-
sic impedance of free space. The entries of the impedance matri-
ces ZEFIE and ZMFIE for the EFIE and the MFIE are, respectively,
given by

ZEFIE
i,j = k20Ai,j − Di,j

ZMFIE
i,j = 1

2
Ci,j − Pi,j

0 ≤ i, j ≤ N − 1, (3)

where

Ai,j =
∫

supp(�ai)

�ai(�r) ·
∫

supp(�aj)

g(�r; �r ′)�aj(�r
′)dG′dG, (4)

Di,j =
∫

supp(�ai)

divG�ai(�r)
∫

supp(�aj)

g(�r; �r ′)div′G�aj(�r
′)dG′dG, (5)

Ci,j =
∫

supp(�ai)

�ai(�r) · �aj(�r)dG, (6)

and

Pi,j =
∫

supp(�ai)

(�ai(�r)× n̂i) ·
∫

supp(�aj)

�aj(�r
′)×∇′g(�r; �r ′)dG′dG. (7)

N is the number of unknowns. Note that supp() indicates the sup-
port of non-boundary edge. Here, Ai,j and Di,j are the impedance
entries of vector and scalar potentials from the discrete Galerkin
statement of the EFIE. Ci,j and Pi,j are singular and coupling
entries of the impedance matrix from the discrete Galerkin state-
ment of the MFIE. In the paper, the free-space Green’s function
g(�r; �r ′) = e−jk0|�r−�r ′ |/|�r − �r ′| is considered. The free-space wave
number is denoted by k0. �ai(�r) stands for surface div-conforming
vector RWG basis function [12]. The RHS is given by

VCFIE = rVEFIE + h0(1− r)VMFIE. (8)

The entries of the RHS vector are written as

VEFIE
i = −4p

jk0
h0

∫
supp(�ai)

�ai(�r) · �Einc
(�r)dG (9)

and

VMFIE
i = 4p

∫
supp(�ai)

�ai(r) · [n̂× �H
inc
(�r)]dG (10)

where �Einc(�r) and �Hinc(�r) are the incident electric and magnetic
field intensities, respectively.

The IE-FFT algorithm with CFIE

The IE-FFT algorithm with CFIE constructs a 3-D hexahedron
bounding box that encloses the entire geometry. Figure 1 shows
two discretizations: a triangular mesh for unknown RWG basis
functions and a uniform Cartesian grid for known free-space
Green’s function.

Note that CNF is a constant used to define the near-field
correction region, and λ0 is the wavelength in free space.
Note rL is the sampling resolution. For example, L is the size
of the third-order Cartesian element, which is the 3-D
tensor product form of 1-D piecewise Lagrange polynomials
on a Cartesian grid. The free-space Green’s function can be
written as

g(�r; �r ′) = e−jk0R

R
= e−jk0|�r−�r ′ |

|�r − �r ′|
≃
∑
n

∑
n′

bp
n(�r )gn,n′b

p
n′ (�r

′)
0 ≤ n, n′ ≤ Ng − 1 , (11)

where p is the order of Lagrange polynomials and Ng is the
number of 3-D Cartesian grid points. bp

n(�r) is the pth-order
Lagrange interpolation basis function and gn,n′ is the “known”
coefficient of the free-space Green’s function. The vector and
matrix form of the free-space Green’s function can be
expressed as

g(�r; �r ′) ≃ b(�r) · G · bT (�r ′), (12)

where

b(�r) =

b
p
0(x)b

p
0(y)b

p
0(z)

b
p
1(x)b

p
0(y)b

p
0(z)

..

.

b
p
Nx−1(x)b

p
Ny−1(y)b

p
Nz−1(z)

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

T

(13)

and

G =

g0,0 g0,1 · · · g0,Ng−1

g1,0 g1,1 · · · g1,Ng−1

..

. ..
. . .

. ..
.

gNg−1,0 gNg−1,1 · · · gNg−1,Ng−1

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦. (14)
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Equation (3) is combined with equation (11) as follows:

ZEFIE
IE−FFT =k20

�PA · G · (�PA)
T −PD · G · (PD)

T

ZMFIE
IE−FFT = 1

2
C − �PN · G · (�PP)

T ,
(15)

where

�PA =
∫
G

�a0(�r)
�a1(�r)

..

.

�aN−1(�r)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ b

p
0(�r) b

p
1(�r) · · · b

p
Ng−1(�r)

[ ]
dG, (16)

PD =
∫
G

divG�a0(�r)
divG�a1(�r)

..

.

divG�aN−1(�r)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ b

p
0(�r) b

p
1(�r) · · · b

p
Ng−1(�r)

[ ]
dG,

(17)

�PN =
∫
G

�a0(�r)× n̂0
�a1(�r)× n̂1

..

.

�aN−1(�r)× n̂N−1

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ b

p
0(�r) b

p
1(�r) · · · b

p
Ng−1(�r)

[ ]
dG,

(18)

and

�PP =
∫
G

�a0(�r)
�a1(�r)

..

.

�aN−1(�r)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦× ∇bp

0(�r) ∇bp
1(�r) · · · ∇bp

Ng−1(�r)
[ ]

dG.

(19)

The IE-FFT algorithm with CFIE has three vector and one scalar
P matrices. One vector and one scalar matrix come from the
EFIE and the other two vectors from the MFIE. When an iterative
solver is used, the near- and far-field computations of the IE-FFT
algorithm with CFIE are described below. d indicates the distance
between basis and testing functions.

Near-field computation (d≤ CNFλ0)

From equation (1), the MVM is computed by

y = ZCFIE · x. (20)

The matrix ZCFIE is obtained by the traditional MoM approach.

Far-field computation (d > CNFλ0)

From equation (15), the MVM is performed by

y =Zcorr · x

+ r
k20
�PA · IFFT[FFT(G) · FFT((�PA)

T · x)]
−PD · IFFT[FFT(G) · FFT((PD)

T · x)]

{ }

− (1− r){h0
�PN · IFFT[FFT(G) · FFT((�PP)

T · x)]},
(21)

where Zcorr is a correction matrix. In Fig. 1, the coupling between
near-interaction terms separated at least by CNFλ0 should be suf-
ficiently corrected to assure the accuracy. The coefficient of
Green’s function has singularity when a source and an observa-
tion point are close to each other. In this paper, CNF is chosen
to be 0.3. The correction entries are given by

Zcorr
i,j =ZCFIE

i,j − r[k20(
�PA)i,IGI,J (�PA)

T
J ,j − (PD)i,IGI,J (PD)

T
J ,j]

+ (1− r)[(�PN )i,IGI,J (�PP)
T
J ,j],

(22)

where 0≤ i <N, j∈ Cneig, and Cneig is the set of the near-field
interaction elements within CNFλ0. The near-field terms between
RWG basis functions i and j should be substituted by the entries
of the traditional MoM techniques. The complexity of Zcorr andP
matrices is O(N ). However, the dense Gmatrix for the coefficients
of Green’s function leads to O(N3) storage and MVM per iteration
for a Cartesian grid. By virtue of the FFT [13], the memory
requirement reduces to O(N1.5) and the MVM could be speeded
up to O(N1.5log N ).

Numerical results

To demonstrate the accuracy and efficiency of the proposed algo-
rithm, a PEC sphere of 1 m is considered. The discretization of

Fig. 1. Two discretizations for unknown surface current density and known free-
space Green’s function.
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the triangular mesh is 7 elements per wavelength. All numerical
simulations are carried out on a 2GB RAM Intel(R) Pentium(R)
M processor 1.6 GHz. All computations have been done in single
precision arithmetic. As a matrix solver, a generalized minimal
residual (GMRES) method [14] is used without the help of any
preconditioner. The residual tolerance is set to 1.0e− 3. In the
simulation, the constant ρ of the CFIE is chosen to be 0.5.
Third-order Lagrange polynomials are used to interpolate free-
space Green’s function. Figure 2 shows the results of bistatic
RCS at a frequency of 1200MHz.

The IE-FFT with CFIE solution is compared with the analytic
Mie series solution. Also, it is compared with the EFIE and the
MFIE solutions accelerated by IE-FFT. The results of the
IE-FFT with CFIE have very good agreements with those of
Mie series at both E-plane and H-plane. The results of the EFIE
also have good agreements but bad convergence rate. Despite
good convergence, the results of the MFIE have some discrepan-
cies when compared with those of the Mie series. As we have
already known, the inaccuracy of the MFIE comes from the
hyper-singular integration. Therefore, the EFIE has more accurate
results than the CFIE, which has the weighting portion of the
MFIE. The results of bistatic RCS at a frequency of 2400MHz
are shown in Fig. 3.

The IE-FFT of the EFIE does not converge within the
number of iterations exceeded to a maximum of 2000.
However, the IE-FFT with CFIE has a very good convergence
rate and also accurate results at both E- and H-planes. Table 1
summarizes the performance of the IE-FFT algorithm with
CFIE for third-order Lagrange polynomials in terms of memory.
All units are megabytes (MB). The complexity of Zcorr and Π
matrices is clearly shown as O(N ). However, the complexity of
G matrix is O(N1.5).

Fig. 2. Bistatic RCS results for 1 m PEC sphere at a frequency of 1200 MHz. (a) E-plane,
(b) H-plane.

Fig. 3. Bistatic RCS results for 1 m PEC sphere at a frequency of 2400 MHz. (a) E-plane,
(b) H-plane.

Table 1. Memory requirement of IE-FFT algorithm with CFIE for scattering from
a PEC sphere with a radius of 1 m

Frequency
(MHz) Unknowns

Zcorr

(MB) Π (MB) G (MB)

300 3072 5.90 10.66 0.26

600 12 288 24.39 42.79 2.10

1200 49 152 98.29 169.21 16.78

2400 196 608 394.30 685 134.22
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Table 2 summarizes the CPU time and the number of itera-
tions of the IE-FFT algorithm with CFIE. All units are seconds
(sec). The number of iterations for the EFIE, MFIE, and the
CFIE is tabularized in order. In a frequency of 2400MHz, the
EFIE does not converge within the number of iterations exceeded
to a maximum of 2000. The convergence rate of the IE-FFT with
CFIE bounds on a small number of iterations.

A realistic example considered here is a generic battleship.
When the incident wave at θ = 90° and f = 0° is considered,
the bistatic RCS of θθ-polarization is computed by the
IE-FFT algorithm with CFIE without the help of any precondi-
tioner. The discretization of the triangular mesh is 5 elements
per wavelength. Third-order Lagrange polynomials are used to
interpolate free-space Green’s function. The results of bistatic
RCS at a frequency of 30 MHz are shown in Fig. 4. The results
of the IE-FFT with CFIE are compared with those of the EFIE
by the traditional MoM. Both results have very good
agreements.

Figure 5 shows the results of bistatic RCS at a frequency of 60
MHz. Due to the prohibitive complexity of the conventional
MoM, we compare the results of the CFIE for the IE-FFT with
those of the EFIE for the ACA algorithm [5]. Both results have
very good agreements.

The results of bistatic RCS at a frequency of 120MHz are
shown in Fig. 6. The results between the IE-FFT of the EFIE
and the IE-FFT with CFIE are compared. Both results have rea-
sonable agreements.

All the numerical complexities of the performed simulations
are tabularized. First, the IE-FFT algorithm with CFIE is com-
pared with the traditional MoM with EFIE in Table 3.

The number of unknown is 12 972 and the operating fre-
quency is 30MHz. The CPU time of the MVM per iteration
and the number of iterations are shown in the first and second
columns. The memory of Zcorr and P matrices and G matrix is

Table 2. CPU time and the number of iterations of IE-FFT algorithm with CFIE for scattering from a PEC sphere with a radius of 1 m

Frequency (MHz) Zcorr (s) Π (s) MVM/iteration (s)

Number of iterations

EFIE MFIE CFIE

300 42 1 0.13 111 19 19

600 181 5 0.8 361 42 22

1200 699 20 4.29 1078 65 23

2400 2866 81 30.14 >2000 282 25

Fig. 4. Comparison of the bistatic RCS results for the battleship at 30 MHz
(θθ-polarization) using the IE-FFT with CFIE and the traditional MoM.

Fig. 5. Comparison of the bistatic RCS results for the battleship at 60 MHz
(θθ-polarization) using the IE-FFT with CFIE and the ACA algorithms.

Fig. 6. Comparison of the bistatic RCS results for the battleship at 120 MHz
(θθ-polarization) using the IE-FFT with CFIE and EFIE.
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compared with that of the traditional MoM matrix in the third
column. The traditional MoM requires an extra memory of geo-
neighboring preconditioner [15] in the fourth column. It is
undoubtedly proven that the IE-FFT with CFIE is more efficient
than the traditional MoM. Second, the IE-FFT with CFIE is com-
pared with the ACA of the EFIE in Table 4.

The number of unknowns is 48 363 and the operating fre-
quency is 60MHz. Because of the memory limit of the current
processor, the simulation cannot be operated by the conventional
MoM. Even though the matrix of the IE-FFT with CFIE is non-
symmetric, the memory of the IE-FFT with CFIE is approximately
three times smaller than that of the ACA. The MVM per iteration
of the IE-FFT with CFIE is twice worse than that of ACA.
However, the ACA does not converge without the geo-
neighboring preconditioner. Finally, the IE-FFT with CFIE is
compared with the IE-FFT of the EFIE in Table 5.

Due to the storage limit of the processor in the simulation, the
ACA cannot be performed. The number of unknowns is 189 606
and the operating frequency is 120MHz. The total CPU time of
both methods is approximately similar. The total storage of the
IE-FFT looks better than that of the IE-FFT with CFIE.
Nevertheless, the memory of the preconditioner is the only final
result except for extra memory of reordering, factorization, etc.
The realistic memory of the preconditioner is much bigger than
the final written result. In the simulation, the IE-FFT of the
EFIE does not converge without the geo-neighboring precondi-
tioner. From the tables, the memory of Zcorr and P matrices

follows O(N ) complexity. The coefficient matrix of the free-space
Green’s function G is O(N1.5) complexity. Therefore, the coeffi-
cient matrix will be more dominant as the electrical length is
larger. Table 6 shows the number of iterations of the GMRES
method according to the weight constant ρ of the IE-FFT with
CFIE at a frequency of 60MHz.

Table 3. Numerical complexities between the IE-FFT with CFIE and the traditional MoM of the EFIE for the battleship at 30 MHz (The number of unknowns is 12 972)

MXV/iteration (s) Number of iterations MoM (MB) Preconditioner (MB)

MoM (EFIE) 2.80 104 673 34

IE-FFT (CFIE) 0.91 90 69 (Zcorr +Π)
4 (G)

–

Table 5. Numerical complexities between the IE-FFT with CFIE and the IE-FFT with EFIE for the battleship at 120 MHz (the number of unknowns is 189 606)

MVM/iteration (s) Number of iterations MoM (MB) Preconditioner (MB)

IE-FFT (EFIE) 26.63 166 422 (Zcorr +Π)
268 (G)

355

IE-FFT (CFIE) 46.36 80 974 (Zcorr +Π)
268 (G)

–

Table 6. The number of iterations with GMRES method according to the weighting constant of the IE-FFT with CFIE for the battleship at 60 MHz (the number of
unknowns is 48 363)

ρ 0 0.1 0.3 0.5 0.7 0.9 1

Number of iterations >5000 129 26 30 51 136 >5000

Table 4. Numerical complexities between the CFIE-FFT and the ACA of the EFIE for the battleship at 60 MHz (the number of unknowns is 48 363)

MVM/iteration (s) Number of iterations MoM (MB) Preconditioner (MB)

ACA (EFIE) 2.92 104 697 234

IE-FFT (CFIE) 6.22 89 250 (Zcorr +Π)
33 (G)

–

Fig. 7. The RMS errors of the bistatic RCS calculations versus the sampling segments
per wavelength ( p = 2, 3).
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Both the EFIE and MFIE formulations accelerated by the
IE-FFT do not converge within the number of iterations exceeded
to a maximum of 5000. Both formulations may have internal res-
onance for this specific case. However, the IE-FFT with CFIE is
free of internal resonance and has reliable convergence rate and
solution.

In Fig. 7, the study of the error control of the IE-FFT with
CFIE is performed indirectly in terms of the RMS errors of the
bistatic RCS calculations [2]. The numerical simulations from
the sampling segments per wavelength are carried out for 1 m
PEC sphere at a frequency of 600MHz. The average RMS errors
are plotted. The dashed line indicates the RMS error of the con-
ventional MoM with EFIE. The solid line with circular markers
and dash-dotted line with square markers represent the RMS
errors of the IE-FFT for the second- and third-order Lagrange
polynomials, respectively. The RMS errors of the IE-FFT with
CFIE converge to those of the conventional MoM as the sampling
segments increase.

Conclusion

The IE-FFT algorithm with CFIE has been implemented and
demonstrated for arbitrary-shaped 3-D PEC objects. In the PEC
sphere example, the IE-FFT algorithm with CFIE is shown to
achieve O(N1.5) and O(N1.5log N ) complexities for memory and
MVM per iteration, respectively. The realistic example of the gen-
eric battleship shows the reliability of the IE-FFT algorithm with
CFIE. The IE-FFT with CFIE is free of internal resonance and has
reliable convergence rate and solution. The IE-FFT algorithm
with CFIE can handle up to approximately 0.3 million unknowns
with only 2GB memory.
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