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We consider the fractional elliptic problem:

{
(−Δ)su − up = 0, u > 0 in R

N \ B1,

u = 0 in B1, lim|x|→∞ u(x) = 0

where B1 is the unit ball in R
N , N � 3, s ∈ (0, 1) and p > (N + 2s)/(N − 2s). We

prove that this problem has infinitely many solutions with slow decay
O(|x|−2s/(p−1)) at infinity. In addition, for each s ∈ (0, 1) there exists
Ps > (N + 2s)/(N − 2s), for any (N + 2s)/(N − 2s) < p < Ps, the above problem
has a solution with fast decay O(|x|2s−N ). This result is the extension of the work
by Dávila, del Pino, Musso and Wei (2008, Calc. Var. Partial Differ. Equ. 32, no. 4,
453–480) to the fractional case.
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1. Introduction

In this paper we construct classical solutions of the following supercritical fractional
exterior problem:

{
(−Δ)su− up = 0, u > 0 in R

N \B1,
u = 0 in B1, lim|x|→∞ u(x) = 0,

(1.1)
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where s ∈ (0, 1), p > (N + 2s)/(N − 2s) and B1 is the unit ball whose centre is
the original point in R

N for N � 3. As usual, the operator (−Δ)s is the fractional
Laplacian, defined at any point x ∈ R

N as

(−Δ)su(x) := C(N, s)P.V.
∫

RN

u(x) − u(y)
|x− y|N+2s

dy

= C(N, s) lim
ε→0+

∫
RN\Bε(x)

u(x) − u(y)
|x− y|N+2s

dy.

Here P.V. is a commonly used abbreviation for ‘in the principal value sense’ and
C(N, s) is a constant dependent of N and s. We refer to [13,19].

Non-local equations have attracted a great deal of interest in recent twenty years
since they are of central importance in many fields, from the points of view of
both pure analysis and applied modelling. In addition, series of non-local PDE’s
theories have been founded by many authors; such as regularity theory [21,22],
maximum principle in [5–7], uniqueness in [14,16,17] and so on. In particular,
fractional elliptic problems have been extensively studied. See for example [8,9,15]
for subcritical case, and [1,2,18] for critical exponent, [3] for the supercritical case
and the reference therein.

Let us now go back to the problem we are going to consider. For classical case,
namely s = 1, Dávila, del Pino and Musso [10] have proved (1.1) has infinitely
many solutions with slow decay O(|x|−2/(p−1)) at infinity with either N � 4 and
p > (N + 1)/(N − 3), or N � 3, p > (N + 2)/(N − 2) and the interior domain Ω is
symmetric with respect to N coordinate axes. Later, this result has been extended
to p > (N + 2)/(N − 2) and Ω is a smooth bounded domain by Dávila, del Pino,
Musso and Wei [11]. For fractional case, we will prove that this result also holds
when s ∈ (0, 1), p > (N + 2s)/(N − 2s) and Ω = B1 is the unit ball in R

N . For
problem (1.1) in general exterior domain, there are some obstacles, see remark 1.3
below.

More precisely, our main results can be stated as follows:

Theorem 1.1. For any s ∈ (0, 1) and p > (N + 2s)/(N − 2s), N � 3, there exists
a continuum of solutions uλ, λ > 0, to problem (1.1) such that

uλ(x) = β1/(p−1)|x|−2s/(p−1)(1 + o(1)) as |x| → ∞

and uλ(x) → 0 as λ→ 0, uniformly in R
N \B1.

Theorem 1.2. For any s ∈ (0, 1), there exists a number Ps > (N + 2s)/(N − 2s),
such that for any p ∈ ((N + 2s)/(N − 2s), Ps), problem (1.1) has a fast decay
solution up, up(x) = O(|x|2s−N ) as |x| → +∞.

We basically follow the ideas in [3] and [11] to prove theorems 1.1 and 1.2. More
precisely, to prove theorem 1.1, we will take ω as approximation of (1.1) where ω
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is a smooth, radially symmetric, entire solution of the following problem:

(−Δ)sω − ωp = 0, ω > 0 in R
N , ω(0) = 1, lim

|x|→∞
ω(x)|x|2s/(p−1) = β1/(p−1).

(1.2)

Here β is a positive constant chosen such that β1/(p−1)|x|−2s/(p−1) is a singular
solution to (−Δ)sω − ωp = 0 for which the existence and linear theory have been
studied recently in [3] for the fractional case.

While the basic idea in the proof of theorem 1.2 is to consider as an initial
approximation the function λ(N−2s)/2ω∗∗(λx+ ξ) where

ω∗∗(r) =
(

1
1 +AN,sr2

)(N−2s)/2

(1.3)

is the unique positive radial smooth solution of the problem

(−Δ)sω∗∗ = ω
(N+2s)/(N−2s)
∗∗ in R

N , ω∗∗(0) = 1.

These scalings will constitute good approximations for small λ if p is sufficiently
close to (N + 2s)/(N − 2s). We prove then adjusting both ξ and λ, produces a
solution as desired after addition of a lower order term.

Remark 1.3. To prove theorems 1.1 and 1.2, we will construct solutions of the
equivalent problem (2.1) with the form ũ = ω − ϕλ + φ and ũ = ω∗∗ − ϕλ + φ in
§ 2 and § 6 respectively where ϕλ is the projection to satisfy Dirichlet data and φ
is a small perturbation. To obtain the decay of ũ, we need to know the decay of
ϕλ, φ. To get the a priori estimate, the expression or asymptotic behaviour of the
Poisson kernel P (x, y) in RN \B1 is important. Using this Poisson kernel P (x, y),
we first obtain the decay of ϕλ in (2.6). Secondly, we can derive the decay of φ
by the Green’s function G(x, y) in RN \B1 in § 3 and § 6. But for general exterior
domain, there is a lack of the explicit formulas and the decay of the Poisson kernel
and the Green’s function of fractional Laplace operator(−Δ)s. That is the reason
we only consider RN \B1 in this paper.

2. The set up for theorem 1.1

In what follows of this paper we will assume s ∈ (0, 1) and p > (N + 2s)/(N − 2s)
for N � 3.

By the change of variables

ũ(x) = λ−2/(p−1)u

(
x− ξ

λ

)
and the maximum principle (see [7]), problem (1.1) is equivalent to⎧⎨⎩

(−Δ)sũ− |ũ|p = 0, ũ �≡ 0 in R
N \Bλ,ξ,

ũ = 0 in Bλ,ξ, lim
|x|→∞

ũ(x) = 0
(2.1)
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where λ > 0 is a small parameter, ξ ∈ R
N is to be determined later, and Bλ,ξ is the

shrinking domain

Bλ,ξ = {λx+ ξ
∣∣ x ∈ B1}.

We want to consider the function ω(x) in (1.2) as an approximation of this
problem. We need of course a correction so that the boundary condition is satisfied.
Denote ϕλ be the unique solution of the following problem:

(−Δ)sϕλ = 0 in R
N \Bλ,ξ, ϕλ(x) = ω(x) in Bλ,ξ, lim

|x|→∞
ϕλ(x) = 0, (2.2)

then naturally ω(x) − ϕλ(x) is regarded as the first approximation of problem (1.1).
Now ψλ(x) = ϕλ(λx+ ξ) satisfies{

(−Δ)sψλ(x) = 0 in R
N \B1,

ψλ(x) = ω(λx+ ξ) in B1, lim
|x|→∞

ψλ(x) = 0. (2.3)

By Poisson’s representation, we obtain

ψλ(x) =
∫

B1

P (x, y)ω(λy + ξ)dy,

where P (x, y) is the Poisson kernel of the following problem

(−Δ)su(x) = 0 in R
N \B1, u(x) = g(x) in B1.

Moreover, it was obtained in [19] that

P (x, y) =

⎧⎨⎩
Γ(N/2)
πN/2+1

sin(πs)
(
|x|2 − 1
1 − |y|2

)s 1
|x− y|N , |y| < 1,

0, |y| > 1.
(2.4)

Let ψ0(x) :=
∫

B1
P (x, y)dy, then it is easy to get that there is a positive constant

α such that

lim
|x|→∞

|x|N−2sψ0(x) = α.

Since ω is a smooth positive function, we have

ψλ(x) = (ω(ξ) +O(λ))ψ0(x), ∀x ∈ R
N \B1,

from which we can derive that

ϕλ(x) = (ω(ξ) +O(λ))ψ0

(
x− ξ

λ

)
, ∀x ∈ R

N \Bλ,ξ (2.5)

and

|ϕλ(x)| � CλN−2s|x− ξ|2s−N for all x ∈ R
N \Bλ,ξ. (2.6)

Here O(λ) means that there exists a positive constant C such that for all λ ∈ (0, 1)
and ∀x ∈ R

N \B1, |O(λ)| � Cλ.
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Now we look for a solution to problem (2.1) of the form

ũ = ω − ϕλ + φ,

which yields the following equation for φ, according to (2.1),{
(−Δ)sφ− pωp−1φ = N(φ) + Eλ in R

N \Bλ,ξ,
φ(x) = 0 in Bλ,ξ, lim

|x|→∞
φ(x) = 0, (2.7)

where

Eλ = −pωp−1ϕλ, N(φ) = |ω + φ− ϕλ|p − ωp − pωp−1φ+ pωp−1ϕλ. (2.8)

Thus a solution of problem (2.7) for which φ is small compared with ω − ϕλ yields
one of (1.1) as presented by theorem 1.1.

To solve problem (2.7), we first consider the following projected problem,⎧⎪⎨⎪⎩
(−Δ)sφ− pωp−1φ = N(φ) + Eλ +

N∑
i=1

ciZi in R
N \Bλ,ξ,

φ(x) = 0 in Bλ,ξ, lim
|x|→∞

φ(x) = 0,
(2.9)

where the ci’s are constants, which are part of the unknown, and

Zi(x) =
∂ω

∂xi
(x), i = 1, . . . , N.

Through an application of the Banach fixed point theorem in a suitable L∞ weight
space, we shall prove in § 4 that problem (2.9) is indeed solvable, within a class of
φ’s in the form φ = φ(λ, ξ), ci = ci(λ, ξ) where the dependence on the parameter is
continuous. We then obtain a solution of problem (2.7) if

ci(λ, ξ) = 0 for all i = 1, . . . , N.

We will show in § 5 that for each sufficiently small λ there is indeed a point ξ such
that the above equalities hold true.

In § 3 we will consider the following linear problem corresponding to problem
(2.9) ⎧⎪⎨⎪⎩

(−Δ)sφ− pωp−1φ = h+
N∑

i=1

ciZi in R
N \Bλ,ξ,

φ(x) = 0 in Bλ,ξ, lim
|x|→∞

φ(x) = 0.
(2.10)

The norms on functions φ and h are defined on R
N \Bλ,ξ as the following

||φ||∗,ξ := sup
|x−ξ|�1

|x− ξ|σ|φ(x)| + sup
|x−ξ|�1

|x− ξ|2s/(p−1)|φ(x)|,

||h||∗∗,ξ := sup
|x−ξ|�1

|x− ξ|σ+2s|h(x)| + sup
|x−ξ|�1

|x− ξ|(2s/(p−1))+2s|h(x)|,

where σ ∈ (0, N − 2s) is a constant to be determined later. In particular, when
ξ = 0 we denote the above norms by ‖φ‖∗ and ‖h‖∗∗ respectively.
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We have the validity of the following results which will be proved in §3.

Proposition 2.1. Assume (N + 2s)/(N − 2s) < p < (N + 2s− 1)/(N − 2s− 1)
and Λ > 0. Then there exist constants C and λ0 such that for any |ξ| � Λ and
any 0 < λ < λ0 the following holds: for any h with ||h||∗∗,ξ <∞, there exists a
solution of problem (2.10)

(φ, c1, c2, . . . , cN ) = Γλ(h)

which defines a linear operator Γλ of h, such that

||φ||∗,ξ + max
1�i�N

|ci| � C||h||∗∗,ξ.

Proposition 2.2. Assume N � 2 and p > (N + 2s− 1)/(N − 2s− 1). Then there
exist constants C and λ0 such that for any 0 < λ < λ0 the following holds: for any
h with ||h||∗∗ <∞, there exists a solution of problem (2.10)

φ = Γλ(h) and ci = 0, i = 1, . . . , N,

which defines a linear operator Γλ of h, such that

||φ||∗ � C||h||∗∗.

If p = (N + 2s− 1)/(N − 2s− 1), the proof of theorem 1.1 is based on a result
similar to proposition 2.1 but for slightly different norms, see remark 5.1.

A very similar scheme is followed for the proof of theorem 1.2, having as its
basic cell the function ω∗∗ in (1.3). In this case, the relevant projected problem
also involves the generator of dilations, and both the point ξ and the number λ
must be determined as the functions of the small parameter given by the difference
p− (N + 2s)/(N − 2s). It is done in § 6.

3. The proof of propositions 2.1 and 2.2

Keeping the notations of the previous section, we first consider the following linear
problem in entire space,

(−Δ)sφ− pωp−1φ = h+
N∑

i=1

ciZi in R
N , lim

|x|→∞
φ(x) = 0. (3.1)

First let us recall the result in [3]:

Proposition 3.1 (proposition 5.1 of [3]). Let h satisfy ||h||∗∗,ξ < +∞. For problem
(3.1), we have:

1. if p > (N + 2s− 1)/(N − 2s− 1), then there exists a solution φ with ci =
0, i = 1, . . . , N satisfying

||φ||∗ � C||h||∗∗ (3.2)

for some C > 0.
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2. if (N + 2s)/(N − 2s) < p < (N + 2s− 1)/(N − 2s− 1), there exists a solu-
tion (φ, c1, . . . , cN ) and it satisfies

||φ||∗,ξ +
N∑

i=1

|ci| � C||h||∗∗,ξ (3.3)

for some C > 0.

Next we will use the above result to prove propositions 2.1 and 2.2. We shall
fix Λ > 0 large and work with |ξ| � Λ. All the estimates will depend on only Λ.
Let 0 < R0 < R1 be fixed such that 3R0 < R1 and B1 ⊂ BR0 . Define ρ ∈ C∞(RN ),
0 � ρ � 1 be such that

ρ(x) = 0 for |x| � 1, ρ(x) = 1 for |x| � 2

and set

ηλ(x) = ρ

(
x− ξ

λR0

)
, ζλ(x) = ρ

(
x− ξ

λR1

)
. (3.4)

We look for a solution to problem (2.10) of the form

φ = ηλϕ+ ψ,

where ϕ,ψ are two unknown functions. Thus, we need to solve the following system⎧⎪⎨⎪⎩(−Δ)sϕ− pωp−1ϕ = pωp−1ζλψ + ζλh+
N∑

i=1

ciζλZi in R
N

lim
|x|→∞

φ(x) = 0,
(3.5)

and⎧⎪⎨⎪⎩
(−Δ)sψ − p(1 − ζλ)ωp−1ψ = f(x) + (1 − ζλ)h+

N∑
i=1

ci(1 − ζλ)Zi in R
N \Bλ,ξ

ψ(x) = 0 in Bλ,ξ, lim
|x|→∞

ψ(x) = 0,

(3.6)
where

f(x) = −CN,sP.V.

∫
RN

ηλ(x) − ηλ(y)
|x− y|N+2s

ϕ(y)dy.

Here we regard x as the only variable of function f because in the first step of the
proof, (ϕ, c1, . . . , cN ) is given. Then we define Banach space

X :=
{
(ϕ, c1, . . . , cN )

∣∣ϕ ∈ L∞ with ||ϕ||∗,ξ <∞ and ci ∈ R, 1 � i � N
}
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with the norm

||(ϕ, c1, . . . , cN )||X := sup
|x−ξ|�λR1

|ϕ(x)| + sup
λR1�|x−ξ|�1

|x− ξ|σ|ϕ(x)|

+ sup
|x−ξ|�1

|x− ξ|2s/(p−1)|ϕ(x)|

+ sup
x,y∈B2λR1 (ξ)\B λR0

2
(ξ)

λs |ϕ(x) − ϕ(y)|
|x− y|s +

N∑
i=1

|ci|.

(3.7)

Given (ϕ, c1, . . . , cN ) ∈ X, we first note that (3.6) has a solution for λ small
enough because ||p(1 − ζλ)ωp−1||LN/2s(RN\Bλ,ξ) → 0 as λ→ 0 and the operator
(−Δ)sψ − p(1 − ζλ)ωp−1 is coercive. Let ψ(ϕ, c1, . . . , cN ) denote this solution.
Moreover, ψ(x) = O(|x|2s−N ) as |x| → ∞. So the right-hand side of (3.5) has finite
|| · ||∗∗,ξ norms, by proposition 3.1, (3.5) has a solution (ϕ̄, c̄1, . . . , c̄N ).

Proposition 2.1 and 2.2 will be shown through the fixed point theorem in X. In
particular, for the proof of proposition 2.2, we just choose ξ = 0 because (3.1) is
solvable with ci = 0, 1 � i � N , according to proposition 3.1.

For (ϕ, c1, . . . , cN ) ∈ X we will first establish a point-wise estimate for the
solution ψ(ϕ, c1, . . . , cN ) of (3.6), namely

|ψ(x)| � CλN−2s−σ(||h||∗∗,ξ + ||(ϕ, c1, . . . , cN )||X)|x− ξ|2s−N

for all x ∈ R
N \Bλ,ξ.

(3.8)

Indeed, let ψ̃(z) = ψ(ξ + λz), then by (3.6),⎧⎨⎩(−Δ)sψ̃ − pλ2s
(
1 − ρ

(
z

R1

))
ωp−1(ξ + λz)ψ̃ = g(z) in R

N \B1,

ψ̃(x) = 0 in B1, lim
|x|→∞

ψ̃(x) = 0,
(3.9)

where

g(z) = −CN,sP.V.

∫
RN

ρ(z/R0) − ρ(y/R0)
|z − y|N+2s

ϕ(ξ + λy)dy

+
(

1 − ρ

(
z

R1

))
λ2sh(ξ + λz)

+ λ2s
N∑

i=1

ci

(
1 − ρ

(
z

R1

))
Zi(ξ + λz).

For any z ∈ R
N \B1, first we can get that∣∣∣∣(1 − ρ

(
z

R1

))
λ2sh(ξ + λz)

∣∣∣∣ � Cλ−σ||h||∗∗,ξ|z|−2s−σχ{|z|�2R1} (3.10)

and

λ2s

∣∣∣∣∣
N∑

i=1

ci

(
1 − ρ

(
z

R1

))
Zi(ξ + λz)

∣∣∣∣∣ � Cλ2s
N∑

i=1

|ci|χ{|z|�2R1}

� Cλ2s||(ϕ, c1, . . . , cN )||X χ{|z|�2R1}.

(3.11)
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Moreover, for s ∈
(
0, 1

2

)
we obtain

∣∣∣∣P.V.∫
RN

ρ(z/R0) − ρ(y/R0)
|z − y|N+2s

ϕ(ξ + λy)dy
∣∣∣∣

� P.V.

∫
RN

|ρ(z/R0) − ρ(y/R0)|
|z − y|N+2s

|ϕ(ξ + λy)|dy

�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
CP.V.

∫
|z−y|�1

|∇ρ|
|z − y|N+2s−1

|ϕ(ξ + λy)|dy

+C
∫
|z−y|>1

|ϕ(ξ + λy)|
|z − y|N+2s

dy if |z| � 3R1

C
∫
|y|�2R0

|ϕ(ξ + λy)|
|z − y|N+2s

dy if |z| > 3R1

�

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

CP.V.
∫
|z−y|�1

||(ϕ, c1, . . . , cN )||X
λσ|z − y|N+2s−1

dy

+C
∫
|z−y|>1

||(ϕ, c1, . . . , cN )||X
λσ|z − y|N+2s

dy if |z| � 3R1

C
∫
|y|�2R0

||(ϕ, c1, . . . , cN )||X
|z − y|N+2sλσ

dy if |z| > 3R1

� Cλ−σ||(ϕ, c1, . . . , cN )||Xχ{|z|�3R1}

+ Cλ−σ|z|−2s−N ||(ϕ, c1, . . . , cN )||Xχ{|z|>3R1}

(3.12)

since

|ϕ(ξ + λy)| � ||(ϕ, c1, . . . , cN )||X
{
χ{|y|�R1} +

1
|λy|σ χ{R1<|y|� 1

λ} + χ{ 1
λ <|y|}

}

and we used that, s ∈
(
0, 1

2

)
, σ ∈ (0, N − 2s) in the last inequality and χ is a

characteristic function in different domains.
For s ∈ [ 12 , 1), using ∇ρ(z/R0) = 0 for |z| � R0 and

∫
RN

ϕ(ξ+λz)[∇ρ](z/R0)·(z−y/R0)
|z−y|N+2s

dy = 0, we can obtain

∣∣∣∣P.V.∫
RN

ρ(z/R0) − ρ(y/R0)
|z − y|N+2s

ϕ(ξ + λy)dy
∣∣∣∣

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
∫
|z−y|�1

O(|x−y|2)|ϕ(λy+ξ)|
|z−y|N+2s dy +

∫
|z−y|>1

|ϕ(ξ+λy)|
|z−y|N+2s dy if |z| � R0

C
∫
|z−y|� R0

2

|∇ρ(z/R0)((z−y)/R0)[ϕ(ξ+λz)−ϕ(ξ+λy)]|
|z−y|N+2s + O(|x−y|2)|ϕ(λy+ξ)|

|z−y|N+2s dy

+2
∫
|z−y|> R0

2

|ϕ(ξ+λy)|
|z−y|N+2s dy if R0 < |z| � R1

C
∫
|y|�2R0

|ϕ(ξ+λy)|
|z−y|N+2s dy if |z| > R1.
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Using the definition of || · ||X in (3.7), we get

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
∫
|z−y|�1

||(ϕ, c1, . . . , cN )||X
λσ|z − y|N+2s−2

dy

+C
∫
|z−y|>1

||(ϕ, c1, . . . , cN )||X
λσ|z − y|N+2s

dy if |z| � R0

C
∫
|z−y|�

R0

2

||(ϕ, c1, . . . , cN )||X
|z − y|N+s−1

+
||(ϕ, c1, . . . , cN )||X
λσ|z − y|N+2s−2

dy

+C
∫
|z−y|>

R0

2

||(ϕ, c1, . . . , cN )||X
λσ|z − y|N+2s

dy if R0 < |z| < R1

C
∫
|y|�2R0

||(ϕ, c1, . . . , cN )||X
|z − y|N+2sλσ

dy if |z| > R1

� Cλ−σ||(ϕ, c1, . . . , cN )||Xχ{|z|�R1}

+ Cλ−σ|z|−2s−N ||(ϕ, c1, . . . , cN )||Xχ{|z|>R1}

� Cλ−σ||(ϕ, c1, . . . , cN )||Xχ{|z|�3R1}

+ Cλ−σ|z|−2s−N ||(ϕ, c1, . . . , cN )||Xχ{|z|>3R1}. (3.13)

According to the above estimates (3.10)–(3.13), we obtain

|g(z)| � Cλ−σ{||(ϕ, c1, . . . , cN )||X + ||h||∗∗,ξ|z|−2s−σ}χ{|z|�3R1}

+ C||(ϕ, c1, . . . , cN )||Xλ−σ|z|−N−2sχ{|z|>3R1}.
(3.14)

Let G(x, y) be the Green’s function satisfying{
(−Δ)sG(x, y) = δ(x− y) if x and y ∈ R

N\B1,
G(x, y) = 0 if x or y ∈ R

N\B1.
(3.15)

Moreover, using the Poisson kernel in (2.4), we can derive that

G(x, y) =
C(s,N)

|x− y|N−2s
−

∫
|x|<1

P (x, y)
|z − y|N−2s

dz,

where C(s,N) is a constant depending on s and N , which satisfies that
(C(s,N))/(|x− y|N−2s) is the Green’s function of (−Δ)s in RN . By similar
arguments as theorem 1.3 in [4], we can derive that

G(x, y) =
C(s,N)

|x− y|N−2s
− sin(πs)

π

2
|x− y|N−2s

∫ ∞

1

ρ(|x∗|2 − 1)s

(ρ2 − 1)s(ρ2 − |x∗|2)dρ,

where x∗ satisfies |x− y||x∗ − y| = 1 − |y|2. Thus we derive that

|G(x, y)| � A(s,N)
1

|x− y|N−2s
, x, y ∈ R

N\B1, (3.16)

for some constant A(s,N) depending on s and N .
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According to the Green’s function G(x, y) in (3.15), the equations (3.9), (3.14)
and (3.16), we have

|ψ̃(z)| � Cλ−σ{||(ϕ, c1, . . . , cN )||X + ||h||∗∗,ξ}|z|−N+2s for all z ∈ R
N \B1.

(3.17)

Thus, we obtain from (3.8)

|ψ(x)| � CλN−2s−σ (||h||∗∗,ξ + ||(ϕ, c1, . . . , cN )||X) |x− ξ|2s−N ,

for all x ∈ R
N \Bλ,ξ.

Let (ϕ, c1, . . . , cN ) ∈ X, ψ = ψ(ϕ, c1, . . . , cN ) be the solution to (3.6) and
F (ϕ, c1, . . . , cN ) = (ϕ̄, c̄1, . . . , c̄N ). By proposition 3.1, we have

• if p > (N + 2s− 1)/(N − 2s− 1),

||ϕ̄||∗ � C(||pωp−1ζλψ||∗∗ + ||ζλh||∗∗); (3.18)

• if (N + 2s− 1)/(N − 2s− 1) > p > (N + 2s)/(N − 2s),

||ϕ̄||∗,ξ +
N∑

i=1

|c̄i| � C
(
||pωp−1ζλψ||∗∗,ξ + ||ζλh||∗∗,ξ

)
. (3.19)

Using (3.8) we can estimate ||pωp−1ζλψ||∗∗,ξ as follows:

sup
|x−ξ|�1

|x− ξ|2s+σωp−1ζλ|ψ|

� CλN−2s−σ(||h||∗∗,ξ + ||(ϕ, c1, . . . , cN )||X) × sup
λR1�|x−ξ|�1

|x− ξ|4s−N+σ

� Cλγ(||h||∗∗,ξ + ||(ϕ, c1, . . . , cN )||X)

where

γ = min{2s,N − 2s− σ} > 0.

On the other hand

sup
|x−ξ|�1

|x− ξ|2s+(2s/(p−1))ωp−1ζλ|ψ|

� CλN−2s−σ (||h||∗∗,ξ + ||(ϕ, c1, . . . , cN )||X) × sup
|x−ξ|�1

|x− ξ|2s−N+(2s/(p−1))

� CλN−2s−σ (||h||∗∗,ξ + ||(ϕ, c1, . . . , cN )||X) .

Hence we obtain

||pωp−1ξλψ||∗∗,ξ � Cλγ(||h||∗∗,ξ + ||(ϕ, c1, . . . , cN )||X). (3.20)

Since ||ζλh||∗∗,ξ � ||h||∗∗,ξ, from (3.18)–(3.20) we deduce

• if p > (N + 2s− 1)/(N − 2s− 1),

||ϕ̄||∗ � Cλγ ||(ϕ, c1, . . . , cN )||X + C||h||∗∗,
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• if (N + 2s− 1)/(N − 2s− 1) > p > (N + 2s)/(N − 2s),

||ϕ̄||∗,ξ +
N∑

i=1

|c̄i| � Cλγ ||(ϕ, c1, . . . , cN )||X + C||h||∗∗,ξ.

Hence

||F (ϕ, c1, . . . , cN )||∗,ξ � C(λγ ||(ϕ, c1, . . . , cN )||X + ||h||∗∗,ξ).

Since the right-hand side of (3.5) is bounded for |x| < λR1, by regularity estimates
of solutions in ball regions (refer to lemma 12.3.2 in [7]), we derive

||F (ϕ, c1, . . . , cN )||X � C(λγ ||(ϕ, c1, . . . , cN )||X + ||h||∗∗,ξ).

This estimate shows that F has a unique fixed point (ϕ, c1, . . . , cN ) in X for
λ > 0 suitably small, and

||(ϕ, c1, . . . , cN )||X � C||h||∗∗,ξ.

Finally we make a remark on how to recognize ci = 0 in equation (2.10) for
(N + 2s)/(N − 2s) < p < (N + 2s− 1)/(N − 2s− 1).

Lemma 3.2. Assume (N + 2s)/(N − 2s) < p < (N + 2s− 1)/(N − 2s− 1). There
is λ0 > 0 small such that for λ < λ0, ||h||∗∗,ξ <∞, and φ is a solution to (2.10)
with ||φ||∗,ξ < +∞, then ci = 0 for all i = 1, . . . , N if only if∫

RN\Bλ,ξ

(−Δ)sφZi − (−Δ)sZiφ =
∫

RN\Bλ,ξ

hZi.

Proof. Since ∂ω/∂xj satisfies the linear homogeneous equation: (−Δ)sφ−
pωp−1φ = 0 in R

N , multiplying (3.1) by Zj = ∂ω/∂xj , yields∫
RN\Bλ,ξ

(−Δ)sφZi − (−Δ)sZiφ =
∫

RN\Bλ,ξ

hZi +
N∑

j=1

cj

∫
RN\Bλ,ξ

ZjZi.

For λ > 0 sufficiently small the matrix with entries
∫

RN\Bλ,ξ
ZjZi is closed to∫

RN ZjZi which is invertible. Thus it implies the desired conclusion. �

4. The nonlinear projection problem

To solve problem (2.9), we need to establish some estimates of Eλ and N(φ). Recall
that

Eλ = −pωp−1ϕλ, N(φ) = |ω + φ− ϕλ|p − ωp − pωp−1φ+ pωp−1ϕλ.

Lemma 4.1. Let p > (N + 2s)/(N − 2s), then we have

• for any fixed 0 < σ < N − 2s,

||Eλ||∗∗,ξ � Cλmin{N−2s,σ+2s}, (4.1)
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• for any fixed 0 < σ � min{2s/(p− 1), 2s} and ||φ||∗,ξ � 1,

||N(φ)||∗∗,ξ � C
(
||φ||2∗,ξ + ||φ||p∗,ξ + λmin{σ+2s,N−2s}

)
. (4.2)

Proof. According to the definition of the norms, we do estimates term by term.
Recall that |ϕλ(x)| � CλN−2s|x− ξ|2s−N for all x ∈ R

N \Bλ,ξ, then

sup
|x−ξ|�1, x/∈Bλ,ξ

|x− ξ|2s+σωp−1(x)ϕλ(x)

� CλN−2s||ωp−1||∞ sup
λ�|x−ξ|�1

|x− ξ|4s−N+σ

� Cλmin{σ+2s, N−2s}.

(4.3)

Also

sup
|x−ξ|�1

|x− ξ|2s+(2s/(p−1))ωp−1(x)ϕλ(x)

� CλN−2s sup
|x−ξ|�1

|x− ξ|2s−N+2s/(p−1) � CλN−2s.
(4.4)

Next we will prove (4.2).
For p � 2. Assuming 0 < σ � 2s/(p− 1) and using

|N(φ)| � Cωp−2(|φ|2 + |ϕλ|2) + C(|φ|p + |ϕλ|p), (4.5)

we have for all x ∈ R
N \Bλ,ξ

sup
|x−ξ|�1

|x− ξ|2s+σ|φ|2 � C||φ||2∗,ξ sup
λ�|x−ξ|�1

|x− ξ|2s−σ � C||φ||2∗,ξ, (4.6)

sup
|x−ξ|�1

|x− ξ|2s+σ|φ|p � C||φ||p∗,ξ sup
λ�|x−ξ|�1

|x− ξ|2s−σ(p−1)

� C||φ||p∗,ξ � C||φ||2∗,ξ (4.7)

with ||φ||∗,ξ � 1 in the last inequality. Similar calculation gives out that

sup
|x−ξ|�1

|x− ξ|2s+σ|ϕλ|2 � Cλmin{σ+2s,N−2s} (4.8)

and

sup
|x−ξ|�1

|x− ξ|2s+σ|ϕλ|p � Cλmin{σ+2s,N−2s}. (4.9)

The inequalities (4.6)–(4.9) yield, for p � 2, 0 < σ � 2s/(p− 1) and ||φ||∗,ξ � 1,

sup
|x−ξ|�1

|x− ξ|2s+σ|N(φ)| � C
(
||φ||2∗,ξ + λmin{σ+2s,N−2s}

)
. (4.10)

Now we consider |x− ξ| � 1. By the definition of || · ||∗,ξ and the assumption
||φ||∗,ξ � 1,

|φ(x)| = |φ(x)| × |x− ξ|2s/(p−1)|x− ξ|−2s/(p−1) � |x− ξ|−2s/(p−1) � Cω(x).
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For λ > 0 small, x ∈ R
N \Bλ,ξ,

|ϕλ(x)| � CλN−2s|x− ξ|2s−N = CλN−2s|x− ξ|2s−N+(2s/(p−1))|x− ξ|−2s/(p−1)

� Cω(x)λN−2s|x− ξ|2s−N+(2s/(p−1)) � Cω(x)λN−2s.
(4.11)

Thus instead of (4.5) we can estimate N(φ) by

|N(φ)| � Cωp−2(φ2 + ϕ2
λ).

Using this inequality and the estimate ω(x) � C(1 + |x|)−2s/(p−1) we have

sup
|x−ξ|�1

|x− ξ|2s+(2s/(p−1))ωp−2|φ|2 � C||φ||2∗,ξ (4.12)

and

sup
|x−ξ|�1

|x− ξ|2s+(2s/(p−1))ωp−2|ϕλ|2 � Cλ2(N−2s). (4.13)

Thus (4.12) and (4.13) yield

sup
|x−ξ|�1

|x− ξ|2s+σ|N(φ)| � C
(
||φ||2∗,ξ + λmin{σ+2s, N−2s}

)
.

Thus this estimate together with (4.10) proves (4.2) in the case of p � 2.
For 1 < p < 2 and 0 < σ � 2s, a similar calculation using

|N(φ)| � C(|φ|p + |ϕλ|p)

implies

sup
|x−ξ|�1

|x− ξ|2s+σ|N(φ)| � C
(
||φ||p∗,ξ + λmin{N−2s,2s+σ}

)
. (4.14)

To estimate |x− ξ|2s+σ for |x− ξ| � 1 we write

N(φ) = |ω + φ− ϕλ|p − ωp − pωp−1(φ− ϕλ)

= N1 +N2 + pωp−1ϕλ,
(4.15)

where

N1 = |ω + φ− ϕλ|p − |ω + φ|p, N2 = |ω + φ|p − ωp − pωp−1φ. (4.16)

We note that since ||φ||∗,ξ � 1 and |φ| � Cω(x) for |x− ξ| � 1, together with (4.11),
we can obtain

|N1| = ||ω + φ− ϕλ|p − |ω + φ|p| � Cωp−1ϕλ.

Then

sup
|x−ξ|�1

|x− ξ|2s+(2s/(p−1))|N1| � C sup
|x−ξ|�1

|x− ξ|2s+(2s/(p−1))ωp−1ϕλ

� Cλmin{N−2s, σ+2s}
(4.17)
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as (4.4) shows. Next we can estimate N2 as follows

sup
|x−ξ|�1

|x− ξ|2s+(2s/(p−1))|N2| � C sup
|x−ξ|�1

|x− ξ|2s+(2s/(p−1))|φ|p � C||φ||p∗,ξ.

(4.18)
Thus, by (4.16)–(4.18) and (4.4) for the last term in (4.15) we deduce

sup
|x−ξ|�1

|x− ξ|2s+(2s/(p−1))|N(φ)| � C
(
||φ||p∗,ξ + λmin{σ+2s, N−2s}

)
.

This inequality and (4.14) prove (4.2) in the case of 1 < p < 2. �

According to lemma 4.1 and the fixed point argument, we can derive the following
lemmas:

Lemma 4.2. Let σ ∈ (0, 2s/(p− 1)), (N + 2s)/(N − 2s) < p < (N + 2s− 1)/
(N − 2s− 1) and Λ > 0. Then there are positive numbers λ0, C such that for |ξ| < Λ
and 0 < λ < λ0 there exists (φλ(ξ), c1(λ, ξ), . . . , cN (λ, ξ)) solution to problem (2.9)
such that

||φλ(ξ)||∗,ξ + max
1�i�N

|ci(λ, ξ)| � Cλmin{2s+σ,N−2s}. (4.19)

Lemma 4.3. Let σ ∈ (0, 2s/(p− 1)) and p > (N + 2s− 1)/(N − 2s− 1), taking ξ =
0, then there are positive numbers λ0 and C, such that for any 0 < λ < λ0, there
exists φλ solution to problem (2.9) with ci = 0, 1 � i � N such that

||φλ||∗ � Cλmin{2s+σ,N−2s}. (4.20)

Proof of lemma 4.2. Fix 0 < σ � min{2s, (2s/(p− 1))}, we define for small ρ > 0

F = {φ : R
N \Bλ,ξ → R

∣∣ ||φ||λ,ξ � ρ}

and the operator φ̄ = A(φ) where (φ̄, c1, . . . , cN ) is the solution in proposition 2.1
to ⎧⎪⎨⎪⎩

(−Δ)sφ− pωp−1φ = N(φ) + Eλ +
N∑

i=1

ciZi in R
N \Bλ,ξ

φ(x) = 0 in Bλ,ξ, lim
|x|→∞

φ(x) = 0,

where N(φ) and Eλ are given by (2.8).
We prove that A has a fixed point in F . From proposition 2.1 we have the estimate

||A(φ)||∗,ξ � C(||N(φ)||∗∗,ξ + ||Eλ||∗∗,ξ)

and by lemma 4.1,

||A(φ)||∗,ξ � C
(
||φ)||2∗,ξ + ||φ)||p∗,ξ + λmin{2s+σ,N−2s}

)
� C

(
ρ2 + ρp + λmin{2s+σ,N−2s}

)
< ρ

if ρ > 0 is fixed suitably small and then one consider λ→ 0. This proves A(F) ⊂ F .
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Now we show that A is a contraction mapping in F . Take φ1, φ2 in F , then

||A(φ1) −A(φ2)||∗,ξ � C||N(φ1) −N(φ2)||∗∗,ξ. (4.21)

Write

N(φ1) −N(φ2) = Dφ̄N(φ̄)(φ1 − φ2)

where φ̄ lies in the segment joining φ1 and φ2. Then, for |x− ξ| � 1,

|x− ξ|2s+σ|N(φ1) −N(φ2)| = |x− ξ|2s|Dφ̄N(φ̄)| ||φ1 − φ2||∗,ξ,

while, for |x− ξ| � 1,

|x− ξ|2s+(2s/(p−1))|N(φ1) −N(φ2)| = |x− ξ|2s|Dφ̄N(φ̄)| ||φ1 − φ2||∗,ξ.

Then we have

||N(φ1) −N(φ2)||∗∗,ξ � C sup
x∈RN\Bλ,ξ

(|x− ξ|2s|Dφ̄N(φ̄)|)||φ1 − φ2||∗,ξ. (4.22)

Directly from the definition of N(φ), we compute

Dφ̄N(φ̄) = −p
[
(ω + φ̄− ϕλ)p−1 − ωp−1

]
.

If p � 2, 0 < σ � 2s/(p− 1), using |Dφ̄N(φ̄)| � C(ωp−2(|φ| + ϕλ) + |φ|p−1 +
ϕp−1

λ ),

sup
|x−ξ|�1

|x− ξ|2s|Dφ̄N(φ̄)| � C sup
|x−ξ|�1

|x− ξ|2s
(
ωp−2(|φ| + ϕλ) + |φ|p−1 + ϕp−1

λ

)
� C

(
||φ1||∗,ξ + ||φ2||∗,ξ + λmin{2s,N−2s}

)
� C

(
ρ+ λmin{2s,N−2s}

)
. (4.23)

In the region |x− ξ| � 1 we can use |Dφ̄N(φ̄)| � Cωp−2(|φ| + ϕλ) and obtain

sup
|x−ξ|�1

|x− ξ|2s|Dφ̄N(φ̄)| � C
(
ρ+ λmin{2s,N−2s}

)
. (4.24)

Similarly, if 1 < p < 2 and 0 < σ � 2s/(p− 1) then for all x ∈ R
N \Bλ,ξ

|x− ξ|2s|Dφ̄N(φ̄)| � C|x− ξ|2s
(
|φ|p−1 + ϕp−1

λ

)
� Cλ2s

(
||φ1||p−1

∗,ξ + ||φ2||p−1
∗,ξ + λ2

)
� C(ρp−1 + λ2).

(4.25)

Estimates (4.23)–(4.25) show that

sup
x∈RN\Bλ,ξ

|x− ξ|2s|Dφ̄N(φ̄)| � C
(
ρ+ ρp−1 + λmin{2s,N−2s}

)
. (4.26)

Gathering (4.21), (4.22) and (4.26) we conclude that A is a contraction mapping in
F provided ρ > 0 suitably small, and hence it has a unique fixed point in this set.
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Claim: Let φλ ∈ F denote the fixed point of A found in previous step. For any
fixed 0 < σ < 2s/(p− 1) we have

||φλ||∗,ξ,σ � Cλmin{2s+σ, N−2s} (4.27)

where for convenience, we emphasize the dependence on σ in the notation of the
norm || ||∗,ξ.

Note that from the previous step we see that ||φλ||∗,ξ,σ � Cλmin{2s+σ, N−2s} for
σ > 0 suitable small. Now we fix 0 < σ < 2s/(p− 1). In order to improve the esti-
mate of the fixed point φλ we need to estimate better N(φλ). First we observe that
φλ is uniformly bounded. Indeed, the function uλ = ω − ϕλ + φλ solves⎧⎪⎨⎪⎩

(−Δ)suλ − up
λ =

N∑
i=1

ci(λ, ξ)Zi in R
N \Bλ,ξ,

uλ = 0 in Bλ,ξ, lim
|x|→∞

uλ(x) = 0.
(4.28)

For x with |x− ξ| = 1, uλ(x) remains bounded since |φλ(x)| � C for |x− ξ| = 1.
Then a uniform upper bound for uλ follows from (4.28) and ||up

λ||Lq(B1(ξ)\Bλ,ξ)

remaining bounded as λ→ 0 for some q > N/2s. In fact,∫
B1(ξ)\Bλ,ξ

upq
λ � C

∫
B1

ωpq + |φλ|pq � C + C

∫
B1(ξ)\Bλ,ξ

|x|−σpqdx � C

if we choose σ < 2s/p, as we have done. Hence

|uλ(x)| � C for all |x− ξ| � 1. (4.29)

It follows from (4.29) that

|φλ(x)| � C for all x ∈ R
N \Bλ,ξ.

We shall estimate ||φλ||∗,ξ,θ for some θ > σ. Since φλ is a fixed point of A, for
0 < θ < N − 2s we have, by (4.1)

||φλ||∗,ξ,θ = ||A(φλ)||∗,ξ,θ � C
(
||N(φλ)||∗∗,ξ,θ + ||Eλ||∗∗,ξ,θ

)
� C

(
||N(φλ)||∗∗,ξ,θ + λmin{2s+θ, N−2s}

)
.

(4.30)

Since φλ is uniformly bounded, when p � 2

|N(φλ)| � C
(
|φλ|2 + |ϕλ|2

)
. (4.31)

Taking 0 < θ < N − 2s such that 2s+ θ � 2σ, by (4.27) we have

sup
λ�|x−ξ|�1

|x− ξ|2s+θ|φλ(x)|2 � C||φλ||2∗,ξ,σ sup
λ�|x−ξ|�1

|x− ξ|2s+θ−2σ

� Cλ2 min{2s+σ, N−2s}.
(4.32)

On the other hand

sup
|x−ξ|�1

|x− ξ|2s+(2s/(p−1))|φλ(x)| � C||φλ||2∗,ξ,σ � Cλ2 min{2s+σ, N−2s}. (4.33)
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Thus, from (4.31)–(4.33) and (4.13) we see that

||N(φλ)||∗∗,ξ,θ � Cλ2 min{2s+σ, N−2s}.

This and (4.30) imply

||φλ||∗,ξ,θ � Cλmin{4s+2σ, 2s+θ, N−2s}.

Repeating this argument with finite times we deduce the validity of (4.19) in the
case of p � 2.

If 1 < p < 2 instead of (4.31), using

|N(φλ)| � C|φλ|p,

the same argument as before yields

||N(φλ)||∗∗,ξ,θ � Cλmin{2s+σ, N−2s, p(2s+σ)}.

Then we finish the proof of the claim. �

Remark 4.4. Let ξ = 0 and ci = 0, 1 � i � N in the above argument, we can derive
that lemma 4.3 holds similarly.

5. The proof of theorem1.1

According to lemma 4.3, if p > (N + 2s− 1)/(N − 2s− 1), there exists φλ solution
to problem (2.9) with ci = 0, 1 � i � N such that

||φλ||∗ � Cλmin{2s+σ,N−2s} for all 0 < λ < λ0, for some C, λ0 > 0. (5.1)

Thus, problem (2.1) has a solution

ũ = ω − ϕλ + φλ.

Furthermore, using (2.6) and the change of variables

u(y) = λ2s/(p−1)ũ(λy)

we derive that theorem 1.1 holds for p > (N + 2s− 1)/(N − 2s− 1).
Next we will present the detailed proof of theorem 1.1 for (N + 2s)/(N − 2s) <

p < (N + 2s− 1)/(N − 2s− 1). The case of p = (N + 2s− 1)/(N − 2s− 1) is
referred to remark 5.1.
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We have found a solution (φλ(ξ), c1(λ, ξ), . . . , cN (λ, ξ)) to problem (2.9) satisfying

∫
RN\Bλ,ξ

(−Δ)sφλZi − (−Δ)sZiφλ =
∫

RN\Bλ,ξ

⎛⎝Eλ +N(φλ) +
N∑

j=1

cjZj

⎞⎠Zi,

for 1 � i � N . Thus, for all λ small, we need to find ξ = ξλ such that ci = 0, 1 �
i � N , which is∫

RN\Bλ,ξ

(−Δ)sZiφλ − (−Δ)sφλZi +
∫

RN\Bλ,ξ

(Eλ +N(φλ))Zi = 0. (5.2)

Let us define

Gi(ξ) :=
∫

RN\Bλ,ξ

(−Δ)sZiφλ − (−Δ)sφλZidx+
∫

RN\Bλ,ξ

(
Eλ +N(φλ)

)
Zidx.

(5.3)
The function Gi is continuous for any 1 � i � n, as it follows from local uniqueness,
the fixed point characterization of φλ and elliptic estimates. We claim that

Gi(ξ) = ω(ξ)αλN−2s

∫
RN

|x− ξ|−(N−2s)ωp−1(x)
∂ω

∂xj
(x)dx+ o(λN−2s) (5.4)

uniformly for ξ on compact sets of R
N . First we have∫

RN\Bλ,ξ

∣∣∣∣N(φλ)
∂ω

∂xj

∣∣∣∣ = o
(
λN−2s

)
as λ→ 0 (5.5)

uniformly for ξ on compact sets of R
N . Indeed∫

RN\Bλ,ξ

∣∣∣∣N(φλ)
∂ω

∂xj

∣∣∣∣ =
∫

B1(ξ)\Bλ,ξ

· · · +
∫

RN\B1(ξ)

· · ·

In the case of p � 2, by (4.19) and |N(φλ)| � Cωp−2|φλ|2, we have for σ < N/2∫
B1(ξ)\Bλ,ξ

∣∣∣∣N(φλ)
∂ω

∂xj

∣∣∣∣ � ||φλ||2∗,ξ

∫
B1(ξ)\Bλ,ξ

|x− ξ|−2σ � Cλ2 min{2s+σ, N−2s}

and ∫
RN\B1(ξ)

∣∣∣∣N(φλ)
∂ω

∂xj

∣∣∣∣ � C||φλ||2∗,ξ

∫
RN\B1(ξ)

|x− ξ|−(4s/(p−1))−2s−1

� Cλ2 min{2s+σ, N−2s}.

Choosing ((N − 2s)/2) − 2s < σ < min{N/2, N − 2s}, we obtain (5.5). Similarly,
if p < 2 we have for 0 < σ < N/p∫

RN\Bλ,ξ

∣∣∣∣N(φλ)
∂ω

∂xj

∣∣∣∣ = O
(
λp min{2s+σ, N−2s}

)
as λ→ 0,

and taking ((N − 2s)/p) − 2s < σ < min{N/p, N − 2s} we can still obtain (5.5).
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Next we need to estimate the last term
∫

RN\Bλ,ξ
(−Δ)sZiφλ − (−Δ)sφλZidx.

Taking cut-off function ηλ given by (3.4), we define Z̃i = ηλZi. By the formula
(1.5) in [20], we obtain∫

RN\Bλ,ξ

(−Δ)sZiφλ − (−Δ)sφλZidx

=
∫

RN\Bλ,ξ

[
(−Δ)sZi − (−Δ)sZ̃i

]
φλdx

+
∫

RN\Bλ,ξ

[
Zi − Z̃i

]
(−Δ)sφλdx := I1 + I2,

where I1, I2 are defined by the last equality.
To estimate I1, we first calculate∣∣∣(−Δ)sZi − (−Δ)sZ̃i

∣∣∣ =
∣∣∣∣(1 − ηλ)(−Δ)sZi + P.V.

∫
RN

ηλ(x) − ηλ(y)
|x− y|N+2s

Zi(y)dy
∣∣∣∣

� (1 − ηλ) |(−Δ)sZi| + C

∣∣∣∣∣
∫
|x−y|�λ

ηλ(x) − ηλ(y)
|x− y|N+2s

Zi(y)dy

∣∣∣∣∣
+ C

∣∣∣∣∣
∫
|x−y|�λ

ηλ(x) − ηλ(y)
|x− y|N+2s

Zi(y)dy

∣∣∣∣∣
(by similar calculations as (3.12) and (3.13))

� (1 − ηλ)|(−Δ)sZi| + Cλ−2sχ|x|<3R0λ

+ C
λN

|x|N+2s
χ|x|�3R0λ

Hence, by (4.19),

|I1| � Cλmin{2s+σ, N−2s}+N−2s. (5.6)

We already have that φλ is uniformly bounded. Moreover, using (2.9), it implies
that |(−Δ)sφλ| � C in R

N \Bλ,ξ. Thus, we can derive that

|I2| �
∫

RN\Bλ,ξ

|Zi|(1 − ηλ)|(−Δ)sφλ|dx � CλN . (5.7)

Combining (5.6), (5.7) and (5.3), (5.4) holds.
Let us consider the vector field

G(ξ) = (G1(ξ), . . . , GN (ξ)).

G is then continuous and, thanks to (5.4)

G(ξ) · ξ < 0 for all |ξ| = R

for any fixed small R > 0 which means that G(ξ) has never points in the same direc-
tion on {ξ : |ξ| = R}. Then the deformation Gt(ξ) = tG(ξ) + (t− 1)ξ and degree
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theory lead to the existence of ξ such that ci = 0, 1 � i � N . This concludes the
proof.

Remark 5.1. The proof of theorem 1.1 for p = (N + 2s− 1)/(N − 2s− 1) follows
exactly the same lines with the following modified norms:

||φ||∗,ξ = sup
|x−ξ|�1

|x− ξ|σ|φ(x)| + sup
|x−ξ|�1

|x− ξ|2s/(p−1)+μ|φ(x)|

||h||∗∗,ξ = sup
|x−ξ|�1

|x− ξ|σ+2s|φ(x)| + sup
|x−ξ|�1

|x− ξ|2s/(p−1)+μ+2s|φ(x)|

where μ > 0 is a small fixed number. With this slightly stronger norms, proposition
2.1 remains valid. Indeed, the stronger decay of h assures that the orthogonality
condition

∫
RN\Bλ,ξ

hZi = 0 for all i = 1, . . . , N makes sense. According to remark
7.2 of [3], lemma 4.1 (2) also holds when p = (N + 2s− 1)/(N − 2s− 1). Then
the proof in § 5 carries on. With some minor modifications, we can finally obtain
theorem 1.1.

6. The proof of theorem 1.2

In this section we construct fast decay solutions to problem (1.1) when the exponent
p is close to the Sobolev critical exponent (N + 2s)/(N − 2s). For convenience, we
denote p0 = (N + 2s)/(N − 2s), p = p0 + ε where ε > 0 is small.

The basic cell to construct a fast decay solution is the function ω∗∗ =
((1)/(1 +AN,sr

2))(N−2s)/2. For simplicity, but with slight abuse of notation, we
will denote this function simply by ω.

The main difference with the case treated in the previous section is that for the
linearized problem, it has N + 1 dimensional kernels which consists of

Z0 = rω′(r) +
N − 2s

2
ω, and Zi =

∂ω

∂xi
.

For given ξ ∈ R and λ small, we first study existence and estimates for solutions
(φ, c0, c1, . . . , cN ) to the problem⎧⎪⎨⎪⎩

(−Δ)sφ− pωp−1φ = N(φ) + Eλ + c0Z0 +
N∑

i=1

ciZi in R
N \Bλ,ξ

φ(x) = 0 in Bλ,ξ, lim
|x|→∞

φ(x) = 0,
(6.1)

with

N(φ) = |ω + φ− ϕλ|p0+ε − ωp0+ε − (p0 + ε)ωp0+ε−1(φ− ϕλ)

+
[
(p0 + ε)ωp0+ε−1 − p0ω

p0−1
]
φ−

[
(p0 + ε)ωp0+ε−1 − p0ω

p0−1
]
ϕλ

(6.2)

and

Eλ = ωp0+ε − ωp0 − p0ω
p0−1ϕλ, (6.3)

where ϕλ was given by (2.2).
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Approximate norms in the domain R
N \Bλ,ξ of this case are

||φ||∗,ξ := sup
|x−ξ|�1

|x− ξ|σ|φ(x)| + sup
|x−ξ|�1

|x− ξ|N−2s|φ(x)|,

||h||∗∗,ξ := sup
|x−ξ|�1

|x− ξ|2s+σ|h(x)| + sup
|x−ξ|�1

|x− ξ|N+s|h(x)|.
(6.4)

In particular, when ξ = 0 we denote the above norms by || · ||∗ and || · ||∗∗
respectively. We will need to estimate the || · ||∗∗,ξ-norm of N(φ) and E.

By a similar argument as in [11], we have the following result:

Proposition 6.1. If 0 < σ < min{2s, 2s/(p− 1)} there exists a positive constant
C such that, with ν = min{N − 2s, σ + 2s},

||N(φ)||∗∗,ξ � C
(
||φ||2∗,ξ + ||φ||p0

∗,ξ + λν + ελν
)

(6.5)

and

||E||∗∗,ξ � C
(
λν + ε

)
. (6.6)

To solve problem (6.1), we first recall the following nondegeneracy result for the
linear problem with critical exponent on whole space in [12]:

Lemma 6.2. If φ is a solution of

(−Δ)sφ− p0ω
p0−1φ = 0 in R

N

satisfying ‖φ‖∞ <∞, then

φ =
n∑

i=0

ci
∂ω

∂xi

for some ci ∈ R.

Using this non-degeneracy result and following the same argument as in [3], one
can get the following solvability:

Proposition 6.3. Let |ξ| � Λ, p0 = (N + 2s)/(N − 2s) and 0 < σ < N − 2s.
There is a linear map (φ, c0, c1, . . . , cN ) = T (h) defined whenever ||h||∗∗,ξ <∞ such
that

(−Δ)sφ− p0ω
p0−1φ = h+ c0Z0 +

N∑
i=1

ciZi in R
N , lim

|x|→∞
φ(x) = 0 (6.7)

and

||φ||∗,ξ +
N∑

i=0

|ci| � C||h||∗∗,ξ. (6.8)

Moreover, ci = 0 for all 0 � i � N if and only if h satisfies∫
RN

hZ0 = 0,
∫

RN

h
∂ω

∂xi
= 0, ∀1 � i � N.
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Next we are going to solve problem (6.1):

Lemma 6.4. Let Λ > 0 and s ∈ (0, 1), then there exists ε0 > 0 such that for 0 < ε <
ε0, |ξ| < Λ and λ < ε0 there exists (φ, c0, c1, . . . , cN ) solution to⎧⎪⎨⎪⎩

(−Δ)sφ− pωp−1φ = N(φ) + Eλ + c0Z0 +
N∑

i=1

ciZi in R
N \Bλ,ξ

φ(x) = 0 in Bλ,ξ, lim
|x|→∞

φ(x) = 0.
(6.9)

In addition,

||φ||∗,ξ + max
0�i�N

|ci| → 0 as λ+ ε→ 0,

and

||φ||∗,ξ � C(λν + ε) for 0 < λ < λ0 (6.10)

where

ν = min{2s+ σ, N − 2s}, 0 < σ < N − 2s. (6.11)

Proof. The proof follows from the following two facts. Fact 1. Assume s ∈ (0, 1),
p0 = (N + 2s)/(N − 2s), 0 < σ < N − 2s and let |ξ| � Λ. Suppose ||h||∗∗,ξ <∞.
Then for λ > 0 sufficiently small the problem⎧⎪⎨⎪⎩

(−Δ)sφ− pωp−1φ = h+ c0Z0 +
N∑

i=1

ciZi in R
N \Bλ,ξ

φ(x) = 0 in Bλ,ξ, lim
|x|→∞

φ(x) = 0,
(6.12)

has a solution (φ, c0, c1, . . . , cN ) = T (h) that depends linearly on h and satisfying

||φ||∗,ξ + max
0�i�N

|ci| � C||h||∗∗,ξ.

The constant C is independent of λ and ε.
Proposition 6.3 and the similar proof of proposition 2.1 give out this fact.
Fact 2. Solving (6.1) reduces now to a fixed point problem. Namely, we need to

find a fixed point for the map A(φ) = T (N(φ) + E). Define

F =
{
φ : R

N \Bλ,ξ → R : ||φ||∗,ξ � M(λν + ε)
}

for some M > 0 large and ν = min{N − 2s, σ + 2s}. Since

||A(φ)||∗,ξ � C(||N(φ)||∗∗,ξ + ||E||∗∗,ξ)

and taking into account (6.5) and (6.6), we easily get that A(F ) ⊆ F if 0 < σ �
min{2s+ σ, N − 2s}. To show that A is a contraction, we argue as in the proof of
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lemma 4.2, with

Dφ̄N(φ̄) = (p0 + ε)
[
(ω − ϕλ + φ̄)p0+ε−1 − ωp0+ε−1

]
+

[
(p0 + ε)ωp0+ε−1 − p0ω

p0−1
]
φ̄

to reach that

sup
x∈RN\Bλ,ξ

|x|2s|Dφ̄N(φ̄)|

is infinitesimal as λ+ ε→ 0. In order to estimate (6.10) in the range of 0 < σ <
N − 2s we process as in the proof of lemma 4.2. �

Proof of theorem 1.2. Let (φ, c0, . . . , cN ) be a solution to problem (6.1). Then it is
sufficient to show that the parameter λ and the point ξ can be adjusted so that
c0, . . . , cN are all equal to zero, which is∫

RN\Bλ,ξ

[(−Δ)sφZi − (−Δ)sZiφ] =
∫

RN\Bλ,ξ

(Eλ +N(φ))Zi, ∀ 0 � i � N.

Define, for 0 � i � N ,

Gi(ξ, λ) :=
∫

RN\Bλ,ξ

(Eλ +N(φ))Zi −
∫

RN\Bλ,ξ

[(−Δ)sφZi − (−Δ)sZiφ] . (6.13)

Arguing as in (5.4) and taking into account that, by symmetry,∫
RN

ω(N+2s)/(N−2s)(logω)
∂ω

∂xi
= 0, ∀i = 1, . . . , N,

we obtain

Gi(ξ, λ) = αω(ξ)
N + 2s
N − 2s

λN−2s

∫
RN

|x− ξ|−(N−2s)ω(x)4s/(N−2s) ∂ω

∂xi
(x)

+ o
(
λN−2s + ε

)
. (6.14)

Obviously, for ξ = 0 the above integral is zero. Since the above integral depends
smoothly on ξ, given δ > 0 small, for all λ and ε small we can find ξ ∈ Bδ(0),
depending on λ and ε, so that all ci = 0, for i = 1, . . . , N .

We are now left to show that also c0 = 0. In order to get this fact, we need to
adjust the parameter λ. Using the estimates obtained on φ and similar argument
as (5.4), we first observe that

G0 =
∫

RN\Bλ,ξ

EλZ0 + o
(
λN−2s + ε

)
.

Direct computation now yields that∫
RN\Bλ,ξ

EλZ0 = −aε+A(ξ)λN−2s + o(λN−2s + ε) (6.15)
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where

a =
∫

RN

ω(N+2s)/(N−2s)(logω)Z0,

A(ξ) = αω(ξ)
N + 2s
N − 2s

∫
RN

|x− ξ|−(N−2s)ω4s/(N−2s)Z0.

First we observe that the constant a is positive. Indeed, if we define

g(t) =
1

(p0 + 1)2

∫
RN

ωp0+1
t − 1

p0 + 1

∫
RN

ωp0+1
t log(ωt)

where ωt = ((t)/(1 +AN,st
2|x|2))(N−2s)/2, then changing of variables gives that

g(t) = aN,s − bN,s log t

for some constants aN,s and bN,s > 0, depending on N and s. Observing that a =
−g′(1), the conclusion thus follows.

We need now to prove that A(ξ) > 0 for ξ close to 0. To do so, it is enough
showing that

I =
∫

RN

|x|−(N−2s) 1 − |x|2
(1 + |x|2)(N/2)+s+1

dx > 0.

Writing ωN for the volume of the N − 1 dimensional unit sphere, we have

I = ωN

∫ ∞

0

1 − r2

(1 + r2)(N/2)+s+1

1
r1−2s

dr

= ωN

∫ 1

0

1 − r2

(1 + r2)(N/2)+s+1

1
r1−2s

dr +
∫ ∞

1

1 − r2

(1 + r2)(N/2)+s+1

1
r1−2s

dr

= ωN

∫ 1

0

1 − r2

(1 + r2)(N/2)+s+1

(
1

r1−2s
− rN−1

)
dr > 0.

From (6.15) we can find λ of order ε1/(N−2s) so that c0 = 0. This concludes the
proof of theorem 1.2. �
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