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Abstract

Background: In this study, we applied ultra-short time series of interbeat intervals (RR-intervals)
to evaluate heart rate variability through default chaotic global techniques with the purpose of
discriminating obese youths from non-obese youth patients.Method:Chaotic global analysis of
the RR-intervals from the electrocardiogram and pre-processing adjustments was undertaken.
The effect of cubic spline interpolations was assessed, while the spectral parameters remained
fixed. Exactly, 125 RR-intervals of data were recorded. Results: CFP1, CFP3, and CFP6 were the
only significant combinations of chaotic globals when the standard conditions were enforced
and at the level p<0.01 (or <1%). These significances were acheived via Kruskal–Wallis and
Cohen’s ds effects sizes tests of significance after Anderson–Darling and Lilliefors statistical tests
indicated non-normal distributions in the majority of cases. Adjustments of the cubic spline
interpolation from 1 to 13 Hz were revealed to be inconsequential when measured by
Kruskal–Wallis and Cohen’s ds, regarding the outcome between the two datasets.
Conclusion: Chaotic global analysis was offered as a robust technique to distinguish autonomic
dysfunction in obese youths. It can discriminate the two different groups using ultra-short data
lengths, and no cubic spline interpolations need be applied.

Heart rate variability is an important sign for diagnosing cardiac pathological states.1

Mathematical algorithms founded on non-linear dynamics are useful when analysing these con-
ditions. They are vital when developing new methods to reach an early differential diagnosis
about cardiovascular disease conditions.2 The sympathetic and parasympathetic nervous sys-
tems’ connections have been demonstrated to influence heart rate variability by non-linear neu-
rological cross-talk. Heart rate variability is a simple, inexpensive, and non-invasive way of
monitoring the cardiac branches of the Autonomic Nervous System. Other procedures can
be unresponsive such as with Sympathetic Skin Response3 or, too complicated and highly priced
as with Quantitative Pupillography.4

The beat of electrocardiographic interbeat intervals (RR-intervals) derived from the PQRST-
motif can pulsate in an irregular and often chaotic manner.5,6 This has been previously under-
taken,7,8 but with much longer data sets (1000 RR-intervals) and without judging the potential
consequences of cubic spline interpolations.9 These chaotic global metrics are especially sensi-
tive to unpredictabilites. This is predominant when compared with those based on linear
descriptive statistics, conventional non-linear, or geometric routines. The larger the response,
usually the healthier the patients’ physiological status. Less chaos can typically be interpreted as
amathematical marker for dynamical disease states, in particular.10Dynamical diseases are char-
acterised by unexpected instabilities in the qualitative dynamics of physiological processes. This
leads to irregular dynamics and then pathological states. So, there is a physiological connection
between non-linear dynamics (or complexity theory) and clinical medicine.11 This method is
valuable to the clinical team to identify subtle changes in the Autonomic Nervous System,
and to predict the risk of problems.

Such computations are advantageous when assessing surgical patients12 principally anaes-
thetised13 or unable to communicate distress such as in sleep apnea patients14 or those experi-
encing “air hunger.”15,16 However, the use of ultra-short time series of RR-intervals to evaluate
heart rate variability through default chaotic global techniques for evaluation of health condi-
tions is unknown in the literature.

Through the RR-intervals, we compute three chaotic global parameters and seven groupings
to determine the control from the experimental time series. We assumed that these patients
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from obese youths’ datasets presented autonomic alterations that
can be observed with the proposed analyses.

Methods

Patient selection and assessments were exactly as with the studies
by Vanderlei et al7 and Garner et al.8 All procedures performed in
studies involving human patients were in accordance with the
ethical standards of the institutional and/or national research
committee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards. All volunteers
signed a consent letter and were informed of the procedures and
objectives of the study. The study’s procedures were all approved
by the Research Ethics Committee of Sao Paulo State University,
UNESP (Number Protocol No. 11/2011).

Chaotic globals and chaotic forward parameters

There are three types of chaotic global parameter. They are char-
acterised as high spectral Entropy,7 high spectral Detrended
Fluctuation Analysis,7 and Spectral Multi-Taper Method.17 All
are functions of the Multi-Taper Method power spectrum.18 As
such, Multi-Taper Method is a form of power spectrum that has
been revealed to be beneficial for spectral estimation.19 Its major
advantage is the minimization of spectral leakage. Functions
described as discrete prolate spheroidal sequences, often referred
to as Slepian Sequences,20 are a set of functions that optimise their
windows. Regarding high spectral Entropy, Shannon entropy21 is
applied directly onto the Multi-Taper Method power spectrum.
Whereas with high spectral Detrended Fluctuation Analysis,
Peng et al’s algorithm, the Detrended Fluctuation Analysis22 is
applied directly onto an identical Multi-Taper Method power
spectrum. SpectralMulti-TaperMethod17 is dependent on elevated
broadband noise intensities generated in Multi-Taper Method
power spectra by irregular and often chaotic signals. When broad-
band noise is increased significantly during an elevated chaotic
response, the area beneath the power spectrum increases.
Spectral Multi-Taper Method is the area between this power
spectrum and the baseline.

Chaotic Forward Parameters 1–7 (CFP1–CFP7)19 are enforced
on the electrocardiographics RR-intervals for the non-obese and
obese youths’ patients. High spectral Detrended Fluctuation
Analysis responds to levels of chaos contrariwise to the others,
so we deduct its value from unity. Weightings of unity are stated
here for each of the three chaotic global parameters.

There are seven non-trivial combinations of three chaotic
global values.23 It is anticipated that CFP1 that applies all three
should be the most statistically robust. This for the reason it takes
the information and processes it in three different ways. The sum-
mation of the three would be expected to deviate greater than single
or double permutations. The potential danger is since we are only
computing spectral components, phase information is lost.

Principal component analysis

Principal component analysis24,25 is a multivariate statistical
technique for analysing the complexity of high-dimensional data
sets. Principal component analysis is useful when sources of
variability in the data need to be explained or reducing the
complexity of the data and through this assess the data with lesser
dimensions. The primary aim of principal component analysis is to
represent the data with fewer variables, while sustaining the major-
ity of the total variance. There are two major properties of the

principal component analysis. First, the technique is non-parametric
so no prior knowledge can be incorporated. And then secondly,
principal component analysis data reduction often incurs a loss of
information.

Next, there are the assumptions of the technique. Initially
linearity, this accepts the data set to be linear combinations of
the variables. Then, the importance of mean and covariance, hence
no assurance that the direction of maximum variance, will contain
good discriminative features. And finally, large variance has the
most important dynamics and the lowest corresponding to noise.

When interpreting the principal component analysis, four
points should be considered. First, the higher the component load-
ings the more important that the variable is to the component.
Second, positive and negative loadings are interpreted as mixed.
Third, the specific sign of these mixed loadings is unimportant.
Finally, the rotated component matrix is vital.

Effect sizes by Cohen’s ds

Cohen’s d26,27 generally denotes the entire group termed effect
sizes. To quantify the magnitude of difference between protocols
for significant differences, the effect size was estimated through
a sub-group Cohen’s ds.28 Cohen’s ds represents the standardised
mean difference of an effect. It can be used to calculate effects
across studies even when the dependent variables are measured
in alternative ways or even when completely different measures
are used. It varies from zero to infinity, which may be positive
or negative. However, Cohen refers to the standardised mean dif-
ference between two groups of independent observations for the
appropriate sample as ds.

In the equation for Cohen’s ds (see below), the numerator is the
difference between the appropriate means of two groups of obser-
vations. The denominator is the pooled standard deviation. These
differences are squared to prevent the positive and negative values
cancelling each other out. Then, they are summed. This is then
divided by the number of observations minus one (referred to
as Bessel’s correction) for bias in the estimation of the population
variance, and then the square root of this is taken.

Cohen0s ds ¼
X1 � X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn1�1ÞSD2
1þðn2�1ÞSD2

2
n1þn2�2

q

Regarding these effect sizes ds, the following describes the mag-
nitude for the values according to Sawilowsky29; 0.01> very small
effect; 0.20> small effect; 0.50>medium effect; 0.80> large effect;
1.20> very large effect, and finally 2.00> a huge effect size.

Cubic-spline interpolation

Subsequently, we assessed the importance of pre-processing tech-
niques on the results obtained through chaotic global algorithms.
Again, we compare the chaotic global values for CFP1–CFP7. Time
series constructed from the RR-interval tachograms are not
equidistantly sampled. This has to be justified before frequency-
domain analysis.

Primarily, we can decide to assume equidistant sampling30 and
compute the power spectrum directly from the tachogram of RR-
intervals. This is the technique widely adopted up-til-now by pre-
vious studies on chaotic globals with obese children,31 Attention
Deficit Hyperactivity Disorder (ADHD),23 type 1 diabetes melli-
tus,32 and flexible-pole physical therapy shoulder rehabilitation33

among others. The RR-intervals are, therefore, a function of the
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beat number. Yet, this could cause a distortion in the spectrum34

and the spectrum must be considered a function of cycles per beat
rather than of frequency.35 Incidentally, a Lomb power spectrum36

could also be used as an alternative power spectrum specifically for
unequally spaced data. Nevertheless, here it is not relevant so not
discussed further.

A completely different approach here is to enforce a cubic spline
interpolation37 to convert the non-equidistantly sampled RR-
tachogram into an equidistantly sampled time series.38 So, we per-
formed a cubic spline interpolation on the RR-interval tachogram.
We accomplished this at the levels 1–13 Hz. This covers most rel-
evant scenarios in heart rate variability analysis. Kubios HRV®39
software offers a default option of 4 Hz. It is important to grasp
that the interpolation frequency will affect the number of data
points in the time series. A frequency of 4 Hz, for example, will
elevate the number of RR-intervals from 125 (1 Hz) to 500 (4 Hz).

Following the cubic spline interpolation, the chaotic global
algorithms parameters are fixed. Throughout the enforcement of
the cubic spline interpolations, the Multi-Taper Method default
parameters were set to the following: Thomson’s setting to “adap-
tive,” sampling frequency to 1 Hz, Fast Fourier Transform (FFT)
length of 256 and the discrete prolate spheroidal sequence to 3.

Results

Table 1 presents data regarding (sex, age, mass, and body
mass index).

Statistics illustrate that there is a wide variation in both the
mean values and standard deviation for both non-obese and obese
youths. Here, we are assessing ultra-short time series (125 RR-
intervals). Previously, in studies of obese youths,7,8 1000RR-intervals
were evaluated. The chaotic global algorithms in this study
compute a significant statistical result (p< 0.01, < 1%) for three
of the seven combinations (see Table 2 and Fig 1). These are
combinations CFP1, CFP3 and CFP6 as with the former study
but, here with an 8 times shorter time series. In all three cases, there
is a significant increase in chaotic response when comparing
non-obese to obese youth patients.

The non-parametric Kruskal–Wallis test of significance was
calculated. This was since the distributions were revealed to be
non-normal in the majority of cases, determined by the
Anderson–Darling40 and Lilliefors41 statistical tests. Effect sizes
by Cohen’s ds 26–28 were also calculated as there was a wider range
of values.

With regard to the multivariate statistical analysis by principal
component analysis (see Fig 2). Only the first two components
need be considered by reason of a moderately steep scree plot.
The cumulative influence as a percentage is 66.8% for Principal
Component 1 (PC1) and 99.8% for the cumulative total of the
PC1 and Principal Component 2 (PC2). PC2 has an individual

influence of 33.0%. From Figure 2, it is evident that metrics
CFP3 and CFP1 are the most influencial on the basis of the first
two components. This is to be expected as CFP1 is usually the most
statistically robust and CFP3 the most statistically significant.

The effect of cubic spline interpolation between 1 and 13 Hz
increasing the length of the time series by interpolation (rather
than by recording longer time series in the laboratory) is negligible.
This is for CFP1, CFP3 and CFP6 via both Kruskal–Wallis and
effect sizes by Cohen’s ds test of significances as illustrated in
Table 3. It is apparent that the Cohen’s ds are most significant
for CFP6 (ds≈−0.76) then CFP3 (ds≈−0.64), and least so for
CFP1 (ds≈−0.54). The negative sign indicates an increase from
non-obese to obese youths. The Kruskal–Wallis tests indicate sig-
nificances of p< 0.01 for all, hence, the use of Cohen’s ds which has
a wider range of values and so is more useful to discriminate
between the interpolations.

Discussion

It is unclear why different algorithms behave in alternative ways for
heart rate autonomic control. Consequently, our study aimed to
assess a new approach to detect autonomic dysfunction in obese
youths based on the non-linear dynamics from the non-periodic
RR-intervals oscillations. As a chief outcome, chaotic global tech-
niques applied for heart rate variability analysis were able to iden-
tify cardiac autonomic dysfunction in a sample of obese youths and
using an ultra-short time series of 125 RR-intervals.

Heart rate variability has received much attention by reason of
its simple workability. Data can be collected by a one-channel
electrocardiographic or a pulse watch. Then, these RR-intervals
can be processed by Kubios HRV® software.39 Previously, Task
Force in 1996 published directives in order to regulate heart rate
variability analysis using linear methods in the time and frequency
domains.38

Non-linear analysis of heart rate variability was specified to
provide information about the scaling, quality, and correlation
properties of the time series. There are countless non-linear tech-
niques; some based on Approximate, Sample, Shannon, Renyi and
Tsallis Entropies42 or, Higuchi and Katz’s fractal dimensions43 and

Table 1. Sex, mean values followed by their respective standard deviations of
age, mass, and body mass index.

Variable Obese Control

Sex (female/male) 20/23 21/22

Age (years) 20.45 ± 1.57 20.70 ± 1.39

Mass (kg) 102.30 ± 20.82 62.89 ± 10.47

Body mass index (kg/m2) 34.67 ± 3.87 21.91 ± 1.86

Table 2. Mean values and standard deviations for the chaotic forward
parameters CFP1 to CFP7 which are non-dimensional values; for the non-
obese and obese youth patients with 125 RR-intervals. Kruskal–Wallis test of
significance was computed as distributions were mainly non-normal by
Anderson–Darling and Lilliefors tests of normality. Cohen’s ds effects sizes
were also calculated where a negative value signifies an increase in chaotic
response from non-obese to obese youth and a positive value the opposite
response.

Chaotic
global
CFPx

Mean ± standard
deviation, normal

(n=43)

Mean ± standard
deviation, youth
obese (n=43)

Kruskal–
Wallis

(p-value)

Cohen’s
ds effect
sizes

CFP1 0.8080 ± 0.1154 0.8726 ± 0.1225 0.001 −0.542

CFP2 0.5995 ± 0.1036 0.5828 ± 0.0795 0.723 0.181

CFP3 0.6960 ± 0.1080 0.7613 ± 0.0957 <0.001 −0.640

CFP4 0.6536 ± 0.1994 0.7611 ± 0.1986 0.015 −0.540

CFP5 0.3819 ± 0.1574 0.4106 ± 0.1394 0.364 −0.193

CFP6 0.5254 ± 0.1428 0.6382 ± 0.1532 0.001 −0.761

CFP7 0.3965 ± 0.2090 0.3571 ± 0.1775 0.374 0.203
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specifically the novel chaotic global metrics17 investigated in this
study. Linear methods were intended to compute heart rate vari-
abilitys extent. Complex algorithms to assess the level of chaotic
response of heart rate variability are suggested to detect autonomic
changes that linear methods are unable to identify.44 This is the key
advantage of the non-linear techniques.

Globally, chaotic methods have hitherto been applied to RR-
intervals in obese children31 or obese youths7 and, malnourished

children.45 There have, thus far, been no studies enforcing the cubic
spline interpolation on chaotic global methods. Few studies have
assessed ultra-short time series of 125 RR-intervals with any met-
ric. The previous studies7,23 have assessed time series 8 times
lengthier. Historically, metrics assessing data required 24-hour
Holter electrocardiographic recordings46 to make considerations.
This was severely reduced when the spectrally involved chaotic
globals were introduced.17 Until now, even chaotic globals had
not been tested on 125 RR-intervals. Ultimately, the results are
favorable with three metrics (CFP1, CFP3 and CFP6) all discrimi-
nated from the controls at the level p < 0.01 (or, < 1%) on ultra-
short time series.

Some limitations from our study need highlighting. We evalu-
ated a small sample, yet statistical analysis provided significance.
The sample was comprised of only Brazilian patients. Thus, we
should be cautious when interpreting such data in countries from
different continents. We did not obtain information regarding
body fat percentage, lean mass, inflammatory markers, and oxida-
tive stress. Further studies are encouraged to evaluate the correla-
tions between the mentioned variables and chaotic global analysis.
Different autonomic approaches, for example, electroneuromy-
crography, baroreflex function, and skin response were not
investigated, as our emphasis was chaotic global analysis applied
to RR-intervals – a relatively low-cost technique.

Our study presents important findings for clinical practice and
procedures. ICUs and physicians are interested in predicting the
risk for physiological complications. Comprehension of biological
signals through non-linear analysis of heart rate variability is a sig-
nificant issue for an appropriate program of care. We revealed that
chaotic globals applied to ultra-short time series of RR-intervals are
sensitive to differentiate autonomic impairment of obese youths
from non-obese youth patients. Yet, cubic spline interpolations
have only trivial effects. Therefore, we can accept that cubic spline
interpolation is unnecessary, and shorter than usual time series are
adequate to make decisions about cardiac autonomic dysfunction
in obese youths. By using shorter time series computations, they
are less processor intensive and can be calculated faster which is
advantageous in an ICU setting where decisions need to be made
quickly. Nonetheless, it is important to realise though this may not
be the case with other experimental groups which must be assessed
individually on their merits alone.

Figure 1. The boxplots for CFP1 to CFP7 aimed at
non-obese and the obese youth patients (n=43)
with 125 RR-intervals. The point closest to the zero
is the minimum and the point farthest away is the
maximum. The point next closest to the zero is the
5th percentile and the point next farthest away is
the 95th percentile. The boundary of the box clos-
est to zero indicates the 25th percentile, a line
within the box marks the median (not the mean),
and the boundary of the box farthest from zero
indicates the 75th percentile. The difference
between these points is the inter-quartile range.
Whiskers (or error bars) above and below the box
indicate the 90th and 10th percentiles,
respectively.

Figure 2. The plot illustrates the component loadings CFP1 to CFP7 for the 125 RR-
intervals of 43 obese youth patients’ described above with a cubic spline interpolation
of 1 Hz. The Chaotic Forward Parameter values are deduced by using the Multi-Taper
Method spectra throughout. The properties of the Multi-Taper Method spectra are as
follows: Sampling frequency 1 Hz, discrete prolate spheroidal sequence of 3, FFT
length of 256 and Thomson’s non-linear combination at “adaptive.” CFP1 and CFP3
perform best when assessed by principal component analysis; the most influencial
components.
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Conclusion

The three chaotic global techniques (CFP1, CFP3, and CFP6) applied
to an ultra-short time series of 125 RR-intervals robustly detected
heart rate variability deviations in obese youth patients. Extensive
interpolation of time series made statistically insignificant effects by
two statistical tests, and so was unneccessary. Yet, these three tech-
niques were able to identify autonomic dysfunction in obese youth
patients and accordingly discriminate between these two groups.
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