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Abstract

We construct free abelian subgroups of the group U (A�) of untwisted outer automor-
phisms of a right-angled Artin group, thus giving lower bounds on the virtual cohomological
dimension. The group U (A�)was studied in [5] by constructing a contractible cube complex
on which it acts properly and cocompactly, giving an upper bound for the virtual cohomo-
logical dimension. The ranks of our free abelian subgroups are equal to the dimensions of
principal cubes in this complex. These are often of maximal dimension, so that the upper and
lower bounds agree. In many cases when the principal cubes are not of maximal dimension
we show there is an invariant contractible subcomplex of strictly lower dimension.

2010 Mathematics Subject Classification: 20F65 (Primary); 20F28, 20F36 (Secondary)

1. Introduction

The class of right-angled Artin groups (commonly called RAAGs) contains the familiar
examples of finitely generated free groups and free abelian groups. Though uncomplicated
themselves, both examples have complex and interesting automorphism groups. In recent
years these automorphism groups have been shown to share many properties, but also
to differ in significant ways (see e.g. the survey articles [2, 16]). In this paper we study
automorphism groups of general RAAGs, concentrating on the aspects they share with auto-
morphism groups of free groups. These aspects are largely captured by the subgroup of
untwisted automorphisms, as previously studied in [5]. Let us recall the definition.

A general RAAG is conveniently described by drawing a finite simplicial graph �. The
RAAG is then the group A� generated by the vertices of �, with defining relations that
two generators commute if and only if the corresponding vertices are connected by an edge
of �. By theorems of Laurence [13] and Servatius [14], the automorphism group of A� is
generated by inversions of the generators, graph automorphisms, admissible transvections
(multiplying one generator by another) and admissible partial conjugations (conjugating
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some subset of generators by another generator). Here transvections and partial conjugations
are admissible if they respect the commutation relations. A transvection is called a twist if
the generators involved commute. The subgroup of Out (A�) generated by twists injects into
a parabolic subgroup of SL(n,Z), where n is the number of vertices of �, and is well under-
stood. The subgroup generated by all generators other than twists is the untwisted subgroup
U (A�). This subgroup captures the part of Out (A�) most closely related to Out (Fn). For
example, if A� = Fn then U (A�)= Out (Fn), and U (A�) always contains the kernel of the
map Out (A�)→ GL(n,Z) induced by abelianisation A� →Zn .

For free groups, the virtual cohomological dimension (VCD) of Out (Fn) is equal to the
maximal rank of a free abelian subgroup. The lower bound is established by exhibiting an
explicit free abelian subgroup. For the upper bound, one considers the action of Out (Fn)

on a contractible space On known as Outer space. This action is proper, and On contains an
equivariant deformation retract Kn known as the spine of Outer space, whose dimension is
equal to the lower bound (see [8]).

For the subgroup U (A�) associated to a general RAAG, an analogous outer space O�
and spine K� were defined in [5]. The dimension of K� gives an obvious upper bound on
the VCD of U (A�). Lower bounds were obtained in [3] by exhibiting free abelian subgroups
([3] actually exhibited free abelian subgroups in the entire group Out (A�), but these contain
identifiable subgroups of U (A�)). However, there was no clear relationship between the rank
of these subgroups and the dimension of K�, and there was often a large gap between the
upper bound and lower bounds.

In this paper we address this problem. The spine K� has the structure of a cube com-
plex, and we produce free abelian subgroups in U (A�) of rank equal to the dimension of
certain principal cubes in K�. In the absence of a specific configuration in � we find prin-
cipal cubes of dimension equal to the dimension of K�, thus determining the exact VCD of
U (A�).

The free abelian subgroups we produce are generated by a special type of automor-
phisms called �-Whitehead automorphisms. These generalise the generating set used by
J.H.C. Whitehead in his work on automorphisms of free groups [17]. We show that for any
graph �, our free abelian subgroups have the largest possible rank among those generated
by �-Whitehead automorphisms, which we call the principal rank of U (A�).

Because U (A�) is analogous to Out (Fn) it is tempting to conjecture that the VCD of
U (A�) is equal to the principal rank. It is also tempting to conjecture that the principal rank
is always equal to the dimension of K� . . . but our results show that if the graph contains
a specific configuration then the dimension of K� is strictly larger than the principal rank.
The first conjecture is still plausible, however, because at least in some cases when the
dimension of K� is too large we can show that K� equivariantly deformation retracts onto a
strictly lower-dimensional cube complex.

For GL(n,Z), of course, the VCD is not equal to the rank of a free abelian subgroup, but
rather is equal to the Hirsch rank of a certain (non-abelian) polycyclic subgroup. In light
of the above conjecture, it is natural to ask whether U (A�) can contain a torsion-free, non-
abelian solvable subgroup. For many graphs the answer is no. This was proved in [6] for
graphs with no triangles, and more generally for graphs where the link of every vertex is
either discrete or connected. If links are disconnected but not discrete, we do not know the
answer.
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We remark that several authors have established upper and lower bounds on the VCD of
the full group Out (A�). In particular bounds for graphs with no triangles were given in [7],
the exact VCD for � a tree was established in [3] and other special cases were determined
exactly in [10].

The paper is organised as follows. In Section 2 we review basic facts and notation about
right-angled Artin groups and their automorphisms, and define the subgroup U (A�). In
Section 3 we review the definitions and results from [5] that we will need in this paper. In
Section 4 we construct free abelian subgroups of U (A�) using �-Whitehead automorphisms,
and show that these subgroups have maximal possible rank among all such subgroups.
Section 5 studies the dimension of K� and gives a condition for this dimension to equal
the principal rank. Section 6 works out some concrete examples. Finally, in Section 7 we
show in certain cases how to find an invariant deformation retract of K� of strictly lower
dimension.

2. Right-angled Artin groups and their automorphisms

In this section we recall the basic definitions and notation for right-angled Artin groups
and their automorphisms. For further details and proofs, we refer to [5] and the references
therein.

Definition 2·1. Let � be a finite simplicial graph, i.e. a finite graph with no loops or
multiple edges, with vertex set V = {v1, . . . , vn}. The right-angled Artin group A� is the
group with one generator for every vertex of � and one commutator relation for each edge,
i.e. A� has the presentation

A� = 〈v1, . . . , vn|[vi , v j ] = 1 whenever vi and v j are connected by an edge in �〉.
It is shown in [12] that two words in the generators represent the same element of A� if and
only if they can be made identical by a process of switching adjacent commuting letters and
cancelling where possible.

If � is a simplicial graph with vertex set V , recall that the induced subgraph on U ⊆ V
is the subgraph of � with vertex set U that contains all edges in � connecting any vertices
in U .

Definition 2·2. Let v be a vertex of a simplicial graph �. The link of v, denoted lk(v), is
the induced subgraph on the set of vertices adjacent to v. The star of v, denoted st (v), is the
induced subgraph on the set of vertices in lk(v) together with v itself.

We will need the fact, shown in [13], that the centraliser of a generator v is equal to the
subgroup generated by the vertices in st (v).

In the literature on right-angled Artin groups it is common to define a relation denoted ≤
on vertices of � by v ≤w if lk(v)⊆ st (w). The notation is justified by defining an equiva-
lence relation v ∼w if v ≤w and w≤ v; it is then easy to verify that this relation defines a
partial order on equivalence classes [v]. A vertex is called maximal if its equivalence class
is maximal in this partial ordering.

In fact for v 	=w there are two mutually exclusive ways in which we can have lk(v)⊆
st (w): either lk(v)⊆ lk(w) or st (v)⊆ st (w). The distinction is important in this paper, so
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when we need to make it we will use v ≤� w to mean st (v)⊆ st (w) and v ≤◦ w to mean
lk(v)⊆ lk(w) (Similarly, v ≥� w means st (v)⊇ st (w) and v ≥◦ w means lk(v)⊇ lk(w).)

We also write v∼� w if st (v)= st (w) and v∼◦ w if lk(v)= lk(w), and define [v]� =
{w|w∼� v}, [v]◦ = {w|w∼◦ v}. Since either all elements of an equivalence class [v]
commute or none commute, at least one of [v]� and [v]◦ is a singleton. If [v]◦ is not a sin-
gleton then [v] is called a non-abelian equivalence class; otherwise [v] is called an abelian
equivalence class (in particular a singleton class is considered to be abelian).

Definition 2·3. A vertex v of � is principal if there is no w with v <◦ w, i.e. with lk(v)
strictly contained in lk(w).

All maximal vertices are principal, but there can be principal vertices which are not max-
imal. A simple example is a triangle with leaves at two of its vertices. The third vertex is
principal but not maximal. Elements of non-singleton abelian equivalence classes are always
principal:

LEMMA 2·4. If u 	= v but u ∼� v then both u and v are principal vertices.

Proof. If u is not principal there exists m with u <◦ m, i.e. lk(u)� lk(m). Now v ∈ lk(u)⊂
lk(m), so m ∈ lk(v)⊂ st (v)= st (u). Since m 	= u we must have m ∈ lk(u), which is a
contradiction.

2·1. Automorphisms of RAAGs

An invertible map A� → A� is an automorphism if and only if the images of commuting
generators commute. In particular:

(i) the map sending a generator v to its inverse and fixing all other generators is an
automorphism, called an inversion.

(ii) any automorphism of the defining graph � induces an automorphism of A� , called a
graph automorphism.

Inversions and graph automorphisms generate a finite subgroup of Aut (A�). We next
describe two types of basic infinite-order automorphisms. Choose a vertex m and consider
the components of � − st (m).

(i) If there is a vertex u with lk(u)⊆ lk(m), then everything that commutes with u also
commutes with m so the map ρum sending u �→ um and fixing all other generators
determines an automorphism, called a right fold. Since u and m do not commute, the
map λum sending u to mu gives a distinct automorphism, called a left fold.

(ii) If C is a component of � − st (m), then the map sending v to m−1vm for every
v ∈ C and fixing all other generators determines an infinite-order automorphism,
called a partial conjugation. If �− st (m) has only one component, this is an inner
automorphism, since conjugating vertices of st (m) by m has no effect.

By work of Laurence [13] and Servatius [14], the entire automorphism group Aut (A�) is
generated by the above types of automorphisms together with twists, where:

(i) if st (u)⊆ st (v), the map τuv sending u �→ uv = vu and fixing all other generators
determines an automorphism called a twist.
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2·2. The untwisted subgroup

The natural map Aut (A�)→ GL(n,Z) induced by abelianisation A� →Zn factors
through the outer automorphism group Out (A�):

Aut (A�) GL(n,Z)

Out (A�).

The subgroup T (A�)⊆ Out (A�) generated by twists injects into a parabolic subgroup
of GL(n,Z), and is well understood (see, e.g., [6]). In this paper we concentrate on the
subgroup U (A�)≤ Out (A�) generated by all other generators, i.e.

Definition 2·5. The untwisted subgroup U (A�) is the subgroup of Out (A�) generated by
(the images of):

(i) inversions;
(ii) graph automorphisms;

(iii) (right and left) folds; and
(iv) partial conjugations.

The intersection U (A�)∩ T (A�) is contained in the finite subgroup generated by graph
automorphisms and inversions.

3. �-Whitehead automorphisms, partitions and outer space for U (A�).

The paper [5] studied U (A�) by constructing a contractible space O� with a proper action
of U (A�). In this section we review the definitions and results from [5] that we will need
in this paper. Some of the terminology has been altered slightly, and we will point this out
when it occurs. We refer to [5] for more details and all proofs.

3·1. �-Whitehead automorphisms

Whitehead studied Aut (Fn) using a set of generators called Whitehead automorphisms.
These were adapted in [5] to a give a set of elements of Aut (A�) called �-Whitehead auto-
morphisms, whose images in Out (A�) along with graph automorphisms and inversions
generate U (A�). These are infinite-order automorphisms which include folds and partial
conjugations but also certain combinations of these.

For a free group with basis V , let V ± = V � V −1 be the set of generators and their
inverses. Suppose P ⊂ V ± contains some element m but not m−1. The Whitehead auto-
morphism φ(P,m) is defined on the basis V by

φ(P,m)(v)=

⎧⎪⎪⎨
⎪⎪⎩
vm−1 if v ∈ P, v−1 ∈ P∗, v 	= m±1,

mv if v−1 ∈ P, v ∈ P∗, v 	= m±1,

mvm−1 if v, v−1 ∈ P,
v otherwise (including v = m±1).

The element m is called the multiplier of φ(P,m).
If V is the set of vertices of a simplicial graph �, then this formula defines an automor-

phism of A� only for certain pairs (P,m). Specifically, for m ∈ V ± consider the components
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m

x1

u

x2

x4

x3

v1

v2

Fig. 1. Example 3·1.

C of � − lk(m), where by lk(m)we mean the link of the corresponding vertex m±1. A subset
U ⊂ V ± is m-inseparable if:

(i) C has only one vertex u, and U = {u} or U = {u−1} (note this includes the case
u = m±1); or

(ii) C contains more than one vertex and U = C±, i.e. U is the union of all vertices in C
and their inverses.

We denote by I(m) the collection of all m-inseparable subsets of V ±. Note that I(m)=
I(m−1), and if m and n have the same link then I(m)= I(n).

Example 3·1. In the graph � in Figure 1 the link of the vertex m is the red subgraph, and the
m-inseparable subsets are

I(m)= {{m}, {m−1}, {u}, {u−1}, {v1, v
−1
1 , v2, v

−1
2 }}

Recall that a partition of a set into two subsets is thick if each side has at least two elements.

Definition 3·2. Let m ∈ V ±.

(i) A subset P ⊂ V ± is called a �W-subset based at m if it is a union of elements of
I(m) and contains m but not m−1.

(ii) If P is a �W-subset based at m then φ(P,m) is a well-defined automorphism of A�,
called a �-Whitehead automorphism.

(iii) Let P∗ = V ± \ lk(m)± \ P . The three-part partition P = {P|P∗|lk(m)±} of V ± is
called a �W-partition based at m if P (and therefore P∗) are �W-subsets and
{P|P∗} is a thick partition of V ± \ lk(m)±. The subsets P and P∗ are called the sides
of P.

Remark 3·3. For A� = Fn the above is the usual definition of a Whitehead automorphism.
In [5], however, a �-Whitehead automorphism was defined as sending m �→ m−1 instead
of m �→ m. This makes the automorphism into an involution, and is useful for describing
geometric aspects of U (A�). Since we are looking for free abelian subgroups we do not
want involutions, so will use the more classical definition stated here.

In terms of the inseparable subsets U ∈ I(m), φ(P,m) is the composition of;

(i) right folds v �→ vm−1 for U = {v} ⊂ P, v 	= m±1;
(ii) left folds v �→ mv for U = {v−1} ⊂ P, v 	= m±1; and

(iii) partial conjugations v �→ mvm−1 for U = C± ⊂ P if C has at least two elements.

https://doi.org/10.1017/S0305004119000501 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000501


Automorphism groups of RAAGs 529

u

u−1 m−1

m

v−1
1

v1

v−1
2

v2

x−1
1

x1

x−1
2

x2

x−1
3

x3

x−1
4

x4

P
P∗

lk(P)

Fig. 2. Example of a �W-partition based at m for the graph in Figure 1.

Example 3·4. Continuing Example 3·1, we can take P = {m} ∪ {u} ∪ {v1, v
−1
1 , v2, v

−1
2 } and

P∗ = {m−1} ∪ {u−1} to get a �W-partition

P = {{m, u, v1, v
−1
1 , v2, v

−1
2 }|{m−1, u−1}|{x1, x−1

1 , x2, x−1
2 , x3, x−1

3 , x4, x−1
4 }}

based at m (see Figure 2). The �-Whitehead automorphism φ(P,m) sends u �→ um−1,

sends each vi �→ mvi m−1 and fixes m and the xi . The �-Whitehead automorphism
φ(P∗,m−1) sends u �→ m−1u and fixes all other generators.

LEMMA 3·5. Let φ(P,m) be a �-Whitehead automorphism. Then;

(i) φ(P,m)−1 = φ(P \ {m} ∪ {m−1},m−1);
(ii) φ(P∗,m−1) is equal to φ(P,m) composed with conjugation by m, so the two are

equal as outer automorphisms.

Proof. Clear from the definitions.

For a �W-partition P = {P|P∗|lk(m)±} based at m we define the outer automorphism
ϕ(P,m) to be

ϕ(P,m)=
{

the image of φ(P,m) if m ∈ P,

the image of φ(P∗,m) if m ∈ P∗.

We will call ϕ(P,m) an outer �-Whitehead automorphism. By Lemma 3·5, ϕ(P,m)=
ϕ(P,m−1), so we can think of the m in ϕ(P,m) as a vertex of � instead of an element
of V ±.

Notation 3·6. We extend the relations ≤,∼,≤◦,∼◦,≤�,∼� etc. to elements of V ± by
saying a relation holds if and only if it holds for the corresponding vertices.

If P is a �W-subset based at m, let max(P) be the elements n ∈ P with n ∼◦ m and n−1 	∈ P .
Then P is also based at any n ∈ max(P). Since all elements of max(P) have the same link,
we will write P = {P|P∗|lk(P)}. There is a �-Whitehead automorphism φ(P,m) for each
m ∈ max(P).

Definition 3·7 ([5, definition 3·3]). Let P and Q be �W-partitions, with P based at m and
Q based at n. Then P and Q are compatible if either:

(i) P× ∩ Q× = ∅ for at least one choice of sides P× ∈ {P, P∗} and Q× ∈ {Q, Q∗}; or
(ii) [m, n] = 1 but st (m) 	= st (m).
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Remark 3·8. This is the definition of compatibility given in [5]. However the definition that
is actually used in the proofs in that paper is weaker: condition (2) needs to be replaced by

(i) [m, n] = 1 but m 	= n.

We will call this weak compatibility. The proofs in this paper use the stronger notion of
compatibility, but we show in Lemma 4·19 that this does not change the results of this
paper.

If the bases m of P and n of Q do not commute, the following lemma constrains the
relationships between sides of P and Q.

LEMMA 3·9 ([5, Lemma 3·4]). Suppose that P = {P|P∗|lk(P)} based at m and Q =
{Q|Q∗|lk(Q)} based at n are compatible, m and n do not commute and P ∩ Q = ∅. Then
P ∩ lk(Q)= ∅. In particular, P ⊆ Q∗ and Q ⊆ P∗.

3·2. Outer space O� and its spine K�

In [5] an “outer space” O� was defined on which U (A�) acts properly, and it was proved
that O� is contractible. The proof proceeds by retracting O� equivariantly onto a spine K�,

which is the geometric realization of a partially ordered set (poset) of marked �-complexes
(g, X) with π1(X)∼= A� .

The simplest example of a�-complex is the Salvetti complex S�. This is the non-positively
curved (i.e. locally CAT(0)) cube complex with a single 0-cell, one edge for each vertex
of �, and one (k + 1)-cube for each k-clique in �. A general �-complex X is a certain
type of non-positively curved cube complex which can be collapsed along hyperplanes to
produce the Salvetti complex. A marking is a homotopy equivalence g : S� → X from a fixed
standard Salvetti S� whose fundamental group we identify with A�, with the property that if
c : X → S� is a sequence of hyperplane collapses then the composition c ◦ g : S� → X → S�
induces an element of U (A�) on the level of fundamental groups. The group U (A�) acts on
vertices (g, X) of K� by changing the marking.

Each �-complex X is constructed using a collection of pairwise-compatible �W-
partitions (see [5] for the construction; we will not need to know the details). If we start with
X = S homeomorphic to S� and fix a marking g : S� → S, the empty collection corresponds
to the marked Salvetti (g, S), and the partially ordered set of all compatible collections of
�W-partitions (ordered by inclusion) corresponds precisely to the star of (g, S) in K�. In
other words, each (ordered) compatible collection (P1, . . . , Pk) corresponds to a k-simplex

∅ ⊂ {P1} ⊂ {P1, P2} ⊂ · · · ⊂ {P1, . . . , Pk}
of the star; we abuse notation by writing

∅ ⊂ P1 ⊂ P1P2 ⊂ · · · ⊂ P1P2 · · · Pk .

The entire complex K� is the orbit of a single such star, so the dimension of K� is equal to
the maximal size of a compatible collection of �W-partitions. (Lemma 4·19 shows that this
size does not depend on whether one uses compatibility or weak compatibility.)

Since Out (A�) is known to have torsion-free subgroups of finite index, the fact that
U (A�) acts properly on K� gives:
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(g, S)= ∅

P2

P1

P1P2

P3

P2P3

P1P3

P1P2P3

Fig. 3. The cube c(∅, P1P2P3) in the star of (g, S) in K� .

THEOREM 3·10. The VCD of U (A�) is less than or equal to the maximal size of a
compatible collection of �W-partitions.

3·3. Cube complex structure of K�

Note that any ordering of {P1, . . . , Pk} gives a k-simplex in the star of (g, S�), and the
union of all of these simplices forms a k-dimensional cube (see Figure 3). Thus K� in fact
has the structure of a cube complex, with one k-dimensional cube for each compatible
collection 
= {P1, . . . , Pk}, which we will denote c(∅, 
). The faces of c(∅, 
) corre-
spond to pairs 
1 ⊂
2 of subsets of 
; in particular the maximal faces of are of the form
c(∅, 
 \ {P}) and c({P}, 
) for some P ∈
.

4. Free abelian subgroups of U (A�)

In this section we relate the dimension of K� to abelian subgroups of Out (A�) by
constructing abelian subgroups freely generated by outer �-Whitehead automorphisms asso-
ciated to compatible collections of �W-partitions. We start by determining exactly when two
of these commute.

4·1. Commuting �-Whitehead automorphisms

Definition 4·1. Let v be a vertex of �. A �W-partition P splits v if v and v−1 are in
different sides of P.

THEOREM 4·2. Let φ(P,m) and φ(Q, n) be �-Whitehead automorphisms. If [m, n] = 1
then φ(P,m) commutes with φ(Q, n). If [m, n] 	= 1 let P = {P|P∗|lk(P)} and Q =
{Q|Q∗|lk(Q)} be the associated �W-partitions. Then the outer automorphisms ϕ(P,m)
and ϕ(Q, n) commute if and only if P and Q are compatible, Q does not split m and P does
not split n.

Proof. If m and n commute, the automorphisms clearly commute, so we only need to
consider the case that m and n do not commute.

Suppose first that P and Q are compatible. Replacing (P,m) by (P∗,m−1) and/or
(Q, n) by (Q∗, n−1) if necessary (which does not change ϕ(P,m) or ϕ(Q, n)), then by
the definition of compatibility we may assume that P ∩ Q = ∅,m ∈ P and n ∈ Q.

If both m−1 and n−1 are in P∗ ∩ Q∗, then φ = φ(P,m) affects only elements of P and
their inverses, and ψ = φ(Q, n) affects only elements of Q and their inverses. In particular
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P
m v n

Q
m−1

n−1

Fig. 4. A case in the proof of Theorem 4·2.

φ fixes n and ψ fixes m. If x ∈ P and x−1 ∈ Q then φ and ψ act on opposite sides of x . It
follows that φψ(x)=ψφ(x) for all generators x .

If n−1 ∈ P and m−1 ∈ Q, then φψ(m)= mnm while ψφ(m)= nm. Since these are not
conjugate, φψ and ψφ do not differ by an inner automorphism, i.e. they do not commute as
outer automorphisms.

If n−1 ∈ P∗ but m−1 ∈ Q, then φψ(n)= n =ψφ(n) and φψ(m)= nm =ψφ(m) so we
need a different argument to show that φ and ψ do not commute. Since P must have at least
two elements, there is v ∈ P with v 	= m (see Figure 4). Since P ⊂ Q∗ by Lemma 3·9, v
does not commute with m or n, so v,m and n generate a free group of rank three. Since φψ
and ψφ agree on two generators of this free group, they differ by an inner automorphism if
and only if they are equal.

The effects of φψ and ψφ on v are determined by the position of v−1:

(i) if v−1 ∈ P∗ ∩ Q∗ then φψ(v)= vm−1 and ψφ(v)= vm−1n−1;
(ii) if v−1 ∈ Q then φψ(v)= nvm−1 and ψφ(v)= nvm−1n−1;

(iii) if v−1 ∈ P then φψ(v)= mvm−1 and ψφ(v)= nmvm−1n−1

Thus in all cases, φψ does not differ from ψφ by an inner automorphism.
This argument applies also to the symmetric case n−1 ∈ P but m−1 ∈ Q∗.
It remains to consider the possibility that P and Q are not compatible. In this case all

four quadrants P ∩ Q, P ∩ Q∗, P∗ ∩ Q and P∗ ∩ Q∗ are non-empty. Using Lemma 3·5
we may replace (P,m) by (P∗,m−1) (which does not change ϕ(P,m)) or by (P \ {m} ∪
{m−1},m−1) (which replaces ϕ(P,m) by its inverse), and similarly replace (Q, n) if
necessary, to obtain one of the following configurations:

(i) if each quadrant contains one of {m,m−1, n, n−1}, then we may assume m ∈
P ∩ Q∗, n ∈ P ∩ Q, m−1 ∈ P∗ ∩ Q and n−1 ∈ P∗ ∩ Q∗. Then φψ(n)= nm−1 and
ψφ(n)= nm−1n−1 are not conjugate in A�, so φψ and ψφ do not differ by an inner
automorphism.

(ii) if exactly two quadrants contain elements of {m,m−1, n, n−1}, then we may assume
m, n−1 ∈ P ∩ Q∗ and n,m−1 ∈ P∗ ∩ Q so φψ(m)= nm and ψφ(m)= mnm, which
are not conjugate in A� .

(iii) if exactly 3 quadrants contain elements of {m,m−1, n, n−1} then we may assume
m ∈ P ∩ Q∗, n ∈ P∗ ∩ Q, m−1 ∈ P∗ ∩ Q∗, and either n−1 ∈ P∗ ∩ Q∗ or n−1 ∈ P ∩
Q∗. For either position of n−1 we have φψ(m)=ψφ(m) and φψ(n)=ψφ(n). Now
P ∩ Q does not contain any element of {m,m−1, n, n−1} but it cannot be empty,
so let v ∈ P ∩ Q. Note that v cannot commute with m or n, so m, n and v are the
basis of a free subgroup of A� . Therefore if φψ is conjugate to ψφ we must have
φψ(v)=ψφ(v). A calculation now shows that this is not the case for any position
of v−1.
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m−1

u
P1m Pi−1. . . Pi

u−1

Pk−1. . . Pk

v

Fig. 5. Proof of Proposition 4·6.

COROLLARY 4·3. If �-Whitehead automorphisms φ(P,m) and φ(Q, n) commute as
outer automorphisms, then φ(P,m) acts on n either trivially or as conjugation by m.

Proof. This is immediate from Theorem 4·2 and the definition of φ(P,m).

Let m ∈ V ± and let P = (P, P∗, lk(P)) be a �W-partition based at m. We define the
m-length of P to be the number of m-inseparable subsets in the side of P containing m.

LEMMA 4·4. Let m ∈ V ± and let P and Q be distinct �W-partitions based at m, with
m-length(P)= m-length(Q). Then P and Q are incompatible.

Proof. The sides of P and Q containing m are unions of elements of I(m). If they have the
same m-length but are different, then all sides of P and Q must intersect non-trivially.

LEMMA 4·5. Let m ∈ V ± and let P1, . . . , Pk be pairwise-compatible �W-partitions
based at m. Let Pi be the side of Pi that contains m. Then after reordering we may assume
P1 ⊂ P2 ⊂ · · · ⊂ Pk.

Proof. For each i 	= j , Pi ∩ Pj contains m, so is not empty, and P∗
i ∩ P∗

j contains m−1, so
is not empty. Therefore, by compatibility, either Pi ∩ P∗

j = ∅, which implies Pi ⊂ Pj , or
Pj ∩ P∗

i = ∅, which implies Pj ⊂ Pi . Therefore we can renumber the Pi in order of size to
obtain P1 ⊂ · · · ⊂ Pk .

PROPOSITION 4·6. Let m ∈ V ± and suppose P1, . . . , Pk are pairwise compatible �W-
partitions based at m. Then the subgroup of U (A�) generated by the ϕ(Pi ,m) is free abelian
of rank k.

Proof. Let P1 ⊂ · · · ⊂ Pk be the sides of the Pi that contain m as in Lemma 4·5 (see
Figure 5), and let φi = φ(Pi ,m). Suppose g = φ

n1
1 . . . φ

nk
k is inner, and let u ∈ P∗

k , u 	= m−1.
Then

g(u)=
{

u if u−1 ∈ P∗
k ,

mau if u−1 ∈ Pk,

where a =∑k
�=i n� if u−1 ∈ Pi ∩ P∗

i−1. Since g(u) is conjugate to u, we must have a = 0, i.e.
g(u)= u in all cases, so g is not just inner, but is actually the identity. Now let v ∈ Pk ∩ P∗

k−1.
Then

g(v)=
{
vm−nk if v−1 ∈ P∗

k ,

mbmnkvm−nk if v−1 ∈ Pk,
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where b = 0 if v−1 ∈ Pk ∩ P∗
k−1 and b =∑k−1

�= j n� if v−1 ∈ Pj ∩ P∗
j−1 for some j < k. Since

g = id, this implies nk = 0 in all cases. Repeating this argument with P1 ⊂ · · · ⊂ Pr for each
r < k gives nr = 0 for all r .

PROPOSITION 4·7. Let {P1, . . . , Pn} be a maximal compatible collection of �W-partitions
based at m. Suppose Q is another �W-partition based at m. Then ϕ(Q,m) is in the subgroup
G of U (A�) generated by the ϕ(Pi ,m).

Proof. Let Pi be the side of Pi containing m. By maximality of the collection together with
Lemma 4·4 we know that I(m) has exactly n + 1 elements U1, . . . ,Un+1 other than {m}
and {m−1} and (after setting P0 = {m} and possibly reordering) we have Pi = Pi−1 ∪ Ui .
Define Pn+1 = Pn ∪ Un+1 and set Vi = Ui ∪ {m}. Then for all i with 1 ≤ i ≤ n + 1 we have
φ(Vi ,m)= φ(Pi ,m) ◦ φ(Pi−1,m)−1, so the corresponding outer automorphism is in G.

Each m-inseparable set in the side Q of Q containing m is one of the Ui , so we have
Q = {m} ∪ Ui1 ∪ · · · ∪ Uik . Then

φ(Q,m)= φ(Vi1,m) ◦ · · · ◦ φ(Vik ,m),

so ϕ(Q,m) is in G.

We next show how Propositions 4·6 and 4·7 generalise to the situation where all partitions
are based in the same abelian equivalence class.

LEMMA 4·8. Let P = {P|P∗|lk(P)} be based at v ∈ � and let w ∈ � be a distinct ver-
tex with st (w)= st (v). Let P be the side of P containing v, set Pv,w = P \ {v} ∪ {w} and
Pv,w = {

Pv,w|P∗
v,w|lk(w)±} . Then:

(i) P and Pv,w are compatible;
(ii) if R is compatible with P then R is also compatible with Pv,w;

(iii) if ϕ(R, s) commutes with ϕ(P, v) then ϕ(R, s) commutes with ϕ(Pv,w, w).

Proof. For the first statement, notice that P ∩ P∗ = ∅ implies P ∩ (Pv,w)∗ = ∅ since
w ∈ lk(v).

Now suppose R is based at s and is compatible with P. If [v, s] = 1 and st (v) 	= st (s),
then st (w) 	= st (s) so R is compatible with Pv,w.

If st (v)= st (s) or if [v, s] 	= 1 then by possibly renaming sides may assume P ∩ R = ∅.
The only element of Pv,m which is not in P is w. If st (s)= st (v)= st (w) then w ∈ lk(R),
and if [s, v] 	= 1 then R ⊂ P∗,which does not containw. In either casew 	∈ R, so Pv,w ∩ R =
∅ and Pv,w is compatible with R.

For the third statement, by Theorem 4·2 it remains to check that if [w, s] 	= 1 then R does
not split w and Pv,w does not split s. The first statement is clear since w, w−1 ∈ lk(P)±,
which does not intersect R. The second follows since P does not split s, and the only
difference between P and Pv,w is the base w.

Remark 4·9. If st (v)⊂ st (w) and Pv,w = P \ lk(w)± ∪ {w}, then statements (i) and (iii) of
Lemma 4·8 hold and statement (ii) holds unless st (s)= st (w).

We say that Pv,w in Lemma 4·8 is obtained from P by exchanging v for w.
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COROLLARY 4·10. Let 
 be a maximal compatible collection of �W-partitions, and let
[v] be an abelian equivalence class of �. If P ∈
 is based at v ∈ [v], then
 contains every
�W-partition that can be obtained from P by exchanging v for a different element w ∈ [v].

Definition 4·11. Let P be a �W-partition based at m. Define
◦P to be the partition of

V ± \ st (m)± obtained by intersecting each side of P with V ± \ st (m)±.

LEMMA 4·12. For a vertex m of �, let P1, . . . , Pk be pairwise-compatible �W-partitions
based at mi ∈ [m]∗. Then for some ordering of the Pi and some choice of sides Pi we have

◦
P1 ⊆ ◦

P2 ⊆ · · · ⊆ ◦
Pk.

Proof. Let Pi be the side of Pi that contains mi , and set
◦

Pi = Pi \ {mi }. Fix m ∈ [m]∗ and
for each i define Pi,m = Pi \ {mi } ∪ {m} = ◦

Pi ∪ {m}. Then the Pi,m are all compatible by
Lemma 4·8, and by Lemma 4·5 we can renumber the Pi,m in order of size to obtain P1,m ⊆
· · · ⊆ Pk,m . Removing m from each Pi now gives

◦
P1 ⊆ ◦

P2 ⊆ · · · ⊆ ◦
Pk .

PROPOSITION 4·13. Let [m] be an abelian equivalence class and suppose 
=
{P1, . . . , Pk} is a compatible collection of distinct �W-partitions based at elements mi ∈
[m]. Then the subgroup of U (A�) generated by the ϕ(Pi ,mi) is free abelian of rank k.

Proof. Since [m] is abelian the base mi of each Pi is uniquely determined by Pi , so we
may partition
 into subsets
n with the same base n ∈ [m]. The subgroup generated by the
ϕ(Pi ,mi ) ∈
n is free abelian by Proposition 4·6, and the intersection of any two of these
is trivial since they use different multipliers. Therefore the subgroup generated by all of the
ϕ(Pi ,mi ) is the direct product of the subgroups An generated by the ϕ(Pi ,mi) ∈
n , so is
free abelian of rank k.

PROPOSITION 4·14. Let {P1, . . . , Pk} be a maximal compatible collection of �W-partitions
based at elements mi of an abelian equivalence class [m]. Suppose Q is another �W-
partition based at some n ∈ [m]. Then ϕ(Q, n) is in the subgroup generated by the
ϕ(Pi ,mi ).

Proof. Since
 is maximal, n = mi for some i by Lemma 4·10. Also, the partitions Pi based
at n form a maximal collection of such partitions. So by Proposition 4·7 ϕ(Q, n) is in the
subgroup generated by the ϕ(Pi , n).

4·2. Large abelian subgroups of U (A�)

Definition 4·15. For any subset U ⊂ V of vertices of �, let M(U ) denote the largest
possible size of a compatible collection of �W-partitions, each based at some u ∈ U .

Example 4·16. M(V )= dim(K�), by Theorem 3·10.

Example 4·17. M(m)= |I(m)| − 3, since any �W-partition based at m gives a thick par-
tition of I(m), and the largest compatible set of such partitions is obtained by adding one
element of I(m) at a time.

Notation 4·18. Let 
 be a compatible collection of �W-partitions, and U ⊂ V a subset of
vertices of �. Then:
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(i) 
U = {P ∈
 : P is based at some u ∈ U } and
(ii) 
± is the set of �W-subsets of V ± which are sides of elements of 
.

In this section we find a free abelian subgroup of U (A�) of rank M(L), where L is the
set of principal vertices of �, i.e. the set of vertices of � with maximal links. This sub-
group will be generated by �-Whitehead automorphisms, and we will also show that every
abelian subgroup freely generated by �-Whitehead automorphisms has rank at most M(L).
The following lemma shows that this bound is unchanged if we use the weaker notion of
compatibility (see Remark 3·8).

LEMMA 4·19. Let U ⊂ V be any subset of vertices of �, and let μ(U ) denote the largest
possible size of a weakly compatible collection of �W-partitions, each based at some u ∈ U.
Then μ(U )= M(U ).

Proof. Let 
 be any collection of weakly compatible partitions of size μ(U ). For each
abelian equivalence class [v] choose m ∈ [v] such that |
m | is largest. Remove all P ∈

[v] −
m from 
, then add partitions Pm,n for each P ∈
m and n ∈ [v] with n 	= m.
By Lemma 4·8 the resulting collection 
′ is a (strongly) compatible collection, and since
|
m | was largest we have |
′| ≥ |
|. Therefore, μ(U )≤ M(U ). However, any compatible
partitions are weakly compatible so μ(U )≥ M(U ) giving equality.

In Lemma 4·20 to Proposition 4·22 we fix a compatible collection 
 of �W-partitions.
Recall that a partition splits a vertex v if v and v−1 are in different sides of the partition.

LEMMA 4·20. Suppose P ∈
 is based at m and R ∈
 is based at s 	∼ m. If m and s do
not commute and R splits some vertex in [m], then m <◦ s. In particular, if m is principal
then all of [m]± is in the same side of R.

Proof. We are assuming m 	∼ s, so if m 	<◦ s there is some v ∈ lk(m) which is not in lk(s).
This v is adjacent to every element of [m] so all of [m] is in the same component of �−
lk(s).

LEMMA 4·21. Let m be a principal vertex of �, P1, . . . , Pk ∈
[m]� and let

∅ = ◦
P0 ⊂ ◦

P1 ⊆ · · · ⊆ ◦
Pk ⊂ ◦

Pk+1 = V ± \ st (m)±,

where
◦

P1 ⊆ . . .⊆ ◦
Pk is the nest found in Lemma 4·12. Suppose Q ∈
 \
[m]� is based at n.

If m does not commute with n, then there is a side Q of Q with Q ⊆ ◦
Pi ∩ ◦

P∗
i−1 for some i

with 1 ≤ i ≤ k + 1.

Proof. Since Q is compatible with each Pi and m does not commute with n, Lemma 3·9
implies that for each i there is some choice of side Q of Q so that either Q ⊂ Pi or Q ⊂ P∗

i .
Since the base mi of Pi is principal, Q does not split m, by Lemma 4·20. Since Q ⊂ Pi or
Q ⊂ P∗

i , this means Q cannot contain either mi or m−1
i , so in fact either Q ⊂ ◦

Pi or Q ⊂ ◦
P∗

i .
We claim we can use the same side Q for all i. Replacing all Pi by P∗

i if necessary, we may
assume Q ⊂ ◦

Pi for at least one i ≤ k (this is because the
◦

P∗
i also form a chain).

If Q ⊂ ◦
P1 then Q ⊂ ◦

Pj for all j and we are done. Otherwise, take the minimal i with
Q ⊂ ◦

Pi . Since Q 	⊂ ◦
Pi−1 we must have Q∗ ⊂ ◦

Pi−1 or Q∗ ⊂ ◦
P∗

i−1 or Q ⊂ ◦
P∗

i−1. If Q∗ ⊂ ◦
Pi−1
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◦
P1mm−1 Qv

◦
P2

P

Fig. 6. Proposition 4·22.

then Q ⊃ P∗
i−1 ⊃ P∗

i , contradicting Q ⊂ Pi . If Q∗ ⊂ ◦
P∗

i−1 then
◦

Pi ⊃ Q ⊃ Pi−1 so Q splits

mi−1, contradicting Q ∈
−
[m]� . So we must have Q ⊂ P∗
i−1, i.e. Q ⊂ ◦

Pi ∩ ◦
P∗

i−1.

The strategy in several upcoming proofs will be to replace some Q ∈
 by a “better” �W-
partition P compatible with everything in
 except Q, where the feature that makes P better
will depend on the context. The following proposition gives us our main tool for doing this.
The setup for this proposition is illustrated in Figure 6.

PROPOSITION 4·22. Let m be a principal vertex of �, P1 ∈
m and P2 ∈
[m]� , and choose
sides P1, P2 with

◦
P1 ⊂ ◦

P2. Suppose u ≤◦ m is contained in P2 ∩ P∗
1 . Let Q be a largest

subset of P2 ∩ P∗
1 which is in 
± and is based at some v ∼ u; if there are no such subsets,

set Q = {u}. Let P be the �W-partition determined by P = P1 ∪ Q.
If R ∈
−
[m]� is not compatible with P, then some side R of R is contained in

◦
P2 ∩ ◦

P∗
1 ,

contains Q and is based at some s with s >◦ u.

Proof. Note that P is based at m. Since R is not compatible with P and s 	∼� m, s and m do
not commute.

Since s and m do not commute, then by Lemma 4·21 R has a side R in
◦

P1,
◦

P2 ∩ ◦
P∗

1 or
◦

P∗
2 . If either R ⊂ ◦

P1 or R ⊂ ◦
P∗

2 then R is compatible with P, so we must have R ⊆ ◦
P2 ∩ ◦

P∗
1 .

Since R is compatible with Q but not with P we must have R ⊃ Q.
Since Q was of maximal size, s 	∈ [v] = [u]. Thus either v <◦ s or there is some x ∈

lk(u)⊆ st (m) which is not in lk(s). Such an x would be adjacent to both v and m so v
and m would be in the same component of � − lk(s), contradicting the fact that R separates
m from v.

COROLLARY 4·23. Let 
 be a maximal collection of compatible �W-partitions and [m]
a non-abelian equivalence class of principal vertices of �. Then for any m ∈ [m] the subset

[m] can be replaced by a new set of partitions of the same size to obtain a compatible
collection 
′ with 
′

[m] =
′
m.

Proof. Fix m ∈ [m] = [m]◦ and suppose 
m = {P1, . . . Pk} 	= ∅. Let P1 ⊂ · · · ⊂ Pk be the
sides of the Pi containing m.

Suppose Q ∈
[m] \
m is based at n ∼ m. Since [m] is nonabelian, n does not commute
with m, so it must have a side Q contained in Pi ∩ P∗

i−1 for some i . Take Q maximal with
respect to inclusion among all such sides in Pi ∩ Pi−1. Now take M maximal among all such
sides properly contained in Q; if there is no such M , set M = {n}. By Proposition 4·22
(applied to [m]� = {m}), if some partition R ∈
 \
m is not compatible with the �W-
partition P determined by Pi ∪ M , then either it is equal to Q or it is based at some s
with n <◦ s. i.e. lk(n)� lk(s). But n is principal, so there is no such s. Since Q is the only
partition in 
 not compatible with P, we may replace Q by P to obtain a new collection of
the same size. We can continue this process until 
[m] =
m .
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Definition 4·24. A �W-partition P based at m is principal if m is a principal vertex of �.

THEOREM 4·25. Let L be the set of principal vertices of �. Then U (A�) contains a free
abelian subgroup of rank M(L).

Proof. Let 
 be a maximal compatible collection of principal �W-partitions, i.e. a
collection of size M(L).

By Corollary 4·23 we may assume
[m] =
m for all nonabelian equivalence classes [m].
Using m as multiplier for each P ∈
[m], the associated outer �-Whitehead automorphisms
ϕ(P,m) pairwise commute.

If P and Q in
 are based at m and n with [m, n] = 1 then ϕ(P,m) and ϕ(Q, n) commute.
If P and Q in 
 are based at m and n with [m, n] 	= 1 then Lemma 4·20 implies that P

does not split n and Q does not split m, so ϕ(P,m) and ϕ(Q, n) commute by Theorem 4·2.
We now have a collection of pairwise-commuting infinite-order outer automorphisms

ϕ(Pi ,mi) of size equal to M(L), and we need to show they are independent. Choose sides
Pi for Pi containing mi , and set

= φ(P1,m1)
n1 · · · φ(Pk,mk)

nk .

We must show that if  is inner then all ni = 0.
Let {v1, . . . , v�} be the distinct mi and define

 j =
∏

mi =v j

φ(Pi ,mi)
ni ,

so =1 . . . �. By Proposition 4·6 if any of the  j are inner then the associated ni are
zero; in particular, if �= 1 we are done. So we may assume no i is trivial and � > 1.

If all vi have the same star, then we are done by Proposition 4·13. Otherwise without loss
of generality we may assume there is x ∈ st (v2) with x 	∈ st (v1).

Replacing φ(Pi ,mi ) by φ(P∗
i ,m−1

i ) whenever x ∈ Pi (which does not affect their images
in U (A�)) we may assume (x)= xU for some word U in the mi . Since  is conjugation
by some element W , this implies U = 1, so W is in the centralizer of x , which is generated
by st (x). Since v1 	∈ st (x), v1 does not appear in any reduced expression for W.

Since 1 is not trivial there is some vertex y with 1(y)= va
1 yvb

1 , where a and b are not
both zero. If we set � =2 · · ·� then (y)=�1(y)=�(v1)

a�(y)�(v1)
b.

By Corollary 4·3, each φ(Pi ,m j ) acts either trivially or as conjugation by mi on each
m j . Thus �(v1) is conjugate to v1 by a word U in v2, . . . , v�. So we have

(y)=�1(y)

=�(v1)
a�(y)�(v1)

b

= U−1va
1U�(y)U−1vb

1U.

We also know that (y)= W −1 yW for some W that does not contain the letter v1. But v1

does not commute with y so in order for the powers of v1 in the expression for (y) above
to cancel it must be true that a reduced word representing �(y) does not contain y. In order
for this to happen some φ(Pi ,mi) must have multiplier mi = y. But if y = mi then �(y)
is conjugate to y by Corollary 4·3 so the reduced word representing �(y) does contain y,
giving a contradiction.
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Pinn−1
Pi+1

Ci+1

Pj−1

C j−1

· · · Pj

C j

Fig. 7. Proof of Lemma 4·27.

Definition 4·26. Suppose ϕ(P1,m1), . . . , ϕ(Pk,mk) generate a free abelian subgroup of
U (A�), and let 
= {P1, . . . , Pk}. Suppose [m] is abelian and 
[m] 	= ∅. Then 
 is [m]-
complete if it contains every �W-partition Q such that:

(i) Q is based at some n ∈ [m] and
(ii) ϕ(Q, n) commutes with all ϕ(Pi ,mi).

If 
 is not [m]-complete, it can be completed by adding all possible Q satisfying the above
conditions. The base n of any such Q is unique since [m] = [m]�, so ϕ(Q, n) is determined
by Q. All of these ϕ(Q, n) can be added to {ϕ(Pi ,mi)} to generate an abelian subgroup of
possibly larger rank.

LEMMA 4·27. Suppose ϕ(P1,m1), . . . , ϕ(P�,m�) generate a free abelian subgroup G
and let 
= {P1, . . . , P�} be [m]-complete for some abelian [m]. Then 
 contains a sub-
collection 
c such that 
c

[m] is a compatible collection of �W-partitions and the ϕ(Pi ,mi )

for Pi ∈
c generate the same abelian subgroup G.

Proof. Let
0 be a maximal compatible subcollection of
[m]. If P ∈
0 is based at v ∈ [m]
then by Lemma 4·8 Pv,w is also in 
0 for every w ∈ [m], since 
 is [m]-complete.

Now consider Q ∈
[m] \
0, based at some n ∈ [m]. By Lemma 4·5 we may choose sides
Pi of the P ∈
0 based at n such that

{n} = P0 ⊂ P1 ⊂ · · · ⊂ Pk ⊂ Pk+1 = V ± \ lk(n)± \ {n−1}.
Take the largest i ≥ 0 such that the side Q of Q containing n also contains Pi , and the
smallest j ≤ k + 1 such that Q ⊂ Pj . For each � with i + 1 ≤ �≤ j let C� = P� ∩ Q (see
Figure 7).

Then P ′
� = P�−1 ∪ C� is a �W-subset, and the �W-partition P ′

� it determines is compati-
ble with all P ∈
0. Furthermore, since ϕ(Q, n) commutes with all ϕ(P j ,m j ) it follows
that ϕ(P ′

�, n) does as well, so P ′
� must be in 
0 since 
 is [m]-complete and 
0 is

maximal. Now

ϕ(Q, n)=
(

j∏
�=i+2

ϕ(P ′
�, n)ϕ(P�−1, n)−1

)
ϕ(P ′

i+1, n)

so we may eliminate Q from
[m] without affecting the abelian subgroup G. Continuing, we
eliminate all partitions in 
[m] that are not in 
0. Then 
c =
 \
[m] ∪
0 is the required
collection.
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THEOREM 4·28. Any free abelian subgroup of U (A�) generated by �-Whitehead
automorphisms has rank at most M(L).

Proof. Suppose ϕ(P1,m1), . . . , ϕ(Pk,mk) generate a free abelian subgroup G of rank
r > M(L), and let 
= {P1, . . . , Pk}. If [mi ,m j ] 	= 1 then Pi is compatible with P j by
Theorem 4·2. If [mi ,m j ] = 1 but mi 	∼� m j then Pi is compatible with P j by the definition
of compatibility. So the only incompatible pairs in 
 live in the same 
[m] for some m with
[m] = [m]�.

Fix such an m and add all necessary partitions to 
[m] so that 
 is [m]-complete. The
corresponding free abelian group contains G as a subgroup. By Lemma 4·27 there is a
subcollection
c of
 such that
c

[m] is a compatible collection and the corresponding group
generated is the same, i.e. it still contains G as a subgroup. After repeating this for each
equivalence class with [m] = [m]� we may assume that 
 is a compatible collection.

Now choose the ϕ(Pi ,mi) so that 
 has the smallest possible number of non-principal
partitions for a such a collection. By Corollary 4·23 we may assume 
[m] =
m for each
principal nonabelian equivalence class [m] and a choice of representative m. Let Q ∈
 be a
non-principal partition, based at a vertex u which has maximal link among the non-principal
bases. Since u is non-principal, u <◦ m for some m ∈ L . Let 
[m] = {P1, . . . , P�} (�≥ 0)
and choose sides Pi of Pi so that the

◦
Pi are nested. By Lemma 4·21, there is a side Q of

Q such that Q ⊂ ◦
Pi ∩ ◦

P∗
i−1 for some i ≤ �+ 1. Maximise Q with respect to inclusion over

all non-principal partitions in 
[u] with sides in
◦

Pi ∩ ◦
P∗

i−1. By Proposition 4·22 if a partition

R based at s 	∼ m is incompatible with Pi−1 ∪ Q, then R has a side R ⊂ ◦
Pi ∩ ◦

P∗
i−1 with

R ⊃ Q and u <◦ s. Maximality of u tells us that R must in fact be a principal partition, so by
replacing m with s and repeating the above arguments we will reach a point where no such
incompatible R exists. At this point we claim that Pi−1 ∪ Q = Pi : if Pi−1 ∪ Q was not in 

we could replace Q with the partition determined by Pi ∪ Q to arrive at a collection of the
same size k but one fewer non-principal partition.

Since ϕ(Pi ,m) commutes with ϕ(Q, n), Pi = Pi−1 ∪ Q must contain both u and u−1, i.e.
u−1 ∈ Pi−1. This implies that Pi−1 splits u, contradicting the commutativity conditions of
Theorem 4·2.

COROLLARY 4·29. Let G be an abelian subgroup of U (A�) of rank M(L), freely gener-
ated by {ϕ(Pi ,mi )} with mi principal. Suppose mi is not maximal for some i , say mi <� w.
Then ϕ(P, w) ∈ G, where P is the partition obtained from Pi by exchanging mi for w, as
defined in Remark 4·9.

Proof. Let 
= {Pi }, and let 
′ be the [w]-completion of 
. Remark 4·9 shows that

P = Pi \ lk(w)± ∪ {w}
is contained in 
′. If G ′ is the corresponding free abelian subgroup then G ≤ G ′.
Theorem 4·28 tells us that rank(G)= rank(G ′) so G = G ′, thus ϕ(P, w) ∈ G.

5. Virtual cohomological dimension

By Theorem 3·10 we know dim(K�)= M(V ) is an upper bound on the VCD of U (A�)
and M(L) is a lower bound by Theorem 4·25. In this section we give conditions under which
M(V )= M(L).
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LEMMA 5·1. Let � be a connected graph and u 	∼ v vertices with d�(u, v) 	= 2 (where d�
is the length of a shortest path in �). Then any partition based at u is compatible with any
partition based at v. In particular,

M(u, v)= M(u)+ M(v).

Proof. If d�(u, v)= 1 then u and v commute. Since we are assuming u 	∼ v, the partitions
are compatible. If d�(u, v)≥ 3, let Cv denote the element of I(u) containing v (and v−1)
and Cu the element of I(v) containing u. Then Cv contains all elements of I(v) other than
Cu and Cu contains all elements of I(u) other than Cv. This implies that any thick partition
of I(v) separating v from v−1 is compatible with any thick partition of I(u) separating u
from u−1.

THEOREM 5·2. Let � be a graph and L ⊆ V its set of principal vertices. Suppose that
every u ∈ V \ L satisfies

All principal m with m >◦ u are in the same component of � − lk(u). (5·1)

Then M(V )= M(L).

Proof. Let
 be a maximal pairwise-compatible collection of �W-partitions with M(V ) ele-
ments. We will produce a new collection of the same size in which all partitions are principal.
By Corollary 4·23 we may assume 
[m] =
m for each principal nonabelian equivalence
class and a choice of representative m.

Let u be maximal among all u ∈ V \ L with 
u 	= ∅. By Lemma 4·12, for any principal
m >◦ u we have a nest

◦
P0 = ∅ ⊂ ◦

P1 ⊆ · · · ⊆ ◦
Pk ⊂ ∅∗ = ◦

Pk+1,

where P1, . . . , Pk (k ≥ 0) are the elements of 
[m] and Pi is a side of Pi . By Lemma 4·21,
each Q ∈
[u] has a side Q× ⊂ ◦

Pi ∩ ◦
P∗

i−1 for some i . For each m, let i(m) be the smallest

index such that
◦

Pi(m) contains one of these Q×. Choose m such that |Pi(m)| is minimal.
Among the Q ∈
u with Q× ⊂ ◦

Pi(m) choose one with Q = Q× maximal.
The union Pi−1 ∪ Q determines a �W-partition P based at m. If there is some R ∈
 not

compatible with P then by Proposition 4·22 R has a side R ⊂ ◦
Pi containing Q and disjoint

from
◦

Pi−1, and R is based at some s >◦ u. By our choice of u this implies that s is principal,
so either Q or Q∗ is somewhere in the nest ∅ ⊂ ◦

R1 ⊂ · · · ⊂ ◦
R� ⊂ ∅∗ associated with s. Since

s >◦ u, Q does not contain s (if it did, it would split s and we would have s ≤◦ u). Therefore
Q is in the nest. Since R = R j for some j , we have Q ⊂ R j � Pi , contradicting minimality
of |Pi |.

Now take a proper subset M � Q in 
±
u of maximal size. If there is no such M , take

M = {u}. Proposition 4·22 applied to 
 \ Q shows that if R is not compatible with the �W-
partition P ′ determined by Pi−1 ∪ M then either R = Q or R has a side R ⊂ ◦

Pi containing M
and disjoint from

◦
Pi−1, and R is based at some s >◦ u. By our choice of u, s is principal. But

s and m are on different sides of Q, contradicting our hypothesis that all principal v >◦ u are
in the same component of � − lk(u). We can now replace Q by P ′ to get a new collection
of the same size, with one fewer non-principal partition. Continuing, we can replace all
non-principal partitions by principal partitions, showing M(V )= M(L).
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c0

a1

b1

c1

a2

b2

c2 cd−1

a2

b2

cd. . .

Fig. 8. String of diamonds.

The following is a special case of Theorem 5·2 which is often very easy to check.

COROLLARY 5·3. If every non-principal equivalence class of vertices in � is <◦ at most
one principal equivalence class, then M(V )= M(L).

6. Examples

In this section we give a few examples illustrating both the utility and the limits of
Theorem 5·2.

Example 6·1. Let � be the graph with n vertices and no edges, i.e. A� = Fn .

Here there are no twists so U (A�)= Out (A�). Since all vertices are maximal and equiv-
alent, Corollary 4·23 implies M(V )= M(m) for any choice of vertex m. Since M(m)=
2n − 3 (see Example 4·17), this gives (the correct) lower bound of 2n − 3 for the VCD of
Out (Fn).

Example 6·2. Let � be a string of d diamonds, as shown in Figure 8.

Again there are no twists, so U (A�)= Out (A�). The only non-principal vertices are c0 and
cd and there are no �W-partitions based at either of these, so M(V )= M(L). Let 
 be a
collection of size M(V ). We have [ai ] = {ai , bi } for each 1 ≤ i ≤ d so by Corollary 4·23
we may assume |
{ai ,bi }| = |
ai | for each i . We have M(ai)= 3 if 2 ≤ i ≤ d − 1, M(ad)=
M(a1)= 2, M(ci)= 1 if 2 ≤ i ≤ d − 2 and M(c1)= M(cd−1)= 2. Therefore,

M(V )≤ 3(d − 2)+ 4 + d − 3 + 4 = 4d − 1.

It is easy to find a collection of �W-subsets with 4d − 1 elements (one is given explicitly in
[5]), so in fact M(V )= 4d − 1 and dim(K�)= M(V )= VCD(Out (A�)).

Example 6·3. Let � be the graph in Figure 9.

Since � is a tree, the VCD of Out (A�) is equal to e + 2�− 3 = 7 + 8 − 3 = 12 [3]. The only
twists are given by the leaf transvections. These form a normal free abelian subgroup of
rank 4 (the number of leaves), with quotient U (A�), so it is natural to expect that the VCD

of U (A�) is 8.
There are no �W-partitions based at any of the bi since � \ st (bi) has only one compo-

nent. Any partition based at v1 is compatible with any partition based at a different vertex by
Lemma 5·1, since ai , v0 ∈ st (v1) for each i . We have M(v1)= |I(v1)| − 3 = 5. Now consider
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v0 v1

a1 b1

a2 b2

a3 b3

Fig. 9. � is a tree with M(V )= 10, but there is no free abelian subgroup of rank 10 generated by
compatible collections of Whitehead automorphisms.

v0 v1

a1 b1

a2 b2

Fig. 10. For this tree M(L)= 5 but dim(K�)= 6.

partitions based at a1, a2 or a3. Choose any one such partition P, say based at a1. Then for
each ai there are at most two choices of partition compatible with P since the side of P
not containing ai must be disjoint from the side of Q not containing a1. Say a choice Q is
based at m, then by repeating this argument on disjoint sides there is at most one choice
of partition compatible with both P and Q, so M(a1, a2, a3)= 3 and the largest possible
number of �W-partitions based at principal vertices is 5 + 3 = 8. Since M(v0)= 2, we have
M(V )≤ 10. In fact equality holds since the following list of five �W-subsets determines a
compatible collection of distinct �W-partitions based in {a1, a2, a3, v0}±:

{a1, v0}, {v0, a1, a−1
1 , b1, b−1

1 }, {a2, v0, a1, a−1
1 , b1, b−1

1 }, {v−1
0 , a3, a−1

3 , b3, b−1
3 }, {a−1

3 , v0}.
Thus M(L)= 8 ≤ VCD(U (A�))≤ dimK� = 10.

Example 6·4. A similar but slightly simpler example is when � is the tree in Figure 10.

A quick check yields M(V )= M(v)+ M(u, a1, a2) and M(v)= 3. Furthermore, arguing
in the same fashion tells us that M(u, a1, a2)≤ 3, with a possible 
{u,a1,a2} being the �W-
partitions determined by:

{a1, u}, {u, a1, a−1
1 , b1, b−1

1 }, {a−1
2 , u−1}.

Thus, M(V )= 6 so dim(K�)= 6 but we only find a subgroup Z5 ≤ U (A�). In the following
section it is shown that this particular � has V C D(U (A�))= 5.

7. Reducing the dimension of K�

In this section we show that, in some cases with M(V ) > M(L), we can find an invariant
contractible subcomplex of K� of smaller dimension. We use the weak notion of compati-
bility throughout since that is what is actually used in [5] to define and prove contractibility
of K�.

Definition 7·1. A graph � is barbed if for all non-principal vertices u, d�(u, v)= 2
implies u <◦ v.

https://doi.org/10.1017/S0305004119000501 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000501


544 BENJAMIN MILLARD AND KAREN VOGTMANN

LEMMA 7·2. If � is barbed then every non-principal equivalence class is minimal and
has only one element. Furthermore any �W-partition based at a non-principal element splits
only that element.

Proof. This is immediate.

All of the graphs in Section 6 are barbed. Examples 6·3 and 6·4 are examples of barbed
graphs with M(V ) > M(L). We claim that if � is barbed and M(V ) > M(L), then K� equiv-
ariantly deformation retracts to a smaller-dimensional complex. Specifically, every cube in
K� of dimension M(V ) has a free face, and the set of these free faces is invariant under the
action of U (A�).

In Lemmas 7·3 to 7·7 we fix a collection
 of pairwise weakly compatible �W-partitions
with M(V ) > M(L) elements. Recall that
± denotes the collection of all sides of elements
of 
.

LEMMA 7·3. Let Q ∈
± be a non-principal �W subset, based at some u ∈ Q. If Q
contains some m ≥◦ u other than u, then Q properly contains some N ∈
± with u ∈ N.

Proof. Suppose the lemma is false, i.e. no N ∈
± is properly contained in Q and also
contains u.

If there are no elements at all of
± properly contained in Q, then the �W-partition deter-
mined by {u,m} is (weakly) compatible with all elements of 
, contradicting maximality
of 
.

Now take a largest P ∈
± properly contained in Q, based at some n ∈ P . If n 	≥◦ u then
there is some v 	∈ lk(n) with v ∈ lk(u)⊂ lk(m), so u, v and m are all in the same component
of �− lk(n), so u, v,m and their inverses are all on the same side of P , i.e. all are outside
P . If this is true for all largest P contained in Q we can add the partition determined by
{u,m} to 
, again contradicting maximality of 
.

If some largest P is based at a vertex n ≥◦ u then P ∪ {u} is a �W-subset and the
corresponding �W-partition is (weakly) compatible with all elements of 
, once again
contradicting maximality of 
.

Definition 7·4. A �W-partition Q ∈
 is irreplaceable in
 if Q is the only �W-partition
compatible with all elements of 
 \ Q.

Definition 7·5. A �W-partition Q ∈
 based at u is sandwiched in
 if there are principal
m ∈ Q and n ∈ Q∗ with m, n >◦ u such that both Qm = Q \ ({m} ∪ lk(m)±) and Q∗

n = Q∗ \
({n} ∪ lk(n)±) are in 
± (See Figure 11).

LEMMA 7·6. If a non-principal partition Q ∈
 is sandwiched in 
 then Q is irreplace-
able in 
.

Proof. If Qm and Q∗
n are both in 
±, then any replacement for Q cannot have a side con-

tained in Qm or Q∗
n (by maximality of 
) and cannot split both m and n (since m and n are

on different sides of Q so are not equivalent). Since Q is the only �W-partition that satisfies
these conditions, Q is irreplaceable.
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b2

b−1
2 a−1

2

a2

v−1
0

v0

a−1
1

a1

b−1
1

b1

v−1
1

v1

Q

P1

P2
lk(Q)

Fig. 11. Q determines a �W-partition for the tree in Figure 10 that is sandwiched, with Qa−1
1

= P1 and

Q∗
a2

= P2.

LEMMA 7·7. Let � be a barbed graph and Q ∈
± innermost among non-principal
sides, based at some u ∈ Q. If Q is not sandwiched in
, then Q is replaceable by a principal
partition.

Proof. Since � is barbed, there are principal elements bigger than u on both sides of Q.
By Lemma 7·3 there is a proper subset M of Q that is in 
± and contains u; take a largest
such M . Since Q is an innermost non-principal subset, M must be principal based at some m,
which must be>◦ u since M separates u from u−1. Unless M = Qm−1 = Q \ {m−1} \ lk(m)±,
the set Q∗ ∪ M \ lk(m)± has at least two elements on each side so determines a principal
�W-partition which can replace Q.

If M = Qm−1 = Q \ {m−1} \ lk(m)±, we consider the other side Q∗ of Q. By Lemma 7·3
there is also a �W-subset N � Q∗ with u−1 ∈ N . Take a maximal such N . If N is based at
u−1 then N ∪ Qm−1 is principal, based at m, and can replace Q. So suppose N is based at
n 	= u−1. Since N splits u we must have u ≤◦ n, and since � is barbed [u] = {u} so in fact
n >◦ u and n must be maximal. If N = Q∗

n−1 = Q∗ \ {n−1} \ lk(n)±, then Q is sandwiched,
contradicting our assumption. Therefore the set Q ∪ N \ lk(n)± is a �W-subset and the
corresponding principal �W-partition can replace Q.

THEOREM 7·8. Let � be a barbed graph with M(V ) > M(L). Then the dimension of K�

is strictly larger than VCD(U (A�)).

Proof. Let 
 be a maximal collection of weakly compatible �W-partitions with M(V ) >
M(L) elements. Then
 determines a cube c(∅, 
) in K� of dimension M(V ). We will find
a free face of this cube, namely c(∅, 
 \ Q) for some non-principal Q and use it to collapse
the cube. We can do this equivariantly for all such cubes in all of K�, thereby reducing the
dimension of K� by 1.

The cube c(∅, 
 \ Q) is a free face of c(∅, 
) if and only if Q is irreplaceable. So we are
looking for an irreplaceable Q in 
. Let R ∈
± be an innermost non-principal �W-subset.
If the corresponding �W-partition R is sandwiched, then it is irreplaceable, by Lemma 7·6
so we may take Q = R. If it is not sandwiched, then it can be replaced by a principal �W-
partition P, by Lemma 7·7, to form a new maximal collection 
′. This new collection has
the same size, so must still contain a non-principal �W-partition.

Claim. If a non-principal S ∈
′ based at v is sandwiched between Sm and S∗
n in 
′, then it

was already sandwiched in 
, so is irreplaceable in 
 by Lemma 7·6.

Proof of claim. If S is sandwiched in 
′ but not in 
 then either Sm or S∗
n must be equal to

the �W-subset we used in Lemma 7·7 to replace Q. In all cases this has a side of the form
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S = T ∪ M where T is non-principal based at u and M is principal with u ∈ M . It follows
that M is based at m (if S = Sm) and u, v <◦ m (or at n if S = S∗

n and u, v <◦ n) and that
u 	= v. But then M splits both u and v, which cannot happen in a barbed graph.

Now let S be an innermost non-principal side in
′±. If S is sandwiched in
′ then by the
claim it was already sandwiched in 
, so is irreplaceable in 
 and we may take Q =S. If
it is not sandwiched, we can replace it by a principal partition by Lemma 7·7. We continue
replacing innermost non-principal sides until we encounter one that is sandwiched (which
must exist since M(V ) > M(L)) and hence irreplaceable.

As shown in [5], the star of a Salvetti S� in K� is the union of the cubes with S� as a ver-
tex, and these cubes are identified with weakly compatible collections of �W-partitions. The
stabiliser S� under the action of U (A�) is isomorphic to the subgroup generated by graph
automorphisms and inversions. The effect of such an automorphism on the cubes in the
star is to permute the labels of V ±. Since incidence relations are preserved, any such auto-
morphism sends a �W-partition to the “same” �W-partition with the labels permuted. Since
irreplaceable partitions are characterized by being sandwiched, such an automorphism sends
sandwiched partitions to sandwiched partitions, and thus sends free faces to free faces. Thus
collapsing these free faces is an equivariant operation, giving an equivariant deformation
retraction of K�.
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