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We present a higher-order call-by-need lambda calculus enriched with constructors, case

expressions, recursive letrec expressions, a seq operator for sequential evaluation and a

non-deterministic operator amb that is locally bottom-avoiding. We use a small-step

operational semantics in the form of a single-step rewriting system that defines a

(non-deterministic) normal-order reduction. This strategy can be made fair by adding

resources for book-keeping. As equational theory, we use contextual equivalence (that is,

terms are equal if, when plugged into any program context, their termination behaviour is

the same), in which we use a combination of may- and must-convergence, which is

appropriate for non-deterministic computations. We show that we can drop the fairness

condition for equational reasoning, since the valid equations with respect to normal-order

reduction are the same as for fair normal-order reduction. We develop a number of proof

tools for proving correctness of program transformations. In particular, we prove a context

lemma for both may- and must- convergence that restricts the number of contexts that need

to be examined for proving contextual equivalence. Combining this with so-called complete

sets of commuting and forking diagrams, we show that all the deterministic reduction rules

and some additional transformations preserve contextual equivalence. We also prove a

standardisation theorem for fair normal-order reduction. The structure of the ordering �c is

also analysed, and we show that Ω is not a least element and �c already implies contextual

equivalence with respect to may-convergence.

1. Introduction

1.1. Motivation

Higher-order lambda calculi with non-deterministic operators have been investigated by

several authors. In particular, a non-deterministic choice operator that chooses one of

its arguments as result, but converges if one of its arguments is reducible to a value,

is of relevance for modelling concurrent computation. It enables search algorithms to

be expressed in a natural way (Henderson 1980; Bois et al. 2002), and allows the

implementation of a merge operator for streams in event-driven systems such as, for

example, graphical user interfaces (Hallgren and Carlsson 1995) or functional operating

systems (Henderson 1982).
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McCarthy’s amb (McCarthy 1963) is such a non-deterministic operator. A typical

implementation starts two concurrent (or parallel) processes, one for each of its arguments,

and then chooses the first one that terminates. The operator amb is bottom avoiding:

if ⊥ is an expression that cannot converge and s is a value, the expressions (amb s ⊥)

and (amb ⊥ s) both evaluate to s. The bottom avoidance of amb is only local as

its evaluation is independent of the surrounding context: for example, the expression†

(if (amb True False) then True else ⊥) is may-divergent.

There have been many investigations into the properties of higher-order calculi with

amb using call-by-value, call-by-name or call-by-need evaluation strategies. The strategies

can be distinguished by their internal treatment of function arguments that contain amb

expressions. Call-by-name tends to copy arguments, even if an argument is, for example, of

the form (amb s t), and thus implements plural non-determinism (Søndergaard and Sestoft

1992), whereas call-by-value and call-by-need are more restrictive in copying arguments:

only values, in particular abstractions, are allowed to be copied. Thus, these evaluation

strategies implement singular non-determinism.

We will now provide some justification for the calculus we will investigate, which is fairly

expressive, has a variety of constructs and many reductions, and is close to a real-world

calculus. A locally bottom-avoiding choice combined with constructs for explicit sharing

and sequential evaluation enables us to define many other non-deterministic operators

within the language, for example, erratic choice, locally demonic choice (see Søndergaard

and Sestoft (1992) for an overview of different non-deterministic operators) and a parallel

operator that evaluates both of its arguments in parallel and returns both values as a

pair – for example, Jones and Hudak (1993) uses such an operator. A further reason

for the expressiveness is that we want the results to be immediately applicable to an

implementation of amb in a variant of Haskell (Sabel 2003a). This means that the calculus

must respect sharing and must be a call-by-need calculus that implements singular non-

determinism, as already argued in Moran (1998). Another reason is that using a less

expressive language to prove equalities of expressions is of limited value, since there is

no guarantee that equations remain valid if the language is extended, since extensions of

the language may increase the expressiveness of contexts and thus invalidate equalities.

Also, the verification of the properties of programs and of compilers for a higher-order

calculus with amb requires an exact semantics as a solid foundation, as well as methods

for proving non-trivial properties.

For all these reasons, we investigate a higher-order lambda-calculus with an operator

amb, (weakly) typed case, constructors, letrec and seq. The letrec expressions are used

for explicit sharing of terms as well as for describing recursive definitions. The binary

operator seq evaluates to its second argument if and only if its first argument converges,

otherwise the whole seq expression diverges.

We will define a small-step operational semantics as a rewriting system on expressions

together with a strategy. An unwinding mechanism determines all permitted subterms

for the next reduction, which are called normal-order redexes. A normal-order reduction

† if b then s else t can be encoded in our calculus as caseBool b (True→ s) (False→ t).
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sequence is one that only reduces normal-order redexes. For amb-free expressions this will

be deterministic, since normal-order redexes are unique, while for expressions containing

occurrences of amb there may be several normal-order redexes. A single normal-order

reduction sequence is a reduction that in every step non-deterministically chooses one

of the concurrently possible subexpressions for reduction. The set of all normal-order

reduction sequences also comprises reductions such that amb is not locally bottom-

avoiding. We add resources in Definition 2.16 to normal-order reductions to single

out the fair normal-order reductions that all have the property that amb is locally

bottom-avoiding.

Using all normal-order reductions as a basis, we use as equational theory contextual

equivalence (also known as observational equivalence), which equates two terms if both

their termination and non-termination behaviours are the same in all program contexts.

It is well known that only taking may-convergence into account is too weak for calculi

with an amb operator (see, for example, Moran (1998)), so our equivalence will also test

for must-convergence. Summarising, contextual equivalence ∼c is the symmetrisation of

the contextual preorder �c, where

s �c t iff (∀C : C[s]↓ =⇒ C[t]↓ and ∀C : C[s]⇓ =⇒ C[t]⇓)

with C denoting contexts and using ↓ and ⇓ for the predicates for may- and must-

convergence, respectively. Note that our predicate for must-convergence is the converse

of the one for may-divergence.

In Theorem 2.21 we show that the notions of may- and must-convergence are the

same for both normal-order and fair normal-order reductions, which implies that the

corresponding notions of contextual equivalence are identical. This will be a great

simplification in the following, since normal-order reduction is sufficient for all arguments

concerning equivalence and the correctness of program transformations. For a call-by-

name calculus with amb the same coincidence was shown in Carayol et al. (2005).

In contrast to Hughes and Moran (1995) and Moran (1998), we only treat those diver-

gences that are called strong in Carayol et al. (2005), using the distinction between strong

and weak divergence introduced in Natarajan and Cleaveland (1995). A consequence of

this is that a term that has an infinite reduction but never loses the ability to converge is

not divergent.

Proving contextual equivalence directly seems to be very hard, since all program contexts

have to be taken into account. Other methods, like bisimulation, for proving contextual

equivalence have not been successful for call-by-need calculi with amb (see Moran (1998)

for a discussion). Mann (2005a), Mann (2005b) and Mann and Schmidt-Schauss (2006)

have shown that bisimulation can be used as a proof tool for a call-by-need calculus with

non-recursive let and erratic choice, but there seems to be no obvious way to transfer

this result to call-by-need calculi with recursive let, since their approach requires the

elimination of let bindings, and the elimination method does not work for recursive lets

(cf. Mann (2005a, Section 6.2)).

In this paper we will use the powerful technique of combining a context lemma

for both may- and must-convergence with complete sets of forking and commuting

diagrams to prove that the deterministic reductions of the calculus are correct program
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transformations (Theorem 7.1), that is, their application preserves contextual equivalence.

This is of importance in a compiler that uses reductions as optimisations, in particular,

if partial evaluation is used. We will also show the correctness of some other program

transformations that are used for optimisation in compilers of functional programming

languages (see, for example, Santos (1995)).

An important result is the Standardisation Theorem (Theorem 7.13), which states that

if there exists a sequence of transformations or reductions to a weak head normal form,

then there is also a fair evaluation in normal order to a weak head normal form (see

Corollary 7.14). The second part of the Standardisation Theorem states that if there exists

a sequence of transformations inside surface contexts (that is, not within abstractions)

resulting in a term that cannot converge, then fair normal-order reduction can also

reduce to such a term. A consequence of the Standardisation Theorem is that must-

convergence is preserved while applying program transformations inside surface contexts

(see Proposition 7.15).

Using the Standardisation Theorem, we first show that all (closed) must-divergent

terms are in the same equivalence class with respect to ∼c. We then show a classical

bottom-avoidance law of our amb operator (Proposition 8.17), that is, amb Ω t ∼c t

and amb t Ω ∼c t, where Ω is a term that cannot converge. As a final result, we show

that contextual equivalence can be defined by just taking must-convergence into account

(Corollary 8.22), that is, s ∼c t if and only if ∀C : C[s]⇓ ⇔ C[t]⇓.
Our results show that it is possible to overcome some difficulties that Moran encountered

in his thesis (Moran 1998). In particular, we were able to prove the full context lemma and

show the correctness of several transformation rules for the full ∼c-equivalence, where

Moran had to confine himself mostly to may-convergence. To our knowledge, this is

the first paper that proves the correctness of program transformations for a call-by-need

calculus with amb including may- and must-convergence in the definition of correctness.

Nevertheless, there still remains the open problem of exhibiting a bisimulation-based proof

tool or even a bisimulation characterisation of contextual equivalence for call-by-need

calculi with amb and recursive bindings.

An implementation of evaluation can be done by implementing normal-order reduction,

taking care that only fair reductions are possible. Note that the unrestricted definition

of normal-order reduction permits unfair reduction sequences: that is, the evaluation of

an expression (amb ⊥ True) may reduce ⊥ infinitely often while ignoring the fact that

the second argument of amb is already a value. Fair reduction strategies can be achieved

using Moran’s approach (Moran 1998) to implement fair evaluation by annotating amb

expressions with resources for both of its arguments, and decreasing the resource of an

argument for every reduction step that is related to this argument. The (fair) scheduler

increases the resources only if both resources are 0 and the increase is greater than 0 for

both arguments.

Carayol et al. (2005) defines a fair operational semantics for its call-by-name calculus,

which is free of resource annotations. We considered adopting this method for our

investigation, but, unfortunately, it does not work properly for a calculus with shared

bindings (see Section 2.6).

https://doi.org/10.1017/S0960129508006774 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006774


A call-by-need lambda calculus with locally bottom-avoiding choice 505

1.2. Related work

To our knowledge, the only papers addressing call-by-need calculi with locally bottom-

avoiding choice are Hughes and Moran (1995) and Moran (1998). The work described in

Moran (1998) is closely related to ours, since he also considers a call-by-need calculus with

an amb operator. His syntax is similar to ours, though there are some small differences:

in particular, he uses strict let expressions, where we use lazy let and a seq operator for

implementing sequential evaluation, and we use (weakly) typed case expressions, while

Moran (1998) uses an untyped case. Moran also uses contextual equivalence, but our

equational theory differs from his, since his predicate for must-convergence captures weak

divergences, and thus is not the same as our predicate (see Example 3.4).

Moran was not able to show correctness of program transformations with respect

to contextual equivalence that takes may- and must-convergence into account. He

only provides a context lemma (which is based on improvement theory (Moran and

Sands 1999)) for the may-convergence part, but failed to prove a context lemma for

must-convergence. This is unsatisfactory, since it is precisely the must-convergence that

distinguishes an amb operator from erratic choice.

The technical advantage of our approach over Moran’s is that we do not need an explicit

heap, and that for large parts of the reasoning we can ignore the resource annotations

of amb. This may be why we were able to prove a context lemma for both may- and

must-convergence, as well as the correctness of several program transformations.

Our contextual preorder is similar to that of Carayol et al. (2005) for a call-by-name

calculus with amb, since Carayol et al. (2005) also tests for strong divergences only. Call-

by-name lambda calculi with amb operators are also treated in Hughes and Moran (1995),

Lassen and Moran (1999), Moran (1998) and Lassen (2006), but, in the same way as Moran

did in Moran (1998), with their call-by-need calculus, they test for weak divergences in

their contextual equivalence.

There is other work on call-by-need calculi with other choice operators, especially

erratic choice, and we can compare some of them with our approach. The calculi of

Schmidt-Schauss et al. (2004) and Schmidt-Schauss (2003) are strongly related to our

calculus, since both provide recursive let expressions and case, as well as constructors

and unrestricted applications. Moran and Sands (1999) does not have the last of these,

since they only allow variables as arguments. While Schmidt-Schauss et al. (2004) only uses

(may-) convergence for the definition of contextual equivalence, Moran and Sands (1999)

and Schmidt-Schauss (2003) also use predicates for divergence. Schmidt-Schauss (2003)

uses a combination of contextual equivalence together with a trace semantics, where again

only strong divergences are considered.

The proof technique of complete sets of commuting and forking diagrams was

introduced by Kutzner and Schmidt-Schauss (1998) and Kutzner (2000) for a call-by-need

lambda calculus with erratic choice and a non-recursive let. The same technique has also

been used in Schmidt-Schauss (2003), Schmidt-Schauss et al. (2004) and Mann (2005a)

for their call-by-need calculi with erratic choice. Kutzner (2000), Schmidt-Schauss (2003),

Schmidt-Schauss et al. (2004) and Mann (2005a) use a normal-order reduction as

small-step semantics – of these, Schmidt-Schauss et al. (2004) is the most similar to

ours, while Moran and Sands (1999) uses an abstract machine semantics.
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Diagram-based techniques for proving program equivalences have already been used

in Machkasova and Turbak (2000) to prove meaning preservation in a call-by-value

calculus with recursive definitions. Wells et al. (2003) provides an abstract framework

for proving meaning preservation using diagrams. Unfortunately, for several reasons, the

axioms of this framework do not apply in our calculus: one reason is that reduction in

our calculus is non-deterministic, so evaluation does not preserve meaning in the sense of

Wells et al. (2003).

Work on call-by-value calculi extended with bottom-avoiding choice has been reported

in Lassen (1998), and Fernández and Khalil (2003) investigated interaction nets extended

with an amb operator.

1.3. Overview

In Section 2 we introduce the Λlet
amb calculus, define the convergence predicates and

introduce a fair evaluation strategy. In Section 3 we define the contextual preorder

and contextual equivalence, prove a context lemma, show some important properties of

reduction rules that rearrange letrec environments, and, finally, introduce the notion of

complete sets of commuting and forking diagrams. In Section 4 we prove the correctness

of those reduction rules where correctness follows easily, define some general properties

of a program transformation and show that their validity ensures the correctness of the

transformation. Equipped with this proof tool, we go on in Sections 5 and 6 to prove the

correctness of all defined deterministic reduction rules and of some additional program

transformations. In Section 7 we prove the Standardisation Theorem. In Section 8 we

show the equivalence of must-divergent terms and prove the bottom-avoidance law. We

conclude Section 8 by proving some remarkable properties of the contextual preorder we

use: in particular, we prove that the contextual preorder implies equivalence with respect

to may-convergence. In the final section we give some conclusions and suggest some

directions for further research.

2. The non-deterministic call-by-need calculus Λlet
amb

In this section we first introduce the syntax of the language Λlet
amb, then define the reduction

rules and normal-order reduction. After presenting encodings of other parallel and non-

deterministic operators, we define different predicates for convergence and divergence. The

section ends by showing that the same predicates are induced if we use a fair reduction

strategy.

2.1. The syntax of the language

The language Λlet
amb is very similar to the abstract language used in Schmidt-Schauss et

al. (2004), except that Λlet
amb uses a bottom-avoiding choice operator amb while Schmidt-

Schauss et al. (2004) uses erratic choice. The language of the non-deterministic call-by-need

lambda calculus of Moran (1998) is also similar to ours, except that we use an operator
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seq to provide sequential evaluation instead of strict let expressions, and our case

expressions are weakly typed. Unlike the call-by-need calculus of Ariola et al. (1995), Λlet
amb

provides constructors, weakly typed case expressions and, of course, a non-deterministic

amb operator. The language we use also has only small differences (aside from the amb

operator) compared with the core language of Peyton Jones and Marlow (2002), which is

used in the Glasgow Haskell Compiler.

The language Λlet
amb has the following syntax. There is a finite set of constructors, which

is partitioned into (non-empty) types. For every type T we use cT ,i, i = 1, . . . , |T | to denote

the constructors. Every constructor has an arity ar(cT ,i) � 0.

The syntax for expressions E, case alternatives Alt and patterns Pat is defined by the

following grammar:

E ::= V (variable)

| (cT ,i E1 . . . Ear(cT ,i)) (constructor application)

| (seq E1 E2) (seq expression)

| (caseT E Alt1 . . . Alt|T |) (case expression)

| (E1 E2) (application)

| (amb E1 E2) (amb expression)

| (λV .E) (abstraction)

| (letrec V1 = E1, . . . Vn = En in E) (letrec expression)

where n � 1

Alt ::= (Pat → E) (case alternative)

Pat ::= (cT ,i V1 . . . Var(cT ,i)) (pattern)

In addition to the above grammar, the following syntactic restrictions must hold for

expressions:

— E,Ei are expressions and V , Vi are variables.

— Within a pattern, the variables V1 . . . Var(cT ,i) are pairwise disjoint.

— In a caseT expression, for every constructor cT ,i, i = 1, . . . , |T |, of type T , there is

exactly one case alternative.

— The bindings of a letrec expression form a mapping from variable names to

expressions, in particular, that means that the variables on the left-hand side of the

bindings are all distinct and that the bindings of letrec expressions are commutative,

that is, letrec expressions with permuted bindings are syntactically equivalent.

— letrec is recursive, that is, in (letrec x1 = s1, . . . , xn = sn in t), the scope of xi,

1 � i � n, is s1, . . . , sn and t.

— We use the distinct variable convention, that is, all bound variables in expressions

are assumed to be distinct, and free variables are distinct from bound variables.

The reduction rules defined in later sections are assumed to rename bound variables

implicitly in the result by α-renaming, if necessary, to obey this convention.

To abbreviate the notation, we will sometimes use:

— the word term synonymously for expressions;

— (caseT E alts) instead of (caseT E Alt1 . . . Alt|T |);
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— (letrec Env in E) instead of (letrec x1 = E1, . . . xn = En in E) – this will also be

used freely for parts of the bindings;

— (ci
−→si ) instead of (ci s1 . . . sar(ci));

— {xf(i) = sg(i)}ni=j for the chain xf(j) = sg(j), xf(j+1) = sg(j+1), . . . , xf(n) = sg(n) of letrec

bindings, where f, g : �0 → �0;

— we assume application to be left-associative, that is, we write (s1 s2 . . . sn) instead of

((s1 s2) . . . sn).

Since we already use = as a symbol in the syntax of the language, we use ≡ to denote

syntactical equivalence of expressions.

Sometimes we will use tree addresses (positions) as strings of positive integers in

expressions with their standard meaning. Then the depth of a subterm t′ of t at position

p is the length of the string p.

Definition 2.1. A value is either an abstraction or a constructor application.

In the following, we define different contexts, where we use different fonts for sets of

contexts and individual contexts.

Definition 2.2 (Context). A context C is a term with exactly one hole, where the hole is

not in the variable position of abstractions, in a pattern of a caseT alternative, or on the

left-hand side of a letrec binding. We use [·] to denote the hole and C to denote the set

of all contexts.

The main depth of a context C is the depth of the hole of the context C , that is, the

length of the position of the hole. We use C#i to denote a context of main depth i. Letting

t be a term and C be a context, C[t] is the result of replacing the hole of C with term t.

Two contexts C1, C2 are called disjoint if and only if the positions p1, p2 of their respective

holes are not prefixes of each other, that is, neither p1 is a prefix of p2 nor p2 is a prefix

of p1.

Definition 2.3 (Reduction contexts). Reduction (respectively, weak reduction) contexts, the

set of which is denoted R (respectively, R−), are defined as follows:

R− ::= [·] | (R− E) | (caseT R− alts) | (seq R− E) | (amb R− E) | (amb E R−)

R ::= R−| (letrec Env in R−)

| (letrec x1 = R−1 , x2 = R−2 [x1], . . . , xj = R−j [xj−1],Env in R−[xj])

where j � 1 and R−,R−i , i = 1, . . . , j are weak reduction contexts.

For a term t with t ≡ R−[t0] where R− is a weak reduction context, we say R− is maximal

(for t) if there is no larger non-disjoint weak reduction context for t, that is, there is no

weak reduction context R−1 with t ≡ R−1 [t′1] where t′1 
≡ t0 is a subterm of t0.

For a term t with t ≡ R[t0], we say R is a maximal reduction context (for t) if and only

if R is:

— a maximal weak reduction context; or

— of the form (letrec x1 = E1, . . . , xn = En in R−) where R− is a maximal weak

reduction context and t0 
≡ xj for all j = 1, . . . , n; or
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— of the form (letrec x1 = R−1 , x2 = R−2 [x1], . . . , xj = R−j [xj−1], . . . in R−[xj]), where

R−i , i = 1, . . . , j are weak reduction contexts and R−1 is a maximal weak reduction

context for R−1 [t0], and t0 
≡ y where y is a bound variable in t.

Our definition of a maximal reduction context differs from that used in Schmidt-Schauss

et al. (2004) in that such a context is only ‘maximal up to choice points’. As a consequence,

the maximal reduction context for a term t is not necessarily unique.

Example 2.4. For (letrec x2 = λx.x, x1 = x2 x1, x3 = (amb (x2 x1) y) in (amb x1 x3))

there exist the following maximal reduction contexts:

— (letrec x2 = [·], x1 = x2 x1, x3 = (amb (x2 x1) y) in (amb x1 x3));

— (letrec x2 = λx.x, x1 = x2 x1, x3 = (amb (x2 x1) [·]) in (amb x1 x3)).

The first maximal reduction context can be calculated in two different ways depending

on which argument is chosen for the amb expression in the in expression of the letrec.

2.2. Reduction rules

We define the reduction rules in a more general form than we will use later for the

normal-order reduction. Thus the general rules can be used for partial evaluation and

other compile-time optimisations.

Definition 2.5 (Reduction rules). The deterministic reduction rules of Λlet
amb are defined in

Figure 1, the non-deterministic reduction rules are defined in Figure 2. We define the
following unions of some reductions:

(amb-c) := (amb-l-c) ∪ (amb-r-c) (lamb) := (lamb-l) ∪ (lamb-r)

(amb-in) := (amb-l-in) ∪ (amb-r-in) (cp) := (cp-in) ∪ (cp-e)

(amb-e) := (amb-l-e) ∪ (amb-r-e) (llet) := (llet-in) ∪ (llet-e)

(amb) := (amb-l) ∪ (amb-r) (seq) := (seq-c) ∪ (seq-in) ∪ (seq-e)

(amb-l) := (amb-l-c) ∪ (amb-l-in) ∪ (amb-l-e) (amb-r) := (amb-r-c) ∪ (amb-r-in) ∪ (amb-r-e)

(case) := (case-c) ∪ (case-in) ∪ (case-e) (lll) := (llet) ∪ (lcase) ∪ (lapp) ∪ (lseq) ∪ (lamb).

Reductions are denoted using an arrow with superscripts: for example,
llet−→. In order to

state explicitly the context in which a particular reduction is performed, we annotate

the reduction arrow with the context in which the reduction takes place, though if no

confusion can arise, we will omit the context from the arrow.

The redex of a reduction is the term as given on the left-hand side of a reduction rule.

We will also speak of the inner redex, which is the modified case expression for (case)

reductions, the modified seq expression for (seq) reductions, the modified amb expression

for (amb) reductions and the variable position that is replaced by rule (cp). Otherwise, it

is the same as the redex.

We use + to denote the transitive closure of reductions, and ∗ for the reflexive transitive

closure: for example, we use
lll,∗
−−→ for the reflexive transitive closure of

lll−→. We use upper-

case words to denote (finite) sequences of reductions, for example, we write
RED−−→ for the

sequence RED =
case−−→ lll−→ lbeta−−→.
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Fig. 1. Deterministic reduction rules of the calculus

We will now briefly compare our rules and the rules of the call-by-need calculus with

recursion in Ariola et al. (1995, Section 7.2). The rule (lbeta) is the sharing-respecting

variant of beta reduction, and is defined as rule (βneed) in Ariola et al. (1995). The rule

https://doi.org/10.1017/S0960129508006774 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006774


A call-by-need lambda calculus with locally bottom-avoiding choice 511

Fig. 2. Non-deterministic reduction rules of the calculus

(lll) arranges letrec environments, and is similar to the rules (lift), (assoc) and (associ)

of Ariola et al. (1995), though we have more rules, since we have the constructs case,

seq and amb. The rule (cp) is analogous to the rules (deref) and (derefi) of Ariola

et al. (1995), except that we only allow abstractions to be copied, and do not copy

variables. The consequence is that we need more variants for most of the reduction

rules, since we explicitly follow the bindings during the reduction, instead of removing

indirections. The reason for keeping indirections is technical: the reduction diagrams are

easier to close and it seems easier to find measures for the induction in the correctness

proofs. Nevertheless, we will show that the program transformations (abs), (cpx), (cpcx)

and (gc) are correct (see Section 5), and thus the copying of variables and constructor

applications are allowed optimisations. Another reason for having more rules than Ariola

et al. (1995) is that our syntax has case, seq and amb expressions, which are not

present in the call-by-need calculus of Ariola et al. (1995). The special variants of

(case) for constants are necessary to ensure that we do not introduce empty letrec

environments, and hence that the reduction rules generate syntactically correct expressions

only.

2.3. Normal-order reduction

Let R be a maximal reduction context for a term t and t ≡ R[s]. The normal-

order reduction applies a reduction rule of Definition 2.5 to s or to the direct su-

perterm of s. To aid understanding, we will start by describing how a position of

a normal-order redex can be reached using a non-deterministic unwinding algorithm

UW.

We let s be a term. If we have s ≡ (letrec Env in s′), we apply uw to the pair

(s′, (letrec Env in [·])), otherwise we apply uw to the pair (s, [·]). To detect loops, the

unwinding algorithm marks the bindings of a letrec expression when visiting them. We

label the symbol = with a dot, that is, a binding x
•
= s is marked as ‘visited’ and the

algorithm stops if it hits a visited binding. We assume that these markers are removed
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before the result of the algorithm is returned.

uw((s t), R) → uw(s, R[([·] t)])
uw((seq s t), R) → uw(s, R[(seq [·] t)])
uw((case s alts), R) → uw(s, R[(case [·] alts)])
uw((amb s t), R) → uw(s, R[(amb [·] t)]) or uw(t, R[(amb s [·])])
uw(x, (letrec x = s, Env in R−)) → uw(s, (letrec x

•
= [·], Env in R−[x]))

uw(x, (letrec y
•
= R−, x = s, Env in t))→ uw(s, (letrec y

•
= R−[x], x

•
= [·], Env in t))

uw(s, R) → (s, R) if no other rule is applicable.

The algorithm starting with term s returns a pair (s′, R) with R[s′] ≡ s and either R is a

maximal reduction context for s or the algorithm stops because a cycle has been detected;

in this case s′ is a variable that is bound in R.

Since cycle detection is implemented, the algorithm always terminates, for example, for

the term (letrec x = y, y = x in x), the result is the pair (x, (letrec x = y, y = [·] in x)):

uw(x, (letrec x = y, y = x in [·])) → uw(y, (letrec x
•
= [·], y = x in x))

→ uw(x, (letrec x
•
= y, y

•
= [·] in x))

→ (x, (letrec x = y, y = [·] in x)).

Definition 2.6. We say the unwinding algorithm visits a subterm during execution if there

is a step, where the subterm is the first argument of the pair to which uw is applied, or if

the subterm is the whole term.

Lemma 2.7. During evaluation the unwinding algorithm only visits subterms that are in

a reduction context. If s ≡ R[s′], there exists an execution (by making the correct decision

if the algorithm crosses an amb expression) that visits s′.

We now define the normal-order reduction. We apply a reduction rule by using a

maximal reduction context for the term that should be reduced. It may be the case that

no normal-order reduction is possible for the result (s, R) of the unwinding algorithm. For

example, this happens if the first argument of a case expression has the wrong type, if a

free variable occurs inside the maximal reduction context or if the unwinding algorithm

stops because it has detected a loop.

Definition 2.8 (Normal-order reduction). Let t be an expression and R be a maximal

reduction context for t, that is, t ≡ R[t′] for some t′. The normal-order reduction
no−→ is

defined by one of the following cases:

— If t′ is a letrec expression (letrec Env 1 in t′′) and R 
≡ [·], there are the following

cases, where R0 is a reduction context:

1 R ≡ R0[(seq [·] r)].
Reduce (seq t′ r) using rule (lseq).

2 R ≡ R0[([·] r)].
Reduce (t′ r) using rule (lapp).

3 R ≡ R0[(caseT [·] alts)].
Reduce (caseT t′ alts) using rule (lcase).
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4 R ≡ R0[(amb [·] s)].
Reduce (amb t′ s) using rule (lamb-l).

5 R ≡ R0[(amb s [·])].
Reduce (amb s t′) using rule (lamb-r).

6 R ≡ (letrec Env 2 in [·]).
Reduce t using rule (llet-in) to give (letrec Env 1,Env 2 in t′′).

7 R ≡ (letrec x = [·],Env 2 in t′′′).

Reduce t using (llet-e) to give (letrec x = t′′,Env 1,Env 2 in t′′′).

— If t′ is a value, there are the following cases:

8 R ≡ R0[caseT [·] . . .], t′ ≡ (cT . . .), that is, the top constructor of t′ belongs to type

T .

Apply (case-c) to (caseT t′ . . .). Note that this covers two cases of the reduction

(case-c).

9 R ≡ letrec x1 = [·], {xi = xi−1}mi=2,Env in R−0 [caseT xm (cT ,j
−→yi → r) alts] and

t′ ≡ (cT ,j
−→
ti ).

Apply (case-in) to give

letrec x1 = (cT ,j
−→zi ), {xi = xi−1}mi=2, {zi = ti}ni=1,Env

in R−0 [(letrec {yi = zi}ni=1 in r)].

10 R ≡ letrec x1 = [·], {xi = xi−1}mi=2,Env in R−0 [caseT xm (cT ,j → r) alts] and

t′ ≡ cT ,j .

Apply (case-in) to give

letrec x1 = cT ,j , {xi = xi−1}mi=2,Env in R−0 [r].

11 R ≡ letrec x1 = [·], {xi = xi−1}mi=2,Env , y = R−0 [caseT xm (cT ,j
−→yi → r) alts]

in r′ and t′ ≡ (cT ,j
−→
ti ) and y is in a reduction context.

Apply (case-e) to give

letrec x1 = (cT ,j
−→zi ), {xi = xi−1}mi=2, {zi = ti}ni=1,Env ,

y = R−0 [(letrec {yi = zi}ni=1 in r)]

in r′.

12 R ≡ letrec x1 = [·], {xi = xi−1}mi=2,Env , y = R−0 [caseT xm (cT ,j → r) alts] in r′ and

t′ ≡ cT ,j and y is in a reduction context.

Apply (case-e) to give

letrec x1 = cT ,j , {xi = xi−1}mi=2,Env , y = R−0 [r] in r′.

13 R ≡ R0[([·] s)] where R0 is a reduction context and t′ is an abstraction.

Apply (lbeta) to (t′ s).

14 R ≡ (letrec x1 = [·], {xi = xi−1}mi=2,Env in R−0 [xm]) where R−0 is a weak reduction

context and t′ is an abstraction.

Apply (cp-in) and copy t′ to the indicated position to give

(letrec x1 = t′, {xi = xi−1}mi=2,Env in R−0 [t′]).
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15 R ≡ (letrec x1 = [·], {xi = xi−1}mi=2,Env , y = R−0 [xm] in r) where R−0 is a weak

reduction context, y is in a reduction context and t′ is an abstraction.

Apply (cp-e) to give

(letrec x1 = t′, {xi = xi−1}mi=2,Env , y = R−0 [t′] in r).

16 R ≡ R0[(seq [·] r)].
Apply (seq-c) to (seq t′ r) to give r.

17 R ≡ (letrec x1 = [·], {xi = xi−1}mi=2,Env in R−0 [(seq xm r)]) and t′ is a constructor

application.

Apply (seq-in) to give

(letrec x1 = t′, {xi = xi−1}mi=2,Env in R−0 [r]).

18 R ≡ (letrec x1 = [·], {xi = xi−1}mi=2,Env , y = R−0 [(seq xm r)] in r′) where y is in a

reduction context and t′ is a constructor application.

Apply (seq-e) to give

(letrec x1 = t′, {xi = xi−1}mi=2,Env , y = R−0 [r] in r′).

19 R ≡ R0[(amb [·] r)].
Apply (amb-l-c) to (amb t′ r).

20 R ≡ R0[(amb r [·])].
Apply (amb-r-c) to (amb r t′).

21 R ≡ (letrec x1 = [·], {xi = xi−1}mi=2,Env in R−0 [(amb xm r)]) and t′ is a constructor

application.

Apply (amb-l-in) to give

(letrec x1 = t′, {xi = xi−1}mi=2,Env in R−0 [xm]).

22 R ≡ (letrec x1 = [·], {xi = xi−1}mi=2,Env in R−0 [(amb r xm)]) and t′ is a constructor

application.

Apply (amb-r-in) to give

(letrec x1 = t′, {xi = xi−1}mi=2,Env in R−0 [xm]).

23 R ≡ (letrec x1 = [·], {xi = xi−1}mi=2,Env , y = R−0 [(amb xm r)] in r′) where y is in a

reduction context and t′ is a constructor application.

Apply (amb-l-e) to give

(letrec x1 = t′, {xi = xi−1}mi=2,Env , y = R−0 [xm] in r′).

24 R ≡ (letrec x1 = [·], {xi = xi−1}mi=2,Env , y = R−0 [(amb r xm)] in r′) where y is in a

reduction context and t′ is a constructor application.

Apply (amb-r-e) to give

(letrec x1 = t′, {xi = xi−1}mi=2,Env , y = R−0 [xm] in r′).

The normal-order redex is defined as the subexpression to which the reduction rule

is applied. This includes the letrec expression mentioned in the reduction rules, for

example, in (cp-e).
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Fig. 3. Encoding of operators

Note that there are 24 cases for normal-order reduction and 25 reduction rules, however,

every rule occurs exactly once. The reason for the difference of one is that two (case-c)

reductions correspond to one case in the definition of normal-order reduction.

Some of our proofs will use induction on specific lengths of sequences of normal-order

reductions, which are defined as follows.

Definition 2.9. We use rl(RED) to denote the number of reductions of a finite sequence

RED consisting of normal-order reductions. We use rl(\a)(RED) to denote the number of

non-a reductions in RED where a is a specific reduction.

Example 2.10. Let RED =
no,seq
−−−→

no,lapp
−−−−→

no,lbeta
−−−−→

no,llet
−−−→. Then rl(RED) = 4, and, for ex-

ample, rl(\lll)(RED) is the number of non-(lll) reductions in RED, that is, we have

rl(\lll)(RED) = 2.

2.4. Encoding of non-deterministic and parallel operators

Figure 3 shows the encoding of other non-deterministic or parallel operators within our

language. The operator par activates the concurrent evaluation of its first argument, but

has the value of its second argument (Glasgow parallel Haskell has such an operator, see,

for example, Trinder et al. (1998)). The operator spar evaluates both arguments in parallel

and returns the pair of values (for example, this is the par operator suggested in Jones

and Hudak (1993)). The locally demonic dchoice non-deterministically chooses one of its

arguments if and only if both arguments converge. Erratic choice non-deterministically

chooses one if its arguments before evaluating the arguments. The parallel or is non-strict

in both of its arguments, that is, if one of the arguments evaluates to True, then the or

expression evaluates to True. The merge operator implements bottom-avoiding merge of

two lists.

2.5. Convergence and divergence

In this section we define the predicates for may- and must-convergence. We postpone the

discussion of the meaningfulness of our definitions to Section 3 (see Examples 3.4 and 3.5)

where we will introduce our equational theory.
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The notion of a weak head normal form will be required.

Definition 2.11. An expression t is a weak head normal form (WHNF) if:

— t is a value; or

— t is of the form (letrec Env in v), where v is a value;

— or t is of the form

(letrec x1 = cT ,i t1 . . . tar(cT ,i), x2 = x1, . . . xm = xm−1,Env in xm).

Lemma 2.12. A WHNF has no normal-order reduction.

The next two definitions introduce predicates for may- and must-convergence and may-

and must-divergence.

Definition 2.13 (May- and must-convergence). For a term t, we write t↓ if and only if there

exists a sequence of normal-order reductions starting from t that ends in a WHNF, that

is,

t↓ := ∃s : (t
no,∗
−−→ s ∧ s is a WHNF).

If t↓, we say that t may-converges. We use CON(t) to denote the set of finite sequences of

normal-order reductions of an expression t ending in a WHNF, that is,

CON(t) := {RED | t RED−−→ s,

s is a WHNF,

RED contains only normal-order reductions}.

We allow finite sequences of normal-order reductions to be empty, that is, if t is a

WHNF, then CON(t) contains an empty reduction sequence.

For a term t, must-convergence is defined by

t⇓ := ∀s : (t
no,∗
−−→ s =⇒ s↓).

Definition 2.14 (May- and must-divergence). For a term t we write t⇑ if and only if there

does not exist a sequence of normal-order reductions starting with t that ends in a WHNF.

Then we say t must-diverges, that is,

t⇑ := ∀s : (t
no,∗
−−→ s =⇒ s is not a WHNF)

For a term t, we say t may-diverges, denoted t↑, if and only if t may reduce to a term

that must-diverges, that is,

t↑ := ∃s : (t
no,∗
−−→ s ∧ s⇑).

For a term, we define the set of all finite sequences of normal-order reductions that

lead to a term that must-diverges as follows:

DIV(t) := {RED | t RED−−→ s, s⇑, RED contains only normal-order reductions}.

We allow these sequences to be empty, that is, if t⇑, then DIV(t) contains an empty

sequence.

The following lemma shows some relations between convergence and divergence.
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Lemma 2.15. (t⇓ ⇐⇒ ¬(t↑)), (t↓ ⇐⇒ ¬(t⇑)), (t⇓ =⇒ t↓) and (t⇑ =⇒ t↑).

2.6. Fair normal-order reduction

Our normal-order reduction does not take fairness into account, that is, the set of all

sequences of normal-order reductions for a given term t may include infinite sequences

where a normal-order redex is infinitely often not chosen for reduction.

For example, we consider the term t ≡ (letrec x = (λy.y y) in amb (x x) True).

Then there exists the infinite sequence of normal-order reductions that repeats the

four reductions
no,cp
−−−→

no,lbeta
−−−−→

no,lamb-l
−−−−−→

no,llet
−−−→ infinitely often, that is, this sequence begins

as follows:

(letrec x = (λy.y y) in amb (x x) True)
no,cp
−−−→ (letrec x = (λy.y y) in amb ((λx1.x1 x1) x) True)
no,lbeta
−−−−→ (letrec x = (λy.y y) in amb ((letrec x1 = x in (x1 x1))) True)
no,lamb-l
−−−−−→ (letrec x = (λy.y y) in (letrec x1 = x in amb ((x1 x1)) True))
no,llet
−−−→ (letrec x = (λy.y y), x1 = x in amb (x1 x1) True)
no,cp
−−−→ (letrec x = (λy.y y), x1 = x in amb ((λx2.x2 x2) x1) True).

This sequence is not fair, since the (amb-r-c) redex is always avoided by normal-

order reduction. Nevertheless, t is must-convergent in our calculus. Hence, our notion

of convergence already introduces a kind of fairness at the semantic level. A similar

observation has already been made in Carayol et al. (2005) for a call-by-name calculus

with amb.

This example also shows that without fair evaluation, our operator amb is not bottom-

avoiding, since evaluation may forever reduce the must-divergent argument of the amb

expression, although the other argument is a value. Moran has already remarked that

fairness of the evaluator is needed to implement bottom-avoiding choice (Moran 1998).

Hence, in this section we will define fair normal-order reduction such that these unfair

sequences of reductions are forbidden.

The result of this section is that the notions of convergence and divergence using fair

evaluation are the same as for our normal-order reduction. This is of great value, since

we can use the normal-order reduction for reasoning, and all results are transferable to

fair evaluation.

We considered two different approaches for implementing fair evaluation:

— the approach of Moran (1998), which uses resource annotations for every amb

expression;

— the more elegant approach of Carayol et al. (2005), which defines a small-step semantics

that allows the reduction of both arguments of an amb expression in parallel.

Unfortunately, the second approach does not work properly for calculi with shared

bindings, since it is difficult to define a parallel reduction step if both redexes modify the

same environment, for example, for the expression

(letrec x = cT s1 . . . sar(cT ) in amb (caseT x . . .) (caseT x . . .)).
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Thus, we chose to use the approach of Moran (1998) by annotating the amb expressions.

Definition 2.16. An annotated variant of a term s is s with all amb expressions annotated

with a pair 〈m, n〉 of non-negative integers, which are denoted amb〈m,n〉. We use ann0(s)

to denote the annotated variant of s with all the pairs being 〈0, 0〉. If s is an annotated

variant of term t, we let da(s) = t.

Informally, an (inner) redex within the subterm s (t, respectively) of the expression

(amb〈m,n〉 s t) can only be reduced if resource m (n, respectively) is non-zero. Any reduction

‘inside’ s decreases the annotation m by 1. Fairness emerges from the fact that resources

can only be increased if both resources m and n are 0, and the increase for both resources

must be strictly greater than 0.

We extend the notions of contexts and WHNFs to annotated variants as follows.

Definition 2.17. If C is an annotated variant of a term with a hole, then C is a context if

and only if da(C) is a context. An annotated variant s of a term is a WHNF if and only

if da(s) is a WHNF.

We now give a description of a non-deterministic unwinding algorithm UWF that leads

to fair evaluation. The algorithm performs three tasks:

1 It finds a position where a normal-order reduction may be applied.

2 It decreases the annotations for the path that leads to this position.

3 If necessary, it performs scheduling by increasing the annotations.

Let s be an annotated variant of a term. If s ≡ (letrec Env in s′), apply uwf to the pair

(s′, (letrec Env in [·])), otherwise apply uwf to the pair (s, [·]). In order to detect loops,

the algorithm marks the visited letrec bindings (that is, with
•
=). We assume that these

markers are removed before returning the result (s, R).

uwf((s t), R) → uwf(s, R[([·] t)])
uwf((seq s t), R) → uwf(s, R[(seq [·] t)])
uwf((case s alts), R) → uwf(s, R[(case [·] alts)])
uwf((amb〈m+1,n〉 s t), R) → uwf(s, R[(amb〈m,n〉 [·] t)])
uwf((amb〈m,n+1〉 s t), R) → uwf(t, R[(amb〈m,n〉 s [·])])
uwf((amb〈0,0〉 s t), R) → uwf((amb〈m,n〉 s t), R), where m, n > 0

uwf(x, (letrec x = s, Env in R−))→ uwf(s, (letrec x
•
= [·], Env in R−[x]))

uwf(x, (letrec y
•
= R−, x = s, Env in t))

→ uwf(s, (letrec y
•
= R−[x], x

•
= [·], Env in t))

uwf(s, R) → (s, R) if no other rule is applicable.

The unwinding algorithm UWF always terminates with a result (s, R).

Fair normal-order reduction
fno−→ on annotated variants consists of one or more

executions of UWF followed by a normal-order reduction.

Definition 2.18 (Fair normal-order reduction). Let s be an annotated variant of a term. If

s is a WHNF, then no fair normal-order reduction is possible. Otherwise, we perform the

following steps:
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1 Execute UWF starting with s. Let the result be (s′′, R).

2 If no normal-order reduction is applicable to R[s′′] with maximal reduction context R,

then go to Step 1 using the variant R[s′′] instead of s.

3 If a normal-order reduction is applicable to R[s′′] with maximal reduction context

R, then apply this reduction where annotations are inherited like labels in labelled

reduction (see Barendregt (1984)). Let the result be t.

Then s
fno−→ t.

Note that when Step 2 matches, the new search of UWF starts with the result of the

previous execution of UWF. This is necessary to decrease the annotations for a subterm

that cannot be reduced because it has a typing error (for example, caseList True . . .) or

it is a term with a black hole, for example, (letrec x = x in x). Moran (1998) uses an

additional reduction rule for these cases. We decrease the annotation by executing the

unwinding algorithm again with another variant of the same term, where annotations are

decreased.

Definition 2.19. Fair may- and must-convergence for annotated variants are defined by:

t↓F := ∃s : (t
fno,∗
−−→ s ∧ s is a WHNF)

t⇓F := ∀s : (t
fno,∗
−−→ s =⇒ s↓F ).

We use ⇑F (↑F , respectively) as the logical counterparts of ↓F (⇓F , respectively).

We can extend the notions of fair convergence and divergence to terms.

Definition 2.20. A term t fair may-converges (denoted t↓F ) if and only if ann0(t)↓F . A term

t fair must-converges (denoted t⇓F ) if and only if ann0(t)⇓F . Again, we use ↑F and ⇑F for

the logical counterparts of both convergence predicates.

Theorem 2.21. For all terms t, we have (t↓ if and only if t↓F ) and (t⇓ if and only if t⇓F ).

Proof. A complete proof can be found in Sabel and Schmidt-Schauss (2006). The idea

of the proof is to show that every fair normal-order reduction for s is also a normal-order

reduction for da(s) and that for every sequence of normal-order reductions starting with

s, there exists a sequence of fair normal-order reductions starting with ann0(s).

3. Contextual equivalence and proof techniques

3.1. Preorders for may- and must-convergence

In this section we define a number of preorders resulting in a combined preorder that

tests for may-convergence and must-convergence in all contexts. Contextual equivalence

is then the symmetrisation of the combined preorder.
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Definition 3.1. Let s, t be terms. We define the following relations:

s �↓c t if and only if (∀C ∈ C : C[s]↓ ⇒ C[t]↓)

s �⇓c t if and only if (∀C ∈ C : C[s]⇓ ⇒ C[t]⇓)

s �c t if and only if s �↓c t ∧ s �⇓c t.

The contextual equivalence is then defined by

s ∼c t if and only if s �c t ∧ t �c s.

Note that for all three preorders, s, t, C[s] and C[t] may be open terms.

Remark 3.2. It makes no difference if we replace the convergence predicates based on

normal-order reduction with predicates based on fair normal-order reduction in the

definitions of �↓c and �⇓c , since Theorem 2.21 holds, that is,

s �c t iff (∀C ∈ C : C[s]↓F ⇒ C[t]↓F ) ∧ (∀C ∈ C : C[s]⇓F ⇒ C[t]⇓F ).

We choose to work with the predicates for normal-order reduction because this makes

the reasoning considerably easier as we do not need to take care of resource annotations.

Remark 3.3. In Section 8 (Corollary 8.22) we show that contextual equivalence can be

defined using must-convergence only, that is, s ∼c t iff ∀C : C[s]⇓ ⇔ C[t]⇓.

However, even if we could prove this now, it would not simplify our proofs, since to prove

s �⇓c t, we always require as precondition that t �↓c s holds.

Our contextual equivalence is the same as Carayol et al. (2005) uses for its call-by-name

calculus where so-called weak divergences are not considered. This is in contrast to Hughes

and Moran (1995), Moran (1998) and Lassen (2006), where may-divergence holds for terms

that have an infinite normal-order reduction but never lose the ability to converge. A

consequence is that our equational theory is different from that of Moran (1998).

Example 3.4. The example of Carayol et al. (2005, page 453) is applicable to our calculus.

Let the identity function I, a fixed-point operator Y and a must-divergent term Ω be

defined by

I ≡ λx.x

Y ≡ (letrec y = λf.(f (y f)) in y)

Ω ≡ (letrec x = x in x).

Then I ∼c Y (λx.(choice x I)) 
∼c choice Ω I. Now, consider a contextual equivalence

∼M that is the same as ∼c apart from the fact that a term t must-converges if and only if

all sequences of normal-order reductions that start with t are finite and lead to a WHNF.

The relation ∼M is analogous to the contextual equivalence used in Moran (1998). Hence,

we have I 
∼M Y (λx.(choice x I)) ∼M choice Ω I.

Weak divergences are typical for some kinds of reactive systems, that is, those systems

that run until they are successfully terminated by some user input (for example, a shut-

down command for an operating system). Those programs should not be equivalent to
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programs that loop forever without any chance to terminate, that is, programs that may

strongly diverge.

Example 3.5. Assuming that integers and an operator + for addition of integers are

implemented using Peano numbers, then, using the operator choice, we can define the

following expression t that generates a natural number:

t ≡ (letrec gen = λx.choice x (gen (x + 1)) in gen 1).

The expression t is must-convergent in our calculus, but may-divergent using Moran’s

semantics. This is because, if every choice chooses the second argument, the evaluation

of t may not terminate (that is, t is weakly divergent). Using Moran’s semantics, the

equivalence t ∼M t′ holds, where t′ is defined by

t′ ≡ (letrec gen = λx.choice x (gen (x + 1)) in choice Ω (gen 1)).

That is, if the equivalence of t and t′ is used as a program transformation, the possibility

of a strong divergence is introduced.

The operator choice can model the input of a user in such a way that if the user says

‘Yes’, it chooses the second argument of choice, otherwise it chooses the first argument.

Using this view, t might be a small reactive system that implements a stopwatch. Obviously,

t′ no longer implements a stopwatch.

A well-known property (Lassen et al. 2005) for lambda calculi with locally bottom-

avoiding choice also holds for Λlet
amb.

Example 3.6. Ω is not least with respect to �c. Consider C ≡ (amb (λx.λy.x) [·]) Ω). Then

the term C[I] may-diverges but C[Ω] must-converges, hence Ω 
�c I.

A precongruence � is a preorder on expressions such that s � t ⇒ C[s] � C[t] for all

contexts C . A congruence is a precongruence that is also an equivalence relation. The

proof of the following proposition is standard.

Proposition 3.7. �c is a precongruence and ∼c is a congruence.

The following lemma will be used during the proofs of correctness of reductions.

Using the contrapositive of the implication in the preorder for may-convergence and

Lemma 2.15, we have the following lemma.

Lemma 3.8. Assuming s and t are terms, we have s �↓c t if and only if ∀C ∈ C : C[t]⇑ =⇒
C[s]⇑.

A main contribution of this paper is the proof that all deterministic reduction rules are

correct program transformations.

Definition 3.9 (Correct program transformation). A binary relation P on terms is a correct

program transformation if and only if ∀ terms s, t : s P t =⇒ s ∼c t.

In the remaining parts of this section we develop some tools that will help us prove the

correctness of program transformations.
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3.2. Context lemmas

The goal of this section is to prove a ‘context lemma’ that enables us to prove contextual

equivalence of two terms by just observing their termination behaviour in all reduction

contexts, rather than in all contexts of set C. Moran (1998) also provides a context lemma

for his call-by-need calculus, but only for may-convergence. We obtained improved results

by providing a context lemma for both may- and must-convergence.

The structure of this section is as follows. We first show some properties that will

be necessary for proving context lemmas for may- and must-convergence, and then the

section concludes with a context lemma for the combined precongruence.

In this section we will use multicontexts, that is, terms with several (or no) holes ·i,
where every hole occurs exactly once in the term. We write a multicontext as C[·1, . . . , ·n],
and if the terms si for i = 1, . . . , n are placed into the holes ·i, we use C[s1, . . . , sn] to denote

the resulting term.

Lemma 3.10. Let C be a multicontext with n holes. If there are terms si with i ∈ {1, . . . , n}
such that C[s1, . . . , si−1, ·i, si+1, . . . , sn] is a reduction context, then there exists a hole ·j , such

that for all terms t1, . . . , tn, we have that C[t1, . . . , tj−1, ·j , tj+1, . . . , tn] is a reduction context.

Proof. We assume there is a multicontext C with n holes and there are terms s1, . . . , sn
with Ri ≡ C[s1, . . . , si−1, ·i, si+1, . . . , sn] being a reduction context. Since Ri is a reduction

context, there is an execution of the unwinding algorithm UW starting with C[s1, . . . , sn]

that visits si (see Lemma 2.7). We fix this execution and apply the same execution to

C[·1, . . . , ·n] and stop when we arrive at a hole. Either the execution stops at hole ·i or

earlier at some hole ·j . Since the unwinding algorithm only visits positions in a reduction

context, the claim follows.

Note that the numbers i and j in the previous lemma are not necessarily identical. For

example, for the multicontext (letrec x = [·1], y = [·2] in y) and the term s2 ≡ x, the

context (letrec x = [·1], y = s2 in y) is a reduction context. If we replace s2 by another

term t2, for example, t2 ≡ y, then (letrec x = [·1], y = t2 in y) is not a reduction context,

but (letrec x = t1, y = [·] in y) is a reduction context for any term t1.

Lemma 3.11. Let s, t be expressions and σ be a permutation on variables. Then:

— (∀R ∈ R : R[s]↓ =⇒ R[t]↓) =⇒ (∀R ∈ R : R[σ(s)]↓ =⇒ R[σ(t)]↓); and

— (∀R ∈ R : R[s]↑ =⇒ R[t]↑) =⇒ (∀R ∈ R : R[σ(s)]↑ =⇒ R[σ(t)]↑).

We now prove a lemma using multicontexts that is more general than needed, since the

context lemma for may-convergence (Lemma 3.13) is a specialisation of the claim.

Lemma 3.12. For all n � 0, all multicontexts C with n holes and all expressions s1, ..., sn
and t1, ..., tn, we have, if for all i = 1, . . . , n: ∀R ∈ R : (R[si]↓ ⇒ R[ti]↓), then C[s1, . . . , sn]↓ ⇒
C[t1, . . . , tn]↓.

Proof. The proof is by induction, where n, C , si, ti for i = 1, . . . , n are given. The

induction is on the measure (l, n), where:
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— l is the length of the shortest reduction sequence in CON(C[s1, . . . , sn]).

— n is the number of holes in C .

We assume that the pairs are ordered lexicographically, thus this measure is well founded.

The claim holds for n = 0, that is, all pairs (l, 0), since if C has no holes, there is nothing

to show.

Now let (l, n) > (0, 0). For the induction step we assume that the claim holds for all

n′, C ′, s′i, t
′
i, i = 1, . . . , n′ with (l′, n′) < (l, n). Let us assume that the precondition holds,

that is, that ∀i : ∀R ∈ R : (R[si]↓ ⇒ R[ti]↓). Let RED be a shortest reduction sequence in

CON(C[s1, . . . , sn]) with rl(RED) = l. We distinguish two cases:

— There is some index j such that C[s1, . . . , sj−1, ·j , sj+1, . . . , sn] is a reduction context.

Lemma 3.10 implies that there is a hole ·i such that

R1 ≡ C[s1, . . . , si−1, ·i, si+1, . . . , sn]

and

R2 ≡ C[t1, . . . , ti−1, ·i, ti+1, . . . , tn]

are both reduction contexts. Let

C1 ≡ C[·1, . . . , ·i−1, si, ·i+1, . . . , ·n].

From

C[s1, . . . , sn] ≡ C1[s1, . . . , si−1, si+1, . . . , sn],

we have

RED ∈ CON(C1[s1, . . . , si−1, si+1, . . . , sn]).

Since C1 has n− 1 holes, we can use the induction hypothesis and derive

C1[t1, . . . , ti−1, ti+1, . . . , tn]↓,

that is,

C[t1, . . . , ti−1, si, ti+1, . . . , tn]↓.
From this we have R2[si]↓. Using the precondition, we can then derive R2[ti]↓, that is,

C[t1, . . . , tn]↓.
— There is no index j, such that C[s1, . . . , sj−1, ·j , sj+1, . . . , sn] is a reduction context. If

l = 0, then C[s1, . . . , sn] is a WHNF, and since no hole is in a reduction context,

C[t1, . . . , tn] is also a WHNF, hence C[t1, . . . , tn]↓. If l > 0, the first normal-order

reduction of RED can also be used for C[t1, . . . , tn], that is, the position of the redex

and the inner redex are the same. This normal-order reduction can modify the context

C , the number of occurrences of the terms si and the positions of the terms si. We now

argue that the elimination, duplication or variable permutation for every si can also

be applied to ti. More formally, we will show that if C[s1, . . . , sn]
no,a
−−→ C ′[s′1, . . . , s

′
m],

there exists a variable permutation ρ such that for every i = 1, . . . , m, there is some j

such that (s′i, t
′
i) ≡ (ρ(sj), ρ(tj)). Moreover, C[t1, . . . , tn]

no,a
−−→ C ′[t′1, . . . , t

′
m].

We need to consider the cases of Definition 2.8 and figure out how the terms si and ti
are modified by the reduction step – we will only discuss the interesting cases:
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– If ·i is in an alternative of case, which is discarded by a (case) reduction, or ·i is

in the argument of a seq or amb expression that is discarded by a (seq) or (amb)

reduction, then si and ti are both eliminated.

– If the normal-order reduction is not a (cp) reduction that copies a superterm of si
or ti, and si and ti are not eliminated as mentioned in the previous item, then si
and ti can only change their respective position.

– If the normal-order reduction is a (cp) reduction that copies a superterm of si or

ti, then renamed copies ρs,i(si) and ρt,i(ti) of si and ti will occur, where ρs,i, ρt,i are

permutations on variables. Without loss of generality, for all i, we have ρs,i = ρt,i.

Free variables of si or ti can also be renamed in ρs,i(si) and ρt,i(ti) if they are bound

in the copied superterm. But with Lemma 3.11 we have that the precondition also

holds for ρs,i(si) and ρt,i(ti), that is, ∀R ∈ R: R[ρs,i(si)]↓ =⇒ R[ρt,i(ti)]↓.
Now we can use the induction hypothesis. Since C ′[s′1, . . . , s

′
m] has a terminating

sequence of normal-order reductions of length l − 1, we also have C ′[t′1, . . . , t
′
m]↓. With

C[t1, . . . , tn]
no,a
−−→ C ′[t′1, . . . , t

′
m], we have C[t1, . . . , tn]↓.

Lemma 3.13 (Context lemma for may-convergence). Let s, t be terms. If for all reduction

contexts R we have (R[s]↓ ⇒ R[t]↓), then ∀C : (C[s]↓ ⇒ C[t]↓). That is, s �↓c t.

Lemma 3.14 (Context lemma for must-convergence). Let s, t be terms. Then

((∀R ∈ R : R[s]⇓ =⇒ R[t]⇓) ∧ (∀R ∈ R : R[s]↓ =⇒ R[t]↓))
=⇒

(∀C : C[s]⇓ =⇒ C[t]⇓).

Proof. We prove a more general claim using multicontexts and the contrapositive of

the first of the inner implications. For all n � 0, all multicontexts C with n holes and all

expressions s1, . . . , sn and t1, . . . , tn, we have that if

((∀R ∈ R : R[ti]↑ =⇒ R[si]↑) ∧ (∀R ∈ R : R[si]↓ =⇒ R[ti]↓
)
),

then C[t1, . . . , tn]↑ =⇒ C[s1, . . . , sn]↑.
The proof is by induction, where n, C, si, ti for i = 1, . . . n are given. The induction is on

the measure (l, n), where:

— l is the length of a shortest reduction sequence in DIV(C[t1, . . . , tn]).

— n is the number of holes in C .

The induction is analogous to the proof of Lemma 3.12. The precondition for may-

convergence is necessary for the subcase in which C has no holes in a reduction context

and C[t1, . . . , tn]⇑.

Corollary 3.15. If s �↓c t and for all R ∈ R we have R[t]↑ =⇒ R[s]↑, then s �⇓c t.

By combining the context lemma for may-convergence (Lemma 3.13) and the context

lemma for must-convergence (Lemma 3.14) we derive the following context lemma.

Lemma 3.16 (Context Lemma). Let s, t be terms. Then

((∀R ∈ R : R[s]⇓ =⇒ R[t]⇓) ∧ (∀R ∈ R : R[s]↓ =⇒ R[t]↓
)
) =⇒ s �c t.
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3.3. Properties of the (lll) reduction

The following lemma shows that letrecs in reduction contexts can be moved to the

top-level environment by a sequence of normal-order reductions.

Lemma 3.17. The following hold:

1 For all terms of the form (letrec Env 1 in R−1 [(letrec Env 2 in t)]) where R−1 is a

weak reduction context, there exists a sequence of normal-order (lll) reductions with

(letrec Env 1 in R−1 [(letrec Env 2 in t)])
no,lll,+
−−−→ (letrec Env 1,Env 2 in R−1 [t]).

2 For all terms of the form

(letrec Env 1, x1 = R−1 [(letrec Env 2 in t)], {xi = R−i [xi−1]}mi=2 in R−m+1[xm])

where R−j , j = 1, . . . , m + 1 are weak reduction contexts, there exists a sequence of

normal-order (lll) reductions with

(letrec Env 1, x1 = R−1 [(letrec Env 2 in t)], {xi = R−i [xi−1]}mi=2 in R−m+1[xm])
no,lll,+
−−−→

(letrec Env 1,Env 2, x1 = R−1 [t], {xi = R−i [xi−1]}mi=2 in R−m+1[xm]).

3 For all terms of the form R−1 [(letrec Env in t)] where R−1 is a weak reduction context,

there exists a sequence of normal-order (lll) reductions with

R−1 [(letrec Env in t)]
no,lll,∗
−−−→ (letrec Env in R−1 [t]).

Proof. The statements follow by induction on the main depth of the context R−1 .

Another property of the (lll) reduction is that every reduction sequence consisting only

of (lll) reductions must be finite.

Definition 3.18. For a given term t, the measure μlll(t) is a pair (μ1(t), μ2(t)), ordered

lexicographically. The measure μ1(t) is the number of letrec subexpressions in t, and

μ2(t) is the sum of lrdepth(s, t) of all letrec subexpressions s of t, where lrdepth is

defined as follows:

lrdepth(s, s) = 0

lrdepth(s, C1[C2[s]]) =

⎧⎪⎪⎨
⎪⎪⎩

1 + lrdepth(s, C2[s]) if C1 is a context of main depth 1,

and not a letrec

lrdepth(s, C2[s]) if C1 is a context of main depth 1,

and it is a letrec.

Example 3.19. Let s ≡ (letrec x = ((λy.y) (letrec z = True in z)) in x). Then

μlll(s) = (2, 1) where

lrdepth(s, (letrec z = True in z))

= lrdepth(((λy.y) (letrec z = True in z)), (letrec z = True in z))

= 1 + lrdepth((letrec z = True in z), (letrec z = True in z))

= 1 + 0

= 1.
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Since s
C,lll
−−→ t implies μlll(s) > μlll(t), and ∀ t : μlll(t) � (0, 0), the following termination

property holds:

Proposition 3.20. The reduction (lll) is terminating, that is, there are no infinite reductions

sequences consisting only of (C, lll) reductions.

3.4. Complete sets of commuting and forking diagrams

In order to prove the correctness of the reduction rules and of further program trans-

formations, we introduce complete sets of commuting diagrams and complete sets of

forking diagrams. They have already been successfully used in Kutzner (2000), Schmidt-

Schauss (2003), Sabel (2003b), Schmidt-Schauss et al. (2004), Schmidt-Schauss et al. (2005)

and Mann (2005a) as a proof tool for proving contextual equivalence of program

transformations.

We start by defining so-called internal reductions.

Definition 3.21. Let s, t be terms, red be a reduction of Definition 2.5 and X be a set of

contexts. A reduction s
X,red
−−−→ t is called X-internal if it is not a normal-order reduction

for s, and X ∈ X. We use s
iX,red
−−−→ t to denote X-internal reductions

A reduction sequence is of the form t1 → . . . → tn, where ti are terms and ti → ti+1

is a reduction or some other program transformation. In the following we introduce

transformations on reduction sequences using the notation

X,red
−−−→ .

no,a1−−→ . . .
no,ak−−→ �

no,b1−−→ . . .
no,bm−−−→ .

X,red1−−−→ . . . . .
X,redh−−−→,

where
X,red
−−−→ is a reduction inside a context of a specific set like C or an internal reduction

inside such a set of contexts (for example, iC).

Such a transformation rule matches a prefix of a reduction sequence RED if RED has

a prefix: s
X,red
−−−→ t1

no,a1−−→ . . . tk
no,ak−−→ t. The transformation rule is applicable to the prefix

of a reduction sequence RED with prefix s
X,red
−−−→ t1

no,a1−−→ . . . tk
no,ak−−→ t if and only if the

following holds:

∃r1, . . . , rm+h−1 : s
no,b1−−→ r1 . . .

no,bm−−−→ rm
X,red1−−−→ rm+1 . . . rm+h−1

X,redh−−−→ t.

The transformation consists of replacing the prefix of RED with the result, that is, the

new reduction sequence starts with s
no,b1−−→ r1 . . .

no,bm−−−→ rm
X,red1−−−→ rm+1 . . .

X,redh−−−→ t.

Since we will use sets of transformation rules, it may be the case that there is a

transformation rule in the set that matches a prefix of a reduction sequence, but it is not

applicable as the right-hand side cannot be constructed. But in a complete set there is

always at least one diagram that is applicable.

Definition 3.22 (Complete sets of commuting diagrams/forking diagrams). A complete set

of commuting diagrams for the reduction
X,red
−−−→ is a set of transformation rules on reduction
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Fig. 4. Commuting (a) and forking diagrams (b) and their common representation (c)

sequences of the form

X,red
−−−→ .

no,a1−−→ . . .
no,ak−−→ �

no,b1−−→ . . .
no,bm−−−→ .

X,red1−−−→ . . . . .
X,redk′−−−−→,

depicted by a diagram of the form shown in Figure 4 (a), where k, k′ � 0, m � 1, such that

in every reduction sequence t0
X,red
−−−→ t1

no−→ . . .
no−→ th, where t0 is not a WHNF, at least one

of the transformation rules is applicable to a prefix of the sequence.

A complete set of forking diagrams for the reduction
X,red
−−−→ is a set of transformation

rules on reduction sequences of the form

no,a1←−− . . .
no,ak←−− .

X,red
−−−→ �

X,red1−−−→ . . . . .
X,redk′−−−−→ .

no,b1←−− . . .
no,bm←−−−,

depicted by a diagram of the form shown in Figure 4 (b), where k, k′ � 0, m � 1, such

that for every reduction sequence th
no←− . . . t2

no←− t1
X,red
−−−→ t0, where t1 is not a WHNF and

t0 
≡ t2, at least one of the transformation rules from the set is applicable to a suffix of

the sequence.

The two different kinds of diagrams are required for two different parts of the proof for

the contextual equivalence of two terms. Commuting and forking diagrams often have a

common representation (see Figure 4 (c)). We will give the diagrams only in the common

representation if the commuting and forking diagrams can be read off obviously from it.

We abbreviate k reductions of type a with
a,k
−→. As another notation, we use the ∗- and

+-notation of regular expressions for the diagrams. The interpretation is an infinite set

of diagrams constructed as follows. Repeat the following step as long as diagrams with

reductions labelled with ∗ or + exist:

For a reduction
a,∗
−→ (

a,+
−−→, respectively) of a diagram, insert diagrams for all i ∈ �0

(i ∈ �) with
a,∗
−→ (

a,+
−−→) replaced by

a,i
−→ reductions into the set.

4. Correctness of (lbeta), (case-c), (seq-c) and the ��-properties

In this section we use the context lemmas together with complete sets of commuting

and forking diagrams to prove that (lbeta), (case-c) and (seq-c) are correct program

transformations. The correctness proofs of the other reduction rules are more complex,

hence in the second part of this section we will provide some general properties of a

program transformation that ensure correctness of the transformation.

https://doi.org/10.1017/S0960129508006774 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006774


D. Sabel and M. Schmidt-Schauss 528

4.1. Correctness of (lbeta), (case-c) and (seq-c)

Lemma 4.1. If s
red−→ t with red ∈ {lbeta, case-c, seq-c, amb-c, lapp, lcase, lseq, lamb},

then t �↓c s.

Proof. Let red ∈ {lbeta, case-c, seq-c, amb-c, lapp, lcase, lseq, lamb}, s red−→ t and R[t]↓.
Then there exists RED ∈ CON(R[t]). Since every reduction red of the kind mentioned in

the lemma inside a reduction context is a normal-order reduction, we have R[s]
no,a
−−→ R[t].

By appending RED to R[s]
R,red
−−−→ R[t], we have R[s]↓. Hence, ∀R ∈ R : R[t]↓ =⇒ R[s]↓.

The context lemma for may-convergence shows the claim.

Since the defined normal-order reduction may reduce inside the arguments of amb

expressions, the normal-order reduction is not unique. To treat this situation, it is not

sufficient to use diagrams for (no, a), where a is a deterministic reduction with all other

normal-order reductions. An adequate set of contexts for our proofs is the set of surface

contexts.

Definition 4.2 (Surface context). Surface contexts are contexts where the hole is not in the

body of an abstraction. We use S to denote the set of all surface contexts.

Note that every reduction context is also a surface context, that is, R ⊂ S.

Lemma 4.3. A complete set of forking diagrams for
S,red
−−−→ with

red ∈ {lbeta, case-c, seq-c}

is

·
S,red ��

no,a

��

·
no,a

���
�
�

·
S,red

����� ·

·
S,red ��

no,a

��

·

no,a
���

�
�

�

·

a arbitrary for a ∈ {case, seq, amb-l, amb-r}

Proof. The claim follows by inspecting all cases where an (no, a) reduction overlaps

with an (S, red) reduction with red ∈ {lbeta, case-c, seq-c}. The first case is when both

reductions are performed independently, and hence can be commuted. The second diagram

is applicable if the redex of red is inside an unused alternative of a case expression, inside

the first argument of a seq expression or inside an argument of an amb expression that is

discarded by an (no, case), (no, seq-c) or (no, amb) reduction, respectively.

Lemma 4.4. Let red ∈ {lbeta, case-c, seq-c} and s
iS,red
−−−→ t. Then s is a WHNF if and

only if t is a WHNF.

Lemma 4.5. Let red ∈ {lbeta, case-c, seq-c} and s
red−→ t. Then s �↓c t

Proof. By using the context lemma for may-convergence, we need to show that if

s0
red−→ t0, we have for all reduction contexts R that R[s0]↓ =⇒ R[t0]↓. We will show

the same statement for the larger set of all surface contexts. Let s ≡ S[s0], t ≡ S[t0] with
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s
S,red
−−→ t. Also, let RED ∈ CON(s). By induction on the length of RED, we show that

t↓. The base case is covered by Lemma 4.4. Let RED be of length l > 0. If the first

reduction of RED is the same reduction as the (S, red) reduction, there is nothing to show.

In all other cases, we can apply a diagram from the complete set of forking diagrams of

Lemma 4.3 to a suffix of
RED←−− s

S,red
−−→ t. Let RED′ be the suffix of RED of length l − 1.

Then we have the following two possibilities:

s
S,red ��

no,a ��

t
no,a���

�

s′ S,red
�����

RED′ ��

t′

RED′′��
��

s
S,red ��

no,a ��

t

no,a���
�

�

s′

RED′ ��

(1) (2)

(1) We use the induction hypothesis for RED′, thus t′↓. With t
no,a
−−→ t′, we have t↓.

(2) If the second diagram is applicable, we can append RED′ to t
no,a
−−→ s′, that is, we have

t↓.

Lemma 4.6. If s
red−→ t with red ∈ {lbeta, case-c, seq-c}, then s �⇓c t.

Proof. We use Corollary 3.15. We have s �↓c t from Lemma 4.5. Let R be a reduction

context, R[s]
R,red
−−−→ R[t] and R[t]↑. Since every reduction red ∈ {lbeta, case-c, seq-c} in a

reduction context is also a normal-order reduction, we have R[s]↑.

Lemma 4.7. If s
red−→ t with red ∈ {lbeta, case-c, seq-c}, then t �⇓c s.

Proof. We use Corollary 3.15. From Lemma 4.1, we have t �↓c s. It remains to show

∀R ∈ R : R[s]↑ =⇒ R[t]↑. We will show the statement for all surface contexts. Let

s0 ≡ S[s], t0 = S[t], s
red−→ t and s0↑. We use induction on the length k of a sequence

RED ∈ DIV(s0). If k = 0, that is, s0⇑, then the claim follows from Lemma 4.1 using

Lemma 3.8. Now let k > 0. Then the induction step is analogous to the proof of Lemma 4.5

using the forking diagrams.

Proposition 4.8. The reductions (lbeta), (case-c) and (seq-c) are correct program trans-

formations.

Proof. The claim follows from Lemma 4.1, 4.5, 4.7 and 4.6.

4.2. Properties for correctness of program transformations

The proofs of correctness of the remaining program transformations are more difficult.

We postpone these proofs and provide here some general properties of program trans-

formations and show that their validity guarantees the correctness of the transformation.

Definition 4.9. Let P be a program transformation. Then P fulfils the ��-properties if

all of the following properties hold for all expressions s, t with s
P−→ t:
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�⇒(P ):

∀S ∈ S: for all REDs ∈ CON(S[s]) there exists REDt ∈ CON(S[t]).

�⇐(P ):

∀S ∈ S: for all REDt ∈ CON(S[t]) there exists REDs ∈ CON(S[s]).

�⇒(P ):

∀S ∈ S: for all REDs ∈ DIV(S[s]) there exists REDt ∈ DIV(S[t]).

�⇐(P ):

∀S ∈ S: for all REDt ∈ DIV(S[t]) there exists REDs ∈ DIV(S[s]).

Theorem 4.10. If a program transformation fulfils the ��-properties, it is correct.

Proof. Let P be a program transformation and s, t be expressions with s
P−→ t. Then

�⇒(P ) implies that ∀S ∈ S : S[s]↓ =⇒ S[t]↓. Using Lemma 2.15, it follows from �⇐(P )

that ∀S ∈ S : S[s]⇓ =⇒ S[t]⇓. Hence, the context lemma (Lemma 3.16) shows s �c t.

The relation t �c s follows analogously from �⇐(P ) and �⇒(P ).

The next lemma is useful when proving properties �⇐(P ) and �⇒(P ), since their base

cases (that is, REDs and REDt have length 0) follow directly from the validity of �⇐(P )

and �⇒(P ).

Lemma 4.11. Let s, t be expressions with s
P−→ t, where P is a program transformation

that fulfils the properties �⇒(P ) and �⇐(P ). Then ∀C ∈ C: C[s]⇑ if and only if C[t]⇑.

Proof. Using the context lemma for may-convergence from �⇒(P ) and �⇐(P ), we have

s �↓c t and t �↓c s. With Lemma 3.8, the claim follows.

The following lemma shows that for proving the properties �⇒(P ) and �⇒(P ) it is

sufficient just to consider transformations inside surface contexts that are internal, that is,

not a normal-order reduction.

Lemma 4.12. Let P be a program transformation. Then the following properties hold:

1 If for all expressions s, t with s
iS,P
−−→ t and for all REDs ∈ CON(s) there exists

REDt ∈ CON(t), then �⇒(P ).

2 If for all expressions s, t with s
iS,P
−−→ t and for all REDs ∈ DIV(s) there exists

REDt ∈ DIV(t), then �⇒(P ).

Proof. Let S be a surface context, and s, t be expressions with s
S,P
−−→ t. It is sufficient to

consider the case where s
S,P
−−→ t is a normal-order reduction. For every reduction sequence

REDs ∈ CON(s) (REDs ∈ DIV(s), respectively) a reduction sequence REDt ∈ CON(s)

(REDt ∈ DIV(t), respectively) can be constructed by appending REDs to s
S,P
−−→ t.

Note that for program transformations that are never used as normal-order reductions

(for example, the transformations in Section 5), every application inside a surface context

is internal.

In the following sections we show that the reduction rules and further program

transformations fulfil the ��-properties and thus are correct.
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Fig. 5. Additional transformation rules

We will now give a general description of the method we will use for proving the

properties. Let P be a program transformation. Roughly speaking, the proofs of properties

�⇒(P ) and �⇒(P ) are by induction on the length of the reduction sequence REDs where

the induction step uses the complete set of forking diagrams for P . Some inductions do

not work using the length of REDs only (this depends on the diagrams), so stronger claims

with different measures are proved. The proofs of �⇐(P ) and �⇐(P ) are by induction on

the length of REDt, with specialised claims if this measure does not work. The induction

step uses a complete set of commuting diagrams for P .

For a transformation P , we will tag a lemma corresponding to the property �⇒(P ),

�⇐(P ), �⇐(P ) or �⇐(P ) if the validity of this property is a direct consequence of the

lemma, that is, if we prove a stronger claim or the validity of the property follows from

Lemma 4.12.

5. Additional correct program transformations

We now define some additional program transformations that will be necessary during

the proofs of the correctness of the remaining reduction rules of Λlet
amb (see Section 6), and

are also useful for compiler optimisations.

Definition 5.1. Some additional transformation rules are defined in Figure 5.
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We define the following unions:

(gc) := (gc1) ∪ (gc2) (cpx) := (cpx-in) ∪ (cpx-e)

(cpcx) := (cpcx-in) ∪ (cpcx-e) (opt) := (gc) ∪ (cpx) ∪ (cpcx) ∪ (abs) ∪ (xch).

The transformation (gc) performs garbage collection by removing unnecessary bindings,

(cpx) copies variables, (cpcx) abstracts a constructor application and then copies it, the

rule (abs) abstracts a constructor application by sharing the arguments through new

letrec bindings and the rule (xch) restructures two bindings in a letrec environment

by reversing an indirection and the corresponding binding.

Lemma 5.2. A complete set of forking diagrams and a complete set of commuting

diagrams for (S, opt) can be read off from the following diagrams:

·
no,a

��

S,opt �� ·
no,a

��
·
S,opt

�� ·

·
no,a

��

S,opt �� ·

no,a
����

��
��

��

·

·
no,lll

��

S,opt �� ·

·
S,opt

����������

·
no,a

��

S,opt �� ·
no,a

��
·
S,opt,+

�� ·

a arbitrary for a ∈ {case, seq, amb-l, amb-r, cp} for a ∈ {cp, case}

Proof. The claim follows by developing the diagrams for (S, gc), (S, cpx), (S, xch),

(S, abs) and (S, cpcx), and then combining the diagrams. The detailed case analysis can

be found in Sabel and Schmidt-Schauss (2006).

Lemma 5.3. Let s
S,opt
−−→ t. Then the following properties hold:

— If s is a WHNF, then t is a WHNF.

— If t is a WHNF, then either s is a WHNF or
S,opt
−−→ is a (S, gc) transformation and

there is some WHNF s′ with s
no,llet
−−−→ s′.

Proof. The claim follows from the Definition 2.11. For (S, gc) there are three special

cases:

— s ≡ (letrec Env in s′) where s′ is a WHNF.

— s ≡ (letrec Env 2 in (letrec Env in s′)) where (letrec Env 2 in s′) is a WHNF.

— s ≡ (letrec Env 2, x = (letrec Env in r) in s′), where (letrec Env 2, x = r in s′) is a

WHNF.

In all cases a single (no, llet) reduction applied to s leads to a WHNF.

The claims that an application of (opt) inside surface contexts preserves may- and must-

convergence is proved by proving a slightly stronger claim, in order to make the induction

argument easier. These statements directly imply the validity of the ��-properties, so it

follows that (opt) is a correct program transformation.

Lemma 5.4 (�⇒(opt)). If s
S,opt
−−→ t, then for all REDs ∈ CON(s) there exists REDt ∈

CON(t) with rl(REDt) � rl(REDs)

Proof. Let s
S,opt
−−→ t and REDs ∈ CON(s) with length l. We use induction on l to show

the existence of REDt ∈ CON(t) with rl(REDt) � l. If l = 0, the claim follows from
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Lemma 5.3. If l > 0, we apply a forking diagram for (S, opt) from the complete set of

Lemma 5.2 to the sequence
REDs←−−− s

S,opt
−−→ t. With RED′ being the suffix of REDs of length

l − 1, we have the following cases:

s
no,a ��

S,opt �� t
no,a���

�

s′ S,opt
�����

RED′ ��

t′
RED′t��

��

s
no,a ��

S,opt �� t

no,a���
�

�

s′

RED′ ��

s
no,lll ��

S,opt �� t
REDt

����
��

s′ S,opt

������

RED′ ��

s
no,a ��

S,opt �� t
no,a���

�

s′ S,opt,+
�����

RED′ ��

t′
RED′t��

��

(1) (2) (3) (4)

(1) We can apply the induction hypothesis to RED′ and hence have RED′t ∈ CON(t′)

with rl(RED′t) � rl(RED′). By appending RED′t to t
no,a
−−→ t′, we have REDt ∈ CON(t)

with rl(REDt) � rl(REDs).

(2) There exists REDt =
no,a
−−→ .

RED′−−−→ and rl(REDt) = l.

(3) By the induction hypothesis, we have REDt ∈ CON(t) with rl(REDt) � rl(RED′).

With rl(RED′) = rl(REDs) + 1, the claim follows.

(4) We apply the induction hypothesis first for RED′ and then for every derived

normal-order reduction leading to RED′t ∈ CON(t′) with rl(RED′t) � rl(RED′).

By appending RED′t to t
no,a
−−→ t′, we have REDt ∈ CON(t) with rl(REDt) � l.

Lemma 5.5 (�⇐(opt)). If s
S,opt
−−→ t, then for all REDt ∈ CON(t) there exists REDs ∈

CON(s) with rl(\lll)(REDs) � rl(\lll)(REDt).

Proof. We use induction on the following measure μ on reduction sequences s
S,opt
−−→

t
RED−−→ with μ(s

S,opt
−−→ t

RED−−→) = (rl(\lll)(RED), μlll(s)) (the measure μlll(·) was intro-

duced in Definition 3.18). We assume the measure to be ordered lexicographically. If

μ(s
S,opt
−−→ t

REDt−−−→) = (0, (0, 0)), then μlll(s) = (0, 0) implies μlll(t) = (0, 0) since an (S, opt)

transformation does not introduce new letrec expressions. Thus REDt must be empty

and t must be a WHNF. From Lemma 5.3, we have that either s is also a WHNF or

s
no,lll
−−→ s′ where s′ is a WHNF. In both cases we have a (possibly empty) REDs ∈ CON(S)

with rl(\lll)(REDs) � rl(\lll)(REDt).

Now, let μ(s
S,opt
−−→ t

REDt−−−→) = (l, m) > (0, (0, 0)). Without loss of generality, we assume

that REDt is non-empty, hence we can apply a commuting diagram from the complete

set of Lemma 5.2. Let RED′ be the suffix of REDt of length l − 1. We have the following

cases:

s
no,a ���

�
S,opt �� t

no,a��
s′ S,opt

�����
RED′s ��

��
t′

RED′��

s

no,a ���
�

�
S,opt �� t

no,a��
t′

RED′ ��

s
no,lll ���

�
S,opt �� t

REDt

��
s′ S,opt

������

RED′s ��
��

s
no,a ���

�
S,opt �� t

no,a��
s′ S,opt,+

�����
RED′s ��

��
t′

RED′��

(1) (2) (3) (4)
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(1) We can apply the induction hypothesis to s′
S,opt
−−→ t′

RED′−−−→ since either μlll(s
′) < m if the

(no, a) reduction is an (lll) reduction or rl(\lll)(RED
′) < rl(\lll)(REDt). Hence, we have

RED′s ∈ CON(s′), and by appending RED′s to s
no,a
−−→ s′, we have REDs ∈ CON(s)

with rl(\lll)(REDs) � rl(\lll)(t).

(2) We have REDs =
no,a
−−→ RED′−−−→ and rl(\lll)(REDs) = rl(\lll)(REDt).

(3) Since μlll(s
′) < μlll(s),we can apply the induction hypothesis to s′

S,opt
−−→ t

REDt−−−→ and

have RED′s ∈ CON(s′) with rl(\lll)(RED
′
s) � rl(\lll)(REDt). By appending RED′s to

s
no,lll
−−→ s′, the claim follows.

(4) Since rl(\lll)(RED
′) < rl(\lll)(REDt), we can apply the induction hypothesis mul-

tiple times for every (S, opt) transformation leading to RED′s ∈ CON(s′) with

rl(\lll)(RED
′
s) � l− 1. By appending RED′s to s

no,a
−−→ s′, we have REDs ∈ CON(s) with

rl(\lll)(REDs) � l.

Since we have shown �⇐(opt) and �⇒(opt), Lemma 4.11 can be applied.

Corollary 5.6. If s
S,opt
−−→ t, then s⇑ if and only if t⇑.

Lemma 5.7 (�⇒(opt)). If s
S,opt
−−→ t, then for all REDs ∈ DIV(s) there exists REDt ∈

DIV(t) with rl(REDt) � rl(REDs)

Proof. Let s = S[s0], t = S[t0] with s0
opt
−→ t0, and let REDs ∈ DIV(s) with l =

rl(REDs). We show by induction on l that there exists REDt ∈ DIV(t) with rl(REDt) �
l. For the base case, let REDs be empty, that is, s⇑. Then Corollary 5.6 shows the claim.

The induction step uses the same arguments as the proof of Lemma 5.4.

Lemma 5.8 (�⇐(opt)). If s
S,opt
−−→ t, then for all REDt ∈ DIV(t) there exists REDs ∈

DIV(s) with rl(\lll)(REDs) � rl(\lll)(REDt).

Proof. The claim follows by induction on the measure μ on reduction sequences

s
S,opt
−−→ t

RED−−→ with μ(s
S,opt
−−→ t

RED−−→) = (rl(\lll)(RED), μlll(s)). Let the measure be ordered

lexicographically. The base case is covered by Corollary 5.6. The induction step uses the

same arguments as the proof of Lemma 5.5.

The previous lemmas show that (opt) fulfils the ��-properties, hence, with The-

orem 4.10, the following proposition holds.

Proposition 5.9. (opt) is a correct program transformation.

6. Correctness of deterministic reduction rules

In this section we prove the correctness of the remaining reduction rules of Λlet
amb.

6.1. Correctness of (case)

We show the following proposition using the correctness of (opt) and (case-c).
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Proposition 6.1. (case) is a correct program transformation, that is, if s
case−−→ t, then s ∼c t.

Proof. From Propositions 5.9 and 4.8, we have that (cpx), (cpcx) and (case-c) preserve
contextual equivalence. Let {xi = xi−1}mi=1 be the chain used by a (C, case-in) or
(C, case-e) reduction. Then every (case-in) reduction can be replaced by the sequence
C,cpx,m−1
−−−−−−→

C,cpcx
−−−→

C,case-c
−−−−→:

letrec x1 = c
−→
ti , {xi = xi−1}mi=2,Env in C[caseT xm . . . (c −→zi → r) . . .]

cpx,m−1−−−−→ letrec x1 = c
−→
ti , {xi = xi−1}mi=2,Env in C[caseT x1 . . . (c −→zi → r) . . .]

cpcx−−→ letrec x1 = c −→yi , {yi = ti}ar(c)
i=1 , {xi = xi−1}mi=2,Env in C[caseT (c −→yi ) . . .]

case-c−−−→ letrec x1 = c −→yi , {yi = ti}ar(c)
i=1 , {xi = xi−1}mi=2,Env in C[letrec {zi = yi}ar(c)

i=1 in r].

Every (C, case-e) reduction can also be replaced by the sequence
C,cpx,m−1
−−−−−−→

C,cpcx
−−−→

C,case-c
−−−−→,

where the transformation is analogous to the transformation for (C, case-in).

6.2. Correctness of (lll)

We develop complete sets of diagrams for (lll), and then prove correctness. By case analysis

of the overlappings between (S, lll) and normal-order reductions, the following lemmas

hold. Detailed proofs can be found in Sabel and Schmidt-Schauss (2006).

Lemma 6.2. A complete set of commuting diagrams for (iS, lll) is

·
iS,lll ��

no,a

���
�
� ·

no,a

��
·

iS ,lll
����� ·

·
iS,lll ��

no,a
		�

�
�

� ·
no,a

��
·

·
iS,llet ��

no,lll,+
		�

�
�

� ·
no,lll

��
·

·
iS,llet ��

no,lll

���
�
� ·

no,lll

��
·
iS,lll,+

����� ·

a arbitrary a ∈ {case, seq, amb-l, amb-r}

Lemma 6.3. A complete set of forking diagrams for (S, lll) is

·
S,lll ��

no,a

��

·
no,a

���
�
�

·
S,lll

����� ·

·
S,lll ��

no,a

��

·

no,a
���

�
�

�

·

·
S,lll ��

no,lll

��

·
no,lll,+

���
�
�

·
no,lll,+

����� ·

·
no,lamb��

no,a

��

·
no,lll,+

���
�

·
no,a

���
�

·
no,lll,+

����� ·

·
S,lamb ��

no,amb

��

·
no,lll,∗

���
�

·
no,amb

���
�

·
S,gc−1

����� ·

where for the first diagram a is arbitrary, for the second a ∈ {case, seq, amb-l, amb-r}
and for the fourth a ∈ {case, lbeta, cp, seq, amb-l, amb-r}.

Lemma 6.4. If s
iS,lll
−−→ t, then s is a WHNF if and only if t is a WHNF.
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Lemma 6.5 (�⇒(lll)). If s
S,lll
−−→ t, then for all REDs ∈ CON(s) there exists REDt ∈ CON(t)

with rl(\lll)(REDt) � rl(\lll)(REDs).

Proof. The proof is by induction on a measure μ on reduction sequences with

μ(
REDs←−−− s

S,lll
−−→ t) = (rl(\lll)(REDs), μlll(s))

using Lemma 6.4 and Lemma 6.3. The complete proof can be found in Sabel and

Schmidt-Schauss (2006).

Lemma 6.6 (�⇐(lll)). If s
iS,lll
−−→ t, then for all REDt ∈ CON(t) there exists REDs ∈

CON(s) with rl(\lll)(REDs) � rl(\lll)(REDt).

Proof. The claim follows by induction on a lexicographically ordered measure μ with

μ(s
iS,lll
−−→ t

REDt−−−→ r) = (rl(\lll)(REDt), μlll(s)),

where the base case uses Lemma 6.4 and the induction step uses the commuting diagrams

for (iS, lll). The tedious, but straightforward proof can be found in Sabel and Schmidt-

Schauss (2006).

Corollary 6.7. If s
S,lll
−−→ t, then s⇑ if and only if t⇑.

Lemma 6.8 (�⇒(lll)). If s
S,lll
−−→ t, then for all REDs ∈ DIV(s) there exists REDt ∈

DIV(t) with rl(\lll)(REDt) � rl(\lll)(REDs).

Proof. The claim follows by induction on a lexicographically ordered measure μ defined

as μ(
REDs←−−− s

S,lll
−−→ t) = (rl(\lll)(REDs), μlll(s)). The base case follows from Corollary 6.7, and

the induction uses the forking diagrams for (S, lll).

Lemma 6.9 (�⇐(lll)). If s
iS,lll
−−→ t, then for all REDt ∈ DIV(t) there exists REDs ∈

DIV(s) with rl(\lll)(REDs) � rl(\lll)(REDt).

Proof. The claim follows by induction on the measure μ with

μ(s
iS,lll
−−→ t

REDt−−−→ r) = (rl(\lll)(REDt), μlll(s)),

where the base case is covered by Corollary 6.7 and the induction step uses the commuting

diagrams for (iS, lll).

Since we have shown the laws �⇒(lll),�⇐(lll),�⇒(lll) and �⇐(lll), the transformation

(lll) fulfils the ��-properties. Thus the following proposition holds.

Proposition 6.10. (lll) is a correct program transformation.
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6.3. Correctness of (seq)

Lemma 6.11. A complete set of forking diagrams for (S, seq) is

·
S,seq ��

no,a

��

·
no,a

���
�
�

·
S,seq

����� ·

·
S,seq ��

no,a

��

·

no,a
���

�
�

�

·

·
S,seq ��

no,cp

��

·
no,cp

���
�
�

·
S,seq

����� ·
S,seq

����� ·

a arbitrary for a ∈ {case, seq, amb-l, amb-r}

Proof. We have that:

— the reductions commute; or

— the (S, seq) is discarded by a normal-order reduction; or

— if the inner redex of the (S, seq) is in the body of an abstraction, which is copied by

an (no, cp) reduction, then two (S, seq) reductions are necessary.

Lemma 6.12. If s
iS,seq
−−−→ t, then s is a WHNF if and only if t is a WHNF.

Lemma 6.13 (�⇒(seq)). If s
S,seq
−−−→ t, then for all REDs ∈ CON(s) there exists REDt ∈

CON(t) with rl(REDt) � rl(REDs).

Proof. Let s
S,seq
−−−→ t and REDs ∈ CON(s) with rl(REDs) = l. We use induction on l.

If l = 0, then s is a WHNF and the claim follows from Lemma 6.12.

If l > 0, we let RED′ be the suffix of REDs of length l − 1. If the first reduction of

REDs is the same as the (S, seq) reduction, then RED′ ∈ CON(t). Otherwise, we apply a

forking diagram to a suffix of
REDs←−−− s

S,seq
−−−→ t and have the cases:

s
S,seq ��

no,a
��

t
no,a

���
�

s1
RED′

��
S,seq

����� t1
RED′′

����
��

s
S,seq ��

no,a
��

t

no,a

	
	

	

s1
RED′

��

s
S,seq ��

no,cp
��

t

no,cp
���
�

s1 S,seq
�����

RED′

��

s′1
RED′′

����
��
S,seq

����� t1
RED′′′

����
��

(1) (2) (3)

For case (1), we can apply the induction hypothesis to
RED′←−−− s1

S,seq
−−−→ t1. Case (2) is trivial.

For case (3), we apply the induction hypothesis twice, that is, first to
RED′←−−− s1

S,seq
−−−→ s′1 and

then to
RED′′←−−− s′1

S,seq
−−−→ t1.
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Lemma 6.14. A complete set of commuting diagrams for (iS, seq) is

·
no,a

���
�
�
iS,seq �� ·

no,a

��
·

iS,seq
����� ·

·

no,a
		�

�
�

�
iS,seq �� ·

no,a

��
·

·
no,cp

���
�
�

iS,seq �� ·
no,cp

��
·

iS,seq
����� ·

iS,seq
����� ·

·

no,a

��






iS,seq�� ·

no,a

��

·

no,seq

��







·
a arbitrary for a ∈ {case, seq, amb-l, amb-r} a arbitrary

Proof. The first three diagrams describe the same cases as for the forking diagrams.

The last diagram is applicable if the (iS , seq) reduction becomes normal order.

Lemma 6.15 (�⇐(seq)). If s
iS,seq
−−−→ t, then for every REDt ∈ CON(t) there exists REDs ∈

CON(s) with rl(\seq)(REDs) � rl(\seq)(REDt).

Proof. Let s
iS,seq
−−−→ t and REDt ∈ CON(t). We use induction on the measure μ ordered

lexicographically with μ(RED) = (rl(\seq)(RED), rl(RED)).

If rl(REDt) = 0, the claim follows from Lemma 6.12.

If μ(REDt) = (l, m) � (0, 1), we apply a commuting diagram from Lemma 6.14 to a

prefix of s
iS,seq
−−−→ t

REDt−−−→. With RED′ being the suffix of REDt of length (m− 1), we have

the cases:

s

no,a
���
�

iS ,seq �� t
no,a

��
s′

iS ,seq
�����

RED′′

����
��

t′

RED′

��

s

no,a ���
���

iS ,seq �� t
no,a

��
t′

RED′

��

s

no,cp
���
�

iS ,seq �� t
no,cp

��
s′

iS ,seq
�����

RED′′

����
��

s′1

RED′′1
����
��

iS ,seq
����� t′

RED′

��

s

no,a 

�
�
iS ,seq �� t

no,a

��
s′

no,seq 






t′
RED′��

(1) (2) (3) (4)

For case (1) we apply the induction hypothesis to s′
iS ,seq
−−−→ t′

RED′−−−→. Cases (2) and (4) are

trivial. For case (3) we apply the induction hypothesis twice.

Since �⇒(seq) and �⇐(seq) hold, the following corollary is true.

Corollary 6.16. If s
S,seq
−−−→ t, then s⇑ if and only if t⇑.

Lemma 6.17 (�⇒(seq)). If s
S,seq
−−−→ t, then for all REDs ∈ DIV(s) there exists REDt ∈

DIV(t) with rl(REDt) � rl(REDs).

Proof. Let s = S[s0], t = S[t0], s0
seq
−−→ t0 and REDs ∈ DIV(s) with rl(REDs) = l. The

claim follows by induction on l, where the base case is covered by Corollary 6.16 and the

induction step is analogous to the proof of Lemma 6.13.

Lemma 6.18 (�⇐(seq)). If s
iS,seq
−−−→ t, then for every REDt ∈ DIV(t) there exists

REDs ∈ DIV(s) with rl(\seq)(REDs) � rl(\seq)(REDt).
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Proof. Let s = S[s0], t = S[t0], s0
seq
−−→ t0 and REDt ∈ DIV(t). We use induction on the

measure μ(REDt) ordered lexicographically, where

μ(RED) = (rl(\seq)(RED), rl(RED)).

If rl(REDt) = 0, the claim follows from Corollary 6.16. The induction step is analogous

to the proof of Lemma 6.15.

We have shown that (seq) fulfils the ��-properties. Hence, we have the following

proposition.

Proposition 6.19. (seq) is a correct program transformation.

6.4. Correctness of (cp)

Lemma 6.20. A complete set of forking diagrams for (S, cp) is

·
S,cp ��

no,a

��

·
no,a

���
�
�

·
S,cp

����� ·

·
S,cp ��

no,a

��

·

no,a
���

�
�

�

·

·
S,cp ��

no,cp

��

·
no,cp

���
�
�

·
S,cp

�����
S,cp

����� ·

a arbitrary for a ∈ {case, seq, amb-l, amb-r}

Proof. We have that:

— the reductions commute; or

— the redex of the target of the (S, cp) reduction is discarded by a normal-order reduction;

or

— the (S, cp) reduction copies into the body of an abstraction that is copied by an (no, cp)

reduction.

Lemma 6.21. If s
iS,cp
−−→ t, then s is a WHNF if and only if t is a WHNF.

Lemma 6.22 (�⇒(cp)). If s
S,cp
−−→ t, then for all REDs ∈ CON(s) there exists REDt ∈

CON(t) with rl(REDt) � rl(REDs).

Proof. The proof is a copy of the proof of Lemma 6.13 using the complete set of

forking diagrams for (S, cp) from Lemma 6.20 and using Lemma 6.21.

For the other direction, we distinguish two kinds of (cp) reductions:
(cps) := the inner redex of the (cp) is of the form S[x], that is, the target is

inside a surface context.

(cpd) := the inner redex of the (cp) is of the form C[λz.C ′[x]], that is, the

target is inside the body of an abstraction.

Definition 6.23. Let s be a term. Then μSx(s) is the number of occurrences of variables in

s where the occurrence is inside a surface context.

Lemma 6.24. Every (S, cps) or (no, cp) reduction strictly reduces the measure μSx. No

(S, cpd) reduction changes the measure μSx.
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Analysing all overlappings of a (iS , cp) reduction with normal-order reductions shows

the following lemma.

Lemma 6.25. A complete set of commuting diagrams for (iS, cp) is

·
iS,cp ��

no,a

���
�
� ·

no,a

��
·

iS,cp
����� ·

·
iS,cps��

no,a

��





 ·

no,a

��

·

no,cp

��







·

·
iS,cp ��

no,a
		�

�
�

� ·
no,a

��
·

·
iS,cpd ��

no,cp

���
�
� ·

no,cp

��
·
iS,cpd

�����
iS,cpd

����� ·

a arbitrary a arbitrary a ∈ {case, seq, amb-l, amb-r}

Lemma 6.26 (�⇐(cp)). If s
iS,cp
−−→ t, then for all REDt ∈ CON(t) there exists REDs ∈

CON(s) with rl(\cp)(REDs) � rl(\cp)(REDt).

Proof. Let s
iS,cp
−−→ t and REDt ∈ CON(t). The claim follows by induction on the

measure μ on reduction sequences with μ(s
iS,cp
−−→ t

REDt−−−→) = (rl(\cp)(REDt), μSx(t)).

If μ(s
iS,cp
−−→ t

REDt−−−→) = (0, 0), then from Lemma 6.24 we have that REDt must be empty.

Thus Lemma 6.21 shows the claim.

Now, let μ(s
iS,cp
−−→ t

REDt−−−→) = (l, m) > (0, 0). We apply a commuting diagram to a prefix

of s
iS,cp
−−→ t

REDt−−−→. With RED′ being the suffix of REDt where the first reduction is dropped.

We have the following cases:

s
iS,cp ��

no,a
���
� t

no,a
��

s′
iS ,cp

�����

RED′′

����
��

t′

RED′

��

s
iS,cp ��

no,a 

�
� t

no,a

��
s′

no,cp 






t′
RED′��

s
iS,cp ��

no,a ����
�� t

no,a
��
t′

RED′

��

s
iS,cpd ��

no,cpd ���
� t

no,cp
��

s′

RED′′′

����
�� iS ,cpd

����� s′′

RED′′ ����
�� iS ,cpd

����� t′

RED′

��

(1) (2) (3) (4)

Cases (2) and (3) are trivial. In case (1) we apply the induction hypothesis to s′
iS ,cp
−−→

t′
RED′−−−→. In case (4) the induction hypothesis is applied twice: first to s′′

iS ,cpd
−−−→ t′

RED′−−−→,

and then to s′
iS ,cpd
−−−→ s′′

RED′′−−−→.

With Lemma 4.11, the following corollary is true.

Corollary 6.27. If s
S,cp
−−→ t, then s⇑ if and only if t⇑.

Lemma 6.28 (�⇒(cp)). If s
S,cp
−−→ t, then for all REDs ∈ DIV(s) there exists REDt ∈

DIV(t) with rl(REDt) � rl(REDs).

Proof. The proof is the same as the proof of Lemma 6.17 using the complete set of

forking diagrams for (S, cp) from Lemma 6.20, with Corollary 6.27 for the base case.
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Lemma 6.29 (�⇐(cp)). If s
iS,cp
−−→ t, then for all REDt ∈ DIV(t) there exists REDs ∈

DIV(s) with rl(\cp)(REDs) � rl(\cp)(REDt).

Proof. The proof is analogous to the proof of Lemma 6.26 using Corollary 6.27.

We have shown that (cp) fulfils the ��-properties. Hence, we have the following

proposition.

Proposition 6.30. (cp) is a correct program transformation.

7. The Standardisation Theorem

We begin by summarising the results of the previous sections.

Theorem 7.1. All deterministic reductions of the calculus Λlet
amb preserve contextual equi-

valence, that is, if s
a−→ t with a ∈ {lbeta, lll, case, seq, cp}, then s ∼c t.

Proof. The claim follows from Propositions 4.8, 6.10, 6.1, 6.19 and 6.30.

We will now develop some properties of the reduction (amb) that will be required for

the proof of the Standardisation Theorem (Theorem 7.13).

Lemma 7.2. If s
iS,amb
−−−−→ t, then s is a WHNF if and only if t is a WHNF.

The following lemma shows that it is sufficient to consider (amb-c) reductions.

Lemma 7.3. Let s, t be terms with s
C,amb-in
−−−−−→ t or s

C,amb-e
−−−−→ t. Then either

s
C,cp
−−→

C,amb-c
−−−−→

C,cp
←−− t

or

s
C,cpx,∗
−−−−→

C,cpcx
−−−→

C,amb-c
−−−−→

C,cpcx
←−−−

C,cpx,∗
←−−−− t.

Proof. The sequence of transformation copies the value into the argument of amb, then

performs (amb-c) and finally undoes the copying step.

Lemma 7.4. If s
amb−−→ t, then t �↓c s.

Proof. The claim was proved for (amb-c) in Lemma 4.1. For (amb-in) or (amb-e), we

replace the reduction using Lemma 7.3. Then Theorem 7.1, Proposition 5.9 and Lemma 4.1

show the claim.

A consequence of the previous lemma is that the property �⇐(amb) also holds.

Remark 7.5. An (amb) reduction may introduce must-convergence, for example, consider

the terms

s ≡ caseBool (amb True False) (True→ Ω) (False→ False)

and

t ≡ caseBool False (True→ Ω) (False→ False)
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such that s
amb−−→ t. While t⇓, s may reduce to Ω, that is, ¬(s⇓). Hence, (amb) is not a

correct program transformation.

Lemma 7.6. A complete set of commuting diagrams and a complete set of forking

diagrams for (iS, amb-c) can be read off from the following diagrams:

·
iS,amb-c��

no,a

��

·
no,a

��
·
iS,amb-c

�� ·

·
iS,amb-c��

no,a
		�

��
��

��
� ·

no,a

��
·

·
iS,amb-c��

no,a

��

·
no,a

��
·
no,amb-c

�� ·

a arbitrary for a ∈ {case, seq, amb-l, amb-r} a arbitrary

Proof. The claim follows by case analysis. The reductions commute, or the redex of the

(S, amb-c) is discarded, or the internal (amb-c) reduction becomes normal order.

Remark 7.7. A complete set of forking diagrams for (S, amb-c) does not exist. There are

forks that cannot be closed, for example, False
no,amb-l
←−−−− (amb False True)

S,amb-r
−−−−→ True.

Nevertheless, the following lemmas hold for (amb-c) reductions within all surface contexts.

The following lemma will be used for the base case of the induction in the proof

of Lemma 7.9. Note that we did not need such a lemma for the correct program

transformations since the base cases were covered by property �⇐(·). As this property

does not hold for (amb), we need the following specialised claim.

Lemma 7.8. If s
S,amb-c
−−−−−→ t, then s⇓ =⇒ t↓

Proof. Let s
S,amb-c
−−−−−→ t. Then the claim follows by induction on the length of a sequence

RED ∈ CON(s) by using Lemma 7.2 and the forking diagrams from Lemma 7.6.

Lemma 7.9. If s
S,amb-c
−−−−−→ t, then t↑ =⇒ s↑.

Proof. Let s
S,amb-c
−−−−→ t. Then the claim can be shown by induction on the length of

RED ∈ DIV(t) using Lemma 7.8 and the commuting diagrams for (iS, amb-c).

Analogously to (cps), let (ambs) be the reduction (amb) where the inner redex of

(amb-in) or (amb-e) is inside a surface context.

Proposition 7.10. If s
S,ambs
−−−−→ t, then t↑ =⇒ s↑

Proof. The claim follows from Lemmas 7.9 and 7.3 using Theorem 7.1 and Proposi-

tion 5.9.

Corollary 7.11. The property �⇐(amb) holds.
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Example 7.12. There is a surprising counterexample showing that s
C,amb-c
−−−−→ t and t↑ do

not imply s↑.

s = letrec y = λz.amb True False

m = λx.if (y 0) then m x else True

in m True

t = letrec y = λz.True

m = λx.if (y 0) then m x else True

in m True

The definition ensures that s
C,amb-c
−−−−→ t. Inspecting the normal-order reduction, we see that

s⇓ but t⇑. Consequences of this example are that Proposition 7.10 cannot be generalised

from surface contexts to arbitrary contexts, and that the second part of the Standardisation

Theorem (Theorem 7.13) cannot be generalised to arbitrary contexts.

We define the transformation (corr) as the union of those reductions and transforma-

tions that have been shown to be correct. The transformation (allr) is then the union of

(ambs), (corr) and the inverse of (corr):

(corr) := (lll) ∪ (lbeta) ∪ (seq) ∪ (case) ∪ (opt) (allr) := (corr) ∪ (corr)−1 ∪ (ambs)

Now we formulate the Standardisation Theorem, which states that for every converging

sequence consisting of all defined reductions and transformations there exists a normal-

order reduction sequence that converges, and also that for every diverging sequence of

reductions inside surface contexts there exists a normal-order reduction sequence that

diverges.

Theorem 7.13 (Standardisation).

1 If t is a term with t
C,allr,∗
−−−−→ t′ where t′ is a WHNF, then t↓.

2 If t is a term with t
S,allr,∗
−−−−→ t′ where t′⇑, then t↑.

Proof.

1 Let t ≡ t0
C,red1−−−→ t1

C,red2−−−→ . . .
C,redk−1−−−−→ tk ≡ t′ where t′ is a WHNF. Using Theorem 7.1,

Proposition 5.9 and Lemma 7.4, we have for every ti
C,redi+1−−−−→ ti+1 that if ti+1↓, then ti↓.

Using induction on k, we can then show t0↓.
2 Let t ≡ t0

S,red1−−−→ t1
S,red2−−−→ . . .

S,redk−1−−−−→ tk ≡ t′ where t′⇑. With Theorem 7.1 and

Propositions 5.9 and 7.10, we have for every ti
S,redi+1−−−−→ ti+1 that if ti+1↑ then ti↑. Using

induction on k, we can then show t0↑.

Since fair normal-order reduction induces the same notions of convergence and

divergence as normal-order reduction, we can transfer the Standardisation Theorem

to fair evaluation.
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Corollary 7.14.

— If t is a term with t
C,allr,∗
−−−−→ t′ where t′ is a WHNF, then t↓F .

— If t is a term with t
S,allr,∗
−−−−→ t′ where t′⇑, then t↑F .

Note that Corollary 7.14 cannot be generalised to arbitrary contexts due to the

counterexample of Example 7.12.

Using the second part of the Standardisation Theorem, we can prove the following

proposition.

Proposition 7.15. Let s, t be expressions with s⇓ (s⇓F , respectively) and s
S,allr,∗
−−−−→ t. Then t⇓

(t⇓F , respectively).

Proof. Let s
S,allr,∗
−−−−→ t. We show that if t↑, then s↑. Since t↑, there exists t′ with t

no,∗
−−→ t′

and t′⇑. The sequence
S,allr∗
−−−−→

no,∗
−−→ is also a sequence of (S, allr) transformations. Hence,

we can apply Theorem 7.13 and have s↑. The claim for fair evaluation follows from

Theorem 2.21.

8. Some consequences of the Standardisation Theorem

In this section we will show that must-divergent expressions form an equivalence class with

respect to ∼c, prove a classical bottom-avoidance law and, finally, show that contextual

equivalence can be defined by taking into account the must-convergence behaviour only.

8.1. On the equivalence of Ω-terms

Definition 8.1. Let s be an expression. If for all environments Env , (letrec Env in s)⇑,
then s is called an Ω-term.

An example of such an expression is (letrec y = λz.z, x = x in x). The purpose of this

section is to show that all Ω-terms are equal with respect to ∼c. This result is easy to prove

for calculi with erratic choice (see, for example, Schmidt-Schauss et al. (2004)) as in such

calculi, for every reduction context R, the term R[s], with s an Ω-term, is must-divergent.

This does not hold for our calculi as the normal-order redexes are not unique and amb is

bottom-avoiding: for example, for the reduction context R ≡ (amb [·] True), the expression

R[s] may-converges for every expression s. Thus we will analyse the reduction behaviour

of expressions of the form S[s], where S is a surface context and s is an Ω-term. Then we

will apply the context lemma.

In the following, we let S be a surface context and s be an Ω-term. Let RED be

a normal-order reduction of S[s], that is, RED = S[s] = t0
no−→ t1

no−→ . . .
no−→ tn. We

label subterms and bindings of the successor reducts ti of S[s] with the labels BM,BL,

respectively, and we write B if we mean BL or BM. A subterm is a B-term, if it

is within a term t of a BL-labelled binding x = t, or a subterm of the BM-labelled

term.
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Definition 8.2. A labelling is admissible, if the following properties hold:

— The label BL only occurs at bindings that are in a surface context, and the label BM

labels at most one subterm in a surface context.

— The bound variables in bindings labelled BL only occur in B-labelled sub expressions.

We can reconstruct an S-part, a B-part and an E-part of every ti as follows:

— The S-part of ti can be obtained by replacing the BM-labelled subterm with the hole,

and by removing all the BL-labelled bindings. Every letrec with empty binding is

eliminated using (gc). We use RecS (ti) to denote the resulting expression. It may be a

surface context, or an expression.

— The B-part is obtained as (letrec Env in r), where Env consists exactly of all BL-

labelled bindings, and r is the subexpression that is labelled BM. If there is no such

expression, the B-part is undefined. We use RecB(ti) to denote the resulting expression.

— The E-part is the set of bindings x = t in a surface context of ti that are not labelled

BL. We use RecE(ti) to denote the resulting environment.

— The EB-part RecEB(ti) is defined by (letrec RecE(ti) in RecB(ti)).

Note that the S- and EB-parts have the E-part in common. Note also that RecS (t0) = S

and RecB(t0) = s.

Now we define how the labelling is initially done, and how it is propagated in the

reduction RED.

Definition 8.3. Initially, the labelling is S[sBM]. The labelling BM, initially and after every

reduction step, is propagated according to the rule:

(letrec x1 = s1, . . . , xn = sn in r)BM → (letrec x1 =BL s1, . . . , xn =BL sn in rBM)

For the normal-order reductions, the labelling is in most cases inherited using the rules

of labelled reduction – the exceptions are as follows:

— (lbeta): (sBM
1 s2) is never a normal-order redex, see Lemma 8.5.

— (case): (case sBM
1 alts) is never a normal-order redex, see Lemma 8.5. The same

applies for (case x alts), where x is bound (perhaps over a variable-chain) to the

BM-labelled expression.

— (seq), (amb): no exception.

— (lll): Only (llet-e) has to be specified:

(letrec x =BL (letrec y1 = r1, . . . , ym = rm in r0),Env in u)→
(letrec x =BL r0, y1 =BL r1, . . . , ym =BL rm,Env in u).

— (cp): (letrec x = s, . . . C[x] . . .) → (letrec x = s, . . . C[s]). The cases (letrec x =

λy.s, . . . C[xBM] . . .) and (letrec x = (λy.s)BM, . . . C[x] . . .) are impossible – see

Lemma 8.5.

Definition 8.4. Given a sequence of normal-order reductions RED of S[s], that is, RED =

S[s] = t0
no−→ t1

no−→ . . .
no−→ tn, the following projected reduction sequences are defined:

— If RecS (ti) 
= RecS (ti+1), then RecS (ti) → RecS (ti+1). We will show in Lemma 8.6 that

these may be reductions (cp), (seq), (case), (amb), (lbeta),(lll) or (abs) in a surface

context.
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— If RecEB(ti) 
= RecEB(ti+1), then RecEB(ti) → RecEB(ti+1). We will show that these are

normal-order reductions.

We use REDS and REDEB, respectively, to denote the derived sequences of reductions.

8.1.1. Properties of B-labelled expressions The construction of the induction proof on

the length of the reduction sequence RED has to be done using several claims at once,

since only a mutual induction of all the properties will be successful. So we prove three

claims within one lemma.

Lemma 8.5. Let s be an Ω-term, S be a surface context and RED = t0
no−→ t1

no−→ . . .
no−→ tn

be a sequence of normal-order reductions of S[s]. Then the following hold:

1 The derived sequence of reductions REDEB is a sequence of normal-order reductions

of RecEB(t0). Moreover, the BM-labelled subexpression is never a value or bound to a

value, and REDEB never ends with a WHNF.

2 The labelling remains admissible after every normal-order reduction step.

3 The impossible cases of reductions in Definition 8.3 do not occur.

Proof. The base cases hold obviously. Now assume the lemma holds for the sequence

of reductions until ti. The cases where the normal-order reduction ti
no−→ ti+1 only modifies

the S-part, but not the EB-part, or where the BM-labelled part is modified are trivial. In

the other case, the unwinding algorithm first walks through the S-part, it may then visit

the BM-labelled subterm, and then, finally, remains within the EB-part.

1 The same unwinding performance is valid for the term RecEB(ti), after visiting the

BM-labelled subterm. We see that the reduction on RecEB(ti) either changes nothing,

that is, RecEB(ti) = RecEB(ti+1) or is a normal-order reduction step of RecEB(ti) The

BM-labelled term in ti+1 is neither a value nor bound to a value: since REDEB is a

sequence of normal-order reductions from 1 to i + 1, we would otherwise obtain a

WHNF RecEB(ti+1) after the reduction step, which is impossible, since s is an Ω-term

and RecS (t0) = S .

2 Since the BM-labelled expression is never a value or bound to a value, it is not possible

to duplicate it, or to extract the direct subexpressions of the BM-labelled subexpression

using (abs) or (case). The bound variables from BL-labelled bindings can only occur

in B-subterms, also after a reduction step.

3 The impossible cases cannot happen as they correspond exactly to the case where

RecEB(ti+1) is a WHNF.

8.1.2. Equivalence of Ω-terms

Lemma 8.6. The derived sequence of reductions REDS consists of some reductions (cp),

(seq), (case), (amb), (lbeta), (lll) or (abs) in a surface context. If tn is a WHNF, then

RecS (tn) is a WHNF. If RecS (tn) is a WHNF, then there is an (lll, ∗) reduction of tn to a

WHNF.

Proof. The reductions may be completely in non-B-subexpressions. In this case the

claim holds. The same holds if there are B-subexpressions that do not interfere with the
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reduction. The exception is that a (case) reduction is performed in the B-part, and the

effect in the E-part is like an (abs). Note that, in general, the reductions on RecS (ti) are

not forced to be normal-order reductions.

If tn is a WHNF, the value subterm is not labelled BM, hence it is also in RecS (tn),

and thus it is also a WHNF. If RecS (tn) is a WHNF, the only difference between it and a

WHNF of tn may be that some (llet-in) reductions are missing to reduce it to a WHNF.

Theorem 8.7. Let s, s′ be two Ω-terms. Then s ∼c s
′

Proof. We show that for every surface context S , we have S[s]↓ ⇒ S[s′]↓ and S[s]↑ ⇒
S[s′]↑. Since the other cases are symmetric, the context lemma implies that s ∼c s

′.

If S[s]↓, let RED be some sequence of normal-order reductions of S[s] ending in

a WHNF. By Lemma 8.6, the surface reduction sequence REDS yields a WHNF of

S = RecS (t0), hence the same reduction yields a WHNF of S[s′]. Using the Standardisation

Theorem yields S[s′]↓.
Now assume that S[s]↑, but S[s′]⇓. Then let RED1 be the sequence of normal-order

reductions of S[s] to a term s0 with s0⇑. The sequence of reductions RED1,S reduces

RecS (t0) to a context S0 that is not a WHNF. Note that S0 = RecS (s0). Let r0 := RecB(s0).

Then S0[r0]
(lll),∗
−−→ s0, hence S0[r0] ∼c s0 by Proposition 6.10 and thus S0[r0]⇑. Now we

apply RED1,S to S[s′]. If RED1,S eliminates the position of the hole of S , it is obvious that

the result is a must-divergent expression since s0⇑, and we have reached a contradiction.

Otherwise, we obtain a sequence of transformations S[s′]
S,allr,∗
−−−−→ S0[s

′] from RED1,S . Using

Proposition 7.15, we have S0[s
′]⇓. Now we use a fresh B-labelling for S0[s

′]. There exists a

term s′′ with S0[s
′]

no,∗
−−→ s′′ and s′′ is a WHNF. Again using Lemma 8.6, we can construct

RED2,S0
that starts with RecS (S0[s

′]) and ends in a surface context S ′ that is a WHNF.

Now we apply RED2,S0
to S0[r0], leading to a WHNF, which contradicts s0⇑. Thus the

assumption was wrong and S[s′]↑ holds.

8.2. Proving a bottom-avoidance law

For reasoning we use specific Ω-terms. At the end of the section we will extend our results

to all Ω-terms.

Definition 8.8 (Simple Ω-term). A term t is called a simple Ω-term in a context S , if either

t ≡ Ω (see Example 3.4), or t is a variable x and S contains a letrec-binding x = x.

We define the bottom-avoidance law as the following program transformations:

(amb-l-o) (amb s t)→ s, if t is a simple Ω-term.

(amb-r-o) (amb s t)→ t, if s is a simple Ω-term.

Let (amb-o) be the union of (amb-l-o) and (amb-r-o). From now on we will extend

the definition of forking and commuting diagrams by allowing the transformation

(S, allr) instead of normal-order reductions in the existential quantified reductions on the
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left- and right-hand sides of the diagrams. This is sufficient since Theorem 7.13 shows

that for these cases a normal-order reduction also exists.

Lemma 8.9. A complete set of forking diagrams for (S, amb-o) is

·
S,amb-o��

no,a

��

·
no,a

���
�
�

·
S,amb-o

����� ·

·
S,amb-o��

no,a

��

·

no,a
���

�
�

�

·

·
S,amb-o��

no,a

��

·

·
S,amb-o

���
�

�
�

·
S,amb-o��

no,a

��

·
S,gc−1

���
�
�

·
S,amb-o

����� ·

Proof. The claim follows by a case analysis (see Sabel and Schmidt-Schauss (2006)).

Lemma 8.10. Let s, t be terms with s
iS,amb-o
−−−−−→ t. Then s is a WHNF if and only if t is a

WHNF.

Lemma 8.11. �⇒(amb-o)

Proof. By induction on the length l of a reduction sequence REDs ∈ CON(s), we

can show that there exists a sequence of (S, allr) transformations starting with t that

leads to a WHNF. The base case is covered by Lemma 8.10. The induction step uses the

forking diagrams from Lemma 8.9. Finally, Theorem 7.13 (1) shows that t↓, so there exists

REDt ∈ CON(t).

Lemma 8.12. A complete set of commuting diagrams for (iS, amb-o) is

·
S,amb-o��

no,a

���
�
� ·

no,a

��
·
S,amb-o

����� ·

·
S,amb-o��

S,a

���
�
� ·

no,a

��
·
S,amb-o

����� ·

·
S,amb-o��

no,a
		�

�
�

� ·
no,a

��
·

·
S,amb-o��

no,lamb

���
�
� ·

·
S,amb-o

���
�

�
�

Proof. A detailed case analysis is given in Sabel and Schmidt-Schauss (2006).

Lemma 8.13. �⇐(amb-o)

Proof. Let s0
S,amb-o
−−−−→ t0 and t0↓. By induction on the measure (a, b) with b = μlll(s0)

and a = rl(REDt), ordered lexicographically, where REDt ∈ CON(t0), we can show that

there exists a sequence of (S, allr) transformations that leads from s0 to a WHNF. The

base case is covered by Lemma 8.10; the induction step uses the commuting diagrams

from Lemma 8.12. Finally, Theorem 7.13 (1) shows the claim.

Since �⇒(amb-o) and �⇐(amb-o) hold, we have the following corollary.

Corollary 8.14. If s
S,amb-o
−−−−−→ t then s⇑ if and only if t⇑.

Lemma 8.15. �⇐(amb-o)

Proof. Induction on the measure (a, b) where b = μlll(s) and a = rl(REDt) with REDt ∈
DIV(t) shows that there exists a sequence of (S, allr) transformations starting with s

and ending in a term that must-diverges. The base case is covered by Corollary 8.14 and
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the induction step uses the commuting diagrams from Lemma 8.12. Finally, Theorem 7.13

part 2 shows that s↑, that is, there exists a reduction sequence RED ∈ DIV(s).

Lemma 8.16. �⇒(amb-o)

Proof. Induction on rl(REDs) with REDs ∈ DIV(s) shows the existence of a sequence

of (S, allr) transformations from t to a term that must-diverges. The base case for this

induction is covered by Corollary 8.14; the induction step uses the forking diagrams from

Lemma 8.9. The last step uses Theorem 7.13 (2) to transform the sequence of (S, allr)

transformations into a normal-order reduction sequence REDt ∈ DIV(t).

Since (amb-o) fulfils the ��-properties we have the following proposition.

Proposition 8.17. If s
amb-o−−−→ t, then s ∼c t.

Theorem 8.18. For all Ω-terms s and expressions t, we have

amb s t ∼c t ∼c amb t s.

Proof. Let s be an Ω-term. Then from Theorem 8.7, we have s ∼c Ω, since Ω is an

Ω-term. The claim now follows as ∼c is a congruence and from Proposition 8.17.

8.3. On the relation between �↓c and �⇓c

A consequence of amb being bottom-avoiding is that s �⇓c t implies t �↓c s, which we will

show by similar arguments to those given in Moran (1998) and Lassen (1998). Let the

context BA be defined by BA ≡ (amb I (seq [·] (λx.Ω))) I.

Lemma 8.19. BA[s]⇓ if and only if s⇑.

Proof. The claim follows by inspecting the possible normal-order reductions and using

the Standardisation Theorem – details can be found in Sabel and Schmidt-Schauss (2006).

Proposition 8.20. �⇓c ⊆ (�↓c)
−1

Proof. Let s, t be arbitrary terms with s �⇓c t. Then ∀C ∈ C : C[s]⇓ =⇒ C[t]⇓ and

thus also ∀C ∈ C : BA[C[s]]⇓ =⇒ BA[C[t]]⇓. Using Lemma 8.19, this is equivalent to

∀C ∈ C : C[s]⇑ =⇒ C[t]⇑, and also ∀C ∈ C : C[t]↓ =⇒ C[s]↓, hence t �↓c s.

Let ∼↓c be the symmetrisation of may-convergence, that is, s ∼↓c t if and only if

s �↓c t ∧ t �↓c s.

Corollary 8.21. If s �c t then s ∼↓c t.

A consequence of Proposition 8.20 is that contextual equivalence can be defined using

must-convergence only.

Corollary 8.22. s ∼c t if and only if ∀C : C[s]⇓ ⇐⇒ C[t]⇓

The remaining two propositions of this section show that �c is not an equivalence.
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Proposition 8.23. Let s be an Ω-term and t be an arbitrary term. Then s �↓c t.

Proof. This can be proved using the context lemma for may-convergence, the Standard-

isation Theorem and a complete set of forking diagrams for the transformation s→ t, and,

finally, Theorem 8.7. A complete proof can be found in Sabel and Schmidt-Schauss (2006).

Proposition 8.24. �c is not symmetric.

Proof. Let s ≡ choice Ω I and t ≡ I. From Proposition 8.23, we have s �↓c t. For all

surface contexts S , we can transform S[s] into S[t]:

S[s] ≡ S[(amb (λx.Ω) (λx.I)) True]
S,amb
−−−−→ S[(λx.I) True]
S,lbeta
−−−−→ S[(letrec x = True in I)]
S,gc
−−→ S[I] ≡ S[t].

From the Standardisation Theorem, it follows that for all surface contexts S[t]↑ =⇒
S[s]↑. Hence, using Corollary 3.15, we have s �c t. Obviously, s↑ and t⇓. Thus, the empty

context shows that t 
�⇓c s.

9. Conclusions and directions for further research

We have presented an extended call-by-need lambda-calculus with a non-deterministic amb

operator together with a fair small-step reduction semantics. The appropriate program

equivalence is the contextual equivalence based on may- and must-termination. We have

proved that all deterministic reduction rules and several additional program transform-

ations preserve contextual equivalence, which permits useful program transformation,

and, in particular, partial evaluation using deterministic reductions. This is clearly an

improvement on the results in Moran’s thesis, since we have also proved correctness

with respect to must-convergence. The proof methodology consists of a context lemma,

which restricts the number of contexts that need to be examined, and the computation of

complete sets of commuting and forking diagrams for the reductions and transformations.

A remarkable result is that contextual preorder �c and equivalence ∼c can be defined

by observing the must-convergent behaviour only. We have also shown that all must-

divergent expressions are in the same equivalence class of ∼c, and that must-divergent

expressions are not least with respect to �c.

Using the proof tools we have developed in this paper, a promising application would

be to prove the correctness of further program transformations, for example, a rule for

inlining expressions that are used only once, or for deterministic expressions (that is, ones

that do not contain amb expressions and may need to satisfy some other conditions).

Future research should also investigate more involved inductive proof rules like Bird’s

take-lemma. Our proof method using reduction diagrams may also be used to prove the

correctness of the program transformations called ‘global’ in Santos (1995) if the analysed

transformation is decomposed into a sequence of more local transformations. Another

application area lies in proofs of the correctness of static analyses: for example, an analysis
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of non-terminating terms and subterms. The results of Schmidt-Schauss et al. (2005), where

we used this technique for a deterministic lambda calculus to prove the correctness of

strictness analysis, look promising.

Another research direction would be to apply the methods of this paper (proving a

context lemma, computing sets of reduction diagrams and using an unfair normal-order

reduction to ease proofs) to other non-deterministic calculi. A further challenge would

be to perform an investigation similar to that in Sabel (2003a), and thus to prove the

correctness of program transformations used in Haskell (Peyton Jones 2003) compilers

with respect to an extension with amb. After switching off incorrect transformations, the

result would be a semantics preserving compiler for Haskell extended with amb.
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