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Shock-induced dual-layer evolution
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Shock-induced fluid-layer evolution has attracted much attention but remains a challenge
mainly because the coupling between layers remains unknown. Linear solutions are
first derived to quantify the layer-coupling effect on the shocked dual-layer evolution.
Next, the motions of the waves and interfaces of a dual layer are examined based on
the one-dimensional gas dynamics theory. Shock-tube experiments on the dual-layer,
single-layer and single-mode interface are then performed to validate the linear solutions
and investigate the reverberating waves inside the layers. It is proved that the layer-coupling
effect destabilises the dual layer, especially when the initial layers are thin, and the
reverberating waves impose additional instabilities on all interfaces. Our findings suggest
that a slow/fast configuration with a large thickness in a dual layer can facilitate the
suppression of hydrodynamic instabilities.
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1. Introduction

Rayleigh–Taylor instability (RTI) develops when a light fluid accelerates a heavy fluid
(Rayleigh 1883; Taylor 1950), then bubbles (light fluids penetrating heavy ones) and spikes
(heavy fluids penetrating light ones) arise, and finally a flow transition to turbulence might
occur (Zhou et al. 2019). A similar phenomenon is observed in Richtmyer–Meshkov
instability (RMI) (Richtmyer 1960; Meshkov 1969), which occurs when an interface
separating two kinds of fluids is impulsively accelerated by a shock wave. Both instabilities
play essential roles in various industrial and scientific fields, such as inertial confinement
fusion (ICF) (Lindl et al. 2014) and supernova explosion (Kuranz et al. 2018). For example,
a typical ICF capsule contains the outer ablator layer, the middle push layer and the
inner fuel layer. An RMI occurs when the shocks generated by intense lasers or X-rays
interact with these multiple layers, determining the seed of RTI during the implosion
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(Goncharov 1999). The mixing induced by RMI and RTI significantly reduces and even
eliminates the thermonuclear yield (Miles et al. 2004; Qiao & Lan 2021). In addition, the
shocks generated by star collapse in a supernova interact with multilayer heavy elements
throughout the interstellar space. The mixing induced by RMI and RTI shapes the filament
structures in the remnant of the historical supernova of 1054 AD. Therefore, understanding
the RMI and RTI of a finite-thickness fluid layer is significant.

Most previous works focused on the evolution of a single-mode interface induced by
these two instabilities (Sharp 1984; Brouillette 2002; Zhou 2017a,b; Zhai et al. 2018) and
there are only a few exceptions on a single fluid layer. Theoretically, Taylor (1950) was the
first to consider the RTI of a liquid layer and found that the interface-coupling effect is
significant when the initial layer is sufficiently thin. Subsequently, Ott (1972) proposed
a nonlinear solution describing the RTI of a thin massless fluid layer and explained
the formation of bubbles and spikes. Mikaelian (1985, 1993, 1996) and Jacobs et al.
(1995) separately derived the linear solutions for the RMI of an A/B/A-type fluid layer.
Experimentally, gas curtain technology was adopted to explore the RMI of a thin SF6
layer surrounded by air. It was found that the SF6 layer morphologies are sensitive to
its initial shape (Jacobs et al. 1993; Budzinski, Benjamin & Jacobs 1994; Jacobs et al.
1995; Rightley, Vorobieff & Benjamin 1997), and the late-time mixing is influenced by
initial conditions such as the perturbation amplitude and wavelength (Prestridge et al.
2000; Tomkins et al. 2008; Balakumar et al. 2012; Orlicz, Balasubramanian & Prestridge
2013). In addition, the soap-film technique was recently utilised to generate an initial
shape-controllable and layer-thickness-controllable SF6 gas layer surrounded by air (Ding
et al. 2019; Liang et al. 2020; Sun et al. 2020; Liang & Luo 2021). It was figured out that
the waves reverberating inside a fluid layer impose various interfacial instabilities on the
two interfaces of the layer (Liang et al. 2020; Liang & Luo 2021).

However, multiple layers are more general in applications. For example, the double-shell
ICF capsule consists of a plastic form shell (35 mg cm−3) between the outer shell
(2.7 g cm−3) and the inner shell (200 mg cm−3) (Montgomery et al. 2018; Haines et al.
2021). The heavy elements throughout the interstellar space in the supernova are also
multilayered (Kuranz et al. 2018). The influence of the coupling between layers on the
interfacial instabilities remains unknown. In addition, due to more waves reverberating
inside a shocked multilayer, it is expected that the additional instabilities induced by these
waves are different under the single-layer and multilayer conditions.

In this study, we first theoretically deduce analytical, linear solutions for the RMI
of a dual layer (three interfaces), which are also applicable to the semi-infinite (one
interface) and single-layer (two interfaces) RMI. Then, we examine the influences of the
reverberating waves on the motions of all interfaces of a dual layer. Later, we validate
our analytical solutions with quasi-two-dimensional (quasi-2-D) RMI experiments on
dual-layer, single-layer and single-mode interface evolutions. Finally, the layer-coupling
effect on the RMI is discussed, and the influences of the reverberating waves on the
dual-layer evolution are quantified.

2. Linear stability analysis

In general, a dual layer contains four fluids and three interfaces. Although it is the simplest
multilayer, it is still too complex to find analytical solutions, as pointed out by Mikaelian
(1985), who showed that analytical solutions could not be derived when the number of
fluids is larger than three and the number of interfaces is larger than two. To solve this
problem, we consider a simplified system that consists of two incompressible and initially
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Figure 1. The configuration of the dual-layer system that consists of two incompressible and initially
irrotational fluids and three nearly planar interfaces with perturbations η1, η2 and η3, in a vacuum, with
gravitation g. Fluid with density ρa, velocity potential φa and thickness ha is overlapped on another fluid
with density ρb, velocity potential φb and thickness hb.

irrotational fluids and three nearly planar interfaces with single-mode perturbations η1,
η2 and η3, in a vacuum, with gravitation g (Guo et al. 2017; Liu et al. 2018b), as shown
in figure 1, and which resembles the outer ablator layer and the middle push layer of an
ICF capsule. Fluid with density ρa, velocity potential φa and thickness ha is overlapped
on another fluid with density ρb, velocity potential φb and thickness hb. The velocity
potentials φa and φb satisfy

∇2φ = 0. (2.1)

To obtain a linear solution, the periodic small perturbation amplitudes set on the first
interface (a1), second interface (a2) and third interface (a3) are of the form

η1 = a1(t) cos(kx), η2 = a2(t) cos(kx), η3 = a3(t) cos(kx). (2.2a–c)

The first (respectively third) interface is a free boundary located at y = η1 + ha
(respectively y = η3 − hb), and the second interface is at y = η2 with vertical velocity
being continuous. Then the kinematic conditions on the boundaries are

∂η1

∂t
+ ∂η1

∂x
∂φa

∂x
− ∂φa

∂y
= 0, at y = η1 + ha,

∂η2

∂t
+ ∂η2

∂x
∂φa

∂x
− ∂φa

∂y
= 0, at y = η2,

∂η3

∂t
+ ∂η3

∂x
∂φb

∂x
− ∂φb

∂y
= 0, at y = η3 − hb,

∂η2

∂t
+ ∂η2

∂x
∂φb

∂x
− ∂φb

∂y
= 0, at y = η2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

and the conditions of the pressure equilibrium are

∂φa

∂t
+ (∇φa)

2

2
+ gη1 = 0, at y = η1 + ha,

∂φb

∂t
+ (∇φb)

2

2
+ gη3 = 0, at y = η3 − hb,

ρa

[
∂φa

∂t
+ (∇φa)

2

2
+ gη2

]
= ρb

[
∂φb

∂t
+ (∇φb)

2

2
+ gη2

]
, at y = η2.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.4)
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Combining the above equations, linearising the equations by neglecting the products
(∂η/∂x)(∂φ/∂x) and terms (∇φ)2, and replacing the acceleration g by the product of
the post-shock flow speed (Δv) and a Dirac delta function, the linear solutions for the
amplitude growth rates of the first interface (ȧl

1), second interface (ȧl
2) and third interface

(ȧl
3) induced by RMI can be obtained as

ȧl
1 = kΔv a2(0)

1 − α2β2 + αξ1(β2 − 1)+ βξ2(α2 − 1)
{ε1(βξ2 − 1)+ ξ1(1 − βε3)

+ αβ(ε3 − ξ2)− Aξ1[1 − α2β2 − α(ε1 − αβε3)− β(ε3 − αβε1)]

+ αβ[ε3(1 − αξ1)− αβ(ε1 − ξ1)− ξ2(1 − αε1)]}, (2.5)

ȧl
2 = kΔv a2(0)

1 − α2β2 + αξ1(β2 − 1)+ βξ2(α2 − 1)
{A[α2β2 − 1 + α(ε1 − αβε3)

+ β(ε3 − αβε1)] − α[ε1(1 − βξ2)− ξ1(1 − βε3)− αβ(ε3 − ξ2)]

+ β[ε3(1 − αξ1)− αβ(ε1 − ξ1)− ξ2(1 − αε1)]}, (2.6)

ȧl
3 = kΔv a2(0)

1 − α2β2 + αξ1(β2 − 1)+ βξ2(α2 − 1)
{ε3(1 − αξ1)− αβ(ε1 − ξ1)

− ξ2(1 − αε1)− Aξ2[1 − α2β2 − α(ε1 − αβε3)− β(ε3 − αβε1)]

− αβ[ε1(1 − βξ2)− αβ(ε3 − ξ2)− ξ1(1 − βε3)]}. (2.7)

Here A = (ρb − ρa)/(ρb + ρa) is the Atwood number of the inner interface (i.e.
the second interface), α = e−kha , β = e−khb , ξ1 = −2α(1 − β2)A/[(1 − α2β2)(1 − A)],
ξ2 = 2β(1 − α2)A/[(1 − α2β2)(1 + A)], ε1 = a1(0)/a2(0) and ε3 = a3(0)/a2(0). When
kha → ∞ or (and) khb → ∞, the linear solutions (2.5)–(2.7) reduce to being applicable
to the single-layer (semi-infinite) RMI. We note that the linear solutions (2.5)–(2.7) do not
consider the effect of reverberating waves on the interfacial instabilities, which will further
complicate the analysis and will be discussed later.

To eliminate the 2-D feature of the reverberating waves and validate the linear solutions
by experiments, we further simplify the configuration by assuming that the exterior
interfaces (i.e. the first and third interfaces) are initially unperturbed, i.e. ε1 = 0 and ε3 = 0
(see figure 2b). Then the linear solutions for this system reduce to

ȧl
1 = ψ1ȧR

2 , ȧl
2 = ψ2ȧR

2 , ȧl
3 = ψ3ȧR

2 , (2.8a–c)

with

ψ1 = ξ1[1 − A − α2β2(1 + A)] − 2αβξ2

A[α2β2 − 1 − αξ1(β2 − 1)− βξ2(α2 − 1)]
,

ψ2 = A(α2β2 − 1)+ αξ1(1 + β2)− βξ2(1 + α2)

A[α2β2 − 1 − αξ1(β2 − 1)− βξ2(α2 − 1)]
,

ψ3 = 2αβξ1 − ξ2[A + 1 + α2β2(1 − A)]
A[α2β2 − 1 − αξ1(β2 − 1)− βξ2(α2 − 1)]

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)

and the Richtmyer growth rate (Richtmyer 1960) is

ȧR
2 = Za2(0)kAΔv2. (2.10)

Here Δv2 is the jump speed of the second interface and the compression factor Z =
1 − Δv2/vTS1 , with vTS1 the speed of the incident shock relative to the inner interface.
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Figure 2. Schematics of (a) the soap-film interface generation and (b) the initial configuration. Here II1, II2
and II3 denote the initial first, second and third interfaces, respectively.

If A < 0, (2.10) is replaced by the Meyer–Blewett growth rate (Meyer & Blewett 1972):
ȧR

2 = (Z + 1)a2(0)kAΔv2/2. Although the exterior interfaces are initially unperturbed, the
layer-coupling effect imposes the growth rates related to the inner interface on the exterior
interfaces (see (2.8a–c)). Further, ψ2 in (2.9) quantifies the layer-coupling effect on the
inner interface. We note that the simplified configuration keeps all the essential physics
such as the layer coupling, but greatly reduces the difficulty in experiment implementation
and the non-uniformity of the flow between the layers.

3. Experimental method

Shock-tube experiments on such a simplified dual layer are performed in a horizontal
shock tube with a 140 mm × 10 mm cross-sectional area to validate the simplified
linear solutions (2.8a–c)–(2.10). First, the soap-film technique is utilised to generate
shape-controllable and discontinuous quasi-2-D interfaces on the two sides of the middle-a
device and the left side of the middle-b device, as shown in figure 2(a), mainly eliminating
the additional short-wavelength perturbations, diffusion layer and three-dimensionality of
the initial interfaces (Liu et al. 2018a; Liang et al. 2019). Then the air in the middle-a
device and middle-b device is replaced by different volumes of SF6. Finally, the left,
middle-a, middle-b and right devices (see figure 2a) are combined and inserted in
the shock tube, and the shock-tube experiments are conducted. Because the density of
pure SF6 is about five times that of air, it is reasonable to approximate the theoretical
configuration with present experiments, although the dual layer is formed in the air, not a
vacuum, in the experiments.

In the Cartesian coordinate system (indicated in figure 2b), the initial amplitude imposed
on the inner interface is a2(0) = 2.0 mm, and the wavenumber is k = 104.7 m−1. The
physical parameters of the dual-layer (i.e. cases D-L#LH and D-L#HL; ‘D-L’ represents
dual layer; ‘L’, light; and ‘H’, heavy), single-layer (i.e. cases S-L#LH and S-L#HL; ‘S-L’
represents single layer) and semi-infinite (i.e. cases S-I#LH and S-I#HL; ‘S-I’ represents
semi-infinite) interfaces are listed in table 1. Illuminated by a continuous light source
(CEL-HXF300, maximum power output 249 W), the flow field is monitored by high-speed
Schlieren photography. The frame rate of the high-speed video camera (FASTCAM
SA5, Photron Ltd, with a sensor of 1024 pixels × 1024 pixels) is 60 000 frames per
second with a shutter time of 1 μs. The spatial resolution of the Schlieren images is
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Case ha hb M mfa mfb A Δv1 Δv2 vTS1 vTS2 |ζ̇2| ψ1 ψ2 ψ3

D-L#LH 25 25 1.20 0.81 0.90 0.22 82 74 236 190 1.20 ± 0.05 0.36 1.15 0.43
D-L#HL 25 25 1.20 0.90 0.37 −0.25 77 86 209 270 1.15 ± 0.05 0.39 1.13 0.34
S-L#LH ∞ 25 1.20 0 0.90 0.57 — 77 413 209 1.05 ± 0.05 — 1.07 0.39
S-L#HL 25 ∞ 1.20 0.91 0 −0.58 76 97 205 407 1.05 ± 0.05 0.40 1.07 —
S-I#LH ∞ ∞ 1.20 0 0.89 0.55 — 78 413 214 1.0 ± 0.05 — 1 —
S-I#HL ∞ ∞ 1.25 0.87 0 −0.52 — 83 199 365 1.0 ± 0.05 — 1 —

Table 1. Physical parameters of gas layers: ha and hb are layer thicknesses; M denotes the incident shock Mach
number; mfa (mfb) is the mass fraction of SF6 in gas a (gas b); A denotes the Atwood number of the second
interface; Δv1 and Δv2 denote the jump speed of the first and second interface, respectively; vTS1 and vTS2
denote the speed of the transmitted shock TS1 and TS2, respectively; |ζ̇2| denotes the dimensionless amplitude
growth rate of the second interface measured from experiments; and ψ1, ψ2 and ψ3 are dimensionless
parameters calculated with (2.9). The units of thickness and speed are mm and m s−1, respectively.

0.4 mm pixel−1. In this study, the waves’ displacements and speeds, and the amplitudes
of the three interfaces, are measured from the Schlieren images. The measurement
accuracies for the waves’ speeds are 1 m s−1, and for the waves’ displacements and the
interface amplitudes are 0.4 mm. The ambient pressure and temperature are 101.3 kPa
and 299.5 ± 1.0 K, respectively. For each case, at least three experimental runs are
performed, and the maximum variances from the mean for the inner interface amplitudes
among diverse experimental runs are within 3 %.

4. One-dimensional motions of waves and interfaces

Owing to the different acoustic impedances of the various fluids in a dual layer, the
reverberating waves inside the layers are multifarious. Based on the one-dimensional (1-D)
gas dynamics theory (Drake 2018; Liang & Luo 2021), 1-D dimensionless t–y diagrams of
the three interfaces and reverberating waves in cases D-L#LH and D-L#HL are shown in
figures 3(a) and 3(b), respectively. Note that only significant waves for interface evolution
are presented in the figures. The moment when the initial inner interface (II2) is first
shocked is defined as t = 0. Time is scaled as τ1D = tvTS1/ha. Displacements of interfaces
and waves are scaled as ζ1D = y/ha.

In the D-L#LH case, after the incident shock first impacts the initial first interface (II1),
a transmitted shock (TS1) is refracted inside gas a and moves towards the initial second
interface (II2). Second, after the TS1 impacts the II2, a transmitted shock (TS2) is refracted
inside gas b, and a reflected shock (RS) is generated and moves backwards, since the inner
interface is a fast/slow one relative to the motion of TS1. Third, after the RS impacts
the shocked first interface (SI1), the SI1 decelerates, and rarefaction waves (RW1) are
reflected inside gas a, since the first interface is a slow/fast one relative to the motion of
RS. Moreover, after the TS2 impacts the initial third interface (II3), a transmitted shock
(TS3) is refracted outside the layers, and rarefaction waves (RW3) are reflected inside gas
b, since the third interface is also a slow/fast one relative to the motion of TS2. Fourth,
the RW1 impacts the shocked inner interface (SI2), decelerating the SI2 and refracting
transmitted rarefaction waves (tRW1) into gas b. Subsequently, the RW3 impacts the SI2,
accelerating the SI2 and refracting transmitted rarefaction waves (tRW3) into gas a. Since
the strength of the RW3 is much larger than that of the RW1, the final velocity of SI2
is larger than the initial velocity jump induced by the TS1. Fifth, the tRW1 impacts and
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Figure 3. One-dimensional dimensionless t–y diagrams of a shocked dual layer in the (a) D-L#LH case and
(b) D-L#HL case. TS, transmitted shock; RS, reflected shock; RW, rarefaction waves; tRW, transmitted
rarefaction waves; CW, compression waves; tCW, transmitted compression waves; SI1, SI2 and SI3, shocked
first, second and third interface. Blue, red and green symbols represent the first, second and third interfaces’
trajectories. Lines represent the waves’ trajectories.

decelerates the shocked third interface (SI3), and the tRW3 impacts and accelerates the
SI1. Finally, all waves refract outside the dual layer, and the three interfaces move at the
same speed.

In the D-L#HL case, after the TS1 impacts the II2, rarefaction waves (RW2) are reflected
inside gas a, since the inner interface is a slow/fast one relative to the motion of TS1.
Then, after the RW2 impacts the SI1, the SI1 accelerates, and compression waves (CW)
are reflected inside gas a, since the first interface is a slow/fast one relative to the motion
of RW2. Later, the CW impacts the SI2, accelerating the SI2 and refracting transmitted
compression waves (tCW) into gas b. In addition, since the density gradient at the third
interface is lower in the D-L#HL case on comparing with the D-L#LH case, the RW3 in
the D-L#LH case is stronger than that in the D-L#HL case.

5. Two-dimensional hydrodynamic instabilities

Schlieren images of the shock-induced evolutions of the dual-layer (three interfaces),
single-layer (two interfaces) and semi-infinite (one interface) interfaces are shown in
figure 4(a–f ). In general, the waves in the 2-D case are similar to the 1-D counterparts and,
therefore, we shall take the D-L#LH case as an example to discuss only the deformations of
the three interfaces. First, after the TS1 impacts the II2 (46 μs), the rippled TS2 is refracted
inside gas b. Meanwhile, the perturbation on the inner interface grows gradually. Second,
after the rippled TS2 impacts the II3, the II3 is slightly deformed and the RW3 impacts
and accelerates the evolving SI2 (212 μs). Third, after the RW3 impacts the perturbed
SI2, rippled reverberating waves inside the two layers impact the nearly planar SI1 and
SI3. Last, the three interfaces evolve with the same phase, and one can find that the largest
perturbation is on the inner interface, and the smallest perturbation is on the third interface
(912 μs).

The time-varying dimensionless amplitudes of the inner interface in three A > 0 cases
(i.e. cases D-L#LH, S-L#LH and S-I#LH) and three A < 0 cases (i.e. cases D-L#HL,
S-L#HL and S-I#HL) are measured and shown in figures 5(a) and 5(b), respectively.
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Figure 4. Schlieren images of shocked-layer evolutions in cases (a) D-L#LH, (b) D-L#HL, (c) S-L#LH,
(d) S-L#HL, (e) S-I#LH and ( f ) S-I#HL. The first, second and third interfaces are marked with blue, red
and green dashed lines, respectively. Numbers denote time in μs.

Time is scaled as τ2 = k|ȧl
2|t, and amplitude is scaled as ζ2 = k(a2 − Za2(0)). Here we

calculate ψ1, ψ2 and ψ3 using (2.9) by considering the shock compression on the initial
layer thicknesses, i.e. α = exp(−kZaha) and β = exp(−kZbhb) with Za = 1 − Δv1/vTS1
and Zb = 1 − Δv2/vTS2 , where Δv1 is the velocity jump at the first interface, and vTS2
is the velocity of TS2, respectively, as listed in table 1. The dimensionless amplitude
growth rate (|ζ̇2|) of the inner interface is obtained by linearly fitting the ζ2 before the RW3
impacts the inner interface, as listed in table 1. Before the RW3 impacts the two interfaces
(as marked with vertical dash-dotted lines), the good agreement between the ζ2 with the
predictions of linear solutions (as marked with black dashed lines with a slope of 1 for
A > 0 cases or −1 for A < 0 cases) validates the established linear solutions. Likewise, the
agreement betweenψ2 with |ζ̇2| in all cases also validates the linear solutions (see table 1).
In addition, the ψ2 in the A > 0 cases is larger than in the corresponding A < 0 cases. On
the one hand, the phase reversal involved in the A < 0 cases enlarges the difference of the
inner interface amplitude between A > 0 conditions and A < 0 conditions. On the other
hand, the RW3 is weaker in the A < 0 cases and induces less additional vorticity deposition
on the inner interface (the effect of RW3 will be discussed in detail later).

From (2.9), it is found that the layer-coupling effect is dependent only on kha, khb and
A when ε1 = ε3 = 0. The variations of ψ1, ψ2 and ψ3 versus A with kha ∈ [0.1, 1.0, 10]
and khb ∈ [0.1, 1.0, 10] are calculated, as shown in figure 6. Four findings in particular
are noteworthy. First, ψ2 > 1, ψ1 > 0 and ψ3 > 0 in all cases, indicating that the
layer-coupling effect leads to both the inner and exterior interfaces being more unstable.
Second, smaller kha and khb lead to larger ψ1, ψ2 and ψ3, indicating that thinner layers
enhance the RMI more than thicker layers. Third, when A is fixed, ψ2 for the condition
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Figure 5. The dimensionless amplitudes of the inner interface for cases (a) D-L#LH, S-L#LH and S-I#LH,
and (b) D-L#HL, S-L#HL and S-I#HL. The vertical dash-dotted lines represent the time when the RW3 impacts
the SI2 in the corresponding colour case. Black dashed lines represent the linear solutions.
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Figure 6. The variations of ψ1, ψ2 and ψ3 versus A under conditions (a) kha = 0.1, khb = 0.1,
(b) kha = 1.0, khb = 1.0, (c) kha = 1.0, khb = 10, and (d) kha = 10, khb = 10.

kha = 1.0 and khb = 1.0 is larger than ψ2 for the condition kha = 1.0 and khb = 10,
demonstrating that a dual layer enhances the RMI of the inner interface more than its
single-layer counterpart. Fourth, if kha < khb (kha > khb), ψ2 for the A = −1 condition
is larger (smaller) than those under the A = 1 condition, indicating that the influence of
A on the layer-coupling effect is coupled with the relationship between the thicknesses of
the two layers.

The reverberating waves inside layers are then considered. It is noted that the
mechanisms of the influences of the layer coupling and the reverberating waves on
the hydrodynamic instabilities are quite different. If there are no reverberating waves
inside the layers, the layer coupling still influences the RMI of the three interfaces. The
reverberating waves deposit additional vorticity on diverse interfaces and, therefore, induce
additional instabilities on the three interfaces.

According to figure 5(a), the RW3 dramatically changes the inner interface’s instability
development. First, the inner interface is a slow/fast one relative to the motion of
RW3 in cases D-L#LH and S-L#LH. Because of the baroclinic vorticity created by the
misalignment of the density gradient (∇ρ) and the pressure gradient (∇p), the RW3
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SI2 SI3
RW3SI1
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RW3 SI1 SI3
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ρb

RW3

∇ρ
∇ρ

∇ρ
∇p ∇p ∇p

(a) (b) (c)

Figure 7. Sketches of the interaction of the RW3 and SI2 in cases (a) D-L#LH and S-L#LH, (b) D-L#HL when
the time at which RW3 impacts the inner interface (tRW3 ) is smaller than the end time of the inner interface’s
phase reversal (tph), and (c) D-L#HL when tRW3 > tph. The RW3 moves from right to left. The blue (orange)
arcs with an arrow illustrate the vorticity deposition induced by the RW3 on the inner interface. The purple
(green) arrows represent the pressure (density) gradient ∇p (∇ρ).
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Figure 8. The time-varying amplitude growths of the first interface (square symbols) and third interface
(circle symbols). The black dashed line represents the linear solutions.

continuously deposits vorticity with the same direction as the vorticity deposited by the
TS1 on the inner interface, as sketched in figure 7(a). As a result, the RW3 induces an
additional RTI on the inner interface and causes it to be more unstable than it would be
without being affected by the RW3. Second, although the inner interface is a fast/slow
one relative to the motion of RW3 in the D-L#HL case, the time when the RW3 impacts
the inner interface (tRW3) is smaller than the end time of the inner interface’s phase
reversal (tph) (see figure 5b). Consequently, the RW3 induces an additional RTI on the
inner interface and causes it to be more unstable than it would be without being affected
by the RW3 in this work, as sketched in figure 7(b). If hb is larger and tRW3 > tph, the
RW3 induces an additional Rayleigh–Taylor stabilisation on the inner interface and causes
it to be more stable than it would be without being affected by the RW3, as sketched in
figure 7(c). Third, the approximate ζ2 in cases S-L#HL and S-I#HL indicates that the
reflected compression waves slightly influence the inner interface.

After the TS1 impacts the perturbed inner interface, the reverberating waves become
rippled. According to Ishizaki et al. (1996), the rippled reverberating waves seed small
perturbations on the initially unperturbed exterior interfaces, and impose a gravitational
instability driven by the acceleration induced by the rippled waves and the pressure
perturbation behind them on the exterior interfaces. As a result, the perturbation growths
of the initially unperturbed exterior interfaces are ascribed to the layer-coupling effect
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and the instability driven by the rippled reverberating waves. The amplitudes of the
exterior interfaces are measured from experiments, as shown in figure 8. For the first
(third) interface, time is scaled as τ1 = kȧl

1t (τ3 = kȧl
3t), and amplitude is scaled as

ζ1 = ka1 (ζ3 = ka3). Both the ζ1 and ζ3 in all cases grow concussively, indicating the
long-time influences of the reverberating waves on the two exterior interfaces’ instabilities.
Compared with the linear solutions (i.e. the black dashed line), it is found that ζ1 is larger
than the linear solutions but ζ3 is smaller than the linear solutions, demonstrating that the
reverberating waves promote the first interface development but inhibit the third interface
development.

6. Conclusions

We propose a linear model to quantify the layer-coupling effect on the RMI of a dual layer.
The layer-coupling effect is determined by the dimensionless thicknesses of the two layers,
the amplitude ratios between exterior interfaces and the inner interface, and the Atwood
number A of the inner interface. The model is validated through shock-tube experiments on
dual-layer, single-layer and semi-infinite interface evolutions with the improved soap-film
technique. It is noted that the differences between the model and experiment are due to the
influence of reverberating waves and the influence of the non-vacuum conditions beyond
the layers in the experiment. Assuming the exterior interfaces initially unperturbed, it is
found that the layer-coupling effect destabilises all interfaces of a dual layer, especially
when the layers are initially thin. Moreover, the layer-coupling effect on a dual layer is
more vital than the single-layer counterpart. The influences of A and the relationship of
the two layers’ thicknesses on the layer-coupling effect are coupled. The reverberating
waves between the layers induce additional instabilities on a dual layer, destabilising the
inner interface and the first interface, but stabilising the third interface. These findings
suggest that a slow/fast configuration with a large thickness in a dual layer can suppress
the hydrodynamic instabilities relative to other dual-layer configurations. Therefore, the
present study may be significant for understanding the complex interfacial instabilities
and waves in an ICF capsule.
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