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Tasuki Kinjo

Abstract

For oriented −1-shifted symplectic derived Artin stacks, Ben-Bassat, Brav, Bussi and
Joyce introduced certain perverse sheaves on them which can be regarded as sheaf-
theoretic categorifications of the Donaldson–Thomas invariants. In this paper, we prove
that the hypercohomology of the above perverse sheaf on the −1-shifted cotangent stack
over a quasi-smooth derived Artin stack is isomorphic to the Borel–Moore homology of
the base stack up to a certain shift of degree. This is a global version of the dimensional
reduction theorem due to Davison. We give two applications of our main theorem.
Firstly, we apply it to the study of the cohomological Donaldson–Thomas invariants
for local surfaces. Secondly, regarding our main theorem as a version of the Thom iso-
morphism theorem for dual obstruction cones, we propose a sheaf-theoretic construction
of the virtual fundamental classes for quasi-smooth derived Artin stacks.
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1. Introduction

1.1 Motivations
For a Calabi–Yau 3-fold X, Thomas introduced enumerative invariants in [Tho00], now called the
Donaldson–Thomas (DT) invariants, which virtually count stable sheaves on X. Later several
variations and generalizations of DT invariants were introduced. One such example are the DT
invariants for quivers with potentials first introduced in [Sze08], which are now understood as the
local version of the original DT invariants. Another example is cohomological Donaldson–Thomas
(CoDT) theory, which studies the sheaf-theoretic categorification of DT invariants.

CoDT theory was initiated by the work of Kontsevich and Soibelman [KS11] in the
case of quivers with potentials. It studies the vanishing cycle cohomologies of the moduli
stacks of representations over Jacobi algebras associated with quivers with potentials. Later
[BBBJ15, BBDJS15, JU21] opened the door to CoDT theory for Calabi–Yau 3-folds by defining a
natural perverse sheaf ϕMH-ss

X
(respectively, ϕMH-st

X
) on the moduli stack MH-ss

X of compactly sup-
ported H-semistable sheaves (respectively, the moduli scheme MH-st

X of H-stable sheaves) on a
Calabi–Yau 3-fold X with a fixed ample divisor H, which can be regarded as a categorification
of the original DT invariant in the following sense: for a compact component N ⊂ MH-st

X , we
have ∫

[N ]vir

1 =
∑

i

(−1)i dim Hi(N ; ϕMH-st
X

|N ),

where [N ]vir denotes the virtual fundamental class of N .
CoDT theory for quivers with potentials is well developed and shown to have a rich theory.

For example, Kontsevich and Soibelman in [KS11] constructed algebra structures called critical
cohomological Hall algebras (critical CoHAs) on the CoDT invariants for quivers with potentials.
Later, Davison and Meinhardt in [DM20] proved the wall crossing formulas for CoDT invariants
of quivers with potentials, and realized them as natural maps induced by the CoHA multipli-
cations. In contrast to these developments, almost nothing is known concerning CoDT theory
for Calabi–Yau 3-folds though it is expected that the local theory as above can be extended to
the global settings. The aim of this paper is to take the first step towards the development of
CoDT theory for local surfaces (i.e. Calabi–Yau 3-folds of the form TotS(ωS) where S is a smooth
surface) by proving a global version of the dimensional reduction theorem [Dav17, Theorem A.1].

1.2 Dimensional reduction
In this paper we always use the term ‘dimensional reduction’ as a statement that relates three-
dimensional things to two-dimensional things. A dimensional reduction in DT theory was first
observed by the work of [BBS13] in the motivic context. They computed the motivic refinement
of the DT invariant of zero-dimensional closed subschemes of C3 by relating it to the motive
of the moduli stack of zero-dimensional sheaves on C2. Later Davison proved a categorified
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Dimensional reduction in cohomological Donaldson–Thomas theory

version of the dimensional reduction theorem in [Dav17], which we briefly recall now. Let U be
a scheme, E be a vector bundle on U , s ∈ Γ(U, E) be a section, and s̄ be the regular function on
TotU (E∨) corresponding to s. Denote the projection by π : TotU (E∨) → U . Write Z = s−1(0).
Then [Dav17, Theorem A.1] states that we have an isomorphism

π!ϕ
p
s̄(QTotU (E∨))|Z ∼= QZ [−2 rankE] (1.1)

where ϕp
s̄ denotes the vanishing cycle functor. This statement has many applications in CoDT

theory for quiver with potentials. For example, Davison in [Dav16] computed the vanishing cycle
cohomology for the Hilbert scheme of points in C3 by using the quiver description and applying
(1.1). Another interesting application of the isomorphism (1.1) also discussed in [Dav16] is the
study of compactly supported cohomologies of the moduli stacks of representations of preprojec-
tive algebras, for example the purity of their Hodge structures. Therefore the isomorphism (1.1)
not only allows us to compute the vanishing cycle cohomology but also can be used to import
three-dimensional techniques to the study of two-dimensional objects.

The main theme of this paper is to globalize the isomorphism (1.1) so that it can be applied
to the study of CoDT theory for local surfaces. Before stating the main theorem of this paper,
we briefly recall the construction of the perverse sheaves introduced in [BBBJ15, BBDJS15]. Let
(X, ω) be a −1-shifted symplectic derived Artin stack. By the work of [PTVV13, BD21], the
derived moduli stacks of coherent sheaves with proper supports on smooth Calabi–Yau 3-folds
give such examples. It is shown in [BBBJ15] that X is locally (in the smooth topology) written
as a critical locus. Given a square root of the line bundle det(LX|Xred)

o : M⊗2 ∼= det(LX|Xred),

which is called an orientation for X, we can construct a natural perverse sheaf

ϕp
X = ϕp

X,ω,o

on t0(X) locally isomorphic to the vanishing cycle complex twisted by a certain local system.
Our main theorem in this paper is as follows.

Theorem (Theorem 4.14). Let Y be a quasi-smooth derived Artin stack, and T∗[−1]Y :=
SpecY(Sym(TY[1])) be the −1-shifted cotangent stack. Equip T∗[−1]Y with the canon-
ical −1-shifted symplectic structure ωT∗[−1]Y and the canonical orientation oT∗[−1]Y (see
Examples 2.6 and 2.15). If we write π : t0(T∗[−1]Y) → t0(Y) for the projection, we have a
natural isomorphism

π!ϕ
p
T∗[−1]Y

∼= Qt0(Y)[vdimY]. (1.2)

We now return to the story of the dimensional reduction in CoDT theory. Consider a smooth
surface S and write X = TotS(ωS). Denote by MS (respectively, MX) the derived moduli stack
of compactly supported coherent sheaves on S (respectively, X), and we write MS = t0(MS)
and MX = t0(MX). By applying the work of [BCS20, IQ18], we can show that there is a nat-
ural equivalence between MX and T∗[−1]MS over MS preserving the −1-shifted symplectic
structure. Therefore we obtain the following corollary.

Corollary (Corollary 5.2). Let MX and MS be as above, and equip MX with the orientation
induced by the canonical orientation1 on T∗[−1]MS . If we write π : MX → MS for the canonical

1 In [JU21], natural orientation data for a wide class of Calabi–Yau 3-folds including all projective ones and local
surfaces are constructed using gauge-theoretic techniques. In [JU21, Remark 4.12] it is conjectured that our choice
coincides with theirs for local surfaces.
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projection, we have an isomorphism

π!ϕ
p
MX

∼= QMS
[vdimMS ]. (1.3)

By the Verdier self-duality of ϕp
MX

, the isomorphism (1.3) implies

H∗(MX ; ϕp
MX

) ∼= HBM
vdim MS−∗(MS) (1.4)

where HBM denotes the Borel–Moore homology. Since it is shown in [KV19] that HBM
∗ (MS)

carries a convolution product, the isomorphism (1.4) induces an algebra structure on
H∗(MX ; ϕp

MX
). We expect that this is isomorphic to the conjectural critical CoHA for X and

it is useful in the study of wall-crossing formulas for CoDT invariants of X as in the local case.
Further, as the local dimensional reduction isomorphism (1.1) plays an important role in the
cohomological study of moduli stacks of representations of preprojective algebras in [Dav16], we
expect that its global variant (1.3) will be useful in the cohomological study of moduli stacks of
coherent sheaves on K3 surfaces or Higgs sheaves on curves. These directions will be pursued in
future work.

1.3 Thom isomorphism
For a quasi-smooth derived scheme Y , the dimensional reduction isomorphism (1.2) has another
interpretation: a version of the Thom isomorphism for the dual obstruction cone. By imitating
the construction of the Euler class, we construct a class e(T∗[−1]Y ) ∈ HBM

2 vdim Y (Y ) where we
write Y = t0(Y ) as follows. Consider the natural morphism

π!ϕT∗[−1]Y → π∗ϕT∗[−1]Y . (1.5)

By taking the Verdier dual of the isomorphism (1.2), we have

π∗ϕT∗[−1]Y
∼= ωY [− vdimY ].

Therefore the map (1.5) defines an element in HBM
2 vdim Y (Y ), which we name e(T∗[−1]Y ). Since

the virtual fundamental class is a generalization of the Euler class, it is natural to compare
e(T∗[−1]Y ) with the virtual fundamental class [Y ]vir. Concerning this, we have obtained the
following claim, which will be proved in a subsequent paper.

Theorem [Kin21]. Assume Y is quasi-projective. Then we have

e(T∗[−1]Y ) = (−1)vdim Y ·(vdim Y −1)/2[Y ]vir.

In other words, this theorem gives a new construction of the virtual fundamental class
(at least for quasi-projective cases). It is an interesting problem to construct other enumera-
tive invariants (e.g. Donaldson–Thomas type invariants for Calabi–Yau 4-folds constructed in
[CL14, BJ17, OT20]) based on the isomorphism (1.2) or its variant. This direction will be
investigated in future work.

1.4 Plan of the paper
This paper is organized as follows. In § 2 we recall some basic facts used in CoDT theory. In § 3 we
prove the dimensional reduction theorem for quasi-smooth derived schemes, by gluing the local
dimensional reduction isomorphisms in [Dav17, Theorem A.1]. In § 4 we extend the dimensional
reduction theorem to quasi-smooth derived Artin stacks. The key point of the proof is the
observation that the canonical −1-shifted symplectic structure and the canonical orientation
for −1-shifted cotangent stacks are preserved by smooth base changes. In § 5 we discuss some
applications of the dimensional reduction theorem. In Appendix A we collect some basic facts
on the determinant of perfect complexes.
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Notation and convention.

• All commutative differential graded algebras (cdgas) sit in non-positive degree with respect
to the cohomological grading.

• All derived or underived Artin stacks are assumed to be 1-Artin, and to have quasi-compact
and quasi-separated diagonals.

• All cdgas and derived Artin stacks are assumed to be locally of finite presentation over the
complex number field C.

• Denote by S, dSch, and dSt the ∞-categories of spaces, derived schemes, and derived stacks,
respectively.

• For a derived scheme or a derived Artin stack X, t0(X) denotes the classical truncation.
Denote by Xred = t0(X)red the reduction of X.

• For a morphism of derived Artin stacks f : X → Y , Lf denotes the relative cotangent com-
plex. We write LX for the absolute cotangent complex of X, and TX := L∨

X for the tangent
complex.

• For a derived Artin stack X, vdimX denotes the locally constant function on t0(X) whose
value at p ∈ t0(X) is

∑
(−1)iHi(LX|p). We define vdimf for a morphism locally of finite

presentation between derived Artin stacks f in a similar manner.
• For a derived Artin stack X and a perfect complex E on X, we define d̂et(E) := det(E|Xred).
• For a complex analytic space or a scheme X, we will only consider (analytically) constructible

sheaves or perverse sheaves which are of Q-coefficients. Denote by Db
c(X, Q) the full subcate-

gory of the bounded derived category of sheaves of Q-vector spaces Db(X, Q) spanned by the
complexes with (analytically) constructible cohomology sheaves.

• Concerning sign conventions for derived categories, we always follow [Sta20, Tag 0FNG].
• If there is no confusion, we use expressions such as f∗, f!, and Hom for the derived functors

Rf∗, Rf!, and RHom.

2. Shifted symplectic structures and vanishing cycles

In this section we briefly recall the notion of shifted symplectic structures introduced by
[PTVV13], and some facts about vanishing cycle functors which will be needed later.

2.1 Shifted symplectic geometry
Here we briefly recall some notions in derived algebraic geometry and shifted symplectic
geometry.

Definition 2.1. A derived Artin stack X is called quasi-smooth if the cotangent complex LX

is perfect of amplitude [−1, 1].

Let U be a smooth scheme, and s ∈ Γ(U, E) be a section of a vector bundle E on U . Write
Z(s) for the derived zero locus of s. We have the following Cartesian diagram in dSch.

Z(s)
��

f
��

g

��

U

s

��

U
0

�� E

Since Lg[−1] and g∗LU are locally free sheaves concentrated in degree zero, we conclude that
Z(s) is quasi-smooth.
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Definition 2.2. For a quasi-smooth derived scheme X, a Kuranishi chart is a tuple
(Z, U, E, s, ι) where Z is an open subscheme of t0(X), U is a smooth scheme, E is a vector
bundle on U , s is a section of E, and ι : Z(s) → X is an open immersion whose image is Z. A
Kuranishi chart is said to be minimal at p = ι(q) ∈ Z if the differential (ds)q : TqU → Eq is zero.
A Kuranishi chart (Z, U, E, s, ι) is called good if U is affine and has global étale coordinate, that
is, regular functions x1, x2, . . . , xn such that ddRx1, ddRx2, . . . , ddRxn form a basis of ΩU , and E
is a trivial vector bundle of a constant rank.

Proposition 2.3. Let X be a quasi-smooth derived scheme, and p ∈ X be a point.

(i) [BBJ19, Theorem 4.1] There exists a Kuranishi chart (Z, U, E, s, ι) of X minimal at p ∈ Z.
(ii) [BBJ19, Theorem 4.2] For i = 1, 2, let (Zi, Ui, Ei, si, ιi) be a Kuranishi chart on X minimal

at p = ιi(qi). Then there exist a third Kuranishi chart (Z ′, U ′, E′, s′, ι′) of X minimal at
p = ι′(q′), étale morphisms ηi : U ′ → Ui, and isomorphisms τi : E′ → η∗i Ei with the following
properties:
– τi(s′) = η∗i si;

– the composition Z(s′) → Z(si)
ιi−→ X is equivalent to ι′ where the first map is induced

by ηi and τi.

Proof. (i) is a direct consequence of [BBJ19, Theorem 4.1].
(ii) follows from [BBJ19, Theorem 4.2] except for ηi being étale and τi being isomorphism.

Since (Zi, Ui, Ei, si, f i) is minimal at qi, we have

H0(LZ(si)|qi) ∼= ΩUi |qi , H−1(LZ(si)|qi) ∼= E∨
i |qi .

Similarly, we have

H0(LZ(s′)|q′) ∼= ΩU ′ |q′ , H−1(LZ(s′)|q′) ∼= E′∨|q′ .

Since the open immersion Z(s′) → Z(si) induces a quasi-isomorphism LZ(si)|qi � LZ(s′)|q′ , we
see that ηi is étale at q′ and τi is invertible at q′. Thus by shrinking U ′ around q′ if necessary,
we obtain the required properties. �

Let A be a cdga, and take a semi-free resolution A′ → A. We define the space of n-shifted
p-forms and the space of n-shifted closed p-forms by

Ap(A, n) := |(∧pΩA′ [n], d)|,

Ap,cl(A, n) :=
∣∣∣∣(∏

i≥0

∧p+iΩA′ [−i + n], d + ddR

)∣∣∣∣,
respectively, where d is the internal differential induced by the differential of ΩA′ , and ddR is the
de Rham differential. Here for a differential graded (dg) module E, |E| denotes the simplicial set
corresponding to the truncation τ≤0(E) by the Dold–Kan correspondence. These constructions
can be made ∞-functorial, and they satisfy the sheaf condition with respect to the étale topology
(see [PTVV13, Proposition 1.11]). Therefore we obtain ∞-functors

Ap(−, n),Ap,cl(−, n) : dStop → S.

We write f� for Ap(f , n) and also for Ap,cl(f , n). For a derived Artin stack X, it is shown in
[PTVV13, Proposition 1.14] that we have an equivalence

Ap(X, n) � Map(OX,∧pLX[n]). (2.1)
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We have natural morphisms

π : Ap,cl(−, n) → Ap(−, n),

ddR : Ap(−, n) → Ap+1,cl(−, n),

where π is induced by the projection
∏

i≥0 ∧p+iΩA′ [−i + n] → ∧pΩA′ [p], and ddR is induced by
the map

Ap(A, n) 	 ω0 
→ (ddRω0, 0, 0, . . .) ∈ Ap+1,cl(A, n).

Definition 2.4. Let X be a derived Artin stack. A closed n-shifted 2-form ω ∈ A2,cl(X, n) is
called an n-shifted symplectic structure if π(ω) is non-degenerate (i.e. the morphism TX → LX[n]
induced by π(ω) using the identification (2.1) is an equivalence). An n-shifted symplectic derived
Artin stack is a derived Artin stack equipped with an n-shifted symplectic structure on it.

We say that two shifted symplectic derived Artin stacks (X1, ωX1) and (X2, ωX2) are
equivalent if there exist an equivalence Φ : X1

∼−→ X2 as derived stacks and an equivalence
Φ�ωX2 ∼ ωX1 .

Example 2.5. Let U = Spec A be a smooth affine scheme and f : U → C be a regular function
on it. Denote by X the derived critical locus Crit(f). Since X is the derived zero locus of the
section ddRf : U → ΩU , the derived scheme X is equivalent to SpecB where B is a cdga defined
by the Koszul complex

B := (· · · → ∧2Ω∨
A

·ddRf−−−→ Ω∨
A

·ddRf−−−→ A).

Assume there exists a global étale coordinate (x1, . . . , xn) on U . We write the dual basis of
ddRx1, . . . , ddRxn as ∂/∂x1, . . . , ∂/∂xn, and yi ∈ B−1 denotes the element of degree −1 corre-
sponding to ∂/∂xi for each i = 1, . . . , n. Although B is not semi-free in general, one can see that
ΩB gives a model for LB. Define an element ω′

X ∈ (∧2ΩB)−1 of degree −1 by

ω′
X := ddRx1 ∧ ddRy1 + · · · + ddRxn ∧ ddRyn.

This defines a −1-shifted 2-form, which is clearly non-degenerate. Since we also have ddRω′
X = 0,

the closed form ωX := (ω′
X, 0, . . .) defines a −1-shifted symplectic structure on X.

Example 2.6. Let Y be a derived Artin stack, and n be an integer. Define the n-shifted cotangent
stack of Y by T∗[n]Y := SpecY(Sym(TY[−n])). Let π : T∗[n]Y → Y be the projection. We
have a tautological n-shifted 1-form λT∗[n]Y on T∗[n]Y defined by the image of the tautological
section of π∗LY[n] under the canonical map π∗LY[n] → LT∗[n]Y[n]. In [Cal19, Theorem 2.2] it
is shown that ωT∗[n]Y := ddRλT∗[n]Y is non-degenerate, and we obtain the canonical n-shifted
symplectic structure on T∗[n]Y.

It is proved in [BBJ19, Theorem 5.18] that any −1-shifted symplectic derived scheme is
Zariski locally modeled on a derived critical locus. For a −1-shifted symplectic derived scheme of
the form T∗[−1]Y for some quasi-smooth derived scheme Y , its local model as a derived critical
locus can be described by combining Proposition 2.3 and the following lemma.

Lemma 2.7. Let U = Spec A be a smooth affine scheme admitting a global étale coordinate,
E be a trivial vector bundle on U , and s ∈ Γ(U, E) be a section. Denote by s̄ the regular function
on TotU (E∨) corresponding to s. Then we have an equivalence of −1-shifted symplectic derived
schemes

(Crit(s̄), ωCrit(s̄)) � (T∗[−1]Z(s), ωT∗[−1]Z(s)) (2.2)

equipped with the −1-shifted symplectic structures constructed in Examples 2.5 and 2.6,
respectively.
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Proof. Fix a global étale coordinate x1, . . . , xn on U and a basis e1, . . . , em of M := Γ(U, E).
Write s = a1e1 + · · · + amem. If we write αi := ddRxi, then α1, . . . , αn defines a basis of ΩU .
Denote by e∨1 , . . . , e∨m and α∨

1 , . . . , α∨
n the dual bases of e1, . . . , em and α1, . . . , αn, respectively.

Define a cdga C by the Koszul complex

C := (· · · → (Ω∨
A ⊕ M∨) ⊗A A[z1, . . . , zm]

α∨
i ⊗1	→

∑
(∂aj/∂xi)zj ,e∨j ⊗1	→aj−−−−−−−−−−−−−−−−−−−−→ A[z1, . . . , zm]).

Now it is clear that SpecC gives models for both Crit(s̄) and T∗[−1]Z(s). The tautological
1-form λT∗[−1]Z(s) is represented by

n∑
i=1

α∨
i (ddRxi) +

m∑
j=1

zj(ddRe∨j ) ∈ A1(SpecC,−1).

A direct computation shows that ddRλT∗[−1]Z(s) ∼ ωCrit(s̄), which implies the lemma. �

2.2 D-critical schemes
In this section we briefly recall the notion of d-critical structures introduced in [Joy15], which
constitute a classical model for −1-shifted symplectic structures. D-critical structures are eas-
ier to treat than −1-shifted symplectic structures and are enough to apply in cohomological
Donaldson–Thomas theory.

For any complex analytic space X, Joyce in [Joy15, Theorem 2.1] introduced a sheaf

SX ∈ Mod(CX) (2.3)

of C-vector space on X with the following property: for any open subset R ⊂ X and any closed
embedding i : R ↪→ U where U is a complex manifold, we have an exact sequence of sheaves
on R,

0 → SX |R → i−1OU/I2
R,U

ddR−−→ i−1ΩU/(IR,U · i−1ΩU ).

Here IR,U is the ideal sheaf of i−1OU corresponding to R. The composition

SX |R → i−1OU/I2
R,U → i−1OU/IR,U

∼= OR

glues to define a morphism βX : SX → OX , and we define a subsheaf S0
X of SX by the kernel of

the composition

SX
βX−−→ OX → OXred .

It can be shown that we have a decomposition SX = CX ⊕ S0
X where CX is the constant sheaf

and CX ↪→ SX is induced by the inclusion CU ↪→ OU identifying CU with the sheaf of locally
constant functions on U . If X is the critical locus of some function f on a complex manifold U
such that f |Xred = 0, then f + I2

X,U defines an element of Γ(X,S0
X) since ddRf |X = 0.

Definition 2.8 [Joy15, Definition 2.5]. Let X be a complex analytic space. A section
s ∈ Γ(X,S0

X) is called an (analytic) d-critical structure if for any closed point x ∈ X there
exist an open neighborhood x ∈ R ⊂ X, a complex manifold U , a regular function f on U with
f |Rred = 0, and a closed embedding i : R → U such that i(R) = Crit(f) and f + I2

R,U = s|R. The
tuple (R, U, f, i) as above is called a d-critical chart for (X, s). A d-critical scheme is a scheme
equipped with a d-critical structure on its analytification.

Remark 2.9. Joyce [Joy15, Definition 2.5] also introduced the algebraic version of the d-critical
structure, and some authors define a d-critical scheme as a scheme equipped with an algebraic
d-critical structure. We always work with analytic d-critical structures since they are enough for
our purposes.
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For a d-critical chart (R, U, f, i) of a d-critical scheme (X, s) and an open subset U ′ ⊂ U ,
define R′ = i−1(U ′), f ′ = f |U ′ , and i′ = i|R′ : R′ ↪→ U ′. Then (R′, U ′, f ′, i′) defines a d-critical
chart on (X, s). We call (R′, U ′, f ′, i′) an open subchart of (R, U, f, i).

In order to compare two d-critical charts, Joyce introduced the notion of embedding : for
a d-critical scheme (X, s) and its d-critical charts (R1, U1, f1, i1) and (R2, U2, f2, i2) such that
R1 ⊂ R2, an embedding (R1, U1, f1, i1) ↪→ (R2, U2, f2, i2) is defined by a locally closed embedding
Φ: U1 ↪→ U2 such that f1 = f2 ◦ Φ and Φ ◦ i1 = i2|R2 . The following theorem is useful when
comparing two d-critical charts.

Theorem 2.10. Let (X, s) be a d-critical scheme.

(i) [Joy15, Theorem 2.20] Let (R1, U1, f1, i1) and (R2, U2, f2, i2) be d-critical charts, and
x ∈ R1 ∩ R2 be a point. Then, by shrinking these d-critical charts around x if neces-
sary, we can find a third d-critical chart (R3, U3, f3, i3) with x ∈ R3 and embeddings
(R1, U1, f1, i1) ↪→ (R3, U3, f3, i3) and (R2, U2, f2, i2) ↪→ (R3, U3, f3, i3).

(ii) [Joy15, Theorem 2.22] Let Φ: (R1, U1, f1, i1) ↪→ (R2, U2, f2, i2) be an embedding of d-critical
charts, and x ∈ R1 be a point. Then, by shrinking these d-critical charts around x keeping
Φ(U1) ⊂ U2 if necessary and replacing Φ by its restriction, we can find holomorphic maps
α : U2 → U1 and β : U2 → Cn for n = dim U2 − dim U1, such that (α, β) : U2 → U1 × Cn

is biholomorphic onto its image, and we have α ◦ Φ = id, β ◦ Φ = 0, and f2 = f1 ◦ α +
(z2

1 + · · · + z2
n) ◦ β where zi is the ith coordinate of Cn.

For an embedding of d-critical charts Φ: (R1, U1, f1, i1) ↪→ (R2, U2, f2, i2) of a d-critical
scheme (X, s), Joyce defined in [Joy15, Definition 2.26] a natural isomorphism

JΦ : i∗1(K
⊗2

U1
)|Rred

1

∼= i∗2(K
⊗2

U2
)|Rred

1
.

If there exist α, β as in Theorem 2.10(ii), JΦ is defined as follows. Firstly, we have isomorphisms

KU2
∼= (α, β)∗(KU1×Cn) ∼= α∗KU1 ⊗ β∗KCn ∼= α∗KU1

where the final isomorphism is defined by the trivialization

KCn ∼= OCn · (dz1 ∧ · · · ∧ dzn).

Then, by taking the square of this composition and pulling back to R1, we obtain the desired
isomorphism.

Using this preparation, we can construct a natural line bundle KX,s on Xred, which is a
d-critical version of the canonical line bundle as follows.

Theorem 2.11 [Joy15, Theorem 2.28]. For a d-critical scheme (X, s), one can define a line
bundle KX,s on Xred which we call the virtual canonical bundle of (X, s) characterized by the
following properties.

(i) For a d-critical chart R = (R, U, f, i) of (X, s), we have an isomorphism

ιR : KX,s|Rred
∼= (i∗KU )⊗

2 |Rred .

(ii) For an embedding of d-critical charts

Φ: R1 = (R1, U1, f1, i1) ↪→ R2 = (R2, U2, f2, i2),

we have

ιR2 |Rred
1

= JΦ ◦ ιR1 .
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Definition 2.12 [Joy15, Definition 2.31]. An orientation o of a d-critical scheme (X, s) is a
choice of a line bundle L on Xred and an isomorphism

o : L⊗2 ∼=−→ KX,s.

As we have seen in the previous section, −1-shifted symplectic derived schemes are locally
modeled on derived critical loci. Therefore we can regard the notion of d-critical schemes as an
underived version of the −1-shifted symplectic derived scheme. The following theorem gives the
rigorous statement of this fact.

Theorem 2.13 [BBJ19, Theorem 6.6]. Let (X, ωX) be a −1-shifted symplectic derived scheme.
Then its underlying scheme X = t0(X) carries a canonical d-critical structure sX with the fol-
lowing property: for any −1 shifted symplectic derived scheme (R, ωR) of the form R = Crit(f)
where f is a regular function on a smooth scheme U , ωR the −1-shifted symplectic form on R
constructed in Example 2.5, and an open inclusion ι : R ↪→ X such that ι∗ωX ∼ ωR, the tuple
(R, U, f, i) gives a d-critical chart for (X, sX) where we write R = t0(R) and i : R ↪→ U for the
natural closed embedding. Furthermore, there exists a canonical isomorphism of line bundles

ΛX : d̂et(LX) ∼= KX,sX
,

where d̂et(LX) = det(LX|Xred) by definition.

We define the notion of orientations for −1-shifted symplectic derived schemes to be that of
the underlying d-critical schemes.

For later use, we explain the construction of ΛX in the above theorem for X = Crit(f)
where f is a regular function on a smooth scheme U . In this case, LX|X is represented by the
two-term complex

(TU |X
Hess(f)−−−−→ ΩU |X),

where Hess(f) denotes the Hessian of f . We define ΛX by the following composition:

d̂et(LX) ∼= det(ΩU |Xred) ⊗ det(TU |Xred)−1

∼= (i∗KU )|⊗2

Xred

·
(

1
2

)dim U

−−−−−−→ (i∗KU )|⊗2

Xred
∼= KX,s. (2.4)

where det(TU )−1 ∼= KU is locally defined by

(∂/∂z1 ∧ · · · ∧ ∂/∂zn)∨ 
→ dz1 ∧ · · · ∧ dzn. (2.5)

The constant (1
2)dim U is just a convention, and it corresponds to the fact that Hess(z2) = 2(dz)⊗

2
.

We now we discuss the canonical orientation for −1-shifted cotangent schemes. To do this
we recall basic facts on the determinant of perfect complexes, which are proved in Appendix A.

Lemma 2.14. Let X be a derived Artin stack.

(i) For a perfect complex E on X and an integer m, we have natural isomorphisms

η̂E : d̂et(E∨) ∼= d̂et(E)−1, χ̂
(m)
E : d̂et (E[m]) ∼= d̂et(E)(−1)m

.

(ii) For a distinguished triangle Δ: E → F → G → E[1] of perfect complexes on X, we have a
natural isomorphism

ı̂(Δ): d̂et(E) ⊗ d̂et(G) ∼= d̂et(F ).

We write χ̂E = χ̂
(1)
E . The following example defines the canonical orientation for −1-shifted

cotangent schemes.
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Example 2.15 [Tod19, Lemma 4.3]. Let Y be a quasi-smooth derived scheme, π : T∗[−1]Y → Y
be the projection, and write sT∗[−1]Y for the d-critical structure associated with the canonical
−1-shifted symplectic form constructed in Example 2.6. We have a natural distinguished triangle

Δπ : π∗LY → LT∗[−1]Y → π∗TY [1] → LY [1]. (2.6)

Define an isomorphism

o′T∗[−1]Y : (πred)∗ d̂et(LY )⊗
2 ∼= d̂et(LT∗[−1]Y )

by the composition of the isomorphisms

(πred)∗ d̂et(LY )⊗
2 id⊗η̂π∗TY−−−−−−→ (πred)∗ d̂et(LY ) ⊗ (πred)∗ d̂et(TY )−1

id⊗χ̂−1
π∗TY−−−−−−−→ (πred)∗ d̂et(LY ) ⊗ (πred)∗ d̂et(TY [1])

ı̂(Δπ )−−−→ d̂et(LT∗[−1]Y )

where we write π = t0(π). Define

oT∗[−1]Y : (πred)∗ d̂et(LY )⊗
2 ∼= KT∗[−1]Y ,sT∗[−1]Y

(2.7)

by the composition ΛT∗[−1]Y ◦ o′T∗[−1]Y , and we call this the canonical orientation for T∗[−1]Y .

2.3 Vanishing cycle complexes
Let f be a holomorphic function on a complex manifold U , and set U0 = f−1(0) and U≤0 =
f−1({z ∈ C | Re(z) ≤ 0}). The (shifted) vanishing cycle functor ϕp

f : Db
c(U, Q) → Db(U0, Q) is

defined by the composition of the functors

ϕp
f := (U0 ↪→ U≤0)∗(U≤0 ↪→ U)!.

The functor ϕp
f preserves the constructibility (see, for example, [Dim04, Definition 4.2.4,

Proposition 4.2.9]). The canonical morphism (U≤0 ↪→ U)! → (U≤0 ↪→ U)∗ induces a natural
transform

γf : ϕp
f → (U0 ↪→ U)∗. (2.8)

Here we list basic properties of the functor ϕp
f we use later.

Proposition 2.16. Let U be a complex manifold and f be a holomorphic function on it. Write
U0 = f−1(0).

(i) If F is a perverse sheaf on U , then ϕp
f (F ) is also a perverse sheaf.

(ii) The support of ϕp
f (QU ) is contained in Crit(f).

(iii) Let q : V → U be a holomorphic map where V is a complex manifold, and q0 : V0 → U0

denotes the restriction of q where V0 = (f ◦ q)−1(0). Then we have a canonical morphism
Θq,f : q∗0ϕ

p
f (F ) → ϕp

f◦q(q
∗F ) for each F ∈ Db

c(U, Q), which is an isomorphism if q is a
submersion. Further, the following diagram commutes.

q∗0ϕ
p
f (F )

Θq,f
��

q∗0γf (F ) ������������
ϕp

f◦q(q
∗F )

γf◦q(q∗F )������������

q∗0(F |U0).

(2.9)
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(iv) (Thom and Sebastiani) Let V be a complex manifold, g be a holomorphic function on it, and
f � g be the function on U × V defined by (f � g)(u, v) = f(u) + g(v). For F ∈ Db

c(U, Q)
and G ∈ Db

c(V, Q), we have a canonical isomorphism

T Sf,g,F,G : ϕp
f�g(F � G)|U0×V0

∼= ϕp
f (F ) � ϕp

g(G)

where V0 = g−1(0). Further, the following diagram commutes.

ϕp
f�g(F � G)|U0×V0

γf�g(F�G)|U0×V0
��

T Sf,g,F,G

∼

��

(F � G)|U0×V0
∼

��

ϕp
f (F ) � ϕp

g(G)
γf (F )�γg(G)

�� F |U0 � G|U0

(2.10)

(v) (Verdier duality) For F ∈ Db
c(U, Q), there exists a canonical isomorphism

DU0(ϕ
p
f (F )) ∼= ϕp

f (DU (F ))

where DU0 and DU denote the Verdier duality functors on U0 and U , respectively.

Proof. (i) is proved in [KS90, Corollary 10.3.13]. (ii) easily follows from the definition. (iii) follows
from the smooth base-change theorem. (iv) is proved in [Sch03, Corollary 1.3.4]. (v) is proved in
[Mas16]. �

By an abuse of notation, we write ϕp
f = ϕp

f (QU [dimU ]) if there is no confusion. We identify
the ith cohomology of the stalk of ϕp

f at some point with the (i + dimU)th relative cohomology
of a ball modulo the Milnor fiber at a small positive value. We regard ϕp

f as a perverse sheaf on
U , U0, or Crit(f) depending on each situation.

If we write z : C → C for the identity map, we have natural isomorphisms

(ϕp
z2)0 ∼= H1(C, {z ∈ C | Re(z2) > 0}; Q)

∼= H1(R, R \ 0; Q). (2.11)

The latter isomorphism is induced by the inclusion

(R, R \ 0) ↪→ (C, {z ∈ C | Re(z2) > 0}).
The orientation of R given by the positive direction defines a cohomology class a+ ∈ H1(R,
R \ 0; Q), hence a trivialization

h1,z : ϕp
z2

∼= Q0. (2.12)

Let (z1, . . . , zn) be the standard coordinate of Cn. Then the Thom–Sebastiani theorem and (2.12)
give an isomorphism

hn,(z1,...,zn) : ϕp
z2
1+···+z2

n
|(0,...,0)

∼= Q(0,...,0). (2.13)

We now recall the construction of the globalization of the vanishing cycle complexes asso-
ciated with oriented d-critical schemes introduced in [BBDJS15]. To do this we introduce the
following notation. For a scheme X, a principal Z/2Z-bundle P on X, and F ∈ Db

c(X, Q), one
defines

F ⊗Z/2Z P := F ⊗QX
(QX ⊗ZX/2ZX

P )

where the ZX/2ZX -module structure on QX is defined by multiplication by −1. For a d-critical
scheme (X, s) with a fixed orientation o : L⊗2 ∼−→ KX,s and its d-critical chart R = (R, U, f, i),
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we define a principal Z/2Z-bundle

Qo
R (2.14)

over R whose sections are local isomorphisms

a : L → (i∗KU )|Rred

such that a⊗
2

= ιR,U,f,i ◦ o. For an embedding of d-critical charts

Φ: R1 = (R, U1, f1, i1) ↪→ R2 = (R, U2, f2, i2)

such that α : U2 → U1 and β : U1 → Cn as in Theorem 2.10(ii) exist,

(Qo
R1

)−1 ⊗ Qo
R2

parameterizes square roots of

i∗1β
∗(dz1 ∧ · · · ∧ dzn)|⊗2

Rred .

Thus the choice i∗1β
∗(dz1 ∧ · · · ∧ dzn)|Rred gives an isomorphism

Qo
R1

∼= Qo
R2

. (2.15)

On the other hand, we have isomorphisms

i∗1ϕ
p
f1

∼= i∗2α
∗ϕp

f1
⊗ β∗ϕp

z2
1+···+z2

n

∼= i∗2ϕ
p
f2

(2.16)

where the first one is defined using (2.12) and the second one is a Thom–Sebastiani isomorphism.
With this notation, the globalized vanishing cycle complex is defined by the following

theorem.

Theorem 2.17 [BBDJS15, Theorem 6.9]. Let (X, s, o) be an oriented d-critical scheme, and let
R1 = (R1, U1, f1, i1) and R2 = (R2, U2, f2, i2) be any d-critical charts with R1 ⊂ R2. Then there
exists a natural isomorphism

ΥR2,R1 : i∗1ϕ
p
f1

⊗Z/2Z Qo
R2

→ i∗2ϕ
p
f2

⊗Z/2Z Qo
R1

|R1

with the following properties.

(i) Given another d-critical chart R3 = (R3, U3, f3, i3) with R2 ⊂ R3, we have

ΥR3,R1 = ΥR3,R2 |R1 ◦ ΥR2,R1 .

(ii) If R1 is an open subchart of R2, then ΥR2,R1 is defined by the canonical isomorphisms

ϕp
f1

∼= ϕp
f2
|U1 , Qo

R1
∼= Qo

R1
|U1 .

(iii) For an embedding of d-critical charts

R1 = (R, U1, f1, i1) ↪→ R2 = (R, U2, f2, i2)

such that α : U2 → U1 and β : U1 → Cn as in Theorem 2.10(ii) exist, ΥR2,R1 is defined by
isomorphisms (2.15) and (2.16).

Using (i), we can define a perverse sheaf ϕp
X,s,o on X such that for a given d-critical chart

R = (R, U, f, i) there exists a natural isomorphism

ωR : ϕp
X,s,o|R ∼= i∗ϕp

f ⊗Z/2Z Qo
R .

Moreover, there exists an isomorphism σX,s,o : DX(ϕp
X,s,o) ∼= ϕp

X,s,o.
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For later use, we recall the construction of σX,s,o. For a d-critical chart R = (R, U, f, i), the
Verdier self-duality of ϕp

f induces an isomorphism

σ′
R : DX(ϕp

X,s,o)|R ∼= ϕp
X,s,o|R. (2.17)

If we define

σR = (−1)dim U ·(dim U−1)/2σ′
R ,

we can show that it glues to define an isomorphism σX,s,o (the necessity of the sign intervention
is due to the fact that the first diagram in [BBDJS15, Theorem 2.13] commutes up to the sign
(−1)dim U ·dim V ). If there is no confusion, we write σX = σX,s,o.

For an oriented −1-shifted symplectic derived scheme (X, ωX, o), define ϕX,ωX ,o to be the
perverse sheaf ϕp

X,sX ,o on X = t0(X) where sX is the d-critical structure associated with ωX. If
there is no confusion, we simply write ϕX,o or ϕX instead of ϕX,ωX ,o.

2.4 Dimensional reduction
Let U be a smooth variety of dimension n, and s be a section of a trivial vector bundle E of
rank r on U . Denote by s̄ : TotU (E∨) → A1 the regular function corresponding to s. We have a
canonical morphism

γs̄(QTotU (E∨)[n + r]) : ϕp
s̄ → Qs̄−1(0)[n + r]. (2.18)

Define Z := Z(s) to be the zero locus of s, and Z̃ := (πE∨)−1(Z) where πE∨ : TotU (E∨) → U is
the projection. By restricting (2.18) to Z̃, we obtain

γs̄ := γs̄(QTotU (E∨)[n + r])|Z̃ : ϕp
s̄ → QZ̃ [n + r]. (2.19)

Here we identify ϕp
s̄ and ϕp

s̄|Z̃ since the support of ϕp
s̄ is contained in Z̃.

Theorem 2.18 [Dav17, Theorem A.1]. The natural map

γ̄s̄ := (πE∨)!γs̄ : (πE∨)!ϕ
p
s̄ → (πE∨)!QZ̃ [n + r] ∼= QZ [n − r] (2.20)

is an isomorphism.

We want to globalize this statement for the −1-shifted cotangent space using Lemma 2.7. To
do this, we first need to prove the triviality of the Z/2Z-bundle introduced in (2.14) associated
with the canonical orientations for shifted cotangent schemes and certain d-critical charts.

Lemma 2.19. Let U, s be as above, and Z := Z(s) be the derived zero locus of s. Assume U
is affine and carries a global étale coordinate. Denote by oT∗[−1]Z the canonical orientation
constructed in Example 2.15 and by

Z̃ = (Crit(s̄), TotU (E∨), s̄, i)

the d-critical chart induced by the equivalence (2.2). Then Q
o
T∗[−1]Z

Z̃
is a trivial Z/2Z-bundle.

Proof. The distinguished triangle (2.6) for Z restricted to Crit(s̄) is represented by the following
short exact sequence of two-term complexes:

0 �� π∗
E∨E∨|Crit(s̄)

��

(ds)∨
��

TTotU (E∨)|Crit(s̄)
��

Hess(s̄)

��

π∗
E∨TU |Crit(s̄)

��

ds
��

0

0 �� π∗
E∨ΩU |Crit(s̄)

�� ΩTotU (E∨)|Crit(s̄)
�� π∗

E∨E|Crit(s̄)
�� 0

(2.21)
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Thus the canonical orientation (2.7) for Crit(s̄) is identified with

μ : (d̂et(π∗
E∨ΩU ) ⊗ d̂et(π∗

E∨E∨)−1)⊗
2 ∼= d̂et(ΩTotU (E∨))

⊗2
, (2.22)

where

d̂et(π∗
E∨E) ⊗ d̂et(π∗

E∨TU )−1 ∼= d̂et(π∗
E∨ΩU ) ⊗ d̂et(π∗

E∨E∨)−1

and

det(TU )−1 ∼= det(ΩU )

are defined in the same manner as (2.5). On the other hand, we have an isomorphism

ν : d̂et(π∗
E∨ΩU ) ⊗ d̂et(π∗

E∨E∨)−1 ∼= d̂et(π∗
E∨ΩU ) ⊗ d̂et(π∗

E∨E)

∼= d̂et(ΩTotU (E∨)), (2.23)

where the first isomorphism is defined as (2.5) and the second isomorphism is induced by the
lower short exact sequence in (2.21). By the definition of oT∗[−1]Z and (2.4) we see that

μ = (−1)(n+r)(n+r−1)/2(1/2)n+r · ν⊗2
, (2.24)

where we write n = dimU and r = rankE. The appearance of the sign (−1)(n+r)(n+r−1)/2 is
caused by the difference of the maps (2.5) and (A.2), and the difference of the symmetric monoidal
structure for the category of graded line bundles (A.1) and the standard symmetric monoidal
structure for the category of ungraded line bundles. Equation (2.24) implies the triviality of
Q

o
T∗[−1]Z

Z̃
. �

For later use, we explicitly choose a trivialization of Q
o
T∗[−1]Z

Z̃
. For each (a, b) ∈ Z2

≥0, take
εa,b ∈ {1,−1,

√
−1,−

√
−1} so that

• ε0,0 = 1,
• εa,b = (−1)b

√
−1εa−1,b−1,

• εa+1,b = (−
√
−1)a−bεa,b.

Then

εn,r(1/
√

2)n+r · ν (2.25)

gives a square root of μ, hence a trivialization of Q
o
T∗[−1]Z

Z̃
.

Corollary 2.20. Let Y be a quasi-smooth derived scheme, πY : T∗[−1]Y → Y the projection,
and write πY = t0(πY ). Then (πY )!ϕ

p
T∗[−1]Y is a rank-one local system shifted by vdimY .

Proof. Since the statement is local, we may assume Y is a derived zero locus Z(s) as in the
previous lemma. The conclusion of the lemma implies that ϕp

T∗[−1]Y is isomorphic to ϕp
s̄, hence

the statement follows from Theorem 2.18. �

3. Dimensional reduction for schemes

In this section we will prove that the local system appearing in Corollary 2.20 is in fact trivial,
by showing that the local dimensional reduction isomorphism (2.20) is independent of the choice
of the Kuranishi chart.

Let Y be a quasi-smooth derived scheme and πY : T∗[−1]Y → Y be the projection. We
always equip T∗[−1]Y with the −1-shifted symplectic form constructed in Example 2.6 and the
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canonical orientation
o = oT∗[−1]Y .

Write πY = t0(πY ), Ỹ = t0(T∗[−1]Y ), and Y = t0(Y ). Take a good Kuranishi chart

Z = (Z, U, E, s, ι)

of Y . The map ι induces an open immersion ι̃ : T∗[−1]Z(s) ↪→ T∗[−1]Y with the image
Z̃ := π−1

Y (Z). Lemma 2.7 shows that there exists a natural embedding ĩ : Z̃ ↪→ TotU (E∨) such
that

Z̃ = (Z̃, TotU (E∨), s̄, ĩ)

gives a d-critical chart on Ỹ .
We now have an isomorphism

(πY )!ϕ
p
T∗[−1]Y |Z ∼= i∗(πE∨)!ĩ∗(ϕ

p
T∗[−1]Y |Z̃) (3.1)

where πE∨ : TotU (E∨) → U is the projection and i : Z ↪→ U is the natural embedding. By the
definition of ϕp

T∗[−1]Y in Theorem 2.17 we also have an isomorphism

ωZ̃ : ĩ∗(ϕ
p
T∗[−1]Y |Z̃ ⊗Z/2Z (Qo

Z̃
)−1) ∼= ϕp

s̄. (3.2)

By combining isomorphisms (3.1) and (3.2), the trivialization of Qo
Z̃

in (2.25), and
Theorem 2.18, we obtain the following isomorphism:

γ̄Z : (πY )!ϕ
p
T∗[−1]Y |Z ∼= QZ [vdimY ]. (3.3)

Theorem 3.1. For i = 1, 2, let Zi = (Zi, Ui, Ei, si, ιi) be good Kuranishi charts on Y . Then we
have γ̄Z1 |Z1∩Z2 = γ̄Z2 |Z1∩Z2 . Therefore there exists a natural isomorphism

γ̄Y : (πY )!ϕ
p
T∗[−1]Y

∼= QY [vdimY ].

We say that two Kuranishi charts Z1 = (Z1, U1, E1, s1, ι1) and Z2 = (Z2, U2, E2, s2, ι2) have
compatible dimensional reductions at p ∈ Z1 ∩ Z2 if there exists an analytic open neighborhood
p ∈ W ⊂ Z1 ∩ Z2 such that γ̄Z1 |W = γ̄Z2 |W .

Lemma 3.2. Let Z1 = (Z1, U1, E1, s1, ι1) and Z2 = (Z2, U2, E2, s2, ι2) be good Kuranishi charts
on Y . Assume that these Kuranishi charts are minimal at p ∈ Z1 ∩ Z2. Then they have
compatible dimensional reductions at p.

Proof. Denote by i1 : Z1 ↪→ U1 and i2 : Z2 ↪→ U2 the natural embeddings, and let

Z̃ = (Z̃1, TotU1(E
∨
1 ), s̄1, ĩ1), Z̃ = (Z̃2, TotU2(E

∨
2 ), s̄2, ĩ2)

be d-critical charts associated with Z1 and Z2, respectively. Using Proposition 2.3(ii), we may
assume that we have the commutative diagram

TotU1(E
∨
1 )

τ∨

∼
��

s̄1

��

���������������
TotU1(η

∗E∨
2 )

η̃

��

��

��

TotU2(E
∨
2 )

s̄2

��

��

A1

U1

η
�� U2

such that η is étale and η(i1(p)) = i2(p). The natural isomorphism

(η̃ ◦ τ∨)∗KTotU2
(E∨

2 )
∼= KTotU1

(E∨
1 )
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induces an isomorphism
Qo

Z̃1

∼= Qo
Z̃2

|
Z̃1

which identifies the trivializations (2.25). Then Theorem 2.17(ii) implies that the composition

ĩ∗1ϕ
p
s̄1

∼= ĩ∗1(ϕ
p
s̄1

⊗Z/2Z Qo
Z̃1

) ∼= ĩ∗2(ϕ
p
s̄2

⊗Z/2Z Qo
Z̃2

)|
Z̃1

∼= (̃i∗2ϕ
p
s̄2

)|
Z̃1

(3.4)

is the natural isomorphism
ϕp

s̄1
∼= η∗ϕp

s̄2

given in Proposition 2.16(iii) pulled back to Z̃1. Hence the commutativity of diagram (2.9) implies
the lemma. �
Proposition 3.3. Let Z = (Z, U, E, s, ι) be a good Kuranishi chart on Y , which is not minimal
at p ∈ Z. Then there exists another good Kuranishi chart Z ′ = (Z ′, U ′, E′, s′, ι′) with p ∈ Z ′ and
dim U ′ < dimU such that Z and Z ′ have compatible dimensional reductions at p.

Proof. Take a trivialization
E = OU · e1 ⊕ · · · ⊕ OU · er

and write
s = f1e1 + · · · + frer.

By the non-minimality assumption, we may assume that f1 �= 0 and the zero locus Z(f1) is
smooth at p. Take a smooth affine open neighborhood p ∈ U ′ ⊂ Z(f1) and define a vector bundle
E′ on U ′ by

E′ := (OU · e2 ⊕ · · · ⊕ OU · er)|U ′ .

Let s′ ∈ Γ(U ′, E′) be the section induced by s|U ′ . Then we obtain a natural open immersion of the
derived zero loci Z(s′) ↪→ Z(s). Define ι′ : Z(s′) → Y by the composition Z(s′) ↪→ Z(s) ι−→ Y ,
and denote its image by Z ′. By shrinking around p if necessary, we may assume that

Z ′ = (Z ′, U ′, E′, s′, ι′)

is a good Kuranishi chart. We prove that this Kuranishi chart has the desired property.
Firstly take a local coordinate x1, . . . , xn of U around pU = ι−1(p) with x1 = f1 and an

analytic open neighborhood pU ∈ V in U which maps biholomorphically to a polydisc Bn
ε ⊂ Cn

under (x1, . . . , xn). Write V ′ = V ∩ U ′. By shrinking V if necessary, we can write

fi|V = x1hi + ri ◦ ᾱ

for each i ∈ {2, . . . , n}, where hi is a holomorphic function on V , ri is a holomorphic function on
V ′, and ᾱ : V → V ′ is the map identified with the projection Bn

ε → Bn−1
ε .

Let
Z̃ = (Z̃, TotU (E∨), s̄, ĩ), Z̃ ′ = (Z̃ ′, TotU ′((E′)∨), s̄′, ĩ′)

be d-critical charts on Ỹ associated with Z and Z ′, respectively. Write

Z̃V = (W̃ , Ṽ , s̄|Ṽ , ĩ|W̃ ), Z̃ ′
V ′ = (W̃ , Ṽ ′, s̄′|Ṽ ′ , ĩ

′|W̃ )

for the restrictions of Z̃ and Z̃ ′, where we define

W := i−1(V ), W̃ := π−1
Y (W ), Ṽ := TotV (E|V ), Ṽ ′ := TotV ′(E′|V ′).

To simplify the notation, we write

ei = ei|V , s̄ = s̄|Ṽ , s̄′ = s̄′|
Ṽ ′ , ĩ = ĩ|W̃ , ĩ′ = ĩ′|W̃ .
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Define a closed immersion linear over V ′ ↪→ V ,

Φ: Ṽ ′ ↪→ Ṽ ,

by

e∨i |V ′ 
→ −hie
∨
1 + e∨i ,

where e∨1 , . . . , e∨r is the dual basis of e1, . . . , er. A direct computation shows that Φ defines an
embedding of d-critical charts

Z̃V ↪→ Z̃ ′
V ′ ;

in other words, we have the commutative diagram

Ṽ ′

s̄′

��

Φ

�� Ṽ
s̄

�� A1

W̃
��

ĩ′
		

W̃
��

ĩ

		

such that

Crit(s̄′) = Im(̃i′), Crit(s̄) = Im(̃i).

Now define a map linear over the projection ᾱ : V � V ′,

α : Ṽ � Ṽ ′,

by

e∨i 
→ e∨i |V ′ ,

and a map linear over the projection x1 : V � Bε,

β = (x1, y) : Ṽ � Bε × C,

by

e∨1 
→ 1, e∨i 
→ hi (i > 1).

It is clear by the construction that

α ◦ Φ = idṼ ′ , β ◦ Φ = 0,

the map (α, β) : Ṽ → Ṽ ′ × (Bε × C) is invertible, and the following diagram commutes.

W̃

πY |W̃
��

� �

ĩ

�� Ṽ

s̄





(α,β)

∼
��

πV

��

Ṽ ′ × (Bε × C)
s̄′�x1y

��

πV ′×x1

��

A1

W
� �

i

�� V
(ᾱ,x1)

∼
�� V ′ × Bε

Here πV and πV ′ are natural projections.
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Consider the following composition of morphisms of perverse sheaves on W̃ :

ĩ∗ϕp
s̄
∼= ĩ∗ϕp

s̄ ⊗Z/2Z Qo
Z̃V

∼= ϕT∗[−1]Y
∼= (̃i′)∗ϕp

s̄′ ⊗Z/2Z Qo

Z̃ ′
V ′

∼= (̃i′)∗ϕp
s̄′ , (3.5)

where the first and final isomorphisms are induced by (2.25), and the second and third iso-
morphisms are ω−1

Z̃
and ω

Z̃ ′ defined in Theorem 2.17, respectively. We now show that this is
equal to the composition

ĩ∗ϕp
s̄
∼= i∗(α, β)∗(ϕp

s̄′ � ϕp
x1y) ∼= (̃i′)∗ϕp

s̄′ , (3.6)

where the first map is the Thom–Sebastiani isomorphism, and the second map is constructed
by substituting z1 = (x1 − y)/2

√
−1 and z2 = (x1 + y)/2 for h2,(z1,z2) in (2.13). To do this, it

suffices to prove the commutativity of the following diagram, thanks to Theorem 2.17(iii).

(Z/2Z)W̃

1	→εn,r(1/
√

2)n+r·ν
�� Qo

Z̃

��

(Z/2Z)W̃

1	→εn−1,r−1(1/
√

2)n+r−2·ν′
�� Qo

Z̃ ′ .

Here the right vertical map is (2.15) and

ν : ĩ∗KṼ
∼= (πred

Y )∗ d̂et(LY )|W̃ , ν ′ : (̃i′)∗KṼ ′ ∼= (πred
Y )∗ d̂et(LY )|W̃

are constructed in the same manner as (2.23). The commutativity of the diagram above is
equivalent to the commutativity of the following diagram.

(πred
Y )∗ d̂et(LY )|W̃

εn,r(1/
√

2)n+r·ν
��

εn−1,r−1(1/
√

2)n+r−2·ν′
��

(̃i)∗KṼ

∼

��

(̃i′)∗K
Ṽ ′

a 	→a∧Dz1∧Dz2
�� (̃i)∗(α, β)∗KV ′×C2 .

The commutativity of this diagram follows by the definitions of ν and ν′, and the equations
εn,r/εn−1,r−1 = (−1)r

√
−1 and dz1 ∧ dz2 = (−

√
−1/2)dx1 ∧ dy. Therefore we have obtained the

equality of isomorphisms (3.5) and (3.6).
Now consider the commutative diagram

ϕp
s̄

γs̄
��

∼

��

QṼ [n + r]

∼

��

(α, β)∗(ϕp
s̄′ � ϕp

x1y)
(α,β)∗(γs̄′�γx1y)

�� (α, β)∗(QṼ ′ [n + r − 2] � Q(0,0)[2])

where the left vertical map is induced by the Thom–Sebastiani isomorphism. The commutativity
follows from the commutativity of diagram (2.10). By applying the functor (πV )!, we obtain the
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following commutative diagram.

(πV )!ϕ
p
s̄

∼
��

∼

��

QV [n − r]

∼

��

(πV )!(α, β)∗(ϕp
s̄′ � ϕp

x1y)

∼

��

(ᾱ, x1)∗((πV ′)!ϕ
p
s̄′ � (x1)!ϕ

p
x1y)

∼
�� (ᾱ, x1)∗(QṼ ′ [n − r] � Q(0,0))

By combining the commutativity of the diagram above and the equality of isomorphisms (3.5)
and (3.6), the proposition follows from the next lemma. �
Lemma 3.4. The following diagram commutes:

(x1)!ϕ
p
x1y

(x1)!h2,(z1,z2)
��

∼ γ̄y

��

(x1)!Q(0,0)

∼

��

Q0 Q0

(3.7)

where we use z1 = (x1 − y)/2
√
−1 and z2 = (x1 + y)/2.

Proof. Since x1y is homogeneous and Crit(x1y) has compact support, we have natural
isomorphisms

H0(C, (x1)!ϕp
x1y) ∼= H2(C2, {(x1, y) ∈ C2 | Re(x1y) > 0}; Q)

∼= H2(C2, C2 \ C × {0}; Q). (3.8)

The left vertical map in (3.7) is given by the Thom class of H2(C2, C2 \ C × {0}; Q) and (3.8).
Now consider the following composition of isomorphisms:

H0(C, (x1)!ϕp
x1y) ∼= H2(C2, {(x1, y) ∈ C2 | Re(x1y) > 0}; Q)

= H2(C2, {(z1, z2) ∈ C2 | Re(z2
1 + z2

2) > 0}; Q)

∼= H2(C2, {(z1, z2) ∈ C2 | Re(z2
1) > 0, or Re(z2

2) > 0}; Q)

∼= H1(C, {z1 ∈ C | Re(z2
1) > 0}; Q) ⊗ H1(C, {z2 ∈ C | Re(z2

2) > 0)}; Q)
∼= Q ⊗ Q ∼= Q. (3.9)

The third isomorphism is the relative Künneth isomorphism and the fourth isomorphism is
given by (2.12). Since the Thom–Sebastiani isomorphism is induced by the relative Künneth
isomorphism (see [Sch03, p. 62]), this composition corresponds to h2,(z1,z2). Therefore we only
need to show that

Q → H2(C2, C2 \ C × {0}; Q),

constructed by combining (3.8) and (3.9), gives the Thom class. Consider the composition

R2 (z1,z2)−−−−→ C2 y−→ C. (3.10)

If we equip R2 with the product orientation of the positive directions, this composition preserves
the orientation. This proves the claim. �
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By repeatedly using Proposition 3.3, we obtain the following corollary.

Corollary 3.5. Under the assumption of Proposition 3.3, there exists a good Kuranishi chart
Z ′ = (Z ′, U ′, E′, s′, ι′) containing and minimal at p, such that Z and Z ′ have compatible
dimensional reductions at p.

Proof of Theorem 3.1. By the sheaf property, it suffices to show that Z1 and Z2 have compatible
dimensional reductions at each p ∈ Z1 ∩ Z2. By Corollary 3.5, we may assume these Kuranishi
charts are minimal at p, and then the claim follows from Lemma 3.2. �
Remark 3.6. For a d-critical scheme (X, s), it is shown in [BBDJS15, § 6.4] that ϕX,s has a
natural extension to a mixed Hodge module. We can extend Theorem 3.1 to an isomorphism in
the derived category of mixed Hodge modules.

4. Dimensional reduction for stacks

The aim of this section is to extend Theorem 3.1 to quasi-smooth derived Artin stacks.

4.1 Lisse-analytic topology
We briefly recall the theory of lisse-analytic topos introduced in [Sun17], which is a complex
analytic analogue of the lisse-étale topos. All statements in this section can be deduced in the
same manner as in [Ols07] or [LO08], so we do not give detailed proofs.

Let AnSp denote the site of complex analytic spaces equipped with the analytic topology.
A stack in groupoid X over AnSp is called a complex analytic stack if the following conditions
hold.

(i) The diagonal morphism X → X ×X is representable by complex analytic spaces.
(ii) There exists a smooth surjection U → X from a complex analytic space U .

Definition 4.1. Let X be a complex analytic stack. The lisse-analytic site Lis-An(X ) is the
site defined as follows.

• The underlying category of Lis-An(X ) is the full subcategory of complex analytic spaces over
X spanned by ones smooth over X .

• A family of morphisms {(Ui → X ) → (U → X )}i∈I is a covering if {Ui → U}i∈I is an open
covering.

The topos Xlis-an associated with Lis-An(X ) is called the lisse-analytic topos of X .

It can easily be seen that a sheaf F ∈ Xlis-an is given by the following data:

• a sheaf F(U,u) on U for each (u : U → X ) ∈ Lis-An(X ) and
• a morphism cf : f−1F(V,v) → F(U,u) for each f : (u : U → X ) → (v : V → X ) in Lis-An(X )

such that the following conditions hold.

– cf is an isomorphism if f is an open immersion.
– Given a composition

(u : U → X )
f−→ (v : V → X )

g−→ (w : W → X ),

we have cg◦f = cf ◦ f−1cg.

Denote by Mod(Xlis-an, Q) the category of sheaves of Q-vector spaces over X and by
D(Xlis-an, Q) the derived category of Mod(Xlis-an, Q).
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Definition 4.2. A sheaf F ∈ Mod(Xlis-an, Q) is called Cartesian if, for any morphism
f : (U → X ) → (V → X ) in Lis-An(X ), cf is an isomorphism. A Cartesian sheaf F ∈
Mod(Xlis-an, Q) is called (analytically) constructible if for any U → X in Lis-An(X ) the restriction
F |Uan to the analytic topos of U is (analytically) constructible.

Denote by Dcart(Xlis-an, Q) (respectively, Dc(Xlis-an, Q)) the full subcategory of D(Xlis-an, Q)
spanned by complexes whose cohomologies are Cartesian sheaves (respectively, constructible
sheaves).

For an Artin stack X, one can define its associated complex analytic stack Xan as in
[Sun17, 3.2.2]. By an abuse of notation, we write Lis-An(X) (respectively, Xlis-an) instead of
Lis-An(Xan) (respectively, Xan

lis-an). For ∗ ∈ {b, +,−}, D(∗)(Xlis-an, Q) denotes the full subcategory
of D(Xlis-an, Q) consisting of complexes K such that K|U ∈ D∗(Ulis-an, Q) for any quasi-compact
Zariski open subset U ⊂ X. Define D

(∗)
cart(Xlis-an, Q) and D

(∗)
c (Xlis-an, Q) in a similar manner.

Arguing as in [LO08], if we are given a morphism f : X → Y of finite type between Artin
stacks, we can construct six functors:

Rf∗ : D(+)
c (Xlis-an, Q) → D(+)

c (Ylis-an, Q), f∗ : Dc(Ylis-an, Q) → Dc(Xlis-an, Q),

Rf! : D(−)
c (Xlis-an, Q) → D(−)

c (Ylis-an, Q), f ! : Dc(Ylis-an, Q) → Dc(Xlis-an, Q),

(−) ⊗ (−) : D(−)
c (Xlis-an, Q) × D(−)

c (Xlis-an, Q) → D(−)
c (Xlis-an, Q),

RHom : D(−)
c (Xlis-an, Q)op × D(+)

c (Xlis-an, Q) → D(+)
c (Xlis-an, Q).

We briefly recall the construction of Rf∗, f∗, Rf! and f !. Firstly define

f∗ : Mod(Xlis-an, Q) → Mod(Ylis-an, Q)

by the rule that f∗F (U) = F (U ×Y X). By taking the derived functor of f∗ we obtain Rf∗. When
f is a smooth morphism, f∗ is nothing but the restriction functor. In general, f∗ is constructed
by taking simplicial covers, but we use pullback functors only for smooth morphisms in this
paper, so we do not need this general construction. To define Rf! and f ! we use the Verdier
duality functor. Arguing as in [LO08, § 3], we can construct the dualizing complex

ωX ∈ D(b)
c (Xlis-an, Q)

and define the Verdier duality functor

DX := RHom(−, ωX) : D(−)
c (Xlis-an, Q)op → D(+)

c (Xlis-an, Q).

Now define Rf! := DY ◦ f∗ ◦ DX and f ! := DX ◦ f∗ ◦ DY. If f is a smooth morphism of relative
dimension d, we have natural isomorphisms

f∗DX(F ) = f∗ RHom(F, ωY) ∼−→ RHom(f∗F, f∗ωY)
∼−→ RHom(f∗F, ωX[−2d]) ∼= DY(f∗F )[−2d] (4.1)

for F ∈ Dc(Y, Q). Therefore we have f ! ∼= f∗[2d].
If we are given a 2-morphism ξ : f ⇒ g between morphisms of finite type of Artin stacks,

we have a natural isomorphism ξ∗ : Rf∗ ⇒ Rg∗ compatible with the vertical and horizontal
compositions. The same statement also holds for Rf!, f∗ and f !.
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We now discuss the base-change isomorphisms. Consider the following 2-Cartesian diagram
of Artin stacks.

X′
��

g′
��

f ′

��

X

f

��
η

�� ����

Y′ g
�� Y.

By adjunction, we have the base-change map

bcη : g∗Rf∗ → Rf ′
∗g

′∗ (4.2)

which is an isomorphism if g is smooth. Now assume that f is of finite type and g is smooth with
relative dimension d, and take F ∈ D

(−)
c (X, Q). Then we can construct the proper base-change

map
pbcη : g∗Rf!F

∼−→ Rf ′
! g

′∗F

by the composition

g∗Rf!F = g∗DYRf∗DXF

∼= DY′g∗Rf∗DXF [2d]
∼= DY′Rf ′

∗g
′∗DXF [2d]

∼= DY′Rf ′
∗DX′g′∗F = Rf ′

! g
′∗F,

where the first and third isomorphisms are defined by using (4.1) and the second isomorphism
is the base-change map (4.2). Now consider the following composition of 2-Cartesian diagrams:

η1 ��
X′′

��
h′

��

f ′′
��

k′

��

X′
��

g′
��

f ′

��

X

f

��η2

�� ����
η3

�� ����

Y′′

k

��h

�� Y′

η4

��

g
�� Y

where f is of finite type, and g and h are smooth. We define η : f ◦ k′ ⇒ k ◦ f ′′ by composing
2-morphisms in the diagram. Arguing as [LO08, Lemma 5.1.2], we can show the commutativity
of the following diagram.

k∗f!

pbcη
��

η∗
4

��

(f ′′)!(k′)∗

η1∗
��

h∗g∗f!

h∗pbcη2
�� h∗(f ′)!(g′)∗

pbcη3
(g′)∗

�� (f ′′)!(h′)∗(g′)∗.

(4.3)

For an Artin stack X, we define a full subcategory Perv(X) ↪→ Dc(X, Q) consisting of objects
K such that, for any smooth morphism f : U → X from a scheme, f∗K[dim f ] is a perverse sheaf
on U . An object in Perv(X) is called a perverse sheaf on X. Arguing as [LO09, Proposition 7.1],
we see that U 
→ Perv(U) defines a stack on Lis-An(X) whose global section category is Perv(X).
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4.2 D-critical stacks
In this section we first recall the notion of d-critical stacks introduced in [Joy15, § 2.8], which
is a stacky generalization of d-critical schemes. And then we prove that the canonical d-critical
structures and the canonical orientations for −1-shifted cotangent stacks are preserved under
smooth base changes. This is the key ingredient in the proof of the dimensional reduction theorem
for quasi-smooth derived Artin stacks.

We first explain the functorial behavior of the d-critical structure.

Proposition 4.3 [Joy15, Propositions 2.3, 2.8]. Let f : X → Y be a morphism of complex ana-
lytic spaces, and SX (respectively, SY ) be the sheaf on X (respectively, Y ) defined in (2.3). Then
there exists a natural map θf : f−1SY → SX with the following property. If R ⊂ X and S ⊂ Y
are open subsets with f(R) ⊂ S, i : R ↪→ U and j : S ↪→ V are closed embeddings into complex
manifolds, and f̃ : U → V is a holomorphic map with j ◦ f |R = f̃ ◦ i, then the following diagram
commutes.

f−1SY |R ��

θf |R
��

(f |R)−1((j−1OV )/I2
S,V )

��

SX |R �� (i−1OU )/I2
R,U

Here horizontal maps are induced by the natural inclusions, and the right vertical map is induced
by f̃ � : f̃−1OV → OU . The map θf induces natural map f−1S0

Y → S0
X (also written as θf ). If f is

smooth and s ∈ Γ(Y,S0
Y ) is a d-critical structure, f�s := θf (f−1s) is also a d-critical structure.

We now explain that the definition of the sheaf S0
X can be extended to complex analytic

stacks.

Proposition 4.4 [Joy15, Corollary 2.52]. Let X be a complex analytic stack. Then there exists
a sheaf of complex vector spaces S0

X in Lis-an(X ) with the following properties.

• For (u : U → X ) ∈ Lis-an(X ), we have an isomorphism

θu : S0
X |Uan

∼= S0
U .

• For a morphism f : (u : U → X ) → (v : V → X ) in Lis-an(X ), the following diagram
commutes.

f−1(S0
X |Van)

f−1(θv)
��

cf

��

f−1S0
V

θf

��

S0
X |Uan

θu
�� S0

U .

Definition 4.5. Let X be a complex analytic stack. A section s ∈ Γ(Xlis-an,S0
X ) is called a

d-critical structure if, for any (u : U → X ) ∈ Lis-An(X ), u�s := θu(s|Uan) is a d-critical structure
on U . A d-critical Artin stack is an Artin stack X with a d-critical structure on its analytification.

We have a stacky version of Theorem 2.13.

Theorem 4.6 [BBBJ15, Theorem 3.18(a)]. Let (X, ωX) be a −1-shifted symplectic derived
Artin stack. Then there exists a natural d-critical structure sX on X := t0(X) uniquely
characterized by the following property.
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Assume we are given derived schemes X and X̂, and morphisms g : X → X and τ : X → X̂
such that g is smooth. Further assume that there exist a −1-shifted symplectic structure ωX̂
and an equivalence g�ωX ∼ τ �ωX̂. If we write g = t0(g), τ = t0(τ ), and sX̂ for the d-critical

structure on X̂ = t0(X̂) associated with ωX̂, we have g�sX = τ�sX̂ .

Proof. The uniqueness part is proved in [BBBJ15, Theorem 3.18(a)]. We now verify that
the d-critical structure constructed there satisfies the property as above. Using [BBBJ15,
Theorem 2.10], we have derived schemes U and Û , a smooth surjection u : U → X, a morphism
τU : U → Û , and a −1-shifted symplectic form ωÛ on Û such that u�ωX ∼ τ �

UωÛ . Further, if we
write sÛ for the d-critical structure associated with ωÛ , we may assume t0(u)�sX = t0(τU)�sÛ .
We have the following diagram of derived stacks.

U ×X X
��

U′
��

g′

��

X

g

��

τ
�� X̂

Û U
τU

��
U

�� X.

Now take any point x ∈ t0(X) and an étale morphism from a derived scheme η : W → U ×X X
such that the image of t0(u′ ◦ η) contains x. Since t0(u′ ◦ η) is a smooth morphism, it suffices
to show that

t0(τU ◦ g′ ◦ η)�sÛ = t0(τ ◦ u′ ◦ η)�sX̂ .

This follows by arguing as in [BBJ19, Example 5.22] since we have (τU ◦ g′ ◦ η)�ωÛ ∼
(τ ◦ u′ ◦ η)�ωX̂. �

We now discuss the behavior of the d-critical structure associated with the canonical
−1-shifted symplectic structures on −1-shifted cotangent stacks constructed in Example 2.6
under smooth pullbacks. Let f : Y → Y be a smooth morphism from a derived scheme Y to a
quasi-smooth derived Artin stack Y. Consider the following diagram.

f∗T∗[−1]Y
τ

��

f̃ ��												

πY,f




T∗[−1]Y

πY
�� Y

f

��

T∗[−1]Y
πY

�� Y

(4.4)

Here f∗T∗[−1]Y is the total space TotY (Lf∗Y[−1]), πY , πY, and πY,f are the projections,
τ is induced by the canonical map f∗LY[−1] → LY [−1], and f̃ : f∗T∗[−1]Y → T∗[−1]Y is the
base change of f . The smoothness of f implies that τ induces an isomorphism on underlying
schemes, so we use the identification

t0(f∗T∗[−1]Y) = t0(T∗[−1]Y ) (4.5)

throughout the paper.

Proposition 4.7. Consider the situation as above. Denote by sT∗[−1]Y (respectively, sT∗[−1]Y)
the d-critical structure associated with the canonical −1-shifted symplectic form ωT∗[−1]Y

(respectively, ωT∗[−1]Y) constructed in Example 2.6. Then we have sT∗[−1]Y = f̃�sT∗[−1]Y, where

we write f̃ = t0(f̃) and use the identification (4.5).
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Proof. By Theorem 4.6, we only need to show that τ �ωT∗[−1]Y ∼ f̃
�
ωT∗[−1]Y. If we write

λT∗[−1]Y and λT∗[−1]Y for the tautological 1-forms on T∗[−1]Y and T∗[−1]Y respectively, we
have ddRλT∗[−1]Y = ωT∗[−1]Y and ddRλT∗[−1]Y = ωT∗[−1]Y by definition. Therefore we only need
to prove

τ �λT∗[−1]Y ∼ f̃
�
λT∗[−1]Y.

By the functoriality of the cotangent complex, we have the following homotopy commutative
diagram.

(πY,f)∗f∗LY[−1] ∼
a

��

(πY,f )∗θf

��

f̃
∗
π∗

YLY[−1]
f̃
∗
θπY

�� f̃
∗
LT∗[−1]Y[−1]

θ
f̃
∗

��

Lf∗T∗[−1]Y[−1]

(πY,f)∗LY [−1] ∼
b

�� τ ∗π∗
Y LY [−1]

τ∗θπY
�� τ ∗LT∗[−1]Y [−1].

θτ

		

Here a and b are defined by using f ◦ πY,f � πY ◦ f̃ and πY,f � πY ◦ τ respectively, and other
morphisms are induced by the functoriality of the cotangent complex. Now write γf∗T∗[−1]Y,
γT∗[−1]Y , and γT∗[−1]Y for the tautological sections of (πY,f)∗f∗LY[−1], π∗

YLY[−1], and
π∗

Y LY [−1], respectively. By definition, we have

f̃
�
λT∗[−1]Y ∼ θf̃(f̃

∗
λT∗[−1]Y) ∼ θf̃ ◦ f̃

∗
θπY

(f̃
∗
γT∗[−1]Y),

τ �λT∗[−1]Y ∼ θτ(τ ∗λT∗[−1]Y ) ∼ θτ ◦ τ ∗θπY
(τ ∗γT∗[−1]Y ).

Since we have the tautological relations

f̃
∗
γT∗[−1]Y ∼ a(γf∗T∗[−1]Y), τ ∗γT∗[−1]Y ∼ b ◦ (πY,f)∗θf(γf∗T∗[−1]Y),

the proposition follows. �
We now discuss the notion of the virtual canonical bundles and the orientations for d-critical

stacks. Before doing this, we recall a property of the virtual canonical bundle of d-critical schemes.
For a d-critical chart (R, U, f, i) of a d-critical scheme (X, s) and a point x ∈ R, consider the
following complex concentrated in degree −1 and 0:

Lx := (TU |x
Hess(f)|x−−−−−−→ ΩU |x).

Since H0(Lx) ∼= ΩX |x and H−1(Lx) ∼= (ΩX |x)∨, we can define an isomorphism

κx : KX,s|x ∼= det(Lx) ∼= det(ΩX |x) ⊗ det((ΩX |x)∨)−1 ∼= det(ΩX |x)⊗
2
. (4.6)

Here the final isomorphism is defined in the same manner as (2.5). It is proved in [Joy15,
Theorem 2.28] that κx does not depend on the choice of a d-critical chart. Now the virtual
canonical bundle for a d-critical stack is defined by the following proposition.

Proposition 4.8 [Joy15, Theorem 2.56]. Let (X, s) be a d-critical stack. Then there exists a
line bundle KX,s on Xred, which we call the virtual canonical bundle of (X, s), characterized
uniquely up to unique isomorphism by the following properties.
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(i) For x ∈ X, there exists an isomorphism

κx : KX,s|x ∼= det(τ≥0(LX)|x)⊗
2
. (4.7)

(ii) For a smooth morphism u : U → X from a scheme U , there exists an isomorphism

ΓU,u : (ured)∗KX,s
∼= KU,u�s ⊗ d̂et(ΩU/X)⊗

−2
. (4.8)

(iii) In the situation of (ii), take any p ∈ U . The distinguished triangle

Δ: u∗τ≥0(LX) → ΩU → ΩU/X → u∗τ≥0(LX)[1]

induces an isomorphism ı̂(Δ)p : det(τ≥0(LX)|u(p)) ⊗ det(ΩU/X|p) ∼= det(ΩU |p) where ı̂ is
defined in Lemma 2.14. Then the following diagram commutes.

KX,s|u(p)

ΓU,u|p
��

κu(p)

��

KU,u�s|p ⊗ det(ΩU/X|p)⊗
−2

κp⊗id

��

det(τ≥0(�LX)|u(p))⊗
2

�� det(ΩU |p)⊗
2 ⊗ det(ΩU/X|p)⊗

−2

Here the bottom horizontal map is defined by using ı̂(Δ)p.

An orientation o of a d-critical stack (X, s) is the choice of a line bundle L on Xred

and an isomorphism o : L⊗2 ∼= KX,s. An isomorphism between orientations o1 : L⊗2

1
∼= KX,s and

o2 : L⊗2

2
∼= KX,s is defined by an isomorphism φ : L1

∼= L2 such that o1 = o2 ◦ φ⊗2
. If there

exists a smooth morphism u : U → X, we define an orientation u�o for (U, u�s) by the following
composition:

u�o : ((ured)∗L ⊗ d̂et(ΩU/X))⊗
2 ∼= (ured)∗KX,s ⊗ d̂et(ΩU/X)⊗

2 ΓU,u−−−→ KU,u�s.

If we are given a smooth morphism q : (u : U → X) → (v : V → X) in Lis-An(X), define an
isomorphism

u�o ∼= q�v�o (4.9)

by using the natural isomorphism

d̂et(ΩU/X) ∼= (f red)∗ d̂et(ΩV/X) ⊗ d̂et(ΩU/V ).

We now discuss the relation of the cotangent complex of a −1-shifted symplectic derived
Artin stack and the virtual canonical bundle of the associated d-critical stack.

Theorem 4.9 [BBBJ15, Theorem 3.18(b)]. Let (X, ωX) be a −1-shifted symplectic derived
Artin stack, and (X, sX) the associated d-critical stack. Then there exists a natural isomorphism

ΛX : d̂et(LX) ∼= KX,sX
(4.10)

characterized by the following property.
Assume we are given derived schemes X and X̂, and morphisms g : X → X and τ : X → X̂

such that g is smooth and Lτ |x is concentrated in degree −2 for each x ∈ X. Note that it auto-
matically follows that τ = t0(τ ) is étale. Further assume that there exist a −1-shifted symplectic
structure ωX̂ on X̂ with associated d-critical locus (X̂, sX̂) and an equivalence g�ωX ∼ τ �ωX̂.
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This equivalence induces a homotopy between the composition

Tg → TX → τ ∗TX̂

τ�ωX̂−−−−→ τ ∗LX̂[−1] → LX[−1]

and 0, hence an isomorphism

� : Tg
∼−→ Lτ [−2]. (4.11)

Then the composition

d̂et(g∗LX) ∼= d̂et(LX) ⊗ d̂et(Lg)−1

∼= d̂et(τ ∗LX̂) ⊗ d̂et(Lτ) ⊗ d̂et(Lg)−1

∼= d̂et(τ ∗LX̂) ⊗ d̂et(Lg)⊗
−2

∼= (τ red)∗KX̂,sX̂
⊗ d̂et(Lg)⊗

−2

∼= KX,τ�sX̂
⊗ d̂et(Lg)⊗

−2

∼= (gred)∗KX,sX

is equal to (−1)rank(Ωg)(gred)∗ΛX, where we write g = t0(g). Here the first and second iso-
morphisms are defined by using ı̂(Δg) and ı̂(Δτ) respectively, where Δg and Δτ are distinguished
triangles

Δg : g∗LX → LX → Lg → g∗LX[1], Δτ : τ ∗LX̂ → LX → Lτ → τ ∗LX̂[1].

The third isomorphism is defined in the same manner as (2.5) using � (without any sign inter-
vention used in Appendix A), the fourth isomorphism is ΛX̂ in Theorem 2.13, and the fifth
isomorphism is ΓX,τ defined in Proposition 4.8. The final isomorphism is ΓX,g, where we use the
fact that τ�sX̂ = g�sX proved in Theorem 4.6.

Proof. The proof is essentially same as one in [BBBJ15], but we include it for the reader’s
convenience and to fix the sign. Suppose we are given X, X̂, g, and τ as above. Define

ΛX,X̂,g,τ : d̂et(g∗LX) → (gred)∗KX,sX

by the composition as above multiplied by (−1)rank(Ωg). Write pr1, pr2 : R = X ×X X ⇒ X for
the first and second projections. We have a natural 2-morphism ξ : g ◦ pr1 ⇒ g ◦ pr2. We now
prove the commutativity of the following diagram.

(prred1 )∗(d̂et(g∗LX))
(prred1 )∗ΛX ,X̂ ,g,τ

��

ξ∗
��

(prred1 )∗(gred)∗KX,sX

ξ∗
��

(prred2 )∗(d̂et(g∗LX))
(prred2 )∗ΛX ,X̂ ,g,τ

�� (prred2 )∗(gred)∗KX,sX

(4.12)
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By the reducedness of Rred, we only need to prove the commutativity at each point r ∈ R. Write
pr1(r) = x1 and pr2(r) = x2. Now consider the following diagram.

d̂et(g∗LX)|x1

Λ
X,X̂,g,τ

|x1
��

ξ∗|r

��

(A)1













(gred)∗KX,sX

|x1

ξ∗|r

��

(B)1

���������������

det(H∗(g∗LX|x1 ))
(C)1

��

ξ∗|r
��

det(H∗(τ≥0(g∗LX)|x1 ))⊗
2

ξ∗|r
��

d̂et(H∗(g∗LX|x2 ))
(C)2

�� det(H∗(τ≥0(g∗LX)|x2 ))⊗
2

det(g∗LX)|x2

Λ
X,X̂,g,τ

|x2
��

(A)2
�������������

(gred)∗KX,sX
|x2

(B)2
��													

Here (A)i is defined by the quasi-isomorphism g∗LX|xi � H∗(g∗LX|xi) and (B)i is defined by
κg(xi) in Proposition 4.8 and the quasi-isomorphism τ≥0(g∗LX)|xi � H∗(τ≥0(g∗LX)|xi). The map
(C)i is defined in the same manner as (2.5) using the isomorphisms

Hn(g∗LX|xi) ∼=
{

Hn(τ≥0(g∗LX)|xi) n = 0, 1
H−n−1(τ≥0(g∗LX)|xi)

∨ n = −2,−1.

The commutativity of the left trapezoid and middle square is obvious, and the commutativity
of the right trapezoid follows from the proof of [Joy15, Theorem 2.56]. It is easy to see that the
upper and lower trapezoids commute up to the sign (−1)rank(H1(LX |g(xi)

)) by using the equality
(A.3). These commutativity properties imply the commutativity of the outer square, and hence
the commutativity of diagram (4.12).

By Darboux’s theorem [BBBJ15, Theorem 2.10], we can take X, X̂, g, and τ in the propo-
sition so that g is surjective. By the commutativity of diagram (4.12), ΛX,X̂,g,τ descends to

ΛX : d̂et(LX) ∼= KX,sX
satisfying the property in the proposition. The uniqueness of ΛX as in the

theorem is clear from the construction. �
The notion of orientation for −1-shifted symplectic derived Artin stacks is defined by that

of the associated d-critical stacks. Let Y be a quasi-smooth derived Artin stack. The argument
in Example 2.15 works also for the stacky case and defines a natural isomorphism

o′T∗[−1]Y : d̂et(π∗
YLY)⊗

2 ∼= d̂et(LT∗[−1]Y). (4.13)

We define the canonical orientation oT∗[−1]Y for T∗[−1]Y by the composition oT∗[−1]Y
:= ΛY ◦

o′T∗[−1]Y.

Proposition 4.10. In the notation as in Proposition 4.7, we have an isomorphism

Ξf : f̃�oT∗[−1]Y
∼= oT∗[−1]Y . (4.14)

Proof. Throughout the proof we use the following notation: for a morphism h : Z → W of derived
Artin stacks, we write

Δh : h∗LW
θh−→ LZ

ζh−→ Lh
δh−→ h∗LW[1]

for the natural distinguished triangle of cotangent complexes.
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Define

Ξ′
f : (f̃ red)∗ d̂et(π∗

YLY) ⊗ d̂et(Lf̃) ∼= d̂et(π∗
Y LY )

by using ı̂(Δf) and the identification (πY,f)∗Lf
∼= Lf̃ . Write

Ξf :=
√
−1

vdim f·(vdim f−1)/2+vdim Y·vdim f · Ξ′
f . (4.15)

Now it is enough to prove the commutativity of the following diagram of line bundles on
T∗[−1]Y red.

((f̃ red)∗d̂et(π∗
YLY) ⊗ d̂et(Lf̃))⊗

2
Ξ⊗2

f
��

o′
T∗[−1]Y

⊗id

��

d̂et(π∗
Y LY )⊗

2

o′
T∗[−1]Y

��

(f̃ red)∗d̂et(LT∗[−1]Y) ⊗ d̂et(Lf̃)⊗
2

(f̃ red)∗ΛT∗[−1]Y⊗id
��

d̂et(LT∗[−1]Y )

ΛT∗[−1]Y

��

(f̃ red)∗Kt0(T∗[−1]Y),sT∗[−1]Y
⊗ d̂et(Lf̃)⊗

2
�� Kt0(T∗[−1]Y ),sT∗[−1]Y

(4.16)

Here ΛT∗[−1]Y and ΛT∗[−1]Y are defined in Theorems 2.13 and 4.9 respectively, and the bottom
arrow is defined by using Γt0(T∗[−1]Y),f̃ in (4.8) and the identification

Lf̃ |T∗[−1]Y red
∼= Ωf̃ |T∗[−1]Y red .

Consider the following diagram in Perf(f∗T∗[−1]Y):

(πY,f)∗LY

τ∗θπY
�� τ ∗LT∗[−1]Y

τ∗ζπY
��

θτ

��

(πY,f)∗TY [1]

(πY,f )∗θ∨f [1]

��

(πY,f)∗LY

θπY,f
�� Lf∗T∗[−1]Y

ζπY,f
��

ζτ

��

(πY,f)∗f∗TY[1]

−(πY,f )∗δ∨f [2]

��

Lτ
k

∼
����������

δτ

��

(πY,f)∗Tf [2]

(πY,f )∗ζ∨f [2]

��

τ ∗LT∗[−1]Y [1]
τ∗ζπY

[1]
�� (πY,f)∗TY [2]

(4.17)

where the top vertical arrows are identified with a part of the natural morphism between
distinguished triangles

τ ∗ΔπY → ΔπY,f
,

by the natural isomorphisms

τ ∗π∗
Y LY

∼= (πY,f)∗LY , τ ∗LπY
∼= (πY,f)∗TY [1], LπY,f

∼= (πY,f)∗f∗TY[1],

and k is taken so that the right horizontal arrows define a morphism between distinguished
triangles

Δτ → Δ∨
f,rot.
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Here Δ∨
f,rot denotes the right vertical distinguished triangle in the diagram above. Now we claim

that

d̂et(k) ◦ d̂et(�[2]) = det(φ[2]), (4.18)

where � : Tf̃
∼−→ Lτ [−2] is defined in (4.11), and φ : (πY,f)∗Tf̃

∼−→ Tf is the natural isomorphism.
To see this, consider the following commutative diagram.

Tf∗T∗[−1]Y[1]
(·τ∗ωT∗[−1]Y )[1]◦θ∨τ [1]

��

θ∨
f̃

[1]

��

τ ∗LT∗[−1]Y

τ∗ζπY
��

θτ

��

(πY,f)∗TY [1]

(πY,f )∗θ∨f [1]

��

f̃
∗
TT∗[−1]Y[1]

−δ∨
f̃

[2]

��

θf̃ ◦(·f̃
∗
ωT∗[−1]Y)[1]

�� Lf∗T∗[−1]Y

ζτ

��

ζπY,f
�� (πY,f)∗f∗TY[1]

−(πY,f )∗δ∨f [2]

��

Tf̃ [2]
�[2]

�� Lτ
k

�� (πY,f)∗Tf [2]

By using [KM76, Proposition 6], it is enough to prove the equalities

τ ∗ζπY
◦ (·τ ∗ωT∗[−1]Y )[1] ◦ θ∨τ [1] = θ∨πY,f

[1],

ζπY,f
◦ θf̃ ◦ (·f̃∗

ωT∗[−1]Y)[1] = f̃
∗
θ∨πY

[1],

but these are consequences of [Cal19, Remark 2.5].
Now consider the following diagram of line bundles on f∗T∗[−1]Yred, in which we omit the

pullback functors τ ∗, π∗
Y,f , and (f ◦ πY,f)∗ to simplify the notation.

d̂et(Lf∗T∗[−1]Y)

ı̂(ΔπY,f
)−1

��

ı̂(Δτ )−1

�� d̂et(LT∗[−1]Y ) ⊗ d̂et(Lτ)

ı̂(ΔπY
)−1⊗d̂et(�−1[2])

��

d̂et(LY ) ⊗ d̂et(TY[1])
id⊗ı̂(Δ∨

f ,rot)
−1

��

id⊗χ̂TY

��

d̂et(LY ) ⊗ d̂et(TY [1]) ⊗ d̂et(Tf̃ [2])

id⊗χ̂TY
⊗χ̂

(2)
T

f̃

��

d̂et(LY ) ⊗ d̂et(TY)⊗
−1

id⊗(η̂⊗−1

LY
)−1

��

d̂et(LY ) ⊗ d̂et(TY )⊗
−1 ⊗ d̂et(Tf̃)

id⊗(η̂⊗−1

LY
)−1⊗(η̂L

f̃
)−1

��

d̂et(LY ) ⊗ d̂et(LY)
id⊗ı̂(Δf )⊗id

d̂et(L
f̃

)⊗−1

�� d̂et(LY )⊗
2 ⊗ d̂et(Lf̃)⊗

−1

(4.19)

Here η̂, χ̂ are defined in Lemma 2.14. The commutativity of diagram (4.17), equality (4.18), and
[KM76, Theorem 1] implies the commutativity of the upper square. By applying Propositions A.1
and A.4 we see that the lower square also commutes. Next consider the following commutative
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diagram in Perf(f∗T∗[−1]Y).

f̃
∗
π∗

YLY

f̃
∗
θπY

��

(πY,f )∗θf

��

f̃
∗
LT∗[−1]Y

f̃
∗
ζπY

��

θf̃

��

f̃
∗
π∗

YTY[1]

(πY,f)∗LY

θπY,f
��

(πY,f )∗ζf

��

Lf∗T∗[−1]Y

ζπY,f
��

ζf̃

��

f̃
∗
π∗

YTY[1]

(πY,f)∗Lf
∼

�� Lf̃

(4.20)

The upper vertical arrows are identified with a part of the natural morphism of distinguished
triangles

f̃
∗
ΔπY

→ ΔπY,f

by the natural isomorphisms

f̃
∗
LπY

∼= f̃
∗
π∗

YTY[1], LπY,f
∼= f̃

∗
π∗

YTY[1],

and the left horizontal arrows are identified with a part of the natural morphism

(πY,f)∗Δf → Δf̃

by the natural isomorphism
(πY,f)∗LY

∼= f̃
∗
π∗

YLY.

Now consider the following diagram of line bundles on f∗T∗[−1]Yred, in which we omit pullback
functors as previous.

d̂et(Lf∗T∗[−1]Y)

ı̂(ΔπY,f
)−1

��

ı̂(Δf̃ )−1

�� d̂et(Lf) ⊗ d̂et(LT∗[−1]Y)

(−1)vdim Y·vdim f ·
id⊗ı̂(ΔπY

)−1

��

d̂et(LY ) ⊗ d̂et(TY[1])
ı̂(Δf )−1⊗id

��

id⊗χ̂TY

��

d̂et(Lf) ⊗ d̂et(LY) ⊗ d̂et(TY[1])

id⊗ id⊗χ̂TY

��

d̂et(LY ) ⊗ d̂et(TY)⊗
−1

id⊗(η̂⊗−1

LY
)−1

��

d̂et(Lf) ⊗ d̂et(LY) ⊗ d̂et(TY)⊗
−1

id⊗ id⊗(η̂⊗−1

LY
)−1

��

d̂et(LY ) ⊗ d̂et(LY)
ı̂(Δf )−1⊗id

�� d̂et(Lf) ⊗ d̂et(LY)⊗
2

(4.21)

The commutativity of diagram (4.20) and [KM76, Theorem 1] implies the commutativity of
the upper square, and the commutativity of the lower square is obvious. By combining the
commutativity of the diagrams (4.19) and (4.21), we obtain the commutativity of diagram (4.16)
(the sign (−1)vdim f·(vdim f−1)/2 appears due to the difference of the maps (2.5) and (A.2)). �
Remark 4.11. In the situation of the proposition above, assume further that there exists a
smooth morphism q : Y ′ → Y , and write q̃ : t0(T∗[−1]Y ′) → t0(T∗[−1]Y ) for the base change
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of q = t0(q). Then it is clear that the composition

(f̃ ◦ q̃)�oT∗[−1]Y ∼

(4.9)
�� q̃�f̃�oT∗[−1]Y ∼

q̃∗Ξf
�� q̃�oT∗[−1]Y ∼

Ξq
�� oT∗[−1]Y ′

is equal to Ξf◦q.

4.3 Dimensional reduction for Artin stacks
We first recall the definition of the vanishing cycle complexes associated with d-critical stacks.
To do this, we discuss the functorial behavior of the vanishing cycle complexes associated with
d-critical schemes with respect to smooth morphisms.

Proposition 4.12 [BBBJ15, Proposition 4.5]. Let (Y, s, o) be an oriented d-critical scheme,
and q : X → Y be a smooth morphism. Then there exists a natural isomorphism

Θq = Θq,s,o : ϕp
X,q�s,q�o

∼= q∗ϕp
Y,s,o[dim q]

characterized by the following property: for a d-critical chart R = (R, U, f, i) of (X, s), a
d-critical chart S = (S, V, g, j) of (Y, s) such that q(R) ⊂ S, and a smooth morphism q̃ : U → V
such that f = g ◦ q̃ and j ◦ q = q̃ ◦ i, the following diagram commutes:

ϕp
X,q�s,q�o|R

ωR
��

Θq |R
��

i∗ϕp
f ⊗Z/2Z Qq�o

R |R

Θq̃,f⊗ρq

��

q∗ϕp
Y,s,o[dim q]|R

q∗ωS [dim q]
�� j∗q̃∗ϕp

g[dim q] ⊗Z/2Z (q|R)∗(Qo
S |S)

where Θq̃,f is defined in Proposition 2.16(iii), and ρq is defined by using the natural isomorphism
KU

∼= q̃∗KV ⊗ det(ΩU/V ).

Theorem 4.13 [BBBJ15, Theorem 4.8]. Let (X, s, o) be an oriented d-critical stack. Then there
exists a natural perverse sheaf ϕX,s,o with the following property: for each (u : U → X) ∈
Lis-An(X) there exists an isomorphism

Θu = Θu,s,o : ϕp
U,u�s,u�o

∼= u∗ϕp
X,s,o[dimu]

satisfying Θu,s,o = q∗Θv,s,o[dim q] ◦ Θq,v�s,v�o for any smooth morphism q : (u : U → X) →
(v : V → X) in Lis-An(X). Here we identify q�v�o and u�o by using (4.9).

Let (X, s) be a d-critical stack, and Ξ: o1
∼= o2 be an isomorphism between orientations on

(X, s). We write
aΞ : ϕX,s,o1

∼= ϕX,s,o2

for the isomorphism induced by Ξ.
We now state our main theorem.

Theorem 4.14. Let Y be a quasi-smooth derived Artin stack, and equip T∗[−1]Y with the
canonical −1-shifted symplectic structure and the canonical orientation. Then we have a natural
isomorphism

γ̄Y : (πY)!ϕ
p
T∗[−1]Y

∼= QY[vdimY],

where we write Y = t0(Y) and πY = t0(πY).

Proof. Take a smooth surjective morphism v : V → Y and an étale morphism η : U → V ×Y V
where V and U are derived schemes. q1, q2 : U → V denote the composition of η and the
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first and second projections, respectively. Write U = t0(U), Ũ = t0(T∗[−1]U), V = t0(V ),
Ṽ = t0(T∗[−1]V ), Ỹ = t0(T∗[−1]Y), v = t0(v), and qi = t0(qi) for i = 1, 2. Denote by πY :
Ỹ → Y, πU : Ũ → U , and πV : Ṽ → V the projections, and by ṽ : Ṽ → Ỹ (respectively, q̃i : Ũ →
Ṽ ) the base change of v (respectively, qi). Denote by s the d-critical structure on Ỹ associated
with the canonical −1-shifted symplectic structure ωT∗[−1]Y.

Define

γ̄Y,v : v∗(πY)!ϕ
p
T∗[−1]Y

∼= v∗QY[vdimY]

by the following composition:

v∗(πY)!ϕ
p
T∗[−1]Y

∼= (πV )!ṽ∗ϕ
p
T∗[−1]Y

∼= (πV )!ϕ
p
T∗[−1]V [−dim v]

∼= v∗QY[vdimY],

where the first isomorphism is the proper base-change map, the second isomorphism is
(πV )!(aΞv ◦ Θ−1

ṽ )[−dim v], and the third isomorphism is γ̄V [−dim v]. By the sheaf property,
it is enough to prove the commutativity of the diagram

q∗1v
∗(πY)!ϕ

p
T∗[−1]Y

ξ∗
��

q∗1 γ̄Y,v
�� q∗1v

∗QY[vdimY]

ξ∗
��

q∗2v
∗(πY)!ϕ

p
T∗[−1]Y

q∗2 γ̄Y,v
�� q∗2v

∗QY[vdimY]

(4.22)

where ξ : v ◦ q1 ⇒ v ◦ q2 is the natural 2-morphism. We define

γ̄Y,v◦qi
: (v ◦ qi)∗(πY)!ϕ

p
T∗[−1]Y

∼= (v ◦ qi)∗QY[vdimY]

for i = 1, 2 in the same manner as γ̄Y,v. The commutativity of diagram (4.3) implies the
commutativity of the following diagram.

(v ◦ q1)∗(πY)!ϕ
p
T∗[−1]Y

ξ∗
��

γ̄Y,v◦q1
�� (v ◦ q1)∗QY[vdimY]

ξ∗
��

(v ◦ q2)∗(πY)!ϕ
p
T∗[−1]Y

γ̄Y,v◦q2
�� (v ◦ q2)∗QY[vdimY]

Therefore the commutativity of diagram (4.22) follows once we prove the commutativity of
the diagram

(v ◦ qi)∗(πY)!ϕ
p
T∗[−1]Y

∼

��

γ̄Y,v◦qi
�� (v ◦ qi)∗QY[vdimY]

∼

��

q∗i v
∗(πY)!ϕ

p
T∗[−1]Y

q∗i γ̄Y,v
�� q∗i v

∗QY[vdimY]

(4.23)
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for each i = 1, 2. We drop i from the notation, and write q = qi and q̃ = q̃i. By Remark 4.11, the
following diagram commutes.

ϕp
T∗[−1]U

a−1
Ξv

◦Θṽ

�� a−1
Ξv◦q

◦Θq̃◦ṽ

��													

q̃∗ϕp
T∗[−1]V [dim q]

a−1
Ξq

◦Θq̃

�� q̃∗ṽ∗ϕp
T∗[−1]Y[dim v ◦ q]

Using this and the commutativity of diagram (4.3) again, the commutativity of diagram (4.23)
is implied by the commutativity of the diagram

(πU )!ϕ
p
T∗[−1]U

γ̄U
��

pbcq◦(πV )!(a
−1
Ξq

◦Θq̃)

��

QU [vdimU ]

∼

��

q∗(πV )!ϕ
p
T∗[−1]V [dim q]

q∗γ̄V [dim q]
�� q∗QV [vdimU ]

(4.24)

where pbcq denotes the base-change map. Arguing as in the proof of [BBBJ15, Theorem 2.9]
and by shrinking if necessary, we may assume that there exist a smooth morphism F : M → N
with a constant relative dimension between smooth schemes, a vector bundle E of rank r
on N , and its section e ∈ Γ(N, E) such that V = Z(e), U = Z(F ∗e), and q : Z(F ∗e) → Z(e) is
the base change of F . Write F̃ : TotM (F ∗E∨) → TotN (E∨) for the base change of F , and denote
by ē : TotN (E∨) → A1 the regular function corresponding to e. Then

U = (Ũ , TotM (F ∗E∨), ē ◦ F̃ , i), V = (Ṽ , TotN (E∨), ē, j)

define d-critical charts on Ũ and Ṽ respectively, where i and j denote the natural embeddings.
Consider the composition

ρ′q̃ : Q
o
T∗[−1]U

U
∼= Q

q�o
T∗[−1]V

U

ρq̃−→ q̃∗Q
o
T∗[−1]V

V ,

where the first map is induced by Ξq. Recall that we have chosen trivializations of Q
o
T∗[−1]U

U and
Q

o
T∗[−1]V

V in (2.25). Since we have

εdim N,r/εdim M,r =
√
−1

vdim q·(vdim q−1)/2+vdim V ·vdim q
,

these trivializations are identified by ρ′q̃. This shows the commutativity of the diagram

ϕp
T∗[−1]U

ωU
��

a−1
Ξq

◦Θq̃

��

i∗ϕp

ē◦F̃ ⊗Z/2Z Q
o
T∗[−1]U

U

id⊗triv
�� i∗ϕp

ē◦F̃

i∗ΘF̃ ,ē

��

q̃∗ϕp
T∗[−1]V

q̃∗ωU
�� q̃∗(j∗ϕp

ē[dim q] ⊗Z/2Z Q
o
T∗[−1]V

V )
q̃∗(id⊗triv)

�� q̃∗j∗ϕp
ē[dim q]

where the two triv in the right horizontal arrows denote the trivialization as above. Then the
commutativity of diagram (4.24) follows from the commutativity of diagram (2.9). �

5. Applications

In this section we will discuss two applications of Theorem 3.1 and its stacky generalization,
Theorem 4.14. Firstly, we will apply it to prove the dimensional reduction theorem for the
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vanishing cycle cohomology of the moduli stacks of sheaves on local surfaces. Secondly, we will
propose a sheaf-theoretic construction of virtual fundamental classes of quasi-smooth derived
schemes by regarding Theorem 3.1 as a version of the Thom isomorphism for −1-shifted cotangent
stacks.

5.1 Cohomological Donaldson–Thomas theory for local surfaces
Let S be a smooth quasi-projective surface and denote by p : X = TotS(ωS) → S the projection
from the total space of the canonical bundle. Denote by MS (respectively, MX) the derived
moduli stack of coherent sheaves on S (respectively, X) with proper supports, and by πp :
MX → MS the projection defined by p∗. By applying the main theorem of [BD19], MX carries
a canonical −1-shifted symplectic structure ωMS

.

Theorem 5.1. There exists an equivalence of −1-shifted symplectic derived Artin stacks

Ψ : (MX , ωMX
) � (T∗[−1]MS , ωT∗[−1]MS

) (5.1)

such that πp � πMS
◦ Φ.

Proof. Let G be a compact generator of D(Qcoh(S)), and A = RHom(G, G) and
B = RHom(p∗G, p∗G) be the derived endomorphism algebras. It is clear that p∗G is a com-
pact generator of D(Qcoh(X)). Then it follows from a result of Schwede and Shipley [SS03,
Theorem 3.1.1] that we have quasi-equivalences

RHom(G,−) : Lqcoh(S) ∼−→ RModA, RHom(p∗G,−) : Lqcoh(X) ∼−→ RModB.

where Lqcoh(S) (respectively, Lqcoh(X)) denotes the derived dg-category of Qcoh(S) (respec-
tively, Qcoh(X)), and RModA (respectively, RModB) denotes the derived dg-category of right
A-modules (respectively, right B-modules). By taking the full dg-subcategories of compact
objects of dg-categories appearing in the above quasi-equivalences, we obtain quasi-equivalences

Lcoh(S) ∼−→ perdgA, Lcoh(X) ∼−→ perdgB

where Lcoh(S) (respectively, Lcoh(X)) denotes the derived dg-category of Coh(S) (respec-
tively, Coh(X)), and perdgA (respectively, perdgB) denotes the derived dg-category of perfect
A-modules (respectively, perfect B-modules). It is proved in [IQ18, § 2.5] that B is equivalent
to the 3-Calabi–Yau completion of A. Note that MS (respectively, MX) is the derived mod-
uli space of objects in Lcoh(S) (respectively, Lcoh(X)) in the sense of [TV07, Definition 3.2].
Therefore, by applying [BCS20, Theorem 6.17], we obtain an equivalence of derived Artin stacks
MX � T∗[−1]MS and all we need to prove is the coincidence of two left Calabi–Yau structures

c1, c2 ∈ HC−
3 (Lcoh(X)) ∼= H0(X, ωX)

where c1 is induced by the Calabi–Yau completion description and c2 corresponds to the canonical
Calabi–Yau form on X. Since the statement is local on S, we may assume S is affine. By the
discussion after [BCS20, Theorem 5.8], we see that c1 = δc where δ denotes the mixed differential
and

c ∈ HH2(Lcoh(X)) ∼= H0(X,∧2ΩX)

corresponds to the tautological 2-form on X under the Hochschild–Kostant–Rosenberg iso-
morphism. Since the Hochschild–Kostant–Rosenberg isomorphism identifies the mixed differ-
ential on the Hochschild homology and the de Rham differential (see [TV11]), the theorem is
proved. �
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We always equip MX with the canonical −1-shifted symplectic structure as above and the
orientation t0(Ψ)�oT∗[−1]MS

. The following statement is a direct consequence of Theorem 4.14.

Corollary 5.2. We have an isomorphism

(πp)!ϕ
p
MX

∼= QMS
[vdimMS ]

where we write MX = t0(MX), MS = t0(MS), and πp = t0(πp).

Now assume S is quasi-projective and ωS is trivial. Take an ample divisor H on S and denote
by MH-ss

S ⊂ MS (respectively, M
p∗H-ss
X ⊂ MX) the moduli stack of H-semistable sheaves on S

(respectively, p∗H-semistable sheaves on X) with proper supports. By the triviality of ωS , we
have an equality π−1

p (MH-ss
S ) = M

p∗H-ss
X . This observation and the Verdier self-duality of ϕp

MX

together imply the following corollary.

Corollary 5.3. Write ϕp

Mp∗H-ss
X

:= ϕp
MX

|
Mp∗H-ss

X
. Then we have following isomorphisms:

H∗
c(M

p∗H-ss
X ; ϕp

Mp∗H-ss
X

) ∼= H∗+vdim MH-ss
S

c (MH-ss
S ),

H∗(Mp∗H-ss
X ; ϕp

Mp∗H-ss
X

) ∼= HBM
vdim MH-ss

S −∗(M
H-ss
S ).

Here Hc denotes the cohomology with compact support, and HBM denotes the Borel–Moore
homology.

5.2 Thom isomorphism
Let Y be a quasi-smooth derived scheme, and write Y = t0(Y ) and Ỹ = t0(T∗[−1]Y ). Thanks
to Theorem 3.1, we have the following isomorphism:

H∗(Ỹ ; ϕp
T∗[−1]Y ) ∼= HBM

vdim Y −∗(Y ). (5.2)

Since ϕp
T∗[−1]Y is conical, by using Theorem 3.1 and [KS90, Proposition 3.7.5], we also have the

following isomorphism:

H∗(Ỹ , Ỹ \ Y ; ϕp
T∗[−1]Y ) ∼= H∗+vdim Y (Y ). (5.3)

This isomorphism can be regarded as a version of the Thom isomorphism. Indeed, if
Y = M ×R

0E ,E,0E
M where M is a smooth scheme, E is a vector bundle on M , and 0E is the

zero section of E, the isomorphism (5.3) is the usual Thom isomorphism. By imitating the
construction of the Euler class, we construct a class

e(T∗[−1]Y ) ∈ HBM
2 vdim Y (Y )

by the image of 1 ∈ H0(Y ) under the following composition:

H0(Y )
(5.3)

∼
�� H− vdim Y (Ỹ , Ỹ \ Y ; ϕp

T∗[−1]Y ) �� H− vdim Y (Ỹ ; ϕp
T∗[−1]Y )

∼

(5.2)
�� HBM

2vdimY (Y ).

Denote by [Y ]vir ∈ HBM
2vdim Y (Y ) the virtual fundamental class of Y constructed in [BF97, Kre99].

We have the following conjecture.

Conjecture 5.4.

e(T∗[−1]Y ) = (−1)vdim Y ·(vdim Y −1)/2[Y ]vir.

In other words, we expect that this gives a new construction of the virtual fundamental class.
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Example 5.5. Assume Y = M ×R
0E ,E,0E

M . In this case, we have Ỹ ∼= TotN (E∨) and ϕp
T∗[−1]Y

∼=
QỸ [dim Ỹ ], and the construction of the Verdier duality isomorphism σỸ in (2.17) implies that
the following diagram commutes.

DỸ (ϕp
T∗[−1]Y )

(−1)dim Ỹ ·(dim Ỹ −1)/2σỸ
��

∼

��

ϕp
T∗[−1]Y

∼

��

DỸ (QỸ [dim Ỹ ])
∼

�� QỸ [dim Ỹ ]

Therefore, we have

e(T∗[−1]Y ) = (−1)dim Ỹ ·(dim Ỹ −1)/2e(E∨) ∩ [M ]

= (−1)(dim Ỹ ·(dim Ỹ −1)/2)+rank Ee(E) ∩ [M ]

= (−1)vdim Y ·(vdim Y −1)/2[Y ]vir.

The author has verified Conjecture 5.4 under a certain assumption.

Theorem 5.6 [Kin21]. If LY |Y is represented by a two-term complex of vector bundles, then
Conjecture 5.4 is true. In particular, Conjecture 5.4 holds when Y is quasi-projective.

Remark 5.7. We can extend the above construction for stacky cases as follows. Let Y be a quasi-
smooth derived Artin stack and write Y = t0(Y) and Ỹ = t0(T∗[−1]Y). Denote by π : Ỹ → Y

the projection and by i : Y → Ỹ the zero section. Then for a conic sheaf F ∈ Db
c(Ỹlis-an, Q)

[KS90, Proposition 3.7.5], and the smooth base-change theorem implies isomorphisms

π!F ∼= i!F, π∗F ∼= i∗F.

Therefore Theorem 4.14 implies isomorphisms

i!ϕT∗[−1]Y
∼= QY[vdimY],

i∗ϕT∗[−1]Y
∼= ωY[− vdimY].

Consider the following composition of natural transforms:

i!ϕp
T∗[−1]Y → i!i∗i

∗ϕp
T∗[−1]Y

∼= i!i!i
∗ϕp

T∗[−1]Y
∼= i∗ϕp

T∗[−1]Y,

where the first map is the ∗-unit, the second map is defined in the same manner as in
[LO08, Proposition 4.6.2], and the third map is the inverse of the !-unit. This composition
defines an element

e(T∗[−1]Y) ∈ HBM
2vdim Y(Y).

We conjecture that this is equal (up to the sign (−1)vdim Y·(vdim Y−1)/2) to the stacky virtual
fundamental class recently constructed by [AP19] under the resolution property and by [Kha19]
in general.

Remark 5.8. By [Cal19, Theorem 2.2], the zero section Y ↪→ T∗[−1]Y carries a canonical
Lagrangian structure. Further, arguing as Example 2.15, we see that this Lagrangian struc-
ture admits a canonical orientation with respect to oT∗[−1]Y . The isomorphism (5.3) can be
regarded as [AB17, Conjecture 5.18] for this oriented Lagrangian structure.
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Appendix A. Remarks on the determinant functor

In this appendix we prove some results on the determinant of perfect complexes. All results
follow easily from [KM76], but we include this for completeness and to fix the sign conventions.

Let X be a scheme. Denote by PisX the category of invertible sheaves on X with the
isomorphisms, and PgrisX by the category of locally Z/2Z-graded invertible sheaves with the
isomorphisms defined as follows.

• Objects of PgrisX are pairs (L, α) where L is an invertible sheaf on X and α is a locally
constant Z/2Z-valued function.

• A morphism from (L, α) to (M, β) is an isomorphism from L to M when α = β, and otherwise
there is no morphism between them.

If there is no confusion, we omit the local grading. We define a monoidal structure on
PgrisX by

(L, α) ⊗ (M, β) := (L ⊗ M, α + β),

with the monoidal unit (OX , 0) and the obvious associator. By the Koszul sign rule with respect
to the local grading, we define the symmetrizer

s�
(L,α),(M,β) : (L, α) ⊗ (M, β) ∼= (M, β) ⊗ (L, α). (A.1)

This makes PgrisX a symmetric monoidal category. In this paper we do not equip PgrisX

with any other symmetric monoidal structure. Note that the forgetful functor PgrisX → PisX

is monoidal but not symmetric monoidal with respect to the standard symmetric monoidal
structure on PisX . For (L, α) ∈ PgrisX , define its (right) inverse by (L, α)−1 := (L−1,−α), and
define morphisms δ�

(L,α), (δ
′
(L,α))

� as follows:

δ�
(L,α) : (L, α) ⊗ (L, α)−1 ∼= (L ⊗ L−1, 0) ∼= (OX , 0),

(δ′(L,α))
� : (L, α)−1 ⊗ (L, α)

s�
(L,α)−1,(L,α)−−−−−−−−→ (L, α) ⊗ (L, α)−1

δ�
(L,α)−−−→ (OX , 0).

Define

μ�
(L,α) : ((L, α)−1)−1 → (L, α)

so that the following diagram commutes.

((L, α)−1)−1 ⊗ (L, α)−1
μ�

(L,α)
⊗id

��

(δ′
(L,α)−1 )�

���������������
(L, α) ⊗ (L, α)−1

δ�
(L,α)

��

(OX , 0)
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Note that the map μ�
(L,α) differs from the natural isomorphism of the ungraded line bundles

(L−1)−1 → L by the sign (−1)α. For L, M ∈ PgrisX , define

θ�
L,M : (L ⊗ M)−1 → L−1 ⊗ M−1

so that the following diagram commutes.

(L ⊗ M) ⊗ (L ⊗ M)−1
δ�
L⊗M

��

idL⊗M ⊗θ�
L,M

��

OX

(L ⊗ M) ⊗ (L−1 ⊗ M−1)
idL ⊗s�

M,L−1⊗idM−1

�� (L ⊗ L−1) ⊗ (M ⊗ M−1)

δ�
L⊗δ�

M

		

Note that the map θ�
(L,α),(M,β) differs from the natural isomorphism (L ⊗ M)−1 → L−1 ⊗ M−1

defined by using the standard symmetric monoidal structure on the category of ungraded line
bundles by (−1)α·β .

Write C •
X for the category of bounded complexes of finite locally free OX -modules, and

C is•X for the subcategory of C •
X with the same objects and where the morphisms are quasi-

isomorphisms. For a locally free OX -module F , define a graded line bundle det�(F ) ∈ PgrisX by

det�(F ) := (∧rank(F )F, rank(F ) mod 2).

Clearly, det� is functorial with respect to isomorphisms. For F • ∈ C is•X , define a graded line
bundle det�(F •) ∈ PgrisX by

det�(F •) := (· · · ⊗ det�(F i)(−1)i ⊗ det�(F i−1)(−1)i−1 ⊗ · · · ).
In [KM76, Theorem 1], it is shown that det� extends naturally to a functor C is•X → PgrisX ,
which we also write as det�. Define a functor det : C is•X → PisX by the composition

C is•X
det�

−−→ PgrisX → PisX

where the latter functor is the forgetful one. For a short exact sequence 0 → E• u•
−→ F • v•

−→ G• → 0
in C •

X , define

i�(u•, v•) : det�(E•) ⊗ det�(G•) ∼= det�(F •)

by the following composition:

det�(E•) ⊗ det�(G•) =
( ⊗

i

det�(Ei)(−1)i

)
⊗

(⊗
i

det�(Gi)(−1)i

)
(i)∼=

⊗
i

(det�(Ei)(−1)i ⊗ det�(Gi)(−1)i
)

(ii)∼=
⊗

i

(det�(Ei) ⊗ det�(Gi))(−1)i

(iii)∼=
⊗

i

det�(F i)(−1)i
= det�(F •).

Here (i) is defined by the symmetric monoidal structure on PgrisX , (ii) is defined using
θ�
det(Ei),det(Gi)

, and (iii) is defined by the natural isomorphisms det(Ei) ⊗ det(Gi) ∼= det(Fi). We

define i(u•, v•) : det(E•) ⊗ det(G•) ∼= det(F •) by forgetting the local grading from i�(u•, v•).
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A.1 Compatibility with the derived dual functor
For a free OX -module E with a fixed basis e1, . . . , en, define ηE : det(E∨)

∼=−→ det(E)−1 by the
rule

e∨1 ∧ · · · ∧ e∨n 
→ (en ∧ · · · ∧ e1)∨ (A.2)

where e∨1 , . . . , e∨n denotes the dual basis of e1, . . . , en and (en ∧ · · · ∧ e1)∨ denotes the dual of
en ∧ · · · ∧ e1. Clearly ηE is independent of the choice of the basis, and we can define ηE for any
locally free OX -module. For E• ∈ C •

X , define

(η�
E•)′ : det�(E•∨) ∼= det�(E•)−1

by the following composition:

det�(E•∨) =
⊗

i

det�((E−i)∨)(−1)i (i)∼=
⊗

i

(det�(E−i)(−1)i
)−1

(ii)∼= (det�(E•))−1.

Here (i) is defined by ηEi and (ii) is defined by iterating θ�. Write ε(E•) :=
∑

i≡1,2mod4 rank(Ei)
and define

η�
E• := (−1)ε(E•)(η�

E•)′.

Proposition A.1.

(i) For a short exact sequence 0 → E• u•
−→ F • v•

−→ G• → 0 in C •
X , the following diagram

commutes.

det�(G•∨) ⊗ det�(E•∨)
η�

G•⊗η�
E•

��

i((v•)∨,(u•)∨)
��

det�(G•)−1 ⊗ det�(E•)−1

s�

det�(G•)−1,det�(E•)−1

�� det�(E•)−1 ⊗ det�(G•)−1

det�(F •∨)
η�

F•

�� det�(F •)−1

(i�(u•,v•))⊗
−1

�� (det�(E•) ⊗ det�(G•))−1.

θ�

det�(E•),det�(E•)

		

(ii) For a quasi-isomorphism u• : E• → F • in C isX , the following diagram commutes.

det�(F •∨)
η�

F•
��

det�((u•)∨)
��

det�(F •)−1

det�(u•)⊗
−1

��

det�(E•∨)
η�

E•
�� det�(E•)−1

Proof. (i) Clearly we may assume that these three complexes are concentrated in a single
degree i. Then the claim follows from a direct computation.

(ii) Arguing as the proof of [KM76, Lemma 2] and using (i), we may assume that E• is an
acyclic complex and F • = 0. Further, by localizing X if necessary and using (i), we may assume
that E• has length two, but then the claim follows from a direct computation (note the sign
convention of the dual complex). �

In [KM76, Theorem 2], the determinant functor is defined for the category of per-
fect complexes with quasi-isomorphisms. By using the proposition above, we can define
η�

E : det�(E∨)
∼=−→ det�(E)−1 for any perfect complex E. We define

ηE : det(E∨)
∼=−→ det(E)−1

by forgetting the local grading from η�
E .
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A.2 Compatibility with the shift functor
For E• ∈ C isX , define

χ�
E• : det�(E•[1]) ∼= det�(E•)−1

by the following composition:

det�(E•[1]) =
⊗

i

det�(Ei+1)(−1)i (i)∼=
⊗

i

(det�(Ei+1)(−1)i+1
)−1

(ii)∼= det�(E•)−1.

Here (i) is defined by using μ�
det�(Ei)

and (ii) is defined by iterating θ�. The following proposition
can be shown similarly to Proposition A.1.

Proposition A.2.

(i) For a short exact sequence 0 → E• u•
−→ F • v•

−→ G• → 0 in C •
X , the following diagram

commutes.

det�(E•[1]) ⊗ det�(G•[1])
χ�

E•⊗χ�
G•

��

i�(u•[1],v•[1])

��

det�(E•)−1 ⊗ det�(G•)−1

det�(F •[1])
χ�

F•
�� det�(F •)−1

i�(u•,v•)⊗
−1

�� (det�(E•) ⊗ det�(G•))−1

θ�

det�(E•),det�(E•)

		

(ii) For a quasi-isomorphism u• : E• → F • in C isX , the following diagram commutes.

det�(E•[1])
χ�

E•
��

det�(u•[1])
��

det�(E•)−1

(det�(u•)⊗
−1

)−1

��

det�(F •[1])
χ�

F•
�� det�(F •)−1.

This proposition implies that we can define χ�
E : det�(E[1]) ∼= det�(E)−1 for any perfect

complex E. We define
χE : det(E[1]) ∼= det(E)−1

by forgetting the local grading from χ�
E . We also define

χ
(n)
E : det(E[n]) ∼= det(E)(−1)n

for each n ∈ Z so that χ
(1)
E = χE and χ

(n+m)
E = (χ(m)

E[n])
(−1)

⊗n

◦ χ
(n)
E holds for each n, m ∈ Z,

where we identify (det(E)(−1)n
)(−1)m

and det(E)(−1)n+m
by using μ�

det(E)� if both n and m are
odd.

A.3 Compatibility with distinguished triangles
Consider a distinguished triangle E → F → G → E[1] of perfect complexes on X. In [KM76] it
is observed that there exists an isomorphism det�(E) ⊗ det�(G) ∼= det�(F ), though there is no
natural choice in general.2 However, it is also observed in [KM76] that there is a canonical choice
when X is reduced.

2 The essential reason is the non-functoriality of the mapping cone. See [BS17, § 5] for an approach via the
∞-categorical enhancement.
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Proposition A.3 [KM76, Proposition 7]. For each distinguished triangle of perfect complexes
Δ: E

u−→ F
v−→ G

w−→ E[1] on a reduced scheme X, there exists a unique isomorphism

i�(Δ) = i�(u, v, w) : det�(E) ⊗ det�(G) ∼= det�(F )

characterized by the following properties.

• If E
u−→ F

v−→ G
w−→ E[1] is represented by a short exact sequence of complexes of locally free

sheaves 0 → E• u•
−→ F • v•

−→ G• → 0, then i�(u, v, w) = i�(u•, v•).
• If there exists a morphism of reduced schemes f : Y → X, then f∗i�(u, v, w) =

i(f∗u, f∗v, f∗w).

We define i(Δ) = i(u, v, w) : det(E) ⊗ det(G) ∼= det(F ) by forgetting the local grading from
i�(u, v, w). The following statement follows by a direct computation.

Proposition A.4. Let X be a reduced scheme, Δ: E
u−→ F

v−→ G
w−→ E[1] a distinguished trian-

gle of perfect complexes over X, and Δ′ : F
v−→ G

w−→ E[1]
−u[1]−−−→ F [1] the rotated triangle. Then

the following diagram commutes.

det(E) ⊗ det(F ) ⊗ det(E[1])
id⊗i(Δ′)

��

id⊗χE

��

det(E) ⊗ det(G)
i(Δ)

�� det(F )

��

det(E) ⊗ det(F ) ⊗ det(E)−1
·(−1)rank(E) rank(F )

�� det(E) ⊗ det(F ) ⊗ det(E)−1

Here the right vertical map is defined by unit map for the standard symmetric monoidal structure
on PisX .

Let k be a field, and E be a perfect complex over Spec k. Write H∗(E) :=
⊕

i Hi(E)[−i],
considered as a complex with zero differential. The natural isomorphism H∗(E) � E in D(k)
induces an isomorphism

jE : det(H∗(E)) ∼= det(E).

Let E
u−→ F

v−→ G
w−→ E[1] be a distinguished triangle of perfect complexes over Spec k. By decom-

posing the long exact sequence induced by the above distinguished triangle into short exact
sequences, we can construct

i′H(u, v, w) : det(H∗(E)) ⊗ det(H∗(G)) → det(H∗(F )).

Define
i′(u, v, w) := jF ◦ i′H(u, v, w) ◦ (j−1

E ⊗ j−1
G ) : det(E) ⊗ det(G) ∼= det(F ).

The maps i(u, v, w) and i′(u, v, w) do not coincide in general because we used the symmet-
ric monoidal structure on PgrisX to construct i(u, v, w). However we can explicitly write
down the difference between i(u, v, w) and i′(u, v, w) as follows: write ai := rank ker Hi(u),
bi := rank ker Hi(v), and ci := rank ker Hi(w). Then we have

i(u, v, w) = (−1)T i′(u, v, w),
where

T =
∑

i : even

( ∑
j≤i−1

aiaj +
∑
j≤i

aibj +
∑

j≤i+1

ciaj +
∑

j≤i−1

cibj

)

+
∑

i : odd

(∑
j≤i

aiaj +
∑

j≤i−1

aibj +
∑
j≤i

ciaj +
∑
j≤i

cibj

)
. (A.3)
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A.4 Extension to Artin stacks
Since the determinant functor commutes with base change, we can extend the determinant
functor to the category of perfect complexes on Artin stacks with quasi-isomorphisms. Clearly,
ηE and χE commutes with base change, and we can define ηE : det(E∨) ∼= det(E)−1 and
χE : det(E[1]) ∼= det(E)−1 for any perfect complex E over an Artin stack X. By similar reason-
ing, we can define i(u, v, w) : det(E) ⊗ det(G) ∼= det(F ) for a distinguished triangle of perfect
complexes E

u−→ F
v−→ G

w−→ E[1] over a reduced Artin stack X.
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