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Scaling properties of the Ffowcs-Williams and
Hawkings equation for complex acoustic source
close to a free surface
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We perform a scaling analysis of the terms composing the Ffowcs-Williams and Hawkings
(FWH) equation, which rules the propagation of noise generated by a rigid body in
motion. Our analysis extends the seminal work of Lighthill (Proc. R. Soc. Lond. A,
vol. 211, 1952, pp. 564–587) and the dimensional analysis of classical sources (monopole,
dipole and quadrupole) considering all the FWH integral terms. Scaling properties are
analysed in light of perfect/imperfect similarity when laboratory-scale data are used for
full-scale predictions. As a test case we consider a hydrodynamic example, namely a
laboratory-scale ship propeller. The data, obtained numerically in a previous study, were
post-processed according to the scaling analysis presented herein. We properly scale
the speed of sound to obtain perfect similarity and quantify the error with respect to
the imperfect scaling. Imperfect similarity introduces errors in the acoustic response
related both to the linear terms and to the nonlinear terms, the latter of great importance
when the wake is characterized by robust and organized vorticity. Successively, we
analyse the effect of a free surface, often present in hydrodynamic applications. We
apply the method of images to the FWH equation. The free surface may generate a
frequency-dependent constructive/destructive interference. The analysis of an archetypal
acoustic field (monopole) provides robust explanation of these interference effects. Finally,
we find that imperfect similarity and the absence of a free surface may introduce errors
when model-scale data are used to obtain the full-scale acoustic pressure. The error is
small for microphones placed in the near field and becomes relevant in the far field because
of the nonlinear terms.
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1. Introduction

Model-scale experiments have been used for a long time in engineering to assess the
performance of full-scale devices. The use of models at a laboratory scale is based on
the robust theory of similarity, which states that if a problem is controlled by a certain
number n of non-dimensional parameters Π , when these parameters have the same value
at the model and at the full scale, then full-scale quantities can be fully determined using
quantities obtained at the model scale. Unfortunately, this kind of perfect similarity can be
hardly obtained, because of physical limitations of the laboratory apparatus. In practice,
the main problem consists of the fact that some physical parameters (i.e. the gravitational
acceleration, the speed of sound, the viscosity of the fluid) are nearly constant at the two
scales. When perfect similarity cannot be obtained often imperfect similarity is invoked,
thus ensuring equality of the most important non-dimensional groups and accepting a scale
effect, namely an error when moving from the small scale to the full one. Typical examples
are the problems of aerodynamics, where the force coefficients depend at least on the
Reynolds number and Mach number, or problems of hydrodynamics in density-variable
flows, where the force coefficients depend at least on the Froude number and Reynolds
number. Among the systems evaluated in engineering applications using model-scale
experiments, the performance of marine propellers is traditionally assessed through the
use of model-scale experimental tests in towing tanks or in circulation channels. Such
laboratories may work in the presence of the free surface and the propeller is placed at a
depth that minimizes the interaction between the fluid-dynamic field and the free surface
(i.e. Fn = U/

√
(gh) ∼ 0 where Fn is the Froude number, based on the advance velocity

of the propeller and the distance h of the propeller axis from the free surface). Typically,
Fn ∼ 0.2–0.4 is considered a working value for engineering purposes (range of values
relating to cases of propellers of commercial ships) (Watson 1998). As is well known,
non-dimensional coefficients are calculated to be used for prediction of the performance
at full scale. The technique is well established, based on a solid theoretical background
and used for design purposes in naval engineering. Similarly, more recently, numerical
simulations of the turbulent flow field around a ship’s propeller are being carried out in
partial replacement of laboratory tests. No matter the methodology employed, the problem
is solved at Fn = 0, meaning that the presence of the free surface is not considered, since it
adds complications without contributing to the computation of the propeller performance.

Nowadays, requests for the prediction of the noise emitted by moving bodies at sea are
becoming increasingly stringent, to satisfy rules aimed at the protection of the marine
environment from acoustic pollution (DNV 2010). The issue of noise generation and
propagation in the far field also concerns renewable-energy systems, such as wind turbines
or hydrokinetic turbines, because of their potential environmental and biological impact.
Since most of the noise emitted by these systems is associated with the rotor, the search
for a compromise between performance and level of noise constitutes a challenge for the
designers. The problem is further complicated by the fact that the laboratory-scale tests
may not be fully indicative of the prediction of the noise at full scale, due to two main
reasons: the scaling from the model to full scale which is not straightforward; and the
presence of the free surface, which even at Fn = 0, may have a strong impact on the
far-field noise, which may contain a contribution coming from the reflection from the
water–air interface.

Analysis and prediction of noise production and propagation in the far field have
been subjects of intensive research since the early 1950s; theories have been developed
also supported by laboratory and field experiments together with advanced numerical
techniques. A comprehensive review on this topic is given in Wang, Freund & Lele (2006).
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Scaling properties of the FWH equation

When computing the noise emitted by a body in relative motion in a fluid, the
acoustic analogy (Lighthill 1952, 1954; Ffowcs-Williams & Hawkings 1969) is often
employed, meaning that the evaluation of the acoustic field is decoupled from that of
the hydrodynamic field. Once a numerical solution of the flow field around the body
has been obtained, the data are processed by the acoustic solver which characterizes
the noise source and calculates noise propagation in the medium. The advantage of the
acoustic analogy is twofold: it allows use of a computational domain that is suitably small,
limited to the fluid-dynamic source; and in low-Mach-number applications, it allows use
of the incompressible-flow assumption for the evaluation of the flow field, whereas the
compressibility associated with the noise propagation is accounted for in the acoustic
model.

The acoustic analogy has been successfully applied in a number of applications
(Najafi-Yazdi, Bres & Mongeau 2011; Ianniello, Muscari & Di Mascio 2013; Wang &
Wang 2013; Nitzkorski & Mahesh 2014; Jacob, Praveen & Mahesh 2018; Cianferra,
Ianniello & Armenio 2019a). Among others, in Ianniello et al. (2013) and Jacob et al.
(2018) the acoustic analogy was adopted to characterize the acoustic signature of ship
propellers in unbounded domains, whereas in the very recent paper by Wang, Wang &
Wang (2021), it was used for the case of the Sevik rotor ingesting the turbulent wake of
a circular cylinder placed orthogonally to the flow direction, in the incompressible-flow
regime.

At the same time, cutting-edge acoustic field detection techniques have been developed
recently and tested to address acoustic problems using laboratory-scale experimental
devices. Among others, Felli, Falchi & Dubbioso (2015) performed a detailed investigation
into the relation between the coherent structures present in the wake of a model-scale
ship propeller and acoustic sources, through a combined use of tomographic particle
image velocimetry (PIV) and Powell’s acoustic analogy. Specifically, the authors showed
the importance of the wake on the overall noise produced by the rotor. More recently,
Alexander, Devenport & Glegg (2017) studied the effect of ingestion of the turbulent
field generated by a boundary layer on the noise propagated upstream by the Sevik
rotor in the incompressible regime, for a wide range of load conditions (related to the
parameter J defined in the next section) and boundary-layer thickness. The signal appeared
broadbanded with significant amplitude in the range of low frequencies.

The brief literature survey is relative to numerical and physical experiments at laboratory
scale. As we show in the present paper, this may introduce a scale effect due to the fact
that similarity is imperfect when the data are to be used for predictions at the full scale.

Since the seminal work of Lighthill (1952), indications have been given on how to scale
the acoustic pressure, or more precisely the law of proportionality of acoustic pressure with
the Mach number. The classic example, known as the 8th power law (density perturbation
variance ρ′2 is proportional to U8

0, with U0 the velocity scale of the flow) was first
estimated for a circular free jet (Lighthill 1952, 1954). In particular, if D is the length
scale of the flow, assuming that the time scale of large eddies in the flow is D/U0, that
the Reynolds stresses scale as ρU2

0 and the relevant volume V is of order D3, the pressure
disturbance in the flow p′ associated with a density perturbation (with p′ = c2

0ρ
′ and c0

the speed of sound) reads

p′

ρ0U2
0

∼
(

D
4πr

)
M2

0 (1.1)

with r the source–observer distance, and M0 = U0/c0.
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This breakthrough result emphasized the importance of the wake in the production of
the overall noise. However, the 8th power law of Lighthill comes from the dimensional
analysis of the term ∂ttTij, which is one among the possible noise sources associated with
the wake. In aeroacoustic research subsequent to Lighthill’s papers, the knowledge of
the scaling laws associated with the three classical acoustic sources (monopole, dipole
and quadrupole) has been consolidated, in view of the formulation of Ffowcs-Williams &
Hawkings (1969) (FWH). The following relationships hold for compact sources:

(i) monopole p′/ρ0U2
0 ∼ D/r;

(ii) dipole p′/ρ0U2
0 ∼ (D/r)M0;

(iii) quadrupole p′/ρ0U2
0 ∼ (D/r)M2

0;

showing the different power of Mach number for the three fundamental types of sources.
The error associated with the different terms, arising when the Mach similarity is not
considered, has never been clearly reported in the literature. Further, it is important to
highlight that the scaling laws reported above, and commonly accepted in the scientific
community, refer to the terms of the FWH equation decaying as 1/r only. However,
although in the very far field the terms decaying as 1/r may dominate over the others, in
the near-to-intermediate field the terms decaying as 1/r2 and 1/r3 may affect the resulting
signal and it may be noteworthy to consider their correct scaling. This issue represents the
main purpose of our work.

Specifically, in the present paper we pay attention to the general problem of rotors
in the incompressible fluid-dynamic regime (low Mach number) and, without losing
generality, we focus on a ship propeller. We investigate the scaling properties of all the
possible sources of noise associated with the motion of a rotating rigid body in the
low-Mach-number flow regime and on their own impact when considering the full-scale
acoustic field as a direct derivation from model-scale measurements or computations.
Further, we investigate how the presence of a reflecting free surface (namely the air–water
interface), present in a large number of applications, affects the acoustic spectrum.

To quantify the error associated with imperfect scaling we consider the FWH equation
because of its own richness. Indeed, it is composed of a number of terms identifying
different physical mechanisms contributing to the generation and propagation of the noise.
First, our analysis exploits scaling properties of these different physical mechanisms
contributing to the sound propagation in order to quantify the error arising from imperfect
scaling. Second, we apply the method of images to the FWH equation, to account for the
presence of a reflecting free surface and analyse its own effect on the propagation of the
signal. Indeed, when the FWH is adopted, for example to characterize the noise emission
of a propeller behind a hull (see, among others, the recent work of Liefvendahl & Bensow
2016), to the best of our knowledge, the acoustic signal is calculated not considering the
free surface. In the present paper we aim to estimate the possible error associated with the
lack of free surface.

Although we focus on a marine propeller, the rationale is valid for any device tested
at a laboratory scale (among others, wind turbines), whose acoustic performance must
be evaluated together with the standard fluid-dynamic ones. It is to be noted that the
direct applicability of the analysis provided here, albeit general, focuses on the case of
a single-phase medium and steady outer conditions.

The flow field is not calculated from scratch, rather, we use the database of Cianferra,
Petronio & Armenio (2019b), relative to a propeller in open sea conditions at Fn = 0. This
is the main reason why the present paper is devoted to the analysis of a ship propeller,
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Scaling properties of the FWH equation

although the theoretical framework and the results of the analysis are of wide interest in
fluid mechanics. The reference numerical solution is obtained using large eddy simulation
(LES) in an unbounded domain (free surface is not present, Fn = 0). For the acoustic
analysis we consider the free surface as a boundary in the acoustic model. In other words,
the free surface is at a distance such that hydrodynamic interactions are negligible, but
acoustic reflections are not. Since the decay of the acoustic pressure level is related to the
distance from the noise source, we point out how this decay can play a fundamental role
when considering a reflection plane, such as that given by the free surface. The paper is
organized as follows: § 2 contains the scaling analysis and shows how imperfect similarity
(or scaling) may affect the quality of the signal at the full scale. Section 3.1 contains
the mathematical modelling of the free surface in the acoustic model and analysis of
the contribution of noise reflection on the acoustic field. Section 4 contains an analysis
aimed at evaluating the total error when moving from laboratory scale to full scale, in the
presence of imperfect scaling in an unbounded domain. Concluding remarks are given in
§ 5.

2. Scaling analysis of the FWH equation

Different methodologies have been developed in the literature to treat the integral solution
of the FWH differential equation (see, among others, Di Francescantonio 1997; Brentner &
Farassat 1998; Najafi-Yazdi et al. 2011; Cianferra et al. 2019a). The presence of a uniform
mean flow makes the numerical experiment herein considered comparable to a wind tunnel
case. Thus, to consider the deviation of the acoustic field from the perfectly spherical
one, the advective wave equation should be adopted (see e.g. Najafi-Yazdi et al. (2011)
or Cianferra et al. (2019a)). We have compared results obtained adopting both advective
and non-advective formulations, finding the differences insignificant for the purpose of
this study, although the classical FWH formulation appears more streamlined and easy to
handle. For this reason, we use the original FWH equation. The microphones have to be
considered at rest in the fixed-to-the-body frame of reference, and the acoustic pressure
waves propagate without being affected by advection.

The original FWH equation reads as

p̂(x, t) = ∂

∂t

∫
S

[
ρvin̂i

4πr|1 − Mr|
]

τ

dS + 1
c0

∂

∂t

∫
S

[
p̃n̂ir̂i

4πr|1 − Mr|
]

τ

dS

+
∫

S

[
p̃n̂ir̂i

4πr2|1 − Mr|
]

τ

dS + 1
c2

0

∂2

∂t2

∫
W

[
Trr

4πr|1 − Mr|
]

τ

dW

+ 1
c0

∂

∂t

∫
W

[
3Trr − Tii

4πr2|1 − Mr|
]

τ

dW +
∫

W

[
3Trr − Tii

4πr3|1 − Mr|
]

τ

dW (2.1)

where Tij = ρuiuj + (p̃ − c2
0ρ̃)δij is the Lighthill tensor, p̃ = p − p0 denotes the pressure

perturbation with respect to the reference value p0, ρ is the bulk density, p̃ − c2
0ρ̃ is the

deviation from an isentropic behaviour, n̂ is the (outward) unit normal vector to the surface
element dS, dW is the volume element, r = |x − y| is the source–observer distance, with
x the microphone location and y the integration variable, r̂i is the i-component of the unit
vector (x − y)/r, vi is the i-component of the surface velocity vector, Mr = vir̂i/c0 the
local Mach number in the source–observer direction, with c0 the speed of sound.

The non-dimensional form of (2.1) is obtained considering the characteristic scale
quantities U, D and T , namely: the advance velocity, the diameter of the propeller and
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its period of rotation. Note that the viscosity does not play a direct role in the propagation
of the acoustic pressure, although Reynolds number effects may affect the turbulent field
and indirectly the production of noise. Since the Re similarity used for model-scale
tests is imperfect, to minimize the scale effect for the evaluation of the hydrodynamic
performance, tests are run at values of Re large enough to ensure the presence of a fully
developed turbulent field. The Reynolds number of the reference simulation (Re ∼ 106) is
similar to that of the recent simulations of Kumar & Mahesh (2017) and Posa et al. (2019)
and to that of the experiments of Alexander et al. (2017). At these values of Re, the near
wake is characterized by a population of vortical well-organized and mutually interacting
structures; the far wake, where ‘the flow field loses the memory of blade geometry. . . ’
(Kumar & Mahesh 2017), might exhibit some Reynolds number dependence although a
self-similar behaviour has been observed; overall, recent literature shows that the rotor
wake may be little dependent on Re. In other words, although Reynolds number effects
may be present, they are expected to be of minor importance, in particular regarding the
noise production. Indeed, the large and energy-carrying scales of motion are those mostly
responsible for the production of noise and these scales are present at the laboratory scale
when analysing low-Mach-number rotor wakes. The scale effect on Re is not considered
in the present study, which is more focused on scaling of the acoustic properties of a flow
field, and it may be a topic of future research.

We can replace the variables appearing in (2.1) as follows:

ui = u∗
i U, r = r∗D, p̂, p̃ = p∗ρU2, vn = v∗

nU,

t = t∗T, dS = dS∗D2, dW = dW∗D3,

}
(2.2)

where the superscript ∗ denotes non-dimensional quantities. Note that acoustic pressure p̂
and fluid-dynamic pressure p̃ scale similarly, and the characteristic time scale, the period
of rotation, is proportional to the reciprocal of the rotation frequency T ∼ 1/n, n being the
number of revolutions per second.

Writing the equation in non-dimensional form we obtain

p∗ = D
TU

∂

∂t∗

∫
S∗

[
v∗

i n̂i

4πr∗|1 − Mr|
]

τ∗
dS∗ + D

T
1
c0

∂

∂t∗

∫
S∗

[
p̃∗n̂ir̂i

4πr∗|1 − Mr|
]

τ∗
dS∗

+
∫

S∗

[
p̃∗n̂ir̂i

4πr∗2|1 − Mr|

]
τ∗

dS∗ + D2

T2
1
c2

0

∂2

∂t∗2

∫
W∗

[
T∗

rr

4πr∗|1 − Mr|
]

τ∗
dW∗

+ D
T

1
c0

∂

∂t∗

∫
W∗

[
3T∗

rr − T∗
ii

4πr∗2|1 − Mr|
]

τ∗
dW∗ +

∫
W∗

[
3T∗

rr − T∗
ii

4πr∗3|1 − Mr|

]
τ∗

dW∗. (2.3)

Note that the Lighthill tensor is made non-dimensional as Tij = T∗
ijρU2, and the

non-dimensional time delay at which the integrals must be evaluated is τ∗ = τ/T .
For the sake of clarity, the non-dimensional integral terms of (2.3) are named as follows:

first surface term (thickness term) PT , second and third surface terms (loading terms) PL1

and PL2, respectively. These terms are also linear. The latter three volume or nonlinear
terms are named PV1, PV2 and PV3, respectively.

Thus, considering the advance ratio coefficient J = U/nD, equation (2.3) may be
re-written as

p∗ = 1
J

PT + Dn
c0

PL1 + PL2 + D2n2

c2
0

PV1 + Dn
c0

PV2 + PV3, (2.4)
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Scaling properties of the FWH equation

which states that the non-dimensional acoustic pressure scales with J and the velocity ratio
Vr = Dn/c0

p∗ = f (J, Vr). (2.5)

Here, Vr represents the ratio between the tangential velocity and the speed of sound and
represents a bulk rotational Mach number, namely Vr = JM0 where M0 = U/c0.

A similar scaling is obtained using the Π theorem. In particular, if we use ρ, U and D as
repeated variables, we obtain p∗ = f (J, U/c0) with U/c0 = M0 = Vr/J, which contains
the same information as the scaling obtained using the FWH equation. Hereafter, we
retain the scaling obtained in (2.4), even if the discussion holds for the similar scaling
shown above. In hydrodynamics, considering the case of a ship propeller, laboratory-scale
tests aimed at reproducing a full-scale quantities are performed using Froude Fn and J
similarity, implying

Fnm = Um√
gDm

= Uf√
gDf

= Fnf and Jm = Um

nmDm
= Uf

nf Df
= Jf , (2.6a,b)

where the subscripts m and f denote model-scale and full-scale variables, respectively.
Once the scale factor is defined as Df = λDm, we obtain

Uf =
√
λUm and nf = nm/

√
λ. (2.7a,b)

These conditions can be easily set to give the thrust and torque coefficients to be used at
full scale, once the scale effect related to imperfect scaling for the Reynolds number has
been minimized. Applying this similarity to the acoustic field leads to

Dmnm

c0
= 1√

λ

Df nf

c0
, (2.8)

which means that the similarity expressed in (2.4) is imperfect once the speed of sound has
the same order of magnitude at the real scale and at the laboratory scale c0 = c0f ∼ c0m .
Indeed, this is the case in typical laboratory experiments carried out using water. The
similarity would become perfect if we considered c0m = c0f /

√
λ, and this can be easily

satisfied in numerical computations. Regarding the term 1/|1 − Mr| appearing in all
integral kernels, we observe that maximum values are obtained when v and r are parallel
to each other, giving 1/|1 − |v|/c0|. For underwater or in general in low-Mach-number
applications, when considering perfect or imperfect similarity this value slightly varies
around unity. Regarding the treatment of the time delays in the integrals above, we recall
the maximum frequency parameter (MFP) introduced by Cianferra et al. (2019a). Once
the microphone location and the integration domain of the FWH equation have been
established, this parameter rules the maximum frequency that can be captured correctly,
without calculating time delays. Hence, it gives a limiting frequency below which the
assumption t = τ is valid. We recall that, in order to avoid computation of the time delays,
which makes unaffordable the direct evaluation of the volume terms (see Cianferra et al.
2019a), MFP = 1/Δdelfmax > 1, with

Δdel =
max
y∈Sp

|y − xmic| − min
y∈Sp

|y − xmic|
c0

, (2.9)

and fmax the highest frequency at which the fluid-dynamic process is observed. Note that, if
dt is the time step at which the fluid-dynamic data are stored, frequencies higher than 1/dt
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are filtered out from the numerical solution. Indicating with fmaxm the maximum frequency
below which the assumption t = τ is valid in the evaluation of model-scale acoustic field,
the maximum frequency for the full-scale case is fmaxf = λ−1/2fmaxm . Thus, data obtained
for the model-scale case may be adopted for full-scale noise prediction, considering fmaxf
as a maximum frequency below which the scaled relation tf = τf is valid. To summarize,
looking at (2.4) and (2.6a,b), the conditions Fnm = Fnf and Jm = Jf together with c0,m ∼
c0,f = c0 give different multiplication factors of the various integral terms, when moving
from model scale to full scale. In other words, the terms composing the FWH equations
may have a different weight at the two scales, and scaling the time–pressure signal given
by the FWH acoustic equation at full scale p̂f = p∗ρf U2

f can be erroneous. In particular,
once the Froude and J similarities are used together with c0m = c0f , we have

1
Jf

PT
f = 1

Jm
PT

m, Vrf P
L1
f = λ−1/2VrmPL1

m , PL2
f = PL2

m ,

V2
rf

PV1
f = λ−1V2

rm
PV1

m , Vrf P
V2
f = λ−1/2VrmPV2

m , PV3
f = PV3

m .

⎫⎪⎬
⎪⎭ (2.10)

The above equations show that, once a (either numerical or physical) laboratory-scale
experiment is carried out not scaling the speed of sound, some terms are underestimated
with respect to their own relative weight at the full scale. Specifically, looking at equations
in (2.10): the thickness term (first integral) perfectly scales as well as the steady part of the
loading term (third integral); the unsteady loading term (second integral) at the full scale
is underestimated by λ1/2; the fourth integral is a volume term containing a second-order
time derivative and at the full scale is underestimated by a factor λ, the fifth integral is
another volume term containing a time derivative and at the full scale is underestimated
by λ1/2 and, finally, the sixth integral remains the same at the two scales. It is to be noted
that the problem is further complicated by the fact that these terms decay in a different
way with the distance from the source, so that their own contribution may be less or more
significant depending on the distance from the source. In this regard, we recall what was
mentioned in the introduction about the scaling laws defined for monopole, dipole and
quadrupole sources. Here, we compute them for all terms of the FWH equation, as done
in Lighthill (1952) for the first volume term (V2

r PV1)

thickness term: p∗ ∼ D
r

first loading term: p∗ ∼ D
r

M0

second loading term: p∗ ∼ D2

r2

first volume term: p∗ ∼ D
r

M2
0

second volume term: p∗ ∼ D2

r2 M0

third volume term: p∗ ∼ D3

r3 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.11)

Note that, in this context, Vr has the meaning of M0 in (2.11). Scaling of terms decaying
as 1/r is well established in the literature. However, other terms, namely PL2, VrPV2
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Scaling properties of the FWH equation

and PV3, may represent a noticeable noise source at small-to-intermediate distances and
their scaling is shown above. The implications of (2.11) is that imperfection on Mach
similarity directly reflects on the overall error when moving from the laboratory scale to
the full scale. When c0,f ∼ c0,m, for similarity on the loading conditions (Jm = Jf ) the
Froude similarity implies Maf = λ1/2Mam and the error in the evaluation of the terms
is proportional to λ1/2, λ and λ1/2, respectively, for the terms VrPL1, V2

r PV1 and VrPV2.
Note that, although the discussion strictly applies for the Fn scaling, the results are of
general use. Indeed, under the same loading conditions (Jm = Jf ), if the velocity is scaled
as Uf = λnUm, the same holds for Mach number, namely Maf = λnMam and the errors in
the estimation of the full-scale values of the three terms VrPL1, V2

r PV1 and VrPV2 become
proportional to λn, λ2n and λn, respectively.

Hereafter, we quantify the error associated with the imperfect scaling, taking advantage
of a database of a laboratory-scale marine propeller, analysed and discussed in detail in
Cianferra et al. (2019b).

2.1. Fluid-dynamic data
Although the study is thoroughly described in the original paper, here, we give
brief information about the numerical set-up and main results. The case refers to a
laboratory-scale, open-water numerical experiment of a five-blade propeller in pulling
conditions. The benchmark propeller is the SVA VP1304, whose complete documentation
including geometry, experimental data and numerical results, is available online (https://
www.sva-potsdam.de/en/potsdam-propeller-test-case-pptc). The fluid-dynamic field was
obtained solving the Navier–Stokes equations for incompressible flows using LES in
conjunction with a dynamic Lagrangian model for the closure of the subgrid-scale (SGS)
stresses; at the wall we use an equilibrium wall-layer model which allows us to avoid
the resolution of the very thin viscous sub-layer developing over the solid surfaces. In
this way, we were able to use a grid of approximately 3 million cells, mostly clustered
in the wake region (Figure 1). It is worth mentioning that previous studies (Wang 1999;
Piomelli & Balaras 2002; Wang & Moin 2002; Radhakrishnan & Piomelli 2008) discussed
the performance of the equilibrium wall-layer model, which in non-separated flows,
has been proven to give accurate first- and second-order statistics even in the presence
of flow complexities, such as inertial unsteadiness, rotation and thermal stratification.
The reliability of the data set obtained in the simulation has been verified comparing
turbulent quantities with those obtained by other authors using incompressible-flow
LES in conjunction with grids as large as two orders of magnitude more. The use
of incompressible formulation of the Navier–Stokes equations is justified by the low
rotational speed compared with the speed of sound. We obtained the following integral
thrust KT and torque KQ coefficients over the propeller, for the value of the advance
coefficient J = 1.068

KT = 0.3414, KQ = 0.09051, (2.12a,b)

accurate to within 3.5 % and 0.5 %, respectively, when compared with experimental data.
We made a qualitative comparison with results reported in high-resolution LES (Kumar &
Mahesh 2017; Posa et al. 2019) where wall-resolving LES were performed, involving the
use of a very large number of grid points. Some quantities such as axial velocity, vorticity
magnitude, turbulent kinetic energy, root mean square and turbulent SGS viscosity were
plotted at different sections perpendicular to the mean flow. The instability of the tip vortex
occurred at approximately three diameters downstream, where larger levels of turbulent
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(a) (b)

Figure 1. Computational grid adopted for the LES of the propeller in uniform flow.

kinetic energy are observed. A population of large-scale vorticity was observed in the
wake, although in the simulation the mutual induction and interaction between the tip
vortex and that emitted at the hub was not observed, basically due to the fact that in pulling
conditions the hub is replaced by the shaft. In this sense two main stable vortex structures
develop, one being the tip vortex and the other the shaft vortex. This is shown in figure 2(a)
where isosurfaces of the quantity QD2/U2

0 = 80 (Q = 0.5(||Ω||2 − ||S||2) where Ω and
S are the instantaneous rotation rate tensor and deformation rate tensor, respectively) are
plotted coloured with the vorticity magnitude and the Lighthill term ∂xixjTij. The figure
highlights the presence of the main vortical structures, the shaft vortex being persistent up
to five diameters downstream. Figure 2(b) shows the same isosurfaces as (a), but coloured
using the Lighthill term, which gives an indication of the regions of the wake where noise
sources are more intense.

The acoustic analysis related to this simulation had a clear outcome. Indeed, the authors
observed a strong tonal noise at the rotational frequency, whose cause was recognized to be
the strong vortex, that rolls up around the shaft. Being caused by a structure present in the
wake, this acoustic signal was intercepted by the volume terms. Our results corroborated
the findings of Ianniello (2016), who stated that ‘the usual assumption of believing the
flow non-linear sources to be negligible for blades rotating at low subsonic speed is
totally wrong when applied to hydroacoustics’. These results are in some sense quite
new, since, in high-speed aeroacoustics, for a long time, it has been believed that the
contribution to the noise coming from the wake is negligible compared with the linear
terms. This is certainly true for helicopter blades, working in the compressible regime and
characterized by very-high-pressure loads over the moving surfaces; however, as shown
by other authors (see for example the comparison of measurements with numerical results
reported in Ianniello, Muscari & Di Mascio 2014) and also discussed in the present paper,
this is not the rule in other physical configurations, like those studied herein and, in
general, in low-Mach-number cases. Another example which is consistent with our results
comes from the analysis of the database produced in the huge simulation of Posa et al.
(2019). The authors carried out a simulation of a seven-blade marine propeller, in an
open-water pushing condition, adopting a grid of approximately 800 million cells. The
acoustic computations carried out using the acoustic analogy revealed a strong broadband
low-frequency noise, coming exclusively from the wake (Broglia et al. 2020). In addition,
the contribution of the wake to the far-field noise was shown to be more important
than that coming from the linear part. The fact that the signal in Posa et al. (2019) and
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Vorticity magnitude

Lighthill term

100.00

10.00 33 57 80.00

200.00 500.00 1000.00

(a)

(b)

Figure 2. Isosurface Q = 20 000 (non-dimensional QD2/U2
0 = 80, optimal value for the visualization of the

two vortex structures): (a) contour of non-dimensional vorticity magnitude; (b) contour of Lighthill term.

Broglia et al. (2020) appears more broadband compared with the signal observed in the
present work is mainly due to the different operating conditions and geometry of the
propeller, namely, to the pulling low-loading condition reproduced in Cianferra et al.
(2019b) versus the pushing high-loading conditions of Posa et al. (2019). Indeed, the shaft
located downstream the propeller, as it is in the case herein discussed, gives rise to a stable
shaft vortex, identified as a main source of noise; in the work of Posa et al. (2019) a hub
vortex develops, it travels downstream and interacts with the tip vortex causing a broader
spectrum.

2.2. The acoustic field
The diameter of the model-scale propeller is Dm = 0.25 m and the scaling factor adopted
is λ = 24. The purpose is to use our data of pressure and velocity fields and to apply the
FWH equation, first using imperfect similarity and successively using perfect similarity.
Although the analysis has a general importance, here, we use hydrodynamic scaling.
According to (2.4) and following the previous discussion, in the case of perfect similarity,
we consider c0m = c0f /

√
λ, and in the case of imperfect similarity we consider c0m =

c0f ; here c0f = cw = 1400 m s−1, where subscript w denotes water. We calculate the
dimensional acoustic pressure contributions associated with the single integrals of the
FWH equation, for both procedures. We compute the acoustic pressure through (2.1) which
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Figure 3. Microphones considered for the acoustic analysis, listed in table 1 together with fluid-dynamic
computational domain sketch (black box). Figure is not to scale.

corresponds to the original formulation proposed by Ffowcs-Williams and Hawkings.
Over the years, a number of formulations have been developed depending on the problem
under investigation. Specifically, efforts have been devoted to the computation of the noise
generated by the wake, nowadays understood as to be responsible for the low-frequency
part of the spectrum. Among others, the porous formulation (Di Francescantonio 1997)
widely used in recent hydroacoustic noise applications allows us to neglect the volume
terms. Recently this problem was carefully investigated by Cianferra et al. (2019a). The
authors found that the direct computation of the volume terms under the assumption t = τ

(thus neglecting the time delays) is accurate in a large number of cases and also provided a
criterion for the use of this computationally cheap and effective method. The authors also
showed that the direct evaluation of the volume integral provides results more accurate
than those obtained using the porous formulation, the latter being too sensitive to the
position of the porous surface around the body and the wake. Details on the methodology
are given in Cianferra et al. (2019a) and are not duplicated here. For the evaluation of the
volume terms we consider the fluid-dynamic instantaneous LES data contained within a
cylindrical domain of volume W, diameter equal to 1.16D aligned with the propeller axis.
For the evaluation of the linear terms we use the pressure over the propeller surface S and
its own velocity.

Six microphones are selected, whose positions are reported in table 1 and sketched
in figure 3: two (1,2) are chosen on the propeller plane, at increasing distance from the
propeller axis; two (3,4) are placed in the wake region at a distance of approximately 14D
from the centre of the propeller, over lines passing through the centre of the propeller and
inclined by different angles with respect to the symmetry axis (respectively 45◦ and 15◦);
two (5,6) are located in the far wake, over the propeller axis. Since the FWH terms decay
differently with source–observer distance r, their own contribution varies considerably
depending on the locations of the microphones. First, we analyse the time records over
t∗ = 4 of full-scale acoustic pressure evaluated by means of the FWH equation, using the
perfect scaling and the imperfect one, respectively. This is carried out both for the linear
terms and for the nonlinear terms. Successively, we evaluate the spectra in decibel scale of
the acoustic pressure obtained using the two procedures. In the following analysis we refer
to full-scale quantities, indicating the FWH terms as Th, L1, L2, V1, V2 and V3.
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x y z

mic 1 0 0.6D 0
mic 2 0 60D 0
mic 3 −10D 0 10D
mic 4 −13.6D 0 3.6D
mic 5 −10D 0 0
mic 6 −20D 0 0

Table 1. Microphones considered for the acoustic analysis; x is the streamwise direction with negative values
indicating the downstream direction.

Figure 4 contains the time signals of the full-scale acoustic pressure associated with
the linear terms, evaluated using the two methods. Note that, since the first and third
terms of (2.10) scale perfectly, the time signals are the same in the two cases, whereas the
time signal of the second term of (2.10) changes, increasing by

√
λ. For the microphones

1 and 2 (a,b) placed on the plane of the propeller, the thickness noise term prevails over
the others, whereas the third term (L2) is always very small. The second term (L1), whose
evaluation at the model scale using the speed of sound of water introduces errors, becomes
increasingly important with the increase of the distance from the noise source since it
decays with 1/r. However, its own contribution remains substantially smaller than the
thickness term. The situation is similar for the microphones 3 and 4 placed in the wake
zone (c,d), not very far from the propeller. In these cases, the error introduced by imperfect
scaling is very small. The situation dramatically changes for the microphones 5 and 6
placed in the far wake over the axis of the propeller (e, f ) where, for symmetry reasons, the
thickness term is zero. The error introduced by imperfect scaling, which affects the second
integral, becomes increasingly large with increasing distance from the propeller. This can
be attributed to the fact that L1 decays with 1/r whereas L2 decays with 1/r2.

The time records of the full-scale acoustic pressure associated with the FWH nonlinear
volume terms are given in figure 5 for the six microphones. Note that, in this case, two
out of three terms scale imperfectly, namely V1, whose scaling properties were exploited
in the seminal research of Lighthill, and V2 whose scaling properties are discussed in the
present work. At the microphone 1 which is close to the propeller (a), the term which
scales perfectly (V3) is dominant. This is reasonable since the microphone is very close
to the source and V3 contains 1/r3 in the integral kernel, while V1 and V2 contain
respectively 1/r and 1/r2 in their integral kernels. Moving to microphone 2 placed far
from the source, the contribution of imperfect scaling becomes increasingly important
as well as the error in the evaluation of the noise, as shown in figure 5(b). In the wake,
out of the propeller disk, (microphones 3 and 4) the three volume terms have comparable
importance (c,d) and thus the imperfect scaling error is not negligible. In the far wake, over
the propeller axis, due to the discussed different decay rate of the kernels of the volume
integrals, the error associated with the imperfect scaling becomes increasingly important
with increasing distance from the noise source. Some considerations derive from this
analysis: first, comparing figures 4( f ) and 5( f ) it clearly appears that, downstream of the
propeller, the nonlinear contribution given by the wake is an order of magnitude larger than
that given by the linear terms; second, in the very near field the thickness term prevails
over the unsteady loading term, due to the significant contribution given by the rotation of
the solid elements, stating the need to consider a more complete form of the FWH equation
even in the simplified linear analysis.
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Figure 4. Linear terms of FWH equation (2.1): Th, red solid line; incorrect L1, dashed black line; correct L1,
solid black line; L2, green solid line. The microphones are listed in table 1.
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Figure 5. Nonlinear terms of FWH equation (2.1): incorrect V1, dashed red line; correct V1, solid red line;
incorrect V2, dashed black line; correct V2, solid black line; V3, solid green line. The microphones are listed
in table 1.
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Figure 6. SPL of FWH signal: imperfect similarity (dashed red lines); perfect similarity (solid blue lines).
The microphones are those listed in table 1.

To highlight how imperfect scaling affects the total signal, in figure 6 we show the
difference between the spectra, in terms of sound spectrum level (SPL) for the six
microphones. Specifically, for each microphone we calculate the entire spectrum given
by the sum of the six integral contributions, using the perfect scaling and the imperfect
one. The decibel scale is obtained computing SPL = 20 log10 fft( p(t))/pref , with fft( p(t))
the Fourier transform of the time signal p(t) expressed in Pascals and pref = 1 μPa. The
frequency is made non-dimensional with the revolution frequency fr = n Hz, n being the
number of revolutions per second.

The analysis of the spectra shows that, very close to the propeller (microphone 1,
panel a), as expected, the two methods give practically the same result. This occurs
because the dominant terms in the near field, namely Th and V3, scale perfectly. Further,
we may observe that, close to the propeller, two main peaks dominate, one at the rotation
frequency f /fr = 1 and the other one at the blade frequency f /fr = N (N is number of
blades). It is worth noting also the appearance of sub-harmonics of the blade frequency, at
f /fr = 2, 3, 4. A specific analysis of the fluid-dynamic versus acoustic field (not shown)
suggests that, at microphone 1, which is very close to the propeller, the signal is largely
affected by the complex interaction between the various acoustic sources. We observed
a rapid decay of the aforementioned sub-harmonics considering other microphones
(not shown here) located on the propeller plane, at gradually increasing distances. At
microphone 2 a substantial difference of approximately 20 dB is observed, due exclusively
to the difference previously observed in the analysis of nonlinear terms, figure 5(b). Thus,
the imperfect scaling is not conservative with respect to the expected maximum noise
level, since it underestimates the noise signal at the full scale. At microphones 3 and 5
the imperfect scalings of terms L1 and V1 are not able to produce significant variation in
the spectrum, because they are less important than the terms scaling perfectly (namely Th
and V3) except for a slight drop of the perfect similarity signal, that may explained by a
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destructive interference between the term V1 and V3 occurring when V1 scale perfectly
(figure 5c,e).

The fourth microphone is placed in the wake, with an angle of 15◦ with respect to the
propeller axis. There, the contribution of V3 becomes comparable to that of the other
two volume terms, therefore, the error introduced by imperfect scaling is noticeable over
the whole spectrum, as shown in figure 6(d). At microphone 6, located in the far wake,
the signal obtained by the perfect scaling, resulting from the composition of solid lines
(red, black and green) of figure 5( f ), gives rise to a tonal signal at the rotation frequency.
Actually, this is mostly given by the V1 term, since the V2 and V3 term signals are in
opposition of phase and tend to cancel out. Similarly, the signal obtained with imperfect
scaling, composed of the sum of solid green line and dotted red and black lines of
figure 5( f ), is tonal at the rotation frequency, given exclusively by the dominant term V3.
Overall, the differences in the spectra are essentially due to the relative importance of the
terms which scale imperfectly over those which scale perfectly.

To summarize, the analysis shows that carrying out laboratory-scale experiments using
the speed of sound of water introduces a scale effect rendering incorrect the evaluation of
the full-scale acoustic pressure starting from experimental data. The error is only partially
associated with the noise propagating from the propeller surface (linear terms) and, more
significantly, it is due to the imperfect scaling of the noise generated by the fluid-dynamic
field in the wake around the propeller. The error is negligible close to the propeller, where
the signal is dominated by terms Th and V3 which scale perfectly, and, in general, the
peak at the rotation frequency is well reproduced even by imperfect scaling. However,
far from the acoustic source, in the high-frequency range, considerable differences (up to
about 20 dB) arise, between the signal obtained with the perfect scaling and that obtained
with the imperfect scaling. Imperfect scaling introduces an underestimation of some noise
source terms at the full scale, hence the imperfect scaling procedure is not conservative
with respect to the noise level emitted by the full-scale propeller.

3. Acoustics in the presence of a free surface

In this section we discuss the effect of a reflecting surface on the noise generated by a
source and propagated in the medium. Without losing generality, the surface is considered
flat, meaning that for a marine propeller close to the free surface the flow field is that of a
Fn = 0 condition. In other words, in this case the presence of the free surface is negligible
for the fluid-dynamic field, although it may be important for the acoustic one.

We first analyse the properties of simple acoustic fields (i.e. the monopole) close to a
reflecting surface, and successively we study the case of a complex source which exhibits
a non-trivial directivity and rotation around an axis (a marine propeller in the present
investigation).

3.1. Monopole source near a free surface
Reflection is a crucial aspect of noise propagation in an underwater environment, and
is quite a complex topic in the presence of interfaces and salinity/temperature variation in
the fluid column (for a discussion see, among others, Athanassoulis et al. 2008, 2018). The
problem of interfaces is shared by a number of marine engineering systems, among others,
ship propellers, marine turbines and wind turbines mounted at sea. However, the presence
of archetypal reflecting interfaces may be addressed easily by applying the method of
images in case of time-domain wave equation (see for details Rienstra & Hirschberg 2004).
The main difference with respect to the unbounded domain is that, in the presence of a
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free surface, two acoustic contributions arrive at the microphone: the direct signal coming
from the source, and that reflected by the free surface. A free surface is a sharp interface
which reflects the signal in the interior of the field and where p = 0; it is different from a
solid surface which reflects in the interior and where the signal is doubled (see Rienstra
& Hirschberg 2004). For this reason, in the presence of a free surface the reflection is
mimicked by the image of the source, placed anti-symmetrically to the real source with
respect to the plane of the free surface, thus having opposite sign with respect to the real
source.

A monopole is a pressure field generated by a pulsating sphere. The pressure field has
spherical symmetry and may be represented by harmonic waves of angular frequency ω =
2πf , travelling outward from the source point xs

p(x, t) = pI

r
sin(ωt − kr), (3.1)

where r = |x − xs|, pI is the intensity of the source expressed in Pa m and the wavenumber
k = 2π/c0T = ω/c0. Note that, here, we consider the real part of the source, given by a
sine wave. In the presence of a free surface we must consider the contribution of two
monopoles, placed anti-symmetrically with respect to the free surface. One is placed at
xs = (x, y, z) = (0, 0, 0), with the reflection plane located at y = L. The imaginary source
is located at xi = (0, 2L, 0). With r1 = |x − xs| and r2 = |x − xi|, at any point x, the
acoustic pressure is built of the sum of the two contributions

p(x, t) = pI

r1
sin(ωt − kr1) − pI

r2
sin(ωt − kr2). (3.2)

The imaginary monopole has negative sign, giving p = 0 at the surface.
Now, we make (3.2) non-dimensional by considering a signal amplitude p0, a time

scale T = 2π/ω and a length scale L, the distance of the source from the free surface.
Introducing the non-dimensional variables p∗ = p/p0, t∗ = tω/2π, r∗

i = ri/L, with i =
1, 2, and considering that sinθ = − sin(θ + π) we obtain

p∗ = p∗
I

r∗
1

sin
(

2πt∗ − ωL
c0

r∗
1

)
+ p∗

I
r∗

2
sin

(
2πt∗ − ωL

c0
r∗

1 − ωL
c0

(r∗
2 − r∗

1) + π

)
, (3.3)

with p∗
I = pI/p0L. The non-dimensional intensity of the monopole depends on a pressure

impulse and the distance from the free surface. Here, we explicitly highlight the phase lag
between the two signals. Now, we exploit some properties of this monopole. We observe
that the composition of the two signals (direct and reflected) is constructive or destructive
depending on the phase lag between the signals. The second sine wave of (3.3) interferes
destructively with the first one when ωL/c0(r∗

2 − r∗
1) ∈ [2mπ − π/3, 2mπ + π/3], with

m = 0, ±1, ±2, . . . integer numbers.
At any point of the free surface (where r∗

1 = r∗
2) the phase lag between the two

sine waves is π and the signals cancel out. Close to the source location r∗
1 → 0 and

r∗
2 → 2; the phase lag is given by −2ωL/c0 + π, so it tends to π (destructive interaction)

for low frequencies and small L; however, for very small r∗
1, the contribution of the

image monopole is negligible compared with that of the real source. At points located
over the line passing through the two point sources and orthogonal to the free surface,
r∗

2 = ±r∗
1 + 2 with positive sign for points located by the opposite side with respect to

the free surface and negative sign for points located between the source and the free
surface, with r∗

1 < 1. In the former case r∗
2 = r∗

1 + 2 and the phase lag between the two
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Figure 7. Directivity of (a) monopole, (b) dipole and (c) quadrupole. Unbounded domain (crosses); free
surface (circles).

signals is −2ωL/c0 + π. This value gives destructive interaction when (2m − 1/3)π <

2ωL/c0 < (2m + 1/3)π, meaning that, for a given distance L from the free surface, there
is a range frequencies such that the free surface causes a destructive interaction of the
signals, although the total signal cannot be zero because the contribution of the real
signal, as in the previous case r∗

1 → 0, is always larger than that of the image one in
the near field. In the far field, when 2/r∗

1 ∼ 0, r∗
2/r∗

1 ∼ 1, the magnitude of the two
signals is comparable and the phase lag behaves as discussed above. For points by the
side of the free surface r∗

2 = −r∗
1 + 2, with r∗

1 < 1, the two sine waves of (3.3) are in
phase when (1 − r∗

1) = πc0/2ωL < 1 and fully destructive for r∗
1 = 1, at the free surface

as already discussed. However, also in this case, for r∗
1 −→ 0 the intensity of the real

signal tends to be larger than that coming from the image source. Considering the points
over a line passing through the real source and parallel to the free surface, we are in
the case where r∗2

2 = 22 + r∗2

1 . Note that the microphones located on the propeller wake
fall into this category. Dividing by r∗

1, we obtain r∗2

2 /r∗2

1 = 1 + (2/r∗
1)2, which highlights

that for r∗
1 < 2 the contribution of image source becomes small when compared with real

source contribution, and for moderate-to-large values r∗
1 > 2, r∗

2/r∗
1 ∼ 1 the two sources

have comparable magnitude. For the phase, it is easy to show that destructive interaction
requires π(2m − 1/3) < 4ωL/[c0(r∗

2 + r∗
1)] < π(2m + 1/3). Finally, in the general cases,

the two signals are in phase when ωL/c0(r∗
2 − r∗

1) = (2m + 1)π. The condition r∗
1 ∼ r∗

2,
which ensures a comparable amplitude of the two sine waves, leads to ωL/c0 	 1. Thus,
pure doubling of the signal may occur at high frequencies or for large values of L.

The discussion holds for a monopole field, or, in general for signals with spherical
symmetry (for example airguns); however, when considering sources characterized by
strong directivity, the analysis becomes more complex. For example, in figure 7 we show
how the directivity of three types of elementary sources, monopole, dipole and quadrupole,
changes in the presence of a free surface. We consider the real source located at a distance
L from the surface, and the image source placed anti-symmetrically with respect to the
surface. The microphones are located at distance Dc from the real source. The monopole
was already discussed above. In the cases of the dipole and quadrupole sources, the
discussion for the monopole still holds mainly for angle of 270◦, where the observer is
on the line passing through the two sources. Also, changes in the shape of the directivity
are observed under variation of the frequency ω and of the ratio L/Dc. This is the
case, among others, of rotors, such as wind turbines or the ship propeller discussed in
the previous section, which exhibit a dipole-like field and a quadrupole-like one for the
linear and nonlinear parts of the noise signal, respectively. The rotation of the source
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adds complications, since the image rotates counterclockwise when the real source rotates
clockwise. Specifically, in the presence of rotation the phase lag φ (consider a sinusoidal
wave sin(ω(t − φ)) as an example) between the signals has an additional shift when
compared with the case in the absence of rotation.

In the next section the method of images is applied to the marine propeller case and
results analysed also in view of the discussion of the present section.

3.2. Rotating complex source near a free surface
Integral solution of a time-domain, non-homogeneous, wave equation in a homogeneous
medium, makes use of the Green’s function adopted under the assumption of free-space
propagation. As for the monopole, the free surface is modelled by considering an
additional imaginary source, which works as the real source mirror image with respect
to the reflecting plane. As a result, certain boundary conditions are satisfied automatically
by the presence of the mirror image. Instead of free-space Green’s function, the half-space
Green’s function is adopted, which is built in such a way to consider both sources, real and
imaginary.

The half-space Green’s function is therefore the fundamental solution of the problem{
(∂tt − c2∇2)G(x, t, x0, τ ) = δ(x − x0, t − τ) x ∈ R

+,

G(x, t, x0, τ ) = 0 x ∈ ∂R
+,

(3.4)

where the source δ(x − x0, t − τ) is an impulse originating at time τ , at point x0. Note that
the boundary ∂R

+ of the domain corresponds to the plane x = 0 and the homogeneous
Dirichlet condition is placed to mimic the p = 0 condition. The Green’s function solving
(3.4) for the three-dimensional space, has the form

G(x, t, x0, τ ) = δ(t − τ − |x − x0|)
4π|x − x0| − δ(t − τ − |x − x∗

0|)
4π|x − x∗

0|
, (3.5)

with x∗
0 being the image source location. Note that the first term, which corresponds to

the real source impulse, is non-zero when t = τ + |x − x0|/c0, while the impulse coming
from the imaginary source arrives at the same point when t = τ + |x − x∗

0|/c0. This time
delay gives a phase lag which may amplify or destruct the original signal, as already
discussed for the archetypal sinusoidal wave of the monopole case.

The convolution of the half-space Green’s function with the source term of the
differential FWH wave equation leads to the integral equation describing the case of
acoustic propagation in presence of the free surface x = 0.

We apply the method of images to the case of the marine propeller discussed in the
previous section. Note that, given the peculiarities of the Green’s function method, the
free surface is approximated as a perfectly smooth plane, not disturbed by the presence
of the propeller (Fn = 0). This does not limit the importance of the present study for a
number of reasons: for the specific case of a marine propeller, laboratory tests are usually
carried out in the Fn −→ 0 limit; in the general case of a complex source close to an
interface (a wind or a marine turbine among others) the case of a flat surface in the most
general one. The introduction of a wave system would introduce, at least, two more free
parameters. To account for a non-flat free surface, methods different from the Green’s
function have to be used. This is beyond the scope of the present paper.

As in the previous section, the model-scale propeller has a diameter of D = 0.25 m, it is
centred at the origin of the frame of reference O = (0, 0, 0) and the wake develops along
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the negative x-axis. The speed of sound for the model-scale propeller is set to c0 = cw/
√
λ,

with λ = 24, thus considering perfect similarity. Note that, in the present problem,

p∗ = f (J, Vr, L/D), (3.6)

with L/D the additional non-dimensional parameter, associated with the presence of the
interface, controlling the problem; also, geometric similarity ensures that points behave
similarly at the two scales when the ratio L/Dc is the same, where Dc is the distance of
the microphone from the source. We first analyse the directivity, obtained considering 100
microphones placed on the y = 0 plane (a vertical longitudinal plane), at constant distance
Dc from the source. In the plots, the distance from the centre indicates the value of the
root mean square prms of the acoustic pressure (in Pascals) at the microphone located
at the corresponding angle. The analysis is performed for each single term of the FWH
equation. The directivity is reported in figures 8 to 11 for an unbounded domain in the
presence of the free surface. The directivity is calculated for two distances from the source,
respectively Dc = 10D in figures 8 and 10, Dc = 100D in figures 9 and 11. Finally, we
consider two values for the distance L of the source from the free surface, L = 2D in
figures 8 and 9, L = 8D in figures 10 and 11. In all plots, the downstream direction (the
wake) is 180◦; further, when considering the presence of the free surface, depending on
Dc and L the range of angles at which we can observe the underwater acoustics (and
therefore the directivity) changes; for this reason the values are not shown for angles giving
microphones outside of the fluid domain.

As a preliminary test, we checked the cancellation of the acoustic pressure at the free
surface, as required by the Dirichlet condition at the boundary. In all cases examined
the model gives the expected result. We first observe that, for linear terms (left panels
in figures 8 to 11), the intensity of acoustic pressure fluctuations is in general weaker
than that produced by the nonlinear terms (right panels in the same figures), showing,
once more, the importance of the latter with respect to the former. Note that, when
considering the decibel scale with a reference pressure of 1 μPa, the signals below 10−6 Pa
correspond to negative values. The directivity of linear terms (dipole-like) remains nearly
unchanged in all cases, when the presence of the free surface is considered. In particular,
the terms are very small on the propeller axis in all cases, whether or not there is a
free surface. The exception is the thickness term, which by symmetry reasons is zero
in an unbounded domain and has non-zero values at 0◦ and 180◦ in the free-surface
case. A signal amplification is observed in almost all cases. A verification of this result
was carried out by analysing the time history of pressure signals (not reported here). In
fact, at distances Dc = 10D or 100D, the linear term signals are characterized by a wide
spectrum, maintaining the rotation frequency fr = 15 Hz as the dominant one. The signal
coming from the imaginary source is comparable in amplitude and frequency content to
the signal emitted by the real source, however, the discussion on the interaction properties
of the monopole per se cannot explain this signal composition. As observed before,
rotation may affect the composition of the signals. The phase lag occurring in the case
of reflection and rotation is given by φ = L(r∗

2 − r∗
1)/c0 + 1/fr ∗ 1/2, which, in our case,

makes the low-frequency signal constructive. In particular, in the case L/Dc = 0.02, the
interaction between the signals appears constructive up to f ∼ 20 Hz. In other words, the
low-frequency amplification of the signal is the result of a combination of the phase lag
discussed before for the monopole case and the effect of rotation. On the other hand, in
the case Dc = 10D and L = 8D (L/Dc ∼ 1), the intensity of the real source is much more
relevant than the imaginary one, whose contribution is therefore negligible (figure 10).
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Figure 8. Directivity of linear terms (a,c,e) and nonlinear terms (b,d, f ), evaluated at a radius of 10D, on the
plane y = 0. Unbounded domain (blue crosses); free surface (red circle). Free surface at L = 2D.
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Figure 9. Directivity of linear terms (a,c,e) and nonlinear terms (b,d, f ), evaluated at a radius of 100D, on the
plane y = 0. Unbounded domain (blue crosses); free surface (red circle). Free surface at L = 2D.
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Figure 10. Directivity of linear terms (a,c,e) and nonlinear terms (b,d, f ), evaluated at a radius of 10D, on the
plane y = 0. Unbounded domain (blue crosses); free surface (red circle). Free surface at L = 8D.
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Figure 11. Directivity of linear terms (a,c,e) and nonlinear terms (b,d, f ), evaluated at a radius of 100D, on
the plane y = 0. Unbounded domain (blue crosses); free surface (red circle). Free surface at L = 8D.
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The directivity of nonlinear terms exhibits a dipole-like shape for small distances from
the source and tends to a quadrupole shape with large distances (see figures 9(b,d, f )
and 11(b,d, f ), respectively). In addition, the relative contribution of the nonlinear terms
V1, V2 and V3 appears reversed in the transition from Dc = 10D to Dc = 100D. This
is expected, given the law which rules the decay with distance from the source of the
different terms; this justifies the prevalence of the third term when close to the source,
case Dc = 10D in figure 8, and the increasing importance of the first and second terms
at large distances (figure 9). For the cases L/Dc = 0.02 and L/Dc = 0.08, reported in
figures 9 and 11, respectively, the quadrupole shape appears rotated by 90◦ (red circles),
so that the interaction of the signals is destructive by the free-surface side, on the propeller
axis as well as on the propeller plane. Finally, as observed for linear terms, in the case
L/Dc = 0.8, the presence of the free surface is of minor importance. The results presented
in this section show that the presence of the free surface substantially modifies the signal,
giving a larger and larger contribution when L/Dc � 1.

4. Small- versus full-scale analysis in the presence of a free surface

In § 2 we have shown that some terms of the FWH equation scale imperfectly once the
speed of sound at the laboratory scale is not rescaled according to the velocity ratio
Vr. This introduces errors when obtaining the full-scale acoustic pressure starting from
small-scale values. Among the six integral terms of the FWH equation, the terms which
can make a difference, when considering perfect or imperfect scaling, are the loading term
L1 and the nonlinear terms V1 and V2. In § 3.2 we have observed that the presence of a
free surface may change substantially the magnitude of some terms of the FWH equation,
depending on the position and the distance of the microphone from the noise source Dc
and on the distance of the noise source from the free surface L, namely depending on
L/Dc. Here, the scaling procedure discussed in § 2 is combined with the method of images,
and applied to study the acoustic field generated by the marine propeller. The aim of this
analysis is to quantify the error associated with carrying out laboratory-scale tests using
the speed of sound of water in a (either physical or numerical) set-up without the free
surface, and recalculating the full-scale acoustic pressure for a device working close to a
free surface. The analysis is not necessarily concerned only with physical experiments,
but also with numerical experiments carried out at the laboratory scale as discussed
above. In addition, the presence of additional reflecting surfaces (like those present in a
water tunnel) is here not considered. Considering that the errors associated with imperfect
scaling for L1, V1 and V2 are proportional to λn, λ2n and λn, respectively (n = 1/2 for
hydrodynamic scaling), among the cases discussed in § 3.2, the plots of directivity show
that the maximum error, when considering imperfect scaling in an unbounded domain,
may occur when Dc = 100D and L = 2D, thus L/Dc = 0.02. Conversely, the case with
the minimum error is Dc = 10D and L = 8D, thus L/Dc = 0.8. For each case, we consider
three microphones located at three significant angles, 180◦ (in the wake), 225◦ (below the
propeller over the diagonal) and 270◦ (below the propeller), respectively.

For the two microphones on the propeller wake (figure 12a,b), the first linear term (Th,
blue lines) exhibits a significant variation; indeed, as already discussed, in unbounded
domains the thickness term is negligible for reasons of symmetry on the propeller axis.
The presence of the free surface significantly affects the directivity of the signal and a
peak is observed at the rotation frequency, with a value of approximately 50 dB (a).

Among the three linear terms, the one that scales imperfectly is the second one (L1);
we observe a difference of approximately 14 dB (note that 20 log10

√
(24) ∼ 14) between
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Figure 12. Linear terms of FWH equation: Th, blue lines; L1, red lines; L2, green lines. Perfect scaling with
free surface, dashed lines; imperfect scaling with unbounded domain, solid lines.

the two cases. This is very clear for L/Dc = 0.8, where the effect of the free surface
is negligible. The constructive interference, observed in the study of directivity, is in
fact more visible in the case L/Dc = 0.02 (d, f ) where the signal accounting for the
presence of the surface is amplified with respect of the single-source signal, of about
20 dB. At angle 180◦ (figure 12a,b), mostly for the case L/Dc = 0.02, for PL1 the peaks
corresponding to the super harmonics of the rotation frequency are smoothed out due to
destructive interaction with the image source signal. The simple analytical considerations
of the previous section suggest that at 180◦ the phase lag between the signals becomes
φ = 4L/(r∗

2 + r∗
1)c0 + 1/fr ∗ 1/10, which, with r∗

2 ∼ r∗
1 = 50, is very small, and the signal

of the image source is destructive over the whole high-frequency range.
In figure 13 we show the spectra of the nonlinear terms. The third term (V3) scales

perfectly; as a consequence, the signals for unbounded and bounded domains overlap in
the case L/Dc = 0.8 (a,c,e) when the effect of the free surface is irrelevant. On the other
hand, destructive interference appears in case L/Dc = 0.02 (b,d, f ) at angles 180◦ and
270◦, as previously observed in the directivity analysis.

For the two other terms, we recall that multiplication of a pressure signal by λ = 24
(needed for V1) and

√
λ (needed for V2) gives an increase of approximately 27 and 14

decibels, respectively. Indeed, in the case L/Dc = 0.8 (a,c,e) the signals increase by the
factors 27 and 14 over the whole frequency range, due basically to imperfect scaling, since
in this case the free surface does not affect the pressure signal. Conversely, in the case
L/Dc = 0.02 (a,c,e), the presence of the free surface reduces the gap between the signals
at angles 180◦ and 270◦, due to the substantial destructive interaction between the direct
and reflected acoustic waves. This is not true for the signal at angle 225◦, depicted in
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Figure 13. Nonlinear terms of FWH equation: V1, blue lines; V2, red lines; V3, green lines. Perfect scaling
with free surface, dashed lines; imperfect scaling with unbounded domain, solid lines.

figure 13(d), where both scaling procedure and free-surface constructive interaction make
the signal amplified with respect to the case of imperfect scaling in an unbounded domain.

Finally, the total signals are reported in figure 14, in the case of perfect scaling with a
free surface and in the case of imperfect scaling in an unbounded domain. In all cases,
the dominant contribution to the complete FWH signal comes from nonlinear terms, so
we can refer to the previous figure 13 to explain the behaviour of the total acoustic signal.
The difference between the signals in figure 14(a,c,e) is mainly the result of the sum of V1
and V3. Indeed, V3 dominates close to the source (Dc = 10D) and scales alike in both the
scaling procedures. Further, V1 when correctly scaled, makes the signal increase mostly in
the range of high frequencies. On the other hand, the differences appear very small in most
of the frequency range and, in particular, in the region where the signal peaks. Far from the
source (Dc = 100D) (b,d, f ) the most relevant contribution comes from V2. The difference
given by the perfect scaling of the second term (+14 dB) is reduced, as observed in the
previous figure 13 at angles 180◦ and 270◦ and enhanced at 270◦, due to the presence of
the free surface.

5. Discussion and concluding remarks

In the present paper we have analysed the scaling properties of all integral terms of
the FWH equation, in conjunction with perfect/imperfect scaling when data obtained at
laboratory scale are used for prediction at the full scale.

Since Lighthill’s seminal work, scaling properties of monopole, dipole and quadrupole
sources have been exploited, finding dependence with the Mach number, no matter
what the fluid-dynamic regime is. Such scaling laws apply to the FWH terms decaying
as 1/r. We have corroborated and extended the classical theory, evaluating scaling of
the additional terms (linear and nonlinear) decaying as 1/r2 and as 1/r3, commonly
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Figure 14. Complete signal given by the FWH equation. Perfect scaling with free surface, dashed black line;
imperfect scaling with unbounded domain, solid blue line.

overlooked in many applications. In order to quantify the error associated with the
imperfect scaling we have considered the case of a benchmark marine propeller, operating
in open-sea, uniform-flow conditions, for a single-phase medium.

The study has also been motivated by the discussion contained in the fundamental paper
(Brentner & Farassat 2003) where the authors stated in the conclusions that ‘... more
understanding of the rotor wake and tip vortices is needed’. In spite of that, most recent
research has primarily considered two main mechanisms of noise production, namely
the unsteady pressure load over the solid surface and the thickness term, responsible of
the broadband spectrum in the range of high frequencies; this led us to consider the
linear terms of the FWH equation as the dominant ones and the only ones worthy of
consideration.

In recent years, with the increasing application of acoustic analogies to underwater
noise problems, this issue has been progressively revisited. Several works (among others
Ianniello et al. 2013; Ianniello 2016) have proved and highlighted the need to accurately
evaluate the nonlinear terms. Not surprisingly, most of the works on propeller noise adopt
the FWH porous formulation, which involves the calculation of the quadrupole terms, or
more recently the direct evaluation of the volume terms as discussed by Cianferra et al.
(2019a).

As shown in the present paper, the wake plays an important role in the composition
of the noise spectrum. The more it contains coherent structures and/or is characterized
by a well-defined periodicity, the more its noise signature is characterized by
pronounced peaks at particular frequencies. Moving from a disorganized wake to a
coherent-structure-containing wake corresponds to the transition from white-noise type
to tonal-noise type. Moreover, the latter may persist over long distances, especially if it
is a low-frequency tonal noise and if it propagates in a waveguide-shaped environment
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(such as the ocean). As an example, figure 13 in the recent paper of Cianferra, Armenio &
Ianniello (2018) shows a comparison of the noise associated with the wake of a cube and
that associated with the wake of a square-section cylinder. The figure highlights that: (i) an
elongated (nearly two-dimensional) object gives rise to a wake louder than that developed
downstream of a bluff body; (ii) the wake of the elongated object is louder than the noise
emitted by the impact of the fluid over the body (loading noise).

Looking at the recent literature, it clearly appears that the relevance of nonlinear
terms goes beyond the nature of the fluid (whether air or water). As an example,
the recent experimental study on the noise produced by the Sevik rotor in air, in
the incompressible-flow regime, ingesting turbulence generated by a boundary layer
(Alexander et al. 2017), shows a broadband spectrum where a substantial contribution
to the low frequencies is present after subtraction of the background noise (see their
figure 4b), suggesting the possible importance of quadrupole noise associated with the
volumetric turbulence contribution. Our analysis shows that, apart from the Ma and Ma2

scaling of the terms L1 and V1, respectively, already discussed in the literature, the terms
Th, L2 and V3 are Mach independent and the term V2 ∼ Ma. This may have important
consequences regarding whether or not Mach similarity is satisfied when laboratory-scale
data have to be used at the full scale.

We have calculated the error associated with the scaling discussed above when using
laboratory-scale data for full-scale prediction under the assumption that the speed of sound
is nearly unchanged at the two scales. In particular, the scaling is expressed in terms of a
geometrical scale factor λ using the fact that Uf = λnUm with λ > 1 and n depending
on the problem investigated. In particular, Ma-independent terms scale perfectly, namely
the thickness term, the loading term (L2) and the nonlinear volume term proportional to
Tij (V3); for the other terms, the error is λn for the unsteady loading term (L1) and for the
nonlinear term proportional to ∂Tij/∂t, whereas the error increases to λ2n for the remaining
(V1) nonlinear term proportional to ∂2Tij/∂t2, namely that decaying as 1/r and already
analysed in the fundamental work of Lighthill. When applying the Froude similarity to
scale the velocity field, this implies n = 1/2 and the errors go consequently.

It may be worth noticing that, when dealing with hydrodynamic noise sources, mostly
in the very low Mach regime (hence treated as incompressible flows), the similarity
with respect to the Mach number is clearly not considered. Neither when performing
fluid-dynamic simulation, nor (to the best of the authors’ knowledge) when scaling the
acoustic results. In the present work we have stressed this point, highlighting how the
acoustic spectrum may change (or not) if the Mach similarity is addressed in the scaling
procedure of the acoustic results.

To summarize, the results of the present study are of general use and are concerned with
both physical and numerical laboratory-scale experiments, although in the present study
we consider the case of a numerical simulation of an isolated ship propeller.

The reference data were obtained in a previous investigation and are relative to
a small-scale propeller, in a pulling condition, studied numerically using LES and
considering an unbounded domain. It clearly appears that small-scale experiments, aimed
at the evaluation of the noise generated by a device immersed in a fluid, should be
carried out at Mach similarity, consequently scaling properly the speed of sound. For
the case under investigation that uses hydrodynamic scaling, the speed of sound needs
to be scaled by

√
λ, otherwise the acoustic field is evaluated incorrectly, meaning that

it may be not representative of that emitted by the full-scale device. When performing
numerical experiments, setting an idealized fluid whose properties fit those required by
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perfect similarity is not difficult, this is not the case of physical experiments, where it is
not straightforward using fluids having a speed of sound much smaller than that of water.

This part of the research shows that the near field is nearly unaffected by imperfect
scaling because there the thickness term, which is Ma-independent, dominates. The
intermediate-to-far field noise is dominated by the nonlinear terms, two out of three of
which scale imperfectly; as a consequence imperfect scaling affects the full-scale signal.

As a second aspect, the present research was aimed at understanding and quantification
of the effect of a free surface not in a Froude number sense, but as a surface reflecting
the acoustic waves in the medium. The overall acoustic field results from a composition of
two signals, the one directly arriving from the acoustic source and the one reflected by the
free surface. The combination of the signals may be either destructive or constructive. We
have taken advantage of simple archetypal acoustic sources, to explain the composition of
the signal in terms of amplitude and range of frequencies. This simplified theory, once the
rotation rate of the device is taken into account, may give information about the range of
frequencies where the signals combine destructively or constructively, supplying, in the
latter case, an amplification of the noise produced by the propeller placed near the free
surface.

Finally, we have evaluated the overall error associated with the combination of effects,
considering a virtual experiment carried out using imperfect similarity in an unbounded
domain and another one which uses perfect similarity and considers the presence of the
free surface. The results show that the noise spectrum may be substantially modified, with
a general underestimation of the noise propagated in the far field, for small values of L/Dc,
and for particular directions only. Indeed, the directivity of nonlinear terms, which are
found to be dominant at large distances, shows that, only in a limited range of angles is the
signal affected by the presence of a free surface amplified with respect to the unbounded
case. In all other directions, the decrease of the signal due to the interaction with the free
surface is such to reduce the error caused by the imperfect scaling. On the other hand, the
general error appears very small in the near field (L/Dc ∼ 1) in the most significant part of
the frequency spectrum, making the results of small-scale experiments carried out using
imperfect scaling in the absence of a free surface still significant for the evaluation of the
full-scale noise in the near field.

We point out that in the present study the Reynolds number similarity was not
considered. Under J and Froude similarity, typically Ref ∼ 102Rem. This may produce
some differences in particular in the wake although, for rotors, recent literature has proved
that beyond a certain Reynolds number the turbulent wake is inertia dominated and
exhibits self-similarity. However, this issue may deserve additional study.

Finally, the results of this study may be useful: (i) for the improvement/development of
simplified regression/based approaches to be used during the early design stages; (ii) in
view of processing laboratory-scale data to obtain full-scale values at the same time
removing the problem of imperfect scaling, thus opening new and so far unexplored
analysis scenarios. In particular, when the fluid-dynamic field is incompressible,
laboratory-scale velocity and pressure data available over certain surfaces (using, for
example PIV or other cutting-edge experimental techniques) can be first scaled at the full
scale and successively post-processed using the FWH equation, as done in the field of
computational acoustics using direct numerical simulation or LES data. This procedure
may be considered conformed to the scaling suggested in this work and can be a subject
of future research.

Declaration of interests. The authors report no conflict of interest.
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