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Abstract

In this paper, the solution of the inverse scattering problem for determining the shape and
location of perfectly conducting scatterers by making use of electromagnetic scattered fields
is presented. Based on the boundary condition and the measured scattered field, a set of non-
linear integral equations is derived and the imaging problem is reformulated into an optimiza-
tion one. Then, two evolutionary algorithms are used to solve the inverse scattering problem.
To further clarify, our contribution is to test two well-known algorithms in the literature to the
problem of microwave imaging. The hybrid approaches combine the standard particle swarm
optimization (PSO) with the ideas of the simulated annealing and extremal optimization algo-
rithms, respectively. Both of them are shown to be more efficient than original PSO technique.
Reconstruction results by using the two presented schemes are compared with exact shapes of
some conducting cylinders; and good agreements with the original shapes are observed.

Introduction

The aim of electromagnetic inverse scattering problem is to recover the shape and/or electro-
magnetic properties concerning some inaccessible regions from the scattered electromagnetic
fields measured outside. Over the last few years, microwave imaging techniques have attracted
considerable attention from the research community since they can be suitably used for a
number of engineering applications ranging from medical diagnostics to nondestructive evalu-
ation and subsurface detection. However, inverse problems of this type are difficult to solve
because of its ill-posedness and nonlinearity [1]. A large number of methods have been pro-
posed to solve the inverse scattering problem and the inversion is formulated as an optimiza-
tion problem.

Traditional iterative algorithms are founded on local minimization of an objective function
via some gradient-scheme [2, 3]. Generally, during the search of the global minimum, they
only converge under certain conditions, otherwise, they may be trapped into a local extreme
or even diverge. More recently, a new class of algorithms has emerged such as simulated
annealing (SA) [4], neural network [5], genetic algorithms (GA) [6–8], and differential evolu-
tion [9–13]. In recent year, some researchers have focused on applying the particle swarm opti-
mization (PSO) [14] in solving inverse scattering problem [15–20].

Researchers are still relying on the previously mentioned methods to find appropriate solu-
tions to the microwave imaging problem.

But all this does not mean to mention the basic drawbacks of all these used methods,
namely, the premature convergence for the global stochastic optimization techniques and
the convergence to the local minimum solution for the local optimization methods.

Based on what has been said, we have thought in this work to overcome all these drawbacks
using a hybrid method which combines the two types together. PSO can be easily implemen-
ted and is computationally inexpensive in terms of both memory requirements and CPU speed
[21]. However, even though PSO is a good and fast search algorithm, it has premature
convergence.

To avoid premature convergence of PSO, an idea of combining PSOwith SA is addressed in this
paper; the rationale behind is that such a hybrid approach expects to enjoy the merits of PSO with
those of SA. In other words, PSO contributes to the hybrid approach in a way to ensure that the
search converges faster, while the SA makes the search to jump out of local optima.

In order to solve the complex inverse scattering problem, we employ in this work a hybrid
optimization method called PSOSA which is already reported in the literature [22]. To the best
of our knowledge, there is still no investigation on using hybrid technique based on PSO and
SA to reconstruct an arbitrary shape of conducting cylinders in free space. In addition to
PSOSA, we apply another hybrid technique called PSOEO combining PSO with a local search
heuristic algorithm named extremal optimization (EO). This PSOEO algorithm is quite
detailed in [23].

The remaining sections of this paper are organized as follows: “Theoretical formulation”
presents the formulation of the problem. A description of the hybrid algorithms structure is
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given in “Hybrid algorithms, PSOSA, and PSOEO”. The numer-
ical results are discussed in “Numerical results” and finally
“Conclusion” summarizes the study.

Theoretical formulation

Consider a perfect electrically conducting cylinder embedded in a
free space as shown in Fig. 1. The cylinder is assumed infinite
long in the z direction, while the cross-section of the cylinder is
arbitrary. The scatterer is illuminated by a circumference source
of pulsed plane waves, with z-polarized incident electric field Ei

z
(TM polarization) and a propagation direction in the (x, y)
plane and impinges at an incident angle wi. The z polarized inci-
dent wave can be given by:

Ei
z(x, y) = e−jK0(x·coswi+y·sinwi), (1)

where K0 denotes the free-space wave number.

Forward problem

In this work, the shape function of the object is assumed to be
described by means of a Fourier series of order P:

r(w) =
∑P
n=0

an cos(nw) +
∑P
n=1

bn sin(nw). (2)

an and bn represent the Fourier coefficients:

an = 1
p

∫2p
0

r(w) cos(nw)dw, (3)

bn = 1
p

∫2p
0

r(w) sin(nw)dw. (4)

Due to the homogeneity of the scatterer along the z-axis, the
problem is reduced to a TM scalar case. The scattered and total
electric fields will be polarized parallel to the z-axis. Surface cur-
rent Jz is induced on the surface of the cylinder; the scattered elec-
tric field Es

z is subsequently generated.
Starting from Maxwell’s equations, an integral equation of first

kind may be derived in which the scattered field Es
z is given as:

Es
z(�r) = −K0h

4

∫
C
Jz(�r ′)H1

0 (K0|�r − �r ′|)ds(�r ′), (5)

where Jz is the induced current density parallel to the z-axis, η is
the impedance of the surrounding medium, and H1

0 is the Hankel
function of the first kind and zeroth order.

At the surface of the cylinder, the total electric field satisfies
the boundary condition:

Ei
z + Es

z = 0. (6)

Considering that �r = (r(w), w) on contour C, if we combine
(5) and (6), one obtains:

Ei
z(r(w), w) = K0h

4

∫2p
0

Jz(w′)H1
0 (K0d)jdw′, (7)

where

d =
�������������������������������������������
r2(w) + r2(w′) − 2r(w)r(w′) cos(w− w′)

√
, (8)

j =
�����������������
r2(w′) + r′2(w′)

√
. (9)

The distribution of surface current is obtained after solving
equation (7) by point-matching method [24] with pulse basis
function and Dirac delta test function. The contour C of the cylin-
der is divided into Q segments and the current density is assumed
to be constant in each segment. A matrix equation is obtained:

AJz = B. (10)

The elements of A and B are given in [25]. The elements of Jz
represent the discrete electric currents on the sections of the
counter C. Thus, the scattered field is calculated by using the dis-
crete electric currents as follows:

Es
z(r,w) = −vm0

4
Dw

∑Q
n=1

JnH
(1)
0 (K0dn)jn, (11)

where Δw is the angular discretization size, δn and ξn are given as
follows:

dn =
��������������������������������������
r2 + r2(wn) − 2rr(wn) cos(w− wn)

√
, (12)

jn =
������������������
r2(wn) + r′2(wn)

√
. (13)

According to (11), the scattered field depends on the Fourier
coefficients which describe the object shape.

Inverse scattering problem

For the inverse problem, the scattered electric field is measured
and known at each receiver while the shape function, i.e. the coef-
ficients of the trigonometric series to be determined an and bn are
unknown. A relative error function J with respect to the

Fig. 1. Geometry of the considered inverse scattering problem in the (x, y) plane.
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coefficients of the trigonometric series is defined as follows:

J(X) =

������������������������∑M×S

n=1
|(Es

meas)n − (Es
z)n|2

√
����������������∑M×S

n=1
|(Es

meas)n|2
√ , (14)

where X = [a0, a1, …, aP, b1, b2, …, bP].
Es
meas and Es

z are M × S dimensional vectors containing the
scattered electric field measured and computed at each iteration,
respectively. M and S represent the total number of receivers
and incident angles, respectively.

The cost functional J gives a measurement on how close the
inverted results approach the true shape function. Thus, the
inverse problem can be recast into an optimization problem by
minimizing the relative error function with the coefficients of
the trigonometric series being the parameters to be optimized.
In this work, the problem is resolved by applying optimization
approaches, where the standard searching scheme PSO and its
hybrid models are employed to minimize the function J.

It is significant to note that these algorithms are optimization
methods applicable to any problem which requires an optimiza-
tion. Thus, if one is confronted with a more practical reconstruc-
tion case like the reconstructing of conducting underground
objects or located inside dielectric objects, which will change is
the theoretical formulation of the scattered field which differs
from that considered in our case where the object to be recon-
structed is placed in free space.

Consequently, the effectiveness of these methods depends on
the complexity level of the forward problem considering that
the resolution of the inverse problem is generally based on mini-
mization of a least squares criterion.

Introduction to PSO, SA, and EO

The three methods PSO, SA, and EO are well known in the litera-
ture; I will state a brief introduction while indicating the corre-
sponding references.

Basic PSO algorithm

PSO is a population based stochastic optimization technique
developed by Kennedy and Eberhart in 1995 [14], inspired by
social behavior patterns of organisms that live and interact within
large groups.

The trial solutions xp are iteratively updated by using the fol-
lowing two-step scheme [26]:

v(k+1)
p = v(k)v(k)p + c1 · r1( pp − x(k)p ) + c2 · r2(g − x(k)p ), (15)

x(k+1)
p = x(k)p + v(k)p , (16)

where ω(k) is the inertia parameter, c1 and c2 are acceleration
coefficients, and r1 and r2 are two random numbers distributed
uniformly in [0,1].

pp and g are the best solution achieved by the pth particle and
by the whole swarm so far, respectively.

Simulated annealing (SA)

SA was proposed by Kirkpatrick, Gelatt, and Vecchi in 1983 [27–
29]. It was one of the first minimization stochastic methods
applied to electromagnetic imaging.

In this paper, the initial temperature is determined by the fol-
lowing empirical formula:

T0 = − Jmax − Jmin

ln(0.1) , (17)

where Jmax and Jmin are the maximum and minimum values of the
function J in the initial swarm, respectively.

At the start of SA most worsening moves may be accepted, but
at the end only improving ones are likely to be allowed. This can
help the procedure jump out of a local minimum.

Extremal optimization (EO)

EO algorithm [30] is proposed by Boettcher and Percus for a
minimization problem. Each decision variable in the current solu-
tion X is considered “species”. In this study, we adopt the term
“component” to represent “species”. In this work, the Gaussian
mutation is adopted witch it performs with the following
representation:

x′k = xk + Nk(0, 1), (18)

where xk and x′k denote the k-th decision variables before muta-
tion and after mutation, respectively. Nk(0, 1) denotes a
Gaussian random number with mean zero and standard deviation
one.

Hybrid algorithms, PSOSA, and PSOEO

In this section, we present the two algorithms which both com-
bine the advantages of PSO (that has a strong global search abil-
ity) with SA and EO (that have a strong local-search ability).

PSOSA hybrid algorithm

This hybrid approach makes full use of the exploration ability of
PSO and the exploitation ability of SA and offsets the weaknesses
of each other. Consequently, through introducing SA to PSO, this
algorithm is capable of escaping from a local optimum. However,
if SA is introduced to PSO at each iteration, the computational
cost will increase sharply and at the same time the fast conver-
gence ability of PSO may be weakened. In order to perfectly inte-
grate PSO with SA, SA is introduced to PSO every Kmax iterations
if no improvement of the global best solution does occur.
Therefore, the hybrid PSOSA approach is able to keep fast conver-
gence (most of the time) thanks to PSO. To prevent the premature
convergence of PSO, SA is applied to the best solution in the
swarm found so far, each Kmax iterations that is predefined to
20 according to our experimentations. According to [22], the
hybrid PSOSA algorithm works as illustrated in Fig. 2.

PSOEO hybrid algorithm

In this subsection, we present the second hybrid algorithm
PSOEO as it is already detailed in [23]. This hybrid approach
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makes full use of the exploration ability of PSO and the exploit-
ation ability of EO.

In order to perfectly integrate PSO with EO, EO is introduced
to PSO every INV iterations. Therefore, the hybrid PSOEO
approach is able to keep fast convergence in most of the time
under the help of PSO. In our case, the value of INV is set to
10. According to [23], the hybrid PSOEO algorithm is illustrated
in Fig. 3. It is important to note that, in order to find out the
worst component (or so-called decision variable), each compo-
nent of a solution should be assigned a fitness value in the EO
procedure.

Numerical results

In this section, we discuss reconstruction results. We illustrate the
performance of the hybrid algorithms and its sensitivity to ran-
dom noise. The measurement is simulated by computation of
the scattered field with preset electromagnetic parameters, making
use the method of moments (MoM). The conducting object is
illuminated by an incident TM wave at I illuminations equal to
six positions wi = (0, 30, 60, 90, 120, 150°), and the frequency is
chosen to be 1 GHz.

For each illumination, the scattered electric field is collected at
M = 12 points lying on a circle of radius L = 2.5 m and uniformly
distributed around the investigation domain. The object which
one will reconstruct its unknown shape is divided into 36 seg-
ments (Q = 36). The shape of the cylinder is expressed with
Fourier coefficients (P = 5), the size of a particle is equal to
11 = 2P + 1.

The initial values of the Fourier coefficients were chosen ran-
domly (uniformly distributed in the range [−1, 1]). The initial
values of the components of the particle velocities were also

chosen randomly (uniformly distributed in the range [−0.2,
0.2]). The population size of the swarm N was selected equal to
60. The acceleration coefficients were selected constant (c1 = c2 =
0.8), whereas the inertia weight w decrease linearly starting from
1 to 0.5. For SA algorithm, the initial temperature T0 is given
by (17), annealing rate β = 0.9.

Four examples are investigated for the inverse scattering
problem.

In the first example, a simple circular cylinder is examined, the
shape function is chosen to be ρ(w) = (0.06)m. The reconstructed
shape function that corresponds to the best swarm particle is plot-
ted in Fig. 4. The shape error is shown in Fig. 5. Here, the shape
function discrepancy is defined as:

SE = 1
Q

∑Q
q=1

rcal(wq) − r(wq)
r(wq)

[ ]2{ }1
2

(19)

It is quite remarkable that the reconstructions are close to the
exact shape of the object. However, it is clear that the best recon-
structing is obtained by the hybrid algorithm PSOEO, indeed the
shape error is of 10.3, 6.7, and 2.4% for PSO, PSOSA, and
PSOEO, respectively. The convergence of the cost functional ver-
sus generations corresponding to the best particle in the swarm is
shown in Fig. 6.

In the second example, we choose a shape function as ρ(w) =
(0.05 + 0.02 sin 4w)m. In order to investigate the sensitivity of
these algorithms against random noise, a Gaussian white noise
is added to the real and imaginary parts of the simulated scattered
fields. The signal-to-noise ratio (SNR) of different levels is used in
our simulations. Figures 7 and 8 present the reconstructed shape
using the three algorithms and the shape error, respectively.
Figure 9 shows the reconstructed results where the experimental
scattered field is contaminated by noise. It could be observed
that good reconstructions of the perfect conducting cylinder
have been obtained when the SNR is above 15 dB.

Fig. 2. PSOSA hybrid algorithm.

Fig. 3. Flowchart of the PSOEO algorithm, [23].
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Let us compare the three algorithms between them: it is clear
that the two hybrid versions of PSO improved the reconstructing
quality obtained by standard PSO. However, one observes that
PSOEO is more effective than PSOSA algorithm especially against
PSO, it presents less noise which is about 1.8% compared with 8.5
and 11.6% for PSOSA and PSO, respectively. Another advantage
of PSOEO: it converges quickly, it put ∼800 generations to recon-
struct the object shape where more than 1200 iterations was
necessary for the other algorithms.

Another test of the used methods seems very interesting when
they will be executed several times on this same second configur-
ation whose purpose is to observe the variation of SE. Figure 10
illustrates the performance SE according to the execution of the
three techniques PSO, PSOSA, and PSOEO.

It is clear that the convergences lead practically to the same
values of SE obtained previously which are 11.6, 8.5, and 1.8%
for PSO, PSOSA, and PSOEO, respectively.

Finally, what we can conclude is that these methods efficiently
explore the solution space and provide good coverage to the actual
form of the original configuration.

In [31], we developed a hybrid algorithm called mGA-CG
combining a micro-GA and the method of the conjugate gradient.
This technique allowed us to obtain good results for the recon-
struction of the dielectric objects. It appears interesting to com-
pare the performances of these different algorithms previously
used with those of our own algorithm mGA-CG developed in
[31]. To test the effectiveness of the algorithms as well as comput-
ing times, a third example is considered.

In the third example, the shape function is selected to be
ρ(w) = (0.03 + 0.02 sin w + 0.01 sin 3w + 0.02 cos w)m. Note that
the shape function is not symmetrical about either x axis or
y axis. For this example, the reconstruction results are given in
Table 1.

This example has further verified the reliability and fast con-
vergence of PSOEO compared with PSO and PSOSA. For
PSOEO and mGA-CG algorithms, almost they led to the same
results and there is not a great difference between them. From
the three examples already considered, we can observe clearly
that the PSOEO algorithm is more effective than PSO and
PSOSA. Thus the following comparison will be carried out only
between PSOEO and mGA-CG.

Fig. 5. Shape function error in each generation.

Fig. 4. Reconstructed results for the first example.

Fig. 6. The cost functional versus generation.

Fig. 7. Reconstructed results for the second example.
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In the fourth example, the shape function is selected to be:

r(w) = (0.05+ 0.02 sinw cos2 3w)m.

The reconstructed shape function that corresponds to the best
swarm particle found by the two algorithms is plotted in Fig. 11.

The fitness function, shape error, and computing time relative
to each algorithm are given in Table 2.

From Fig. 11, we observe that the mGA-CG algorithm recon-
structs the original contour of the object contrary to the PSOEO
algorithm which converges to a contour presenting some defor-
mations. Thus, we notice that the hybrid technique mGA-CG
showed more effectiveness than PSOEO, but one can say that
these two algorithms are comparable.

Let’s analyze more the results found and especially the two
presented techniques advantages. For all considered examples,
the performances are very close. However, it does not preclude
recalling that the mGA-CG method uses the gradient which is a
local technique which cannot always guarantee the convergence
of the latter toward the real solution. On the other hand, our
two methods PSOSA and PSOEO combine global techniques
only and thus a better chance to reach the desired solution. In
order to complete the study of the two methods, it is very inter-
esting to see the effect of certain parameters namely the measure-
ment data size given by m =M× I, the swarm size N, Kmax, and

Fig. 8. Shape function error in each generation.

Fig. 9. The shape error as a function of SNR (dB).

Fig. 10. The shape error for 50 simulations.

Table 1. Cost function, shape error, and computing time after convergence of
algorithms for the third example

PSO PSOSA PSOEO mGA-CG [31]

J 0.12 0.092 0.047 0.042

SE (%) 7.42 3.26 0.84 0.78

Time (s) 1354 984 426 394

Fig. 11. Reconstructed results for the third example.

Table 2. Cost function, shape error, and computing time for the fourth example

PSOEO mGA-CG [31]

J 0.058 0.044

SE (%) 0.91 0.76

Time (s) 393 378
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INV. The impact of these parameters is carried out on the fourth
example studied previously.

As an evaluation performance, we selected the shape error SE
to detect the effect of these parameters. Figures 12 and 13 show
the shape error evolution as a function of the number of measur-
ing points m and the swarm size N, respectively. It is clear that
more the m or N increase more a better reconstruction is
obtained. We note also that from certain values of m and N,
there will be no remarkable improvements.

In order to properly evaluate the robustness and the favor that
these two hybrid algorithms can provide, a comparison with SA
and EO is made. The two performances computational cost SE
and the calculation time will be carried out during the reconstruc-
tion of the fourth case.

Table 3 shows the results of simulations obtained for the four
algorithms, PSOSA, PSOEO, SA and EO. It is clear that PSOEO
converges better compared with others and more robust than
PSOEO for both performances. If we compare the hybrid meth-
ods with those with single agent (SA and EO), it is shown that
SA and EO are faster while hybridization has improved the qual-
ity of reconstruction. So there is a tradeoff between computing
time and computational cost.

Another simulation of Kmax and INV effects is performed.
Table 4 illustrates the simulation results for shape error by apply-
ing the two PSOSA and PSOEO techniques while varying Kmax

and INV respectively. From these results, we can notice that for

low values of Kmax and INV or from a certain threshold the SE
becomes large. A better choice of Kmax for PSOSA and INV for
PSOEO should be around 40 and 50, respectively.

Conclusion

Two hybrid optimization methods called PSOSA and PSOEO for
reconstructing the shape of perfectly conducting cylinders by TM
waves have been employed. The forward problem is solved by
using the MoM and the contour of the cylinder is approximated
by Fourier series expansion. The computational results indicate
that the algorithms appear to produce very good reconstructions
of the object shape from the scattered fields even in the presence
of the measurement noises. Compared with standard PSO and
PSOSA, it has been shown that the PSOEO approach has better
performances in terms of accuracy, convergence rate, stability,
and robustness. The PSOEO algorithm is also compared with
our own technique named mGA-CG and a superiority of this
last method concerning the precision and the convergence
speed is recorded. However, these illustrated algorithms are
random and to support one compared with another requires a
sufficient number of tests and evaluations. Finally, these two tech-
niques can be regarded as a powerful optimization tool for the
electromagnetic problems especially in microwave imaging.
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