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Abstract
Timely estimation of silage maize protein provides an effective decision to adapt optimized strategies for
nitrogen fertilizer management and also harvesting time for farmers. So, this research aimed to investigate
whether using vegetative indices (VIs) derived from UAV remotely sensed multispectral (with 520–900 nm
wavelengths) imagery and also Soil Plant Analysis Development (SPAD) greenness index can be used to
detect the leaf protein concentration (LPC) of silage maize, as a function of various nitrogen rates (0, 50,
100, and 150% of recommended dosage). Results of principal component analysis (PCA) suggested that
LPC was highly correlated with leaf greenness index in all developmental stages. In addition, LPC was
highly correlated with most of the VIs investigated. A PCA clustering showed the meaningful pattern
of N rates. Higher LPC values, VIs, and greenness index were more concentrated in the higher nitrogen
(N100% and N150%) sectors. Nitrogen Reflectance Index (NRI) was identified as the most important VIs
to monitor and predict LPC in the silage maize field, showing a strong polynomial relationship with LPC in
both eight-leaf collar (V8) (R2= 0.81, p≤ 0.01) and tasseling (VT) (R2= 0.98, p≤ 0.001) stages. In addi-
tion, among VIs, the Normalized Difference Vegetation Index (NDVI) demonstrated a significant linear
regression relationship with LPC (R2= 0.80, p≤ 0.01) in the VT. Findings suggested the high potential of
VIs extracted by UAV-taken multispectral imagery and also SPAD proximal sensing to help farmers rap-
idly diagnose LPC in silage maize, in line with the objectives of precision farming.
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Introduction
The maize harvested for silage is one of the most valuable forages for ruminant livestock in the
world. Protein content is an important nutritional index for feed crops and is relevant in terms of
its overall concentration (Rahimi Jahangirlou et al., 2022). Maize silage contains about 5–10%
protein concentration on a dry weight basis (Klopfenstein et al., 2013).

Earlier estimation of nitrogen (N) and protein concentration of silage maize provides an effec-
tive decision to adapt optimized strategies for N fertilizer management and also harvesting time
(Zhao et al., 2019). The advance of the maturity of maize reduces the crude protein content, neu-
tral detergent fiber (NDF), and acid detergent fiber (ADF) and increases in vitro true digestibility
(Darby and Lauer, 2002; Mandić et al., 2018).

Currently, two main types of nondestructive detection methods are used for predicting the
protein content of crop organs: (i) crop growth modeling and (ii) remote sensing inversion. In
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the crop growth modeling method, weather, soil, cultivar, and field management parameters as
inputs are being used for predicting protein content in the models such as Agricultural Production
Systems SIMulator (APSIM) and Crop Environment Resource Synthesis (CERES) (Chen et al.,
2020). Using physiological models is often a time-consuming process and requires a relatively
large number of inputs. Remote sensing, as an indirect method, relies on using inversion of vege-
tation N concentration by canopy spectral reflectance data and calculating various vegetation indi-
ces (VIs) based on regression models (Chen et al., 2020; Bagheri et al., 2012). Briefly, the
electromagnetic radiation that runs into the leaf surface can be reflected, scattered, absorbed,
and transmitted at wavelengths that depend on the biochemical and physical characteristics of
the leaf (i.e., sugars, proteins, lignin, and cellulose) (Galieni et al., 2020). Using remotely sensed
VIs may offer faster pathways to track crops nutritional traits compared with processed-based
models (Chen et al., 2020; Wang and Wei, 2013).

Another promising approach for the rapid and periodic assessment of crop N status and pre-
dicting protein in plants is using proximal optical sensors. Proximal optical sensors are positioned
either in contact with or close to the crop. Chlorophyll meters are the most important group of
optical sensors studied for crop N management (Padilla et al., 2018a). It is reported by recent
researches that measuring with all types of chlorophyll meters including SPAD-502 meter, the
at LEAF� sensor, Chlorophyll Content Index (CCI) measured with the MC-100 Chlorophyll
Concentration Meter, and the Multiplex’s chlorophyll indices of Simple Fluorescence Ratio
(SFR), either under red (SFR_R) or green (SFR_G), can be as accurate estimators of leaf N status
and chlorophyll content in plants (Padilla et al., 2018b).

Some research has been performed to forecast protein content of various crops using remote
sensing data based on the theory that canopy reflectance could predict parameters related to crop
growth vigor during the growth season, which, in turn, can be used to estimate the protein content
(Chen et al., 2020). Li-Hong et al. (2007) found a strong relationship between the leaf N accu-
mulation and Green Ratio Vegetation Index (GRVI) of each wheat cultivar using power relation-
ships (R2= 0.7779 for ‘Huaimai 18’ and R2= 0.7871 for ‘Xuzhou 26’). These reports indicated the
high accuracy of VIs based on green spectral radiance to predict protein content in winter wheat
(Li-Hong et al., 2007). Zhao et al. (2019) found a strong correlation coefficient between Sentinel-
2A VIs and N parameters at wheat anthesis stage, which provides the potential for the estimation
of the wheat protein content through spectral VIs.

As a means of rapid, nondestructive, and large-area simultaneous monitoring, satellite and
aerial remote sensing technology have been proved to be useful for the inversion of various phys-
iological and biochemical parameters of crops (Haboudane et al., 2004; Zhao et al., 2019). In addi-
tion, high-resolution aerial remote sensing systems could be an accurate alternative to traditional
plant testing for the diagnosis of crop N and nutritional status (Bagheri, 2016; Bagheri et al., 2013).
However, more research has to perform to assess the accuracy of remote and proximal sensing
systems to estimate the nutritional aspects of crop plants in diverse environments. So, the objective
of the present research was to (i) assess VIs derived from UAV-based multispectral imagery and
Soil Plant Analysis Development (SPAD) greenness index to predict silage maize protein before
fully ripens and (ii) develop guidelines to help farmers make effective decisions to adapt optimized
strategies for N fertilizer management and timely harvest of maize in semi-arid conditions of Iran.

Materials and Methods
Study area and field experiments

Field experiments were performed on a research farm with an area of 850 m2 in Varamin city
(35.80°N, 51.40°E) (Figure S1). This region has a semiarid climate with relatively cold winters
and hot summers. Annual precipitation in Varamin is less than 200 mm, concentrated in late
autumn and winter.
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Irrigated summer maize in this region is typically cultivated after winter cereals, However, in
some areas (due to the benefit of autumn rainfall and the reduction of the impact of the extreme
temperature on maize growth), autumn cultivation is also carried out. In this experiment, autumn
silage maize (sown on 6 September 2020) was tested. Before cultivation, soil sampling was con-
ducted from the depth of 0–30 cm of soil. The samples were tested for total N using the Kjeldahl
method, for available phosphorus (P) and potassium (K) by the Olsen and flame photometer pro-
cedures, respectively, and also pH and electrical conductivity (EC). The soil is characterized as
clay-loam, and details of soil properties in 0−30 cm soil depth were as follows: total N, 1.1%;
available P, 10.4 mg.L-1; available K, 410 mg.L-1; EC, 3.65 dSm-1; pH, 7.69.

In early October, experimental plots (7.00 m length × 5.20 m width) were designated at the
farm. Each plot included 8 rows. The experimental design was randomized complete block design
(RCBD) with four replicates (Figure S2). The variable factor was N fertilizer in four rates including
0, 50, 100, and 150% of the recommended dosage according to the soil test. Urea was used as the N
source and top dressed in equal proportions when plants were typically on eight leaf collar (V8)
and tasseling (VT) growth stages, applied along with irrigation water. An early maturity maize
cultivar 450 (Gazda MTC) was used and planted in recommended depth (5 cm) and density
(67 000 plant ha-1). An irrigation regime by maize phenological events was specified to create
typical nonstressed growing conditions. Furrow irrigation was used for irrigation. The closed-
end furrows were constructed with a ditcher. Parshall flume (open channel flow metering device)
was used in each irrigation event to determine the irrigation amount and to ensure irrigation uni-
formity in the experimental units.

Ground sampling

One week after N fertilization at V8 and VT growth stages, ground sampling was performed to
measure plant height (H), total fresh weight (TFW), and total dry weight (TDW) of aboveground
organs. Ten marked plants were randomly harvested from each sampling region to represent the
homogenous plot. After measuring their height, plants were separated into leaves and stems (con-
taining ears only for the R1 stage). All the samples were then oven dried at 70 °C for about 48 h
until constant weight. The dried maize organs were weighed for measuring TFW and TDW, then
ground, and stored in plastic bags for chemical analysis. Leaf protein concentration (LPC) was
determined from 0.20 g of dried samples with the micro-Keldjahl method (Guebel et al., 1991).

In addition, simultaneously with each sampling time, the SPAD chlorophyll index was mea-
sured using a 502-chlorophyll measuring device (Minolta Corp., Osaka, Japan) after calibration of
the device. Three readings were taken from the base, middle, and top of each leaf, and the averaged
data were used for processing. SPAD chlorophyll data were recorded when plants were typically
on two (V2), four (V4), eight (V8) leaf collars and also tasseling (VT) and silking (R1) stages of
maize growth.

Acquiring and processing aerial imagery

Aerial multispectral UAV imaging was performed in two stages (V8 and VT growth stages),
simultaneous with each fertilization and ground sampling. To reduce the effects of solar zenith
angle (SZA) and sun azimuth angle (SAA) variations on reflectance, the images were captured
between 11:00 am and 12:00 local time. All flights were carried out in stable ambient light con-
ditions with a fixed flight speed and route planning during the entire season from a height of 100
m above the ground. ADC-Micro multispectral camera (Tetracam, Inc, Gainesville, FL, USA) with
520–900 nm wavelengths in green (520–600 nm), red (630–690 nm), and near-infrared (760–900
nm) channels were used to collect aerial multispectral imagery with the rotary-wings UAV devel-
oped by Bagheri (2016). After capturing and extracting images, aerial images were processed using
ENVI 5.4 software. The radiometric correction was performed using a white Teflon calibration
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plate. Preprocessing of images included changing the image format from DCM to TIFF, creating
false-color images, and radiometric correction of images done using PixelWrench2 software.
Vegetation indices including Normalized Difference Vegetation Index (NDVI), Nitrogen
Reflectance Index (NRI), Modified Triangular Vegetation Index2 (MTVI2), Chlorophyll Index
(CI), Green Model (GM), Modified Chlorophyll Absorption Ratio Index (MCARI), and
Anthocyanin Reflectance Index (ARI) were associated with plant chlorophyll and N content
and were calculated using equations shown in Table 1.

Data analysis

To investigate the effect of N fertilizer rates on crop growth attributes (H, TDW, and TFW), LPC
and VIs, their values in each sampling and imaging stage, were analyzed using RCBD procedures
in SAS, v.9.4 software. Tukey’s statistic was used to test differences (p≤ 0.05) among means.
Principal component analysis (PCA) was carried out using Minitab, v.19 to understand the rela-
tionships among variables and N fertilizer rates. Classification and regression tree (CART) analy-
sis and relative importance chart were used to uncover relationships and interactions between
crop growth traits of maize crop and VIs using Minitab, v.19. Various regression models were
fitted to VIs and LPC to understand if there was a significant relationship between them and create
meaningful equations for LPC prediction.

Results and Discussion
Effects of N fertilizer on growth attributes, SPAD greenness index, and LPC

The results of the mean comparison of ground sampling variables in the V8 and the VT growth
stages are shown in Figure 1. Results indicated that there was a significant effect of N on LPC in
both V8 and VT growth stages (Figure 1a). According to the figure, the amount of LPC increased
with increasing the amount of the N fertilizer dosage. The highest LPC value in the V8 (7.37%DM)
and the VT (7.34%DM) belonged to the highest N rate (N150%) (Figure 1a). Higher LPC with
higher N rates was relevant to the results reported by Cao et al. (2018) who suggested that nor-
mally there is a positive correlation between the N application and the protein content. This is
because N element utilization stimulates the activity of panel enzymes involved in protein bio-
synthesis (Gous et al., 2015). In addition, Rahimi Jahangirlou et al. (2022) reported that according

Table 1. Vegetation indices equations reflecting the chlorophyll and nitrogen status of maize plants

Index Equation Reference

ARI 1
G � 1

R

� �
Gitelson et al. (2009)

CI NIR
G � 1 Smith et al. (2008)

GM (NIR-G)-1 Devadas et al. (2009)

MTVI2 1:5 × 1:2 NIR�G� ��2:5 R�G� �� ��������������������������������������������������
�0:5� 2NIR�1� �2� 6NIR�5 ��

R
p� �p Bagheri et al. (2013)

MCARI1 1:2 × 1:2 R800 � R550� � � 2:5 R670 � R550� �� � Nguy-Robertson (2013)

MCARI2 1:5 × 2:5 R800�R670� ��1:3 R800�R550� �� ��������������������������������������������������������
2R800�1� �2��6R800�5

����������������
R670��0:5

pp Nguy-Robertson (2013)

NDVI NIR�R
NIR�R Reum and Zhang (2007)

NRI G�R
G�R Corti et al. (2019)

ARI, Anthocyanin Reflectance Index; CI, Chlorophyll Index; GM, Green Model; MTVI2, Modified Triangular Vegetation Index 2; MCARI1,
Modified Chlorophyll Absorption in Reflectance Index 1; MCARI2, Modified Chlorophyll Absorption in Reflectance Index 2; NDVI,
Normalized Difference Vegetation Index; NRI, Nitrogen Reflectance Index.
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to the decision tree regression, among different genetics and management practices, N fertilizer
rate was the most important factor in determining the protein concentration of maize grain.

The results showed that there was a significant effect of N on morphophysiological variables
including TFW and TDW (Figure 1b), and also plant height (Figure 1c). The highest N rate
(N150%) increased TFW (640.00 g) and TDW (336.73 g) to the maximum extent (p< 0.001)
(Figure 1b). Compared to the plots without N fertilizer (N0), average height was higher in N con-
tained plots, i.e., N150% (198 cm), N100% (187.25 cm), and N50% (183.25 cm), without signifi-
cant difference (p< 0.001) (Figure 1c).

The higher biomass of aerial organs and also plant height with the higher N rates were expected
because the N application improves the N uptake and accumulation by leaves, and it is strongly
correlated with higher chlorophyll content, higher chloroplast activities, and higher photosyn-
thetic rate and biomass accumulation (Rahimi Jahangirlou et al., 2021b). Higher N regimes
expectedly increase dry matter accumulation in maize by enhancing leaf area and chlorophyll con-
tent, absorption of solar radiation, and biomass partitioning to individual organs (Rahimi
Jahangirlou et al., 2021b).
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Figure 1. Means of leaf protein content (LPC) in the eight leaf collar (V8) and tasseling (VT) growth stages (a), total fresh
weight (TFW) and total dry weight (TDW) (b) and plant height (c) in VT growth stage, and leaf greenness index in various
developmental stages of silage maize (d) in response to different nitrogen fertilizer dosages. Means labeled with the same
letter do not differ significantly at p≤ 0.05 based on Tukey’s test. Vertical bars represent the standard error of the mean.
SPAD, Soil Plant Analysis Development.

Experimental Agriculture 5

https://doi.org/10.1017/S0014479722000308 Published online by Cambridge University Press

https://doi.org/10.1017/S0014479722000308


According to the results, there was a significant effect of N on the leaf greenness index of maize
plants in all developmental stages of silage maize including V2, V4, V8, VT, and R1 (Figure 1d).
Leaf greenness index was higher in V2 (47.80 and 47.05 SPAD unit) and V4 (52.30 and 47.80
SPAD unit) growth stages in plots containing N100% and N150%, respectively, without significant
difference (p< 0.001). Moreover, the SPAD leaf greenness index in V8 was higher in N contained
plots (N150%= 49.05, N100%=46.83, and N50%=45.77 SPAD units), without significant differ-
ence (p< 0.001). The highest N rate (N150%) had the highest SPAD leaf greenness index in the
VT (54.22 SPAD unit) and R1 (52.80 SPAD unit) stages, compared to the other N rates
(p< 0.001). In general, the SPAD leaf greenness index was higher with N150% than with the other
N rates (Figure 1d). Generally, there is a close relationship between SPAD readings and leaf N and
protein content per leaf area because N application increases chloroplast in the leaves (Xiong et al.,
2015). Indeed, the diurnal variation in SPAD readings is a function of species and N supplemen-
tation (Xiong et al., 2015). Results also suggested that the highest values of all studied variables
were obtained at the highest N rate (N150%). Maize during vegetative growth can accumulate
luxury N over what is required for biomass accumulation (Nasielski et al., 2019). This is a survival
strategy in the plant because during post-silking, N uptake is restricted and this luxury N may
mitigate N stress by acting as a reservoir that buffers biomass yield and maintains plant function
(Nasielski et al., 2019). The application of a higher N dosage in this research was adopted to assess
the accuracy of VIs to detect high N concentrations in a maize canopy. Otherwise, utilization of
higher N rates, excess to the soil requirements and plant consumption, is forbidden due to nutri-
tional and environmental pollution.

Correlations between N fertilizer rates, LPC, and VIs

The PCA results showed that the first two principal components (PCs) accounted for 73.2% of the
total variance (Figure 2).

The loading plot (Figure 2a) illustrates the eigenvectors for 26 variables related to maize plants
attributes (H, TFW, TDW, LPC), greenness index, and VIs (NDVI, NRI, MTVI2, ARI, MCARI1,
MCARI2, CI, GM) in two separate times of sampling and imaging (V8 and VT growth stages). In
the loading plot, LPCa and LPCb were designated as target variables and accordingly one cluster of
highly correlated variables with them was recognized. In this cluster, LPCa and LPCb were highly
correlated with all characteristics obtained from ground sampling including TFW and TDW, H,
all related to the VT stage. For example, the correlation between LPCa and TDWwas 0.84 and the
correlation between LPCb and SPAD5 was 0.82. The high correlation between variables belonging
to ground sampling is in line with earlier studies that provided the theories based on physiological
relationships on the significant effect of N fertilizer on all growth and quality variables, namely
protein content (Rahimi Jahangirlou et al., 2021a,b).

In addition, the SPAD leaf greenness index in all stages including V2 (SPAD1), V4 (SPAD2),
V8 (SPAD3), and VT (SPAD4) and R1 (SPAD5) exhibited a high correlation with LPCa and
LPCb. The high correlation between reflectance indices whether aerial or proximal is expected
and reported in a previous study by Lin et al. (2010), who mentioned RSI (the SPAD ratio of
the first and third fully expanded leaf) and RDSI (the SPAD relative positional difference index
between the first and third fully expanded leaf) as SPAD meter-based indices were relevant for
estimating foliar N and protein status in rice plant.

Considering Figure 2a, all VIs except MCARI and ARI were placed in the same cluster and
indicated a high correlation with LPCa and LPCb. For instance, the correlation between LPCa
and NRIa was 0.71 and the correlation between LPCa and NDVIa was 0.78. In addition, the cor-
relation between NRIb with LPCa and LPCb was 0.74 and 0.88, respectively. Similarly, it was
reported by Zhao et al. (2019) that in winter wheat, all VIs derived from the canopy spectral reflec-
tance at the green and red bands in their experiment were significantly correlated to the final grain
protein content. They suggested that the spectral reflectance of LandSat TM channel 5 derived
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from canopy spectra or image data at the grain filling period was all significantly correlated to
grain protein content (R2= 0.31 and 0.37, respectively). Pettersson and Eckersten (2007) reported
that it was possible, for specific barley cultivars, to make predictions of malting barley grain pro-
tein at harvest, from VIs. The index they used was Transformed Chlorophyll in Absorption Index
(TCARI) and showed a high correlation with barley grain protein according to the adjusted R2 of
0.78. In addition, it was suggested by the earlier research that it is possible to explain variations of
both grain yield and grain protein content in malting barley using canopy reflectance data from
early stem elongation (Pettersson and Eckersten, 2007). Pettersson et al. (2006) used TCARI and
suggested that this index was the most important control variable and VIs for predicting grain
protein. Results of other studies also showed that the VIs like NRI could be used to estimate
the within-field variation of yield potential and plant parameters in silage maize (Diker and
Bausch, 2003); however, they did not assess the possible relationships among VIs and any quality
computes of silage maize like protein. But López-Calderón et al. (2020) used 13 VIs to estimate the
N content of silage maize, which can also be referred to as the protein content. Their overall
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Figure 2. Plots of principal component 1 versus principal component 2 based on measured silage maize variables and
vegetation indices: the loading plot (a) shows the eigenvector of each variable, (b) shows the means, grouped by nitrogen
fertilizer rates. Abbreviations; H, plant height; TFW, total aboveground fresh weight; TDW, total aboveground dry weight;
LPC, leaf protein concentration; NDVI, Normalized Difference Vegetation Index; NRI, Nitrogen Reflectance Index; MTVI2,
Modified Triangular Vegetation Index 2; ARI, Anthocyanin Reflectance Index; MCARI1, Modified Chlorophyll Absorption
in Reflectance Index 1; MCARI2, Modified Chlorophyll Absorption in Reflectance Index 2; CI, Chlorophyll Index; GM,
Green Model; a, V8 stage; b, VT stage; SPAD, Soil Plant Analysis Development; 1, 2, 3, 4, and 5 represent two, four, and
eight leaf collar, and tasseling and silking stages of maize growth, respectively.
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analysis showed five of the 13 indices as the most important, and among them, TCARI was found
to be most important for the estimation of N content in forage maize (R2= 0.76).

The score plot means are shown in Figure 2b. There are four N rates, each one in 4 replicates,
providing a combination of 16 samples. The data points presented in the score plot coincide with
the direction of changes in variables in the loading plot. A recognized cluster containing the var-
iables correlated with LPCa and LPCb more concentrated in the high N (N100% and N150%)
sectors shows the meaningful effect of higher N rates on protein concentration, SPAD greenness
index, and most VIs. The score plot results are consistent with the results of the analysis of vari-
ance and show the effect of N fertilizer on all measured variables. While few indices (MCARI and
ARI) were concentrated in N50%, clusters contained LPCa and LPCb and most of the VIs and
growth characteristics were pulled toward N100% and N150%. This is in line with the theory that
VIs captured by UAVs are sensitive enough to the greenness degree for responding to the different
amounts of N fertilizer (Caturegli et al., 2016). It is reported that UAV imagery in turfgrasses field
can adequately assess the N status of different crops and their spatial variability within a species,
and proximity-sensed NDVI was highly correlated with data acquired from UAV with r values
ranging from 0.83 (Zm) to 0.97 (Cdxt) (Caturegli et al., 2016). Similar results were obtained by
other researchers who used UAV-derived multispectral imagery to predict leaf N and protein con-
tent in corn (Jaberi-Aghdam et al., 2020) sugarcane (Shendryk et al., 2020), and maize (Xu et al.,
2021) using different VIs and wavelet features. Shendryk et al., (2020) used both UAV LiDAR and
multispectral imaging for fine-scale prediction of biomass and leaf N content in sugarcane and
found that predictive performance peaked early in the season, at 100–142 days after the previous
harvest (DAH), and declined closer to the harvest date. At peak performance (i.e., 142 DAH), the
multispectral model performed slightly better (R2= 0.57) than the LiDAR model (R2= 0.25) with
both outperforming the NDVI benchmark (R2= 0.34). These results could demonstrate the
potential of UAV-based multispectral imagery in predicting the N and protein status of crop
plants and informing farmers about deficiency or additional fertilization on the farm
(Shendryk et al., 2020). Under optimum and super-optimum conditions of irrigation and N fer-
tilization, healthy plants look green because they absorb red bands and reflect the green band of
the light spectrum (Hatfield et al., 2008).

To determine the contribution of variables on the leaf protein, a regression tree was fitted for
LPCa (Figure 3a) and LPCb (Figure 4a) against all traits and indices. For LPCa, this tree explained
a large part of the variation (R2= 79.9%, p≤ 0.001). The optimum regression tree had one split
and two terminal nodes (Figure 3a).

The first split in the tree suggested that the N rate was the most important factor in determining
LPCa. This split produced two groups of data: one was N0, N50%, and N100% with an average
protein concentration of 3.33% DM, and the other was N150% with an average protein concen-
tration of 7.37% DM (Figure 3a). The chart of the relative importance of LPCa (Figure 3b)
includes 14 variables with positive importance, providing information about how many variables
to control or monitor for predicting LPCa. Results show that the most important predictor var-
iables were NRIb, SPAD5, TFW, TDW, CIa, SPAD4, N, and MTVI2a. The variables including
NDVIa, GMa, SPAD2, H, and NRIa were about 79, 78, 75, 75, and 75% as important as
NRIb. Polynomial regression (Figure 3c), as the best model fitted, describes that there is a positive
and significant relationship between LPCa and NRIb (R2= 0.81; p≤ 0.01).

For LPCb (Figure 4a), the regression tree explained a large part of the variation (R2= 73.2%,
p≤ 0.01), as well. The optimum regression tree had one split and two terminal nodes, as well. The
first split in the tree suggested that the NRIb was the most important factor in determining LPCb.
This split produced two groups of data: one was NRIb less than 0.998 with an average protein
concentration of 3.02% DM, and the other was NRIb more than 0.998 with an average protein
concentration of 6.11% DM (Figure 4a).

The chart of the relative importance of LPCb (Figure 4b) includes 15 variables with positive
importance for predicting LPCb. The most important predictor variables were NRIb and NDVIa
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(Figure 4b). The variables including N, SPAD1, and MTVI2b were about 99.6, 99.5, and 95.9% as
important as NRIb and NDVIa.

Polynomial regression and linear regression were the best models fitted for NRIb (R2= 0.98;
p≤ 0.001, Figure 4c) and NDVIa (R2= 0.80; p≤ 0. 01, Figure 4d), respectively, both describe that
there is a strong and positive relationship between LPCb, NRIb, and NDVIa. According to the
results obtained by the regression tree, the N fertilizer stage was the most important predictor
of LPC values in the first stage (V8), while NRI values were the most important predictor of
LPC in the tasseling growth stage (VT).

Two potential reasons can be considered for the predominance of a categorical variable such as
the N rate in the early stages over the VIs: (1) In early growth, when the canopy is not yet
completely closed, compared to the flowering period when there is a peak of greenness and plant
biomass, different N levels is a more important factor for classifying the field into two groups of
high and low LPC. Consequently, the field showed very heterogeneous patches of crop develop-
ment in various N levels, (2) due to the effect of bare soil and its noise on images in the early stages,
N displayed a greater relationship with protein than the VIs during V8 growth stage. However,
according to what the relative importance chart suggested, NRI in both growth stages (V8 and VT)
was the most important VIs to control or monitor LPC in the field. In addition, NDVI in the VT
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Figure 3. Regression tree predicting leaf protein concentration in V8 stage (LPCa) from variables obtained from ground
sampling and UAV aerial multispectral imaging (R2= 79.9%, p≤ 0.001) (a); chart of the relative importance of variables
predicting LPCa of silage maize (b) and the best-fitted model (polynomial regression) between LPCa and Nitrogen
Reflectance Index in VT stage (NRIb) (c). Other abbreviations: SPAD, Soil Plant Analysis Development; SPAD5, SPAD in
R1; TFW, total fresh weight; TDW, total dry weight; CIa, Chlorophyll Index in V8; SPAD4, SPAD in VT; N, nitrogen fertilizer;
MTVI2b, Modified Triangular Vegetation Index 2 in VT; NDVIa, Normalized Difference Vegetation Index in V8; GMa; Green
Model in V8; SPAD2, SPAD in V4; H, plant height; NRIa, Nitrogen Reflectance Index in V8; MTVI2a, Modified Triangular
Vegetation Index 1 in V8; StDEV, standard deviation. The ‘node’ is the main classification which represents the entire sample
and may get split further into other nodes. ‘Terminal node’ is the mean of the observations in that node. ‘Total count’ is the
number of observations in each terminal node.
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stage was of equal importance to NRI in LPC detection. It is suggested by previous research that
NDVI and NRI were viable N status indicators for a first N application when the canopy is not yet
closed (Argento et al., 2021), but in this experiment, they were also recognized as the best VIs at
the end of the silage maize growing season. The superiority of the importance of these two VIs
over other ones can be because some VIs have the great potential for suppressing soil noise, and
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Figure 4. Regression tree predicting leaf protein concentration in VT stage (LPCb) from variables obtained from ground
sampling and UAV aerial multispectral imaging (R2= 73.2%, p≤ 0.001) (a); chart of the relative importance of variables
predicting LPCb of silage maize (b) and the best-fitted model (polynomial regression) between LPCb and Nitrogen
Reflectance Index in VT stage (NRIb) (c) and Normalized Difference Vegetation Index in V8 (NDVIa) (d). Other abbreviations:
N, nitrogen fertilizer; SPAD, Soil Plant Analysis Development; SPAD1, SPAD in V2; MTVI2b, Modified Triangular Vegetation
Index 1 in VT; SPAD2, SPAD in V4; TFW, total fresh weight; CIa, Chlorophyll Index in V8; TDW, total dry weight; GMa; Green
Model in V8; H, plant height; SPAD4, SPAD in VT; GMb; Green Model in VT; NDVIb, Normalized Difference Vegetation Index in
VT; NRIa, Nitrogen Reflectance Index in V8; StDEV; standard deviation. The ‘node’ is the main classification which represents
the entire sample and may get split further into other nodes. ‘Terminal node’ is the mean of the observations in that node.
‘Total count’ is the number of observations in each terminal node.
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others are good at antisaturation for vegetation spectra (Xu et al., 2021). Therefore, effectively
selecting sensitive features from indices and models to assess N status should be considered
(Osco et al., 2020).

Conclusions
Results suggested that most of the VIs (NDVI, NRI, CI, and MTVI2) taken by UAV and SPAD
greenness index were strongly correlated to LPC in both the V8 and the VT growth stages. NRI
was the most appropriate index among VIs, and it can provide a reliable model for the prediction
of LPC, under a strong polynomial regression model in both developmental stages. These findings
are appropriate for rapidly assessing crop protein status through VIs and models extracted from
aerial multispectral imaging. In addition, these findings can be used for developing guidelines for
farmers to utilize remote and proximal sensing technologies along with chemical analyzing meth-
ods to reduce the time and cost of assessments and adopting optimized strategies for N fertilizer
management and timely harvest of the silage maize in semiarid conditions of Iran.

Supplementary materials. For supplementary material for this article, please visit https://doi.org/10.1017/
S0014479722000308
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