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The n-dimensional cyclic system of second-order nonlinear differential equations

(pi(t)|x′
i|αi−1x′

i)
′ = qi(t)|xi+1|βi−1xi+1, i = 1, . . . , n, xn+1 = x1,

is analysed in the framework of regular variation. Under the assumption that αi and
βi are positive constants such that α1 · · · αn > β1 · · · βn and pi and qi are regularly
varying functions, it is shown that the situation in which the system possesses
decreasing regularly varying solutions of negative indices can be completely
characterized, and moreover that the asymptotic behaviour of such solutions is
governed by a unique formula describing their order of decay precisely. Examples are
presented to demonstrate that the main results for the system can be applied
effectively to some classes of partial differential equations with radial symmetry to
provide new accurate information about the existence and the asymptotic behaviour
of their radial positive strongly decreasing solutions.
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1. Introduction

In this paper we use the framework of regularly varying functions (in the sense of
Karamata) in combination with fixed-point techniques to establish the existence
and precise asymptotic behaviour of positive solutions, all components of which
decay to zero as t → ∞, for the cyclic system of second-order nonlinear differential
equations

(pi(t)|x′
i|αi−1x′

i)
′ = qi(t)|xi+1|βi−1xi+1, i = 1, 2, . . . , n, xn+1 = x1, (A)

where αi and βi, i = 1, 2, . . . , n, are positive constants such that

α1α2 · · ·αn > β1β2 · · ·βn, (1.1)
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pi, qi : [a,∞) → (0,∞), i = 1, 2, . . . , n, are continuous functions and all the pi

simultaneously satisfy either∫ ∞

a

pi(t)−1/αi dt = ∞, i = 1, 2, . . . , n, (1.2)

or ∫ ∞

a

pi(t)−1/αi dt < ∞, i = 1, 2, . . . , n. (1.3)

Here, by a positive solution of (A) we mean a vector function (x1, x2, . . . , xn) con-
sisting of positive continuous functions xi, i = 1, 2, . . . , n, that are continuously
differentiable together with pi|x′

i|αi−1x′
i on an interval of the form [T, ∞) and sat-

isfy the system of differential equations (A) over that interval.
Systems of the form of (A) with pi(t) = tN−1 and qi(t) = tN−1fi(t), N � 2,

i = 1, . . . , n, arise in the study of positive radial solutions in exterior domains in
R

N for the system of p-Laplacian equations

∆pui ≡ div(|∇ui|p−2∇ui) = fi(|x|)|ui+1|γi−1ui+1, i = 1, . . . , n, un+1 = u1, (B)

where p > 1 and γi > 0 are constants, |x| denotes the Euclidean norm of x ∈ R
N

and fi, i = 1, . . . , n, are positive continuous functions on [a,∞). Nonlinear elliptic
system (B) is the stationary version of a reaction–diffusion system with power-type
reaction terms and cyclic interconnection structure.

Existence and non-existence of entire positive radial solutions of quasi-linear ellip-
tic systems of the form

∆pu = f(|x|)vα, ∆qv = g(|x|)uβ

in R
N , where N � 2, p > 1, q > 1, α and β are positive constants, and f, g : [0,∞) →

[0,∞) are continuous functions (and the special case where p = q = 2) has been
studied by many authors (see, for example, [1, 3, 4, 7, 15–17, 20–24] and references
therein).

In contrast to [22], where the existence of non-negative non-trivial radial entire
solutions was characterized in the case when the coefficients fi in (B) behave like
pure powers at infinity (that is, limt→∞ fi(t)/tσi = const. > 0 for some σi, i =
1, . . . , n), our results apply to a larger class of coefficients fi that are regularly
varying at infinity in the sense that they satisfy limt→∞ fi(λt)/fi(t) = λσi for
every λ > 0 and some σi, i = 1, . . . , n. (For more details concerning the concept
of regularly varying functions and their basic properties, see § 2.) Also, the results
in [22] were proved under the superhomogeneity condition α1 · · ·αn < β1 · · ·βn,
while our study is focused on the subhomogeneous case where the exponents in (A)
satisfy (1.1).

It should be noted that a positive solution (x1, . . . , xn) of (A) may exhibit a
variety of asymptotic behaviours at infinity because for the case in which (1.2)
holds, each component xi is either increasing and satisfies

lim
t→∞

xi(t)
Pi(t)

= ∞ or lim
t→∞

xi(t)
Pi(t)

= const. > 0,

where Pi(t) =
∫ t

a
pi(s)−1/αi ds, or decreasing and satisfies

lim
t→∞

xi(t) = const. > 0 or lim
t→∞

xi(t) = 0,
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while for the case in which (1.3) holds, each component xi is either increasing and
satisfies

lim
t→∞

xi(t) = ∞ or lim
t→∞

xi(t) = const. > 0,

or is decreasing and satisfies

lim
t→∞

xi(t) = const. > 0 or lim
t→∞

xi(t)
πi(t)

= const. > 0 or lim
t→∞

xi(t)
πi(t)

= 0,

where πi(t) =
∫ ∞

t
pi(s)−1/αi ds.

In this paper we are concerned exclusively with positive solutions (x1, . . . , xn)
of (A), all components of which are decreasing and satisfy

lim
t→∞

xi(t) = 0, i = 1, 2, . . . , n, for the case in which (1.2) holds, (1.4)

lim
t→∞

xi(t)
πi(t)

= 0, i = 1, 2, . . . , n, for the case in which (1.3) holds. (1.5)

Such solutions of (A) are often referred to as strongly decreasing solutions (or ground
states) of system (A).

It is natural to ask: does system (A) really possess strongly decreasing posi-
tive solutions? If such such solutions exist, is it possible to determine their precise
asymptotic behaviour as t → ∞? Needless to say, these questions are very difficult
to answer for the case where pi and qi are general continuous functions. However,
if we limit ourselves to the system (A) with regularly varying pi and qi and focus
our attention on its regularly varying solutions, then with the help of the theory
of regular variation we are able to acquire almost complete information about the
existence and asymptotic behaviour of strongly decreasing solutions of (A) that are
regularly varying of negative indices.

A prototype of the results we are going to prove says that if f and g are reg-
ularly varying functions of indices λ and µ, respectively, and p � N , then the
two-dimensional system

∆pu = f(|x|)vα, ∆pv = g(|x|)uβ , (B2)

where αβ < (p − 1)2, possesses positive radial solutions (u, v), the components of
which are regularly varying functions of indices ρ < 0 and σ < 0, respectively, if
and only if

(p − 1)(p + λ) + α(p + µ) < 0 and β(p + λ) + (p − 1)(p + µ) < 0.

In this case, ρ and σ are uniquely determined by

ρ =
p − 1

(p − 1)2 − αβ

[
p + λ +

α

p − 1
(p + µ)

]
, (1.6 a)

σ =
p − 1

(p − 1)2 − αβ

[
β

p − 1
(p + λ) + p + µ

]
(1.6 b)
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and the asymptotic behaviour of any such solution (u, v) as |x| → ∞ is governed
by the decay law

u(|x|) ∼ |x|ρ
[
ϕ(|x|)1/(p−1)

D(ρ)

(
ψ(|x|)1/(p−1)

D(σ)

)α/(p−1)](p−1)2/((p−1)2−αβ)

, (1.7 a)

v(|x|) ∼ |x|σ
[(

ϕ(|x|)1/(p−1)

D(ρ)

)β/(p−1)
ψ(|x|)1/(p−1)

D(σ)

](p−1)2/((p−1)2−αβ)

, (1.7 b)

where ϕ and ψ are the slowly varying parts of f and g, respectively, and D(τ) =
(p − N − (p − 1)τ)1/(p−1)(−τ) for τ < 0.

In the case p < N , system (B2) possesses decreasing positive radial solutions
(u, v), the components of which are regularly varying of indices ρ < (p−N)/(p−1)
and σ < (p − N)/(p − 1), respectively, if and only if

N +λ+
α

p − 1

[
p+µ+

β

p − 1
(p−N)

]
< 0,

β

p − 1

[
p+λ+

α

p − 1
(p−N)

]
+N +µ < 0,

in which case ρ and σ are uniquely determined by (1.6 a) and (1.6 b). The asymptotic
behaviour of any such solution (u, v) as |x| → ∞ is governed by (1.7 a) and (1.7 b).

The main result of this paper will be presented in § 4. Under the assumption
that pi and qi are regularly varying, the existence of strongly decreasing regularly
varying solutions of (A) is proved by solving the system of integral equations

xi(t) =
∫ ∞

t

(
1

pi(s)

∫ ∞

s

qi(r)xi+1(r)βi dr

)1/αi

ds, i = 1, 2, . . . , n, (1.8)

with the help of fixed-point techniques combined with basic properties of regularly
varying functions. Furthermore, the asymptotic behaviour of the obtained solutions
is determined accurately. For this purpose an essential role is played by the fact that
one can obtain thorough knowledge of regularly varying solutions of the following
system of asymptotic relations associated with (A):

xi(t) ∼
∫ ∞

t

(
1

pi(s)

∫ ∞

s

qi(r)xi+1(r)βi dr

)1/αi

ds, t → ∞, i = 1, 2, . . . , n, (1.9)

which is regarded as an ‘approximation’ of (1.8). Here the symbol ∼ is used to mean
the asymptotic equivalence

f(t) ∼ g(t), t → ∞ ⇐⇒ lim
t→∞

g(t)
f(t)

= 1.

The exposition of the analysis of system (1.9) by means of regular variation
is given in § 3, which is preceded by § 2, in which the definition and some basic
properties of regularly varying functions are summarized for the reader’s benefit.
The proof of our main results on strongly decreasing regularly varying solutions of
system (A) with regularly varying coefficients pi and qi, i = 1, . . . , n, can be found
in § 4. First, we construct strongly decreasing solutions of (A) by solving, by means
of fixed-point techniques, the system of integral equations (1.8) in a function class
that is slightly larger than that of regularly varying functions, and then verify that
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all the solutions obtained are actually regularly varying functions having accurate
asymptotic behaviour at infinity. The results of § 3 play a crucial role throughout
the proof. Finally, in § 5 it is shown that our main results on (A) can be effectively
applied to some classes of partial differential equations including metaharmonic
equations (see [5, 6] for related results) and systems involving p-Laplace operators
on exterior domains in R

N .
Since the publication of the monograph [18] of Marić in the year 2000 there has

been an increasing interest in the study of differential equations by means of reg-
ularly varying functions and, as a consequence, the theory of regular variation has
proved to be a powerful tool in the asymptotic analysis of differential equations,
giving rise to detailed and accurate information about the existence, the asymp-
totic behaviour and the structure of positive solutions of various types of ordinary
differential equations, which may well be called generalized Emden–Fowler and
Thomas–Fermi equations (see, for example, [9–14]).

2. Regularly varying functions

For the reader’s convenience we summarize here the definition and some basic
properties of regularly varying functions that will be needed in developing our
main results in §§ 3, 4 and 5.

Definition 2.1. A measurable function f : [0,∞) → (0,∞) is called regularly vary-
ing of index ρ ∈ R if

lim
t→∞

f(λt)
f(t)

= λρ for all λ > 0.

The set of all regularly varying functions of index ρ is denoted by RV(ρ). We
often use the symbol SV to denote RV(0) and call members of SV slowly varying
functions. Any function f ∈ RV(ρ) is expressed as f(t) = tρg(t) with g ∈ SV,
and so the class SV of slowly varying functions is of fundamental importance in
the theory of regular variation. One of the most important properties of regularly
varying functions is the following representation theorem.

Proposition 2.2. f ∈ RV(ρ) if and only if f is represented in the form

f(t) = c(t) exp
{ ∫ t

t0

δ(s)
s

ds

}
, t � t0, (2.1)

for some t0 > 0 and for some measurable functions c and δ such that

lim
t→∞

c(t) = c0 ∈ (0,∞) and lim
t→∞

δ(t) = ρ.

If, in particular, c(t) ≡ c0 in (2.1), then f is referred to as a normalized regularly
varying function of index ρ.

Typical examples of slowly varying functions are all functions tending to some
positive constant as t → ∞,

N∏
n=1

(logn t)αn , αn ∈ R, and exp
{ N∏

n=1

(logn t)βn

}
, βn ∈ (0, 1),
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where logn t denotes the nth iteration of the logarithm. It is known that the function

L(t) = exp{(log t)θ cos(log t)θ}, θ ∈ (0, 1
2 ),

is a slowly varying function that is oscillating in the sense that

lim sup
t→∞

L(t) = ∞ and lim inf
t→∞

L(t) = 0.

The following result illustrates operations that preserve slow variation.

Proposition 2.3. Let L, L1, L2 be slowly varying. Then, Lα for any α ∈ R,
L1 + L2, L1L2 and L1(L2) (if L2(t) → ∞ as t → ∞) are slowly varying.

A slowly varying function may grow to infinity or decay to 0 as t → ∞. But its
order of growth or decay is severely limited, as is shown in the following proposition.

Proposition 2.4. Let f ∈ SV. Then, for any ε > 0,

lim
t→∞

tεf(t) = ∞, lim
t→∞

t−εf(t) = 0.

A simple criterion for determining the regularity of differentiable positive func-
tions is given by the following proposition.

Proposition 2.5. A differentiable positive function f is a normalized regularly
varying function of index ρ if and only if

lim
t→∞

t
f ′(t)
f(t)

= ρ.

The following result, called Karamata’s integration theorem, is of the highest
importance in handling slowly and regularly varying functions analytically and will
be used throughout the paper.

Proposition 2.6. Let L ∈ SV. Then

(i) for α > −1, ∫ t

a

sαL(s) ds ∼ 1
α + 1

tα+1L(t), t → ∞;

(ii) for α < −1, ∫ ∞

t

sαL(s) ds ∼ − 1
α + 1

tα+1L(t), t → ∞;

(iii) for α = −1,

l(t) =
∫ t

a

L(s)
s

ds ∈ SV;

and if
∫ ∞

a
s−1L(s) ds < ∞, then

m(t) =
∫ ∞

t

L(s)
s

ds ∈ SV.
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Definition 2.7. A vector function (x1, . . . , xn) is said to be regularly varying of
index (ρ1, . . . , ρn) if xi ∈ RV(ρi) for i = 1, . . . , n. If all ρi are positive (or nega-
tive), then (x1, . . . , xn) is called regularly varying of positive (or negative) index
(ρ1, . . . , ρn). The set of all regularly varying vector functions of index (ρ1, . . . , ρn)
is denoted by RV(ρ1, . . . , ρn).

The most complete exposition of the theory of regular variation and its applica-
tions can be found in the book of Bingham et al . [2] (see also [19]). For a comprehen-
sive survey of results up to the year 2000 on the asymptotic analysis of second-order
ordinary differential equations by means of regular variation, the reader is referred
to the monograph of Marić [18].

3. Asymptotic relations associated with (A)

It is assumed here that pi ∈ RV(λi) and qi ∈ RV(µi) and that they are expressed
as

pi(t) = tλi li(t), qi(t) = tµimi(t), li, mi ∈ SV, i = 1, 2, . . . , n, (3.1)

and we seek positive decreasing solutions xi ∈ RV(ρi) of system (A) represented in
the form

xi(t) = tρiξi(t), ξi ∈ SV, i = 1, 2, . . . , n. (3.2)

We note that condition (1.2) is satisfied if either

λi < αi, or λi = αi and
∫ ∞

a

t−1li(t)−1/αi dt = ∞, (3.3)

while condition (1.3) is satisfied if either

λi > αi, or λi = αi and
∫ ∞

a

t−1li(t)−1/αi dt < ∞. (3.4)

In analysing strongly decreasing solutions of system (A), it is convenient to dis-
tinguish the case in which the pi satisfy (1.2) from the case in which the pi satisfy
(1.3). For the case of (1.2), which is equivalent to (3.3) holding for i = 1, . . . , n,
the solutions (x1, . . . , xn) will be sought in the class RV(ρ1, . . . , ρn) with ρi < 0,
i = 1, . . . , n. For the case of (1.3), however, our attention will be focused on the
two extreme cases

(a) λi = αi, i = 1, . . . , n, and (b) λi > αi, i = 1, . . . , n,

which imply, respectively, that

πi(t) =
∫ ∞

t

s−1li(s)−1/αi ds ∈ SV

and

πi(t) ∼ αi

λi − αi
t(αi−λi)/αi li(t)−1/αi ∈ RV

(
αi − λi

αi

)
,

and an attempt will be made to detect solutions belonging to RV(ρ1, . . . , ρn) with
ρi < 0, i = 1, . . . , n, or to RV(ρ1, . . . , ρn) with ρi < (αi − λi)/αi, i = 1, . . . , n,
according to whether (a) or (b) holds, respectively.
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Let (x1, . . . , xn) be a strongly decreasing solution of (A) on [T, ∞). It then holds
that

xi(t) =
∫ ∞

t

(
1

pi(s)

∫ ∞

s

qi(r)xi+1(r)βi dr

)1/αi

ds, t � T, i = 1, . . . , n, (3.5)

which clearly applies to both cases (1.2) and (1.3). Our task is to solve this system
of integral equations by means of regularly varying functions. This can be accom-
plished on the basis of the analysis of regularly varying solutions of the system of
integral asymptotic relations

xi(t) ∼
∫ ∞

t

(
1

pi(s)

∫ ∞

s

qi(r)xi+1(r)βi dr

)1/αi

ds, t → ∞, i = 1, . . . , n, (3.6)

in the framework of regular variation. It will turn out that one can acquire thorough
knowledge of all possible regularly varying solutions of negative indices of (3.6).

We begin by considering system (3.6) with pi satisfying condition (1.2). Suppose
that (3.6) has a positive solution (x1, . . . , xn) ∈ RV(ρ1, . . . , ρn) on [T, ∞) with
ρi < 0, i = 1, . . . , n. Using (3.1) and (3.2), we have∫ ∞

t

qi(s)xi+1(s)βi ds =
∫ ∞

t

sµi+βiρi+1mi(s)ξi+1(s)βi ds, t � T, i = 1, . . . , n.

(3.7)
Here µi +βiρi+1 � −1 because of the convergence of the integrals, but the equality
is not allowed for any i. In fact, if the equality holds for some i, then (3.7) implies
that

(
1

pi(t)

∫ ∞

t

qi(s)xi+1(s)βi ds

)1/αi

= t−λi/αi li(t)−1/αi

( ∫ ∞

t

s−1mi(s)ξi+1(s)βi ds

)1/αi

∈ RV
(

−λi

αi

)
. (3.8)

Since (3.8) is integrable over [T, ∞), it is only possible that λi = αi, in which case
integration of (3.8) on [t, ∞) shows, in view of (3.5), that xi ∈ SV = RV(0). This
contradicts the hypothesis that xi ∈ RV(ρi) with negative ρi. Therefore, we must
have µi+βiρi+1 < −1 for i = 1, . . . , n. By applying Karamata’s integration theorem
to the right-hand side of (3.7), we obtain

(
1

pi(t)

∫ ∞

t

qi(s)xi+1(s)βi ds

)1/αi

∼ t(−λi+µi+βiρi+1+1)/αi li(t)−1/αimi(t)1/αiξi+1(t)βi/αi

[−(µi + βiρi+1 + 1)]1/αi
, t → ∞, (3.9)

for i = 1, . . . , n. Note that each relation in (3.9) is integrable on [T, ∞). We claim
that

−λi + µi + βiρi+1 + 1
αi

< −1, i = 1, . . . , n. (3.10)
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In fact, if the equality would hold for some i in (3.10), then µi + βiρi+1 + 1 =
λi − αi < 0, and from (3.9) and (3.5) it would follow that

xi(t) ∼ (αi − λi)−1/αi

∫ ∞

t

s−1li(s)−1/αimi(s)1/αiξi+1(s)βi/αi ds ∈ SV, t → ∞,

an impossibility. Using (3.10) and applying Karamata’s integration theorem, we
find that

xi(t) ∼ t(−λi+µi+βiρi+1+1)/αi+1li(t)−1/αimi(t)1/αiξi+1(t)βi/αi

[−(µi + βiρi+1 + 1)]1/αi [−((−λi + µi + βiρi+1 + 1)/αi + 1)]
, t → ∞.

(3.11)
This means that

ρi =
−λi + µi + βiρi+1 + 1

αi
+ 1, i = 1, . . . , n, (3.12)

or
ρi − βi

αi
ρi+1 =

αi − λi + µi + 1
αi

, i = 1, . . . , n. (3.13)

To solve the algebraic linear system (3.13) in ρi, i = 1, . . . , n, it suffices to note
that the coefficient matrix

A = A

(
β1

α1
, . . . ,

βn

αn

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −β1

α1
0 · · · 0 0

0 1 −β2

α2
· · · 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 · · · 1 −βn−1

αn−1

−βn

αn
0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.14)

is invertible because

|A| =
An − Bn

An
> 0, where An = α1α2 · · ·αn, Bn = β1β2 · · ·βn, (3.15)

and its inverse is given explicitly by

A−1 =
An

An − Bn

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
β1

α1

β1β2

α1α2
· · · · · · β1β2 · · ·βn−1

α1α2 · · ·αn−1

1
β2

α2

β2β3

α2α3
· · · β2β3 · · ·βn−1

α2α3 · · ·αn−1

1
β3

α3
· · · β3 · · ·βn−1

α3 · · ·αn−1
. . . . . .

...

1
βn−1

αn−1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.16)

https://doi.org/10.1017/S0308210515000244 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000244


1016 J. Jaroš and K. Takaŝi

where the lower triangular elements are omitted for economy of notation. Let (Mij)
denote the matrix on the right-hand side of (3.16). We then see that the ith row of
(Mij) is obtained by shifting the vector(

1,
βi

αi
,
βiβi+1

αiαi+1
, . . . ,

βiβi+1 · · ·βi+(n−2)

αiαi+1 · · ·αi+(n−2)

)
, αn+1 = α1, βn+1 = β1,

i − 1 times to the right cyclically, so that the lower triangular elements Mij , i > j,
satisfy the relations

MijMji =
β1β2 · · ·βn

α1α2 · · ·αn
, i > j, i = 1, 2, . . . , n. (3.17)

Then the unique solution ρi, i = 1, . . . , n, of (3.13) is given explicitly by

ρi =
An

An − Bn

n∑
j=1

Mij
αj − λj + µj + 1

αj
, i = 1, . . . , n, (3.18)

from which it follows that all ρi are negative if
n∑

j=1

Mij
αj − λj + µj + 1

αj
< 0, i = 1, . . . , n. (3.19)

We observe that (3.11) can be rewritten in the form

xi(t) ∼ t(αi+1)/αipi(t)−1/αiqi(t)1/αixi+1(t)βi/αi

Di
, t → ∞, (3.20)

where
Di = (αi − λi − αiρi)1/αi(−ρi) (3.21)

for i = 1, . . . , n. It is a matter of elementary computation to derive from (3.20) the
following independent explicit asymptotic formulae for each xi:

xi(t) ∼
[ n∏

j=1

(
t(αj+1)/αj pj(t)−1/αj qj(t)1/αj

Dj

)Mij
]An/(An−Bn)

,

t → ∞, i = 1, . . . , n. (3.22)

Notice that (3.22) is transformed into

xi(t) ∼ tρi

[ n∏
j=1

(
lj(t)−1/αj mj(t)1/αj

Dj

)Mij
]An/(An−Bn)

, t → ∞, i = 1, . . . , n.

(3.23)
Let us now assume that (3.19) holds, define the constants ρi by (3.18) and define

the functions Xi ∈ RV(ρi) on [a,∞) by

Xi(t) =
[ n∏

j=1

(
t(αj+1)/αj pj(t)−1/αj qj(t)1/αj

Dj

)Mij
]An/(An−Bn)

, i = 1, . . . , n.

(3.24)
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It can then be shown that the Xi satisfy the system of asymptotic relations (3.6),
i.e.∫ ∞

t

(
1

pi(s)

∫ ∞

s

qi(r)Xi+1(r)βi dr

)1/αi

ds ∼ Xi(t), t → ∞, i = 1, . . . , n, (3.25)

where Xn+1(t) = X1(t). In fact, using the following expression for Xi(t),

Xi(t) = tρiΞi(t), Ξi(t) =
[ n∏

j=1

(
lj(t)−1/αj mj(t)1/αj

Dj

)Mij
]An/(An−Bn)

,

we have, via Karamata’s integration theorem,

(
1

pi(t)

∫ ∞

t

qi(s)Xi+1(s)βi ds

)1/αi

∼
tρi−1li(t)−1/αimi(t)1/αiΞ

βi/αi

i+1

(αi − λi − αiρi)1/αi

and∫ ∞

t

(
1

pi(s)

∫ ∞

t

qi(r)Xi+1(r)βi dr

)1/αi

ds ∼ tρi li(t)−1/αimi(t)1/αiΞi+1(t)βi/αi

Di

(3.26)

as t → ∞. Since a simple calculation, with the help of the relations

Mi+1,i
βi

αi
=

Bn

An
, Mi+1,j

βi

αi
= Mij for j 	= i

between the ith and (i + 1)th rows of the matrix A, shows that

li(t)−1/αimi(t)1/αi

Di
Ξi+1(t)βi/αi

=
li(t)−1/αimi(t)1/αi

Di

[ n∏
j=1

(
lj(t)−1/αj mj(t)1/αj

Dj

)Mi+1,j(βi/αi)]An/(An−Bn)

=
[ n∏

j=1

(
lj(t)−1/αj mj(t)1/αj

Dj

)Mij(βi/αi)]An/(An−Bn)

= Ξi(t),

we conclude from (3.26) that the Xi, i = 1, . . . , n, satisfy the asymptotic relations
(3.25), as desired.

Summarizing the above discussions, we obtain the following noteworthy result
providing complete information about the existence and asymptotic behaviour of
regularly varying solutions with negative indices of (3.6).

Theorem 3.1. Suppose that pi ∈ RV(λi) and qi ∈ RV(µi), i = 1, . . . , n, and that
the pi satisfy condition (1.2). The system of asymptotic relations (3.6) has regularly
varying solutions (x1, . . . , xn) ∈ RV(ρ1, . . . , ρn) with ρi < 0, i = 1, . . . , n, if and
only if (3.19) holds, in which case the ρi are uniquely determined by (3.18) and the
asymptotic behaviour of any such solution is governed by the unique formula (3.22).
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We next turn to the case in which the pi satisfy condition (1.3), and show that
for the two particular cases (i) λi = αi and (ii) λi > αi, for all i = 1, 2, . . . , n,
complete analysis can be made of the system of asymptotic relations (3.6) from the
viewpoint of regular variation.

Theorem 3.2. Let pi ∈ RV(λi) and qi ∈ RV(µi) for i = 1, . . . , n. Suppose that the
pi satisfy condition (1.3).

(i) Suppose that λi = αi, i = 1, . . . , n. System (3.6) has regularly varying solu-
tions (x1, . . . , xn) ∈ RV(ρ1, . . . , ρn) with ρi < 0, i = 1, . . . , n, if and only
if

n∑
j=1

Mij
µj + 1

αj
< 0, i = 1, . . . , n, (3.27)

in which case the ρi are uniquely determined by

ρi =
An

An − Bn

n∑
j=1

Mij
µj + 1

αj
, i = 1, . . . , n, (3.28)

and the asymptotic behaviour of any such solution is governed by the unique
set of formulae (3.22) with Dj = (αj)1/αj (−ρj)(αj+1)/αj , j = 1, . . . , n.

(ii) Suppose that λi > αi, i = 1, . . . , n. System (3.6) has regularly varying solu-
tions (x1, . . . , xn) ∈ RV(ρ1, . . . , ρn) with ρi < (αi − λi)/αi, i = 1, . . . , n, if
and only if

n∑
j=1

Mij

(
µj + 1

αj
+

βj(αj+1 − λj+1)
αjαj+1

)
< 0, i = 1, . . . , n, (3.29)

where αn+1 = α1, λn+1 = λ1, in which case the ρi are uniquely determined
by (3.18) and the asymptotic behaviour of any such solution is governed by
the unique set of formulae (3.22).

Proof. (i) Let a solution (x1, . . . , xn) of (3.6) be a member of RV(ρ1, . . . , ρn) with
negative indices. It is easy to confirm that starting from (3.7) one can proceed
exactly as in the proof of theorem 3.1 to reach the conclusion that (3.19) holds, the
ρi are given by (3.18) and the xi obey the unique decay law (3.22). Since λi = αi,
(3.19) and (3.18) are simplified to (3.27) and (3.28), respectively. This proves the
‘only if’ part. To prove the ‘if’ part we need only repeat the argument showing that
in the present case the functions (3.24) satisfy the asymptotic relations (3.25).

(ii) Suppose that (3.6) has a solution (x1, . . . , xn) ∈ RV(ρ1, . . . , ρn) with ρi <
(αi − λi)/αi, i = 1, . . . , n. If µi + βiρi+1 = −1 in (3.7), then, integrating (3.8) on
[t, ∞) and using Karamata’s integration theorem, we have

xi(t) ∼ αi

λi − αi
t(αi−λi)/αi li(t)−1/αi

( ∫ ∞

t

s−1mi(s)ξi+1(s)βi ds

)1/αi

∈ RV
(

αi − λi

αi

)
,
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contrary to the hypothesis that ρi < (αi − λi)/αi. Therefore, µi + βiρi+1 < −1,
and we obtain (3.9), which is integrable on [t, ∞). Hence, (−λi + µi + βiρi+1 +
1)/αi � −1. But here the equality is excluded because if the equality holds, then
0 < λi − αi = µi + βiρi+1 + 1 < −1, which is impossible. Thus, (3.10) must hold.
Then, integrating (3.9) from t to ∞, we obtain (3.11), which implies that the ρi

must satisfy (3.13) so that they are determined explicitly by the formulae (3.18).
Putting σi = ρi − (αi − λi)/αi < 0, we transform (3.13) into

σi − βi

αi
σi+1 =

µi + 1
αi

+
βi(αi+1 − λi+1)

αiαi+1
, i = 1, . . . , n. (3.30)

It is clear that the solution σi of (3.30) is given by

σi =
An

An − Bn

n∑
j=1

Mij

(
µi + 1

αi
+

βi(αi+1 − λi+1)
αiαi+1

)
, i = 1, . . . , n,

from which (3.29) follows immediately. Finally, after expressing (3.11) in the form
(3.20), we are able to establish the asymptotic formulae (3.22) for the xi. On the
other hand, it can be verified that if (3.29) holds and the ρi are defined by (3.18),
then the functions Xi given by (3.24) satisfy the asymptotic relations (3.25). This
completes the proof.

Remark 3.3. As is easily seen, theorem 3.1 and theorem 3.2(i) can be unified into
the following theorem.

Theorem 3.4. Suppose that pi ∈ RV(λi) and qi ∈ RV(µi), i = 1, . . . , n. Suppose
in addition that λi � αi, i = 1, . . . , n. System (3.6) has regularly varying solutions
(x1, . . . , xn) ∈ RV(ρ1, . . . , ρn) with ρi < 0, i = 1, . . . , n, if and only if (3.19) holds,
in which case the ρi are uniquely determined by (3.18) and the asymptotic behaviour
of any such solution is governed by the unique formula (3.22).

Note that this result applies to those systems of the form of (A) in which some
or all of the pi such that λi = αi satisfy

∫ ∞
a

pi(t)−1/αi dt < ∞.

4. Strongly decreasing solutions of (A)

We now turn to the problem of existence of strongly decreasing solutions for sys-
tem (A) in the framework of regularly varying functions. Our main results are the
following two theorems. Use is made of the notation and properties of the matrix
(3.14) and its inverse (3.16).

Theorem 4.1. Let pi ∈ RV(λi) and let qi ∈ RV(µi), i = 1, . . . , n. Suppose that
λi � αi, i = 1, . . . , n. Then system (A) possesses strongly decreasing solutions
in RV(ρ1, . . . , ρn) with ρi < 0, i = 1, . . . , n, if and only if (3.19) holds, in which
case the ρi are given by (3.18) and the asymptotic behaviour of any such solution
(x1, . . . , xn) is governed by the unique formula (3.22).

Theorem 4.2. Let pi ∈ RV(λi) and let qi ∈ RV(µi), i = 1, . . . , n. Suppose that
λi > αi, i = 1, . . . , n. Then system (A) possesses strongly decreasing solutions in
RV(ρ1, . . . , ρn) with ρi < (αi − λi)/αi, i = 1, . . . , n, if and only if (3.29) holds,
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in which case the ρi are given by (3.18) and the asymptotic behaviour of any such
solution (x1, . . . , xn) is governed by the unique formula (3.22).

We remark that the ‘only if’ parts of these theorems follow immediately from
the corresponding parts of theorem 3.4 and theorem 3.2(ii). The ‘if’ parts will be
proved via the following results (which are of interest in their own right) for systems
of the form of (A) with nearly regularly varying coefficients pi and qi in the sense
defined below.

Definition 4.3. Let f be regularly varying of index σ and suppose that g satisfies
kf(t) � g(t) � Kf(t) for some positive constants k, K and for all large t. Then g is
said to be a nearly regularly varying function of index σ. Such a relation between
f and g is denoted by g(t) 
 f(t) as t → ∞.

Theorem 4.4. Let pi and qi be nearly regularly varying of indices λi and µi, respec-
tively, that is, there exist p̃i ∈ RV(λi) and q̃i ∈ RV(µi) such that

pi(t) 
 p̃i(t), qi(t) 
 q̃i(t), t → ∞, i = 1, . . . , n. (4.1)

Suppose in addition that λi � αi, i = 1, . . . , n, and that (3.19) holds. Then system
(A) possesses strongly decreasing solutions (x1, . . . , xn) that are nearly regularly
varying of negative index (ρ1, . . . , ρn) in the sense that

xi(t) 

[ n∏

j=1

(
t(αj+1)/αj p̃j(t)−1/αj q̃j(t)1/αj

Dj

)Mij
]An/(An−Bn)

,

t → ∞, i = 1, . . . , n, (4.2)

where ρi and Dj are defined by (3.18) and (3.21), respectively.

Theorem 4.5. Let pi and qi be nearly regularly varying of indices λi and µi, respec-
tively, i = 1, . . . , n. Suppose that λi > αi, i = 1, . . . , n, and that (3.29) holds. Then
system (A) possesses strongly decreasing solutions (x1, . . . , xn) that are nearly reg-
ularly varying of negative index (ρ1, . . . , ρn) with ρi < (αi − λi)/αi, i = 1, . . . , n,
and satisfy (4.2), where ρi and Dj are defined by (3.18) and (3.21), respectively.

Proof of theorem 4.4. Assume that the regularly varying functions p̃i and q̃i in (4.1)
are expressed as

p̃i(t) = tλi li(t) and q̃i(t) = tµimi(t), li, mi ∈ SV. (4.3)

By hypothesis, there exist positive constants hi, Hi, ki and Ki such that

hip̃i(t) � pi(t) � Hip̃i(t), kiq̃i(t) � qi(t) � Kiq̃i(t), i = 1, . . . , n, (4.4)

for all large t. Define the functions Xi by

Xi(t) = tρi

[ n∏
j=1

(
lj(t)−1/αj mj(t)1/αj

Dj

)Mij
]An/(An−Bn)

, i = 1, . . . , n. (4.5)

It is known that∫ ∞

t

(
1

p̃i(s)

∫ ∞

s

q̃i(r)Xi+1(r)βi dr

)1/αi

ds ∼ Xi(t), t → ∞, i = 1, . . . , n, (4.6)
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so there exists T > a such that

1
2Xi(t) �

∫ ∞

t

(
1

p̃i(s)

∫ ∞

s

q̃i(r)Xi+1(r)βi dr

)1/αi

ds � 2Xi(t), t � T, (4.7)

for i = 1, . . . , n. Consider the set X consisting of continuous vector functions
(x1, . . . , xn) on [T, ∞) satisfying

liXi(t) � xi(t) � LiXi(t), t � T, i = 1, . . . , n, (4.8)

where li, Li are positive constants chosen so that

li � 1
2

(
ki

Hi

)1/αi

l
βi/αi

i+1 , 2
(

Ki

hi

)1/αi

L
βi/αi

i+1 � Li, i = 1, . . . , n, (4.9)

where ln+1 = l1, Ln+1 = L1. An example of such choices is

li =
[ n∏

j=1

1
2

(
ki

Hi

)Mij/αi
]An/(An−Bn)

, Li =
[ n∏

j=1

2
(

ki

Hi

)Mij/αi
]An/(An−Bn)

.

It is clear that X is a closed convex subset of the locally convex space C[T, ∞)n.
Define the mapping Φ by

Φ(x1, . . . , xn)(t) = (F1x2(t),F2x3(t), . . . ,Fnxn+1(t)), t � T, xn+1 = x1, (4.10)

where Fi stands for the ith integral operator

Fix(t) =
∫ ∞

t

(
1

pi(s)

∫ ∞

s

qi(r)x(r)βi dr

)1/αi

ds, t � T, i = 1, . . . , n, (4.11)

and let it act on X . Using (4.3), (4.4), (4.7)–(4.10), one can show that Φ is a con-
tinuous self-map on X , and sends X into a relatively compact subset of C[T, ∞)n.

(i) Φ(X ) ⊂ X : let (x1, . . . , xn) ∈ X . Then, for i = 1, . . . , n,

Fixi+1(t) �
(

KiL
βi

i+1

hi

)1/αi
∫ ∞

t

(
1

p̃i(s)

∫ ∞

s

q̃i(r)Xi+1(r)βi dr

)1/αi

ds

� 2
(

KiL
βi

i+1

hi

)1/αi

Xi(t)

� LiXi(t), t � T,

and

Fixi+1(t) �
(

kil
βi

i+1

Hi

)1/αi
∫ ∞

t

(
1

p̃i(s)

∫ ∞

s

q̃i(r)Xi+1(r)βi dr

)1/αi

ds

� 1
2

(
kil

βi

i+1

Hi

)1/αi

Xi(t)

� liXi(t), t � T.

This shows that Φ(x1, . . . , xn) ∈ X , that is, Φ maps X into itself.
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(ii) Φ(X ) is relatively compact: the inclusion Φ(X ) ⊂ X ensures that Φ(X ) is uni-
formly bounded on [T, ∞). From the inequalities

0 � (Fixi+1)′(t) � −L
βi/αi

i+1

(
1

pi(t)

∫ ∞

t

qi(s)Xi+1(s)βi ds

)1/αi

, t � T,

holding for all (x1, . . . , xn) ∈ X , we see that Φ(X ) is equicontinuous on [T, ∞). The
relative compactness of Φ(X ) then follows from the Arzelà–Ascoli theorem.

(iii) Φ is a continuous map: let {(xν
1 , . . . , xν

n)} be a sequence in X converging as
ν → ∞ to (x1, . . . , xn) ∈ X uniformly on any compact subinterval of [T, ∞). Using
(4.11) we have

|Fix
ν
i+1(t) − Fixi+1(t)| �

∫ ∞

t

pi(s)−1/αiF ν
i (s) ds, t � T, (4.12)

where

F ν
i (t) =

∣∣∣∣
( ∫ ∞

t

qi(s)xν
i+1(s)

βi ds

)1/αi

−
( ∫ ∞

t

qi(s)xi+1(s)βi ds

)1/αi
∣∣∣∣.

It is clear that if αi � 1, then

F ν
i (t) �

( ∫ ∞

t

qi(s)|xν
i+1(s)

βi − xi+1(s)βi | ds

)1/αi

, (4.13)

and if αi < 1, then

F ν
i (t) � 1

αi

( ∫ ∞

t

qi(s)Xi+1(s)βi ds

)(1/αi)−1 ∫ ∞

t

qi(s)|xν
i+1(s)

βi − xi+1(s)βi | ds.

(4.14)
Combining (4.12) with (4.13) or (4.14), we conclude via the Lebesgue dominated
convergence theorem that

lim
ν→∞

Fix
ν
i+1(t) = Fixi+1(t) uniformly on [T, ∞), i = 1, . . . , n.

This proves the continuity of Φ.

Thus, all the hypotheses of the Schauder–Tychonoff fixed-point theorem are ful-
filled, and Φ has a fixed point (x1, . . . , xn) ∈ X , which satisfies

xi(t) = Fixi+1(t) =
∫ ∞

t

(
1

pi(s)

∫ ∞

s

qi(r)xi+1(r)βi dr

)1/αi

ds,

t � T, i = 1, . . . , n. (4.15)

This clearly implies that (x1, . . . , xn) is a solution of system (A) on [T, ∞). Since
the solution obtained is a member of X , it is strongly decreasing as well as nearly
regularly varying, and enjoys the asymptotic behaviour (4.2). This completes the
proof.
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The proof of theorem 4.5 is essentially the same as above, and so it may be
omitted.

The ‘if’ parts of theorems 4.1 and 4.2 can be proved on the basis of theorems 4.4
and 4.5 and with the help of the following generalized L’Hôpital’s rule. For the
proof see, for example, [8].

Lemma 4.6. Let f, g ∈ C1[T, ∞) and suppose that

lim
t→∞

f(t) = lim
t→∞

g(t) = ∞ and g′(t) > 0 for all large t,

or

lim
t→∞

f(t) = lim
t→∞

g(t) = 0 and g′(t) < 0 for all large t.

Then,

lim inf
t→∞

f ′(t)
g′(t)

� lim inf
t→∞

f(t)
g(t)

, lim sup
t→∞

f(t)
g(t)

� lim sup
t→∞

f ′(t)
g′(t)

.

Proof of the ‘if ’ part of theorem 4.1. Assume that pi ∈ RV(λi), λi � αi and qi ∈
RV(µi). Define ρi to be the negative constants given by (3.18) and let Xi ∈ RV(ρi)
denote the functions on the right-hand side of (4.2) with p̃i and q̃i replaced by pi and
qi, respectively. Then, by theorem 4.4, system (A) has a decreasing nearly regularly
varying solution (x1, . . . , xn) such that xi(t) 
 Xi(t) as t → ∞, i = 1, . . . , n. Note
that the xi satisfy the integral equations (4.15).

It remains to verify that the xi are regularly varying functions, i.e. xi ∈ RV(ρi),
i = 1, . . . , n. Define

ui(t) =
∫ ∞

t

(
1

pi(s)

∫ ∞

s

qi(r)Xi+1(r)βi dr

)1/αi

ds, i = 1, . . . , n, (4.16)

and put

li = lim inf
t→∞

xi(t)
ui(t)

, Li = lim sup
t→∞

xi(t)
ui(t)

, i = 1, . . . , n. (4.17)

Since xi(t) 
 Xi(t) and

ui(t) ∼ Xi(t), t → ∞, i = 1, . . . , n, (4.18)

we see that 0 < li � Li < ∞, i = 1, . . . , n. Using lemma 4.6, we compute

li � lim inf
t→∞

x′
i(t)

u′
i(t)

= lim inf
t→∞

(
∫ ∞

t
qi(s)xi+1(s)βi ds)1/αi

(
∫ ∞

t
qi(s)Xi+1(s)βi ds)1/αi

= lim inf
t→∞

( ∫ ∞
t

qi(s)xi+1(s)βi ds∫ ∞
t

qi(s)Xi+1(s)βi ds

)1/αi

� lim inf
t→∞

(
xi+1(t)
Xi+1(t)

)βi/αi
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= lim inf
t→∞

(
xi+1(t)
ui+1(t)

)βi/αi

=
(

lim inf
t→∞

xi+1(t)
ui+1(t)

)βi/αi

= l
βi/αi

i+1 ,

where (4.18) has been used in the last step. Thus, we obtain the cyclic inequalities
for {li}:

li � l
βi/αi

i+1 , i = 1, . . . , n, ln+1 = l1. (4.19)

Similarly, by taking the upper limits instead of the lower limits, we are led to the
cyclic inequalities for {Li}:

Li � L
βi/αi

i+1 , i = 1, . . . , n, Ln+1 = L1. (4.20)

From (4.19) and (4.20) it follows that

li � l
β1···βn/α1···αn

i , Li � L
β1···βn/α1···αn

i , i = 1, . . . , n,

whence, using β1 · · ·βn/α1 · · ·αn < 1, we see that li � 1 and Li � 1, and hence that
li = Li = 1 or limt→∞ xi(t)/ui(t) = 1 for i = 1, . . . , n. This combined with (4.18)
shows that xi(t) ∼ ui(t) ∼ Xi(t) as t → ∞, i = 1, . . . , n, implying that every xi is
regularly varying of index ρi. Thus, the ‘if’ part of theorem 4.1 has been proved.
We omit the proof of the ‘if’ part of theorem 4.2.

5. Application to partial differential equations

The purpose of the final section is to demonstrate that our main results for the
system of ordinary differential equations (A) can be applied to some classes of
partial differential equations to give birth to new results on the existence and the
asymptotic behaviour of their radial positive solutions. Throughout this section,
x = (x1, . . . , xN ) represents the space variable in R

N , N � 2, and |x| denotes the
Euclidean length of x. All partial differential equations will be considered in an
exterior domain ΩR = {x ∈ R

N : |x| � R}, R > 0.

5.1. Systems of p-Laplacian equations

Consider the system of nonlinear p-Laplacian equations

div(|∇ui|p−2∇ui) = fi(|x|)|ui+1|γi−1ui+1, i = 1, . . . , n, un+1 = u1, (5.1)

for x ∈ ΩR, where p > 1 and γi > 0 are constants and the fi are positive continuous
functions on [R, ∞) that are regularly varying of indices νi, i = 1, . . . , n. Our
attention will be focused on radial solutions (u1, . . . , un) of (5.1) defined in ΩR.
It is known that (u1, . . . , un) is a (radial) solution of (5.1) in ΩR if and only if
the vector function (u1, . . . , un) is a solution of the system of ordinary differential
equations

(tN−1|u′
i|p−2u′

i)
′ = tN−1fi(t)|ui+1|γi−1ui+1, t � R, i = 1, . . . , n, un+1 = u1,

(5.2)
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which is a special case of system (A) with

α1 = · · · = αn = p − 1, βi = γi, i = 1, . . . , n,

λ1 = · · · = λn = N − 1, µi = N − 1 + νi, i = 1, . . . , n.

We assume that
γ1 · · · γn < (p − 1)n. (5.3)

Using the inverse of the matrix A(γ1/(p − 1), . . . , γn/(p − 1)) associated with (5.2)
(see (3.14)), we define

(Mij) =
(p − 1)n

(p − 1)n − γ1 · · · γn
A

(
γ1

p − 1
, . . . ,

γn

p − 1

)−1

. (5.4)

To analyse (5.2) we need to distinguish between the two cases p � N and p < N ,
in which conditions (1.2) and (1.3) are satisfied, respectively, for system (5.2).

Case 1. Suppose that p � N . In this case, applying theorem 4.1 to (5.2), we
conclude that system (5.1) possesses decreasing radial solutions (u1, . . . , un) such
that ui ∈ RV(ρi), ρi < 0, i = 1, . . . , n, if and only if

n∑
j=1

Mij(p + νj) < 0, i = 1, . . . , n. (5.5)

In this case the ρi are uniquely determined by

ρi =
(p − 1)n−1

(p − 1)n − γ1 · · · γn

n∑
j=1

Mij(p + νj) < 0, i = 1, . . . , n, (5.6)

and furthermore the asymptotic behaviour of any such solution as |x| → ∞ is
governed by the unique decay law

ui(|x|) ∼ |x|ρi

[ n∏
j=1

(
ϕj(|x|)1/(p−1)

(p − N − (p − 1)ρj)1/(p−1)(−ρj)

)Mij
](p−1)n/((p−1)n−γ1···γn)

,

|x| → ∞, (5.7)

where ϕi ∈ SV are the slowly varying parts of fi, i.e. fi(t) = tνiϕi(t), i = 1, . . . , n.

Case 2. Suppose that p < N . In this case, from theorem 4.2 applied to (5.2), it
follows that system (5.1) possesses decreasing radial solutions (u1, . . . , un) such that
ui ∈ RV(ρi), ρi < (p − N)/(p − 1), i = 1, . . . , n, if and only if

n∑
j=1

Mij

(
N + νj +

p − N

p − 1
γj

)
< 0, i = 1, . . . , n. (5.8)

In this case, the ρi are uniquely determined by (5.6) and the asymptotic behaviour
of any such solution as |x| → ∞ is governed by the unique formulae (5.7).

A few words about the particular case of (5.1), in which fi(t) ≡ ci > 0, i.e.

div(|∇ui|p−2∇ui) = ci|ui+1|γi−1ui+1, i = 1, . . . , n, un+1 = u1. (5.9)
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Note that all the νi are zero. If N � p, then, since (5.5) is not satisfied, theorem 4.1
implies that (5.9) does not admit positive decreasing radial solutions (u1, . . . , un)
such that ui ∈ RV(ρi), ρi < 0, i = 1, . . . , n. On the other hand, if N > p, then (5.8)
is violated under the assumption γi < p − 1, i = 1, . . . , n, which is more stringent
than (5.3), and so, by theorem 4.2, system (5.9) cannot possess decreasing solutions
(u1, . . . , un) such that ui ∈ RV(ρi), ρi < (p − N)/(p − 1), i = 1, . . . , n.

5.2. Nonlinear metaharmonic equations

We next consider the nonlinear metaharmonic equation

∆mu = g(|x|)|u|γ−1u, x ∈ ΩR, (5.10)

where m � 2 and γ > 0 are constants and g is a positive continuous function on
[R, ∞) that is regularly varying of index ν. We are interested in radial positive
solutions u of (5.10) such that u and ∆ku, k = 1, . . . , m − 1, are regularly varying
of negative indices. It is clear that seeking such solutions of (5.10) is equivalent to
seeking radial regularly varying solutions of negative indices of the system

∆ui = ui+1, i = 1, . . . , m − 1, ∆um = g(|x|)|um+1|γ−1um+1, x ∈ ΩR,
(5.11)

where um+1 = u1. This system is equivalent to the following system of ordinary
differential equations

(tN−1u′
i)

′ = tN−1ui+1, i = 1, . . . , m − 1,

(tN−1u′
m)′ = tN−1g(t)|um+1|γ−1um+1

}
(5.12)

for t � R, which is a special case of (A) with

α1 = · · · = αm = 1, β1 = · · · = βm−1 = 1, βm = γ,

λ1 = · · · = λm = N − 1, µ1 = · · · = µm−1 = N − 1, µm = N − 1 + ν.

We assume that γ < 1. The m × m matrix (3.14) associated with (5.12) reads
A(1, . . . , 1, γ). Define the matrix (Mij) by

(Mij) = (1 − γ)A(1, . . . , 1, γ)−1. (5.13)

It is easy to check that Mij = 1 for 1 � i � j � m, and Mij = γ for 1 � j < i � m.
Observe that conditions (1.2) and (1.3) for (5.12) reduce, respectively, to N = 2
and N � 3.

(i) Let N = 2. Let us apply theorem 4.1 to (5.12). Then (3.18) and (3.19) reduce,
respectively, to

m∑
j=1

Mij
λj − αj + µj + 1

αj
= 2

m∑
j=1

Mij + νMim < 0, i = 1, . . . , m, (5.14)

and

ρj =
2

∑m
j=1 Mij + νMim

1 − γ
, i = 1, . . . , m, (5.15)
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whence it follows that

ρ1 =
2m + ν

1 − γ
and ρi = ρ1 − (i − 1) for i = 2, . . . , m. (5.16)

We then conclude that (5.10) has decreasing radial regularly varying solutions of
negative index ρ if and only if ν < −2m, in which case ρ is given by ρ = (2m +
ν)/(1 − γ) and any such solution u enjoys the exact asymptotic behaviour

u(|x|) ∼ |x|ρ
[

ψ(|x|)
((−ρ)(1 − ρ) · · · (m − 1 − ρ))2

]1/(1−γ)

, |x| → ∞, (5.17)

where ψ ∈ SV denotes the slowly varying part of g, i.e. g(t) = tνψ(t).

(ii) Let N � 3. We compute the constants (3.29) for (5.12):

σi =
m∑

j=1

Mij

(
µj + 1

αj
+

βi(αj+1 − λj+1)
αjαj+1

)

= ν + 2m − (2 − N)(1 − γ) + 2(i − 1)(1 − γ), i = 1, . . . , m,

from which we see that

σ1 = ν + 2m − (2 − N)(1 − γ), σi = σ1 − 2(i − 1)(1 − γ), i = 2, . . . , m.

Now applying theorem 4.2 to (5.2), we can assert that (5.10) possesses decreasing
radial solutions u that are regularly varying of negative index ρ < 2−N if and only
if ν < −2m + (2 − N)(1 − γ), in which case ρ is given by ρ = (2m + ν)/(1 − γ) and
the asymptotic behaviour of any such solution is governed by the unique formula

u(|x|) ∼ |x|ρ
[

ψ(|x|)∏m
i=1(i − 1 − ρ)(i + 1 − N − ρ)

]1/(1−γ)

, |x| → ∞, (5.18)

where ψ is as in (5.17).
From the above observation, it follows in particular that if the regularity index ν

of g is non-negative, then (5.10) cannot admit strongly decreasing radial solutions
u that are regularly varying of negative indices.
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