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Considering channel flow at Reynolds numbers below the linear stability threshold of
the laminar profile as a generic example system showing a subcritical transition to
turbulence connected with the existence of simple invariant solutions, we here discuss
issues that arise in the application of linear feedback control of invariant solutions of the
Navier–Stokes equations. We focus on the simplest possible problem, that is, travelling
waves with one unstable direction. In view of potential experimental applicability we
construct a pressure-based feedback strategy and study its effect on the stable, marginal
and unstable directions of these solutions in different periodic cells. Even though the
original instability can be removed, new instabilities emerge as the feedback procedure
affects not only the unstable but also the stable directions. We quantify these adverse
effects and discuss their implications for the design of successful control strategies.
In order to highlight the challenges that arise in the application of feedback control
methods in principle and concerning potential applications in the search for simple
invariant solutions of the Navier–Stokes equations in particular, we consider an explicitly
constructed analogue to closed-loop linear optimal control that leaves the stable directions
unaffected.

Key words: instability control, transition to turbulence

1. Introduction

Closed-loop control strategies such as linear optimal control (Anderson & Moore 1990)
are commonly used in engineering and industrial applications, fluid dynamics being
only one example of such. In the present paper we consider linear feedback control
as a means to stabilise exact nonlinear solutions of the Navier–Stokes equations, or,
exact coherent structures (ECS). The ECS have been instrumental in the explanation of
the subcritical transition to turbulence. In many shear flows the transition to turbulence
occurs despite the linear stability of the laminar profile. In pipe and plane Couette
flow, for instance, the laminar profile is linearly stable at all Reynolds numbers. Plane
Poiseuille flow becomes linearly unstable at a Reynolds number of 5772.22 (Orszag
1971a); however, when subjected to finite-amplitude perturbations the flow transitions
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much earlier. Exact coherent structures and their stability properties are not only of interest
to studies concerned with transitional flows. There is ample evidence supporting the
concept whereby the turbulent region of the state space of a wall-bounded, parallel shear
flow includes many unstable ECS (Nagata 1990; Hof et al. 2004, 2005; Eckhardt et al.
2007; Duguet, Pringle & Kerswell 2008a; Duguet, Willis & Kerswell 2008b; Kawahara,
Uhlmann & van Veen 2012; Cvitanović 2013; Willis, Short & Cvitanović 2016; Budanur
et al. 2017; Suri et al. 2017; Reetz, Kreilos & Schneider 2019; Reetz & Schneider 2020;
Reetz, Subramanian & Schneider 2020), with turbulence corresponding to a state-space
trajectory travelling along the ECS’ stable and unstable manifolds resulting in frequent
close passes to different ECS. Once the state-space trajectory is in close vicinity of an
ECS, the properties of the turbulent state approximate those of that ECS. Exact solutions
of the Navier–Stokes equations can differ considerably in their global and local properties,
such as drag, mean profile or turbulence intensity. The application of a feedback control
procedure can be a useful strategy to avoid states with undesirable properties such as
high drag by altering their stability properties, thus preventing state-space trajectories
from remaining close to certain ECS or confining the dynamics to certain state-space
volumes. A dynamic feedback procedure based on adjustments of the Richardson number
succeeded in temporal stabilisation of otherwise transient turbulent spots and stripes in
stratified plane Couette flow (Taylor et al. 2016).

A further potential application for feedback control in the context of ECS lies in
the determination of so-called edge states, relative attractors on the edge of chaos,
a codimension-1 manifold in state space that distinguishes between initial conditions
resulting in laminar or turbulent flow. The concept of edge states and edge manifolds
is intrinsically connected to the transition to turbulence in many wall-bounded shear
flows such as pipe, plane Couette and channel flows (Itano & Toh 2001; Skufca, Yorke
& Eckhardt 2006; Eckhardt et al. 2007). Depending on the extent of the domain,
edge states may be invariant solutions of the Navier–Stokes equations or have chaotic
dynamics and contain invariant solutions (Budanur & Hof 2018). Edge states, or the
invariant solutions contained therein, have by definition one unstable direction transverse
to the edge (Schneider, Eckhardt & Yorke 2007; Duguet et al. 2008b), such that
the dynamics will not remain confined to it. The latter makes the determination of
edge states, or invariant solutions therein, difficult. Bisection-based numerical methods
(Itano & Toh 2001; Skufca et al. 2006; Schneider et al. 2007) are available, but
they are costly due to slow convergence and high computational effort. Edge states
can also be probed by minimal seed methods (Pringle & Kerswell 2010; Pringle,
Willis & Kerswell 2012, 2015), as the smallest perturbation triggering turbulence, the
minimal seed, is located infinitesimally close to the edge. It evolves along the edge,
passes close to the edge state and eventually enters the turbulent region of state
space.

In small simulation domains or in symmetry-invariant subspaces edge states are part
of an unstable lower branch of ECS that appear in a saddle-node bifurcation. In large
domains, when edge states are chaotic and can contain ECS (Budanur & Hof 2018),
lower-branch ECS can be found within the edge state. This suggests that low-dimensional
feedback stabilisation methods could be used to remove the effect of the unstable
directions, such that the edge state, or an invariant solution therein, is stabilised. In
pipe flow, a simple feedback control strategy, where the Reynolds number is adjusted in
response to an observable connected with deviations from laminar flow, indeed stabilises
the dynamics to remain on the edge (Willis et al. 2017). Forward integration of the
controlled system converged to previously unknown edge states in the form of travelling
waves. For more complicated edge states, such as relative periodic orbits or those with
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Feedback control of invariant solutions 900 A10-3

chaotic dynamics, the controlled simulations converged to objects in the vicinity of ECS
of the uncontrolled system.

Here, we focus on feedback strategies in channel flow at Reynolds numbers below
the linear stability threshold, as an example system showing a subcritical transition to
turbulence. In order to highlight and discuss the challenges that arise in the application
of linear feedback control for the stabilisation of exact coherent structures, we attempt
to stabilise some of simplest invariant solutions in minimal flow units, that is, edge
states in form of travelling waves. Unlike Willis et al. (2017) we aim to stabilise known
invariant solutions. To do so, we construct simple linear feedback procedures that are either
(i) pressure based and thus one step closer to experimental conditions, or (ii) adjoint based
and act on the single unstable direction by construction. In the first case, we monitor
the controller’s effect on global observables such as turbulent kinetic energy and skin
friction coefficient, and we find that the controlled dynamics approaches values of these
observables that correspond to the target states; however, the target states themselves are
not stabilised. The reason lies in the occurrence of a new instability that is induced by the
coupling of the control procedure to the edge states’ stable directions. The second method
removes such secondary instabilities by construction; however, care must be taken in its
application in terms of the type of target state and the choice of global observable. Here,
only a highly symmetric de-localised travelling wave has been successfully stabilised with
this method, which illustrates the limitations of global 1-D feedback.

We begin with an introduction to the concept of linear feedback control in § 2 in
the context of invariant solutions, where the procedure is explained and its effect is
illustrated in low-dimensional examples. In § 3 we use the general formalism outlined
in § 2 to develop the control strategies. Before applying the control procedures to the
aforementioned edge states in direct numerical simulations of channel flow, we summarise
the numerical details and describe the target states in § 4. Section 5 contains the main
investigation into stabilisation of edge states including the effect of the feedback control
on the stable directions. We summarise our results in § 6 alongside a discussion of the
challenges that need to be overcome in the design of successful control strategies in the
context of simple invariant solutions of the Navier–Stokes equations.

2. Stabilisation and control

Consider a system with two variables, a positive observable A and a control variable R.
In fluid dynamics, A could be the result of a global measurement such as the skin friction
factor or a local measurement such as the magnitude of the turbulent fluctuations, and R the
Reynolds number, which is here interpreted as a means to determine the pressure gradient
as the control input. We assume that the uncontrolled system has stationary solutions that
appear in a saddle-node bifurcation at (A∗, R∗) with an unstable lower branch ALB(R). The
aim is to stabilise an operating point (A0, R0) on the lower branch (Sieber, Omel’chenko
& Wolfrum 2014; Willis et al. 2017). Without loss of generality we further assume that
the uncontrolled dynamics is such that the observable grows if it exceeds the lower-branch
value ALB(R),

Ȧ = λ(A − ALB(R)), (2.1)

with λ > 0 being the Lyapunov exponent, which we assume to be independent, or a
slowly varying function, of R. To control and avoid the exponential instability, the control
variable must be repeatedly adjusted such that the ensuing dynamics of the system results
in convergence to the operating point, for example through an iteration procedure where
the lower branch is crossed at each adjustment of the control variable as schematically
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illustrated in figure 1. For the uncontrolled dynamics as in (2.1), this can be achieved by
adjusting the control variable according to

Ṙ = −γ (R − R0) − γμ(A − A0), (2.2)

where A0 = A(R0) = ALB(R0) is the value of the observable at the reference point and
γ > 0 and μ > 0 are adjustable parameters. The signs are for the cases that ALB(R)
decreases with R, i.e.

dALB(R)

dR

∣∣∣∣
R0

= −α, (2.3)

with α > 0. With r = R − R0 and a = A − A0 we can write

A − ALB(R) = A − ALB(R0 + r) ≈ a + αr, (2.4)

so that (2.1) and (2.2) become

d
dt

(
a
r

)
=
(
λ λα

−γμ −γ

)(
a
r

)
. (2.5)

For the operating point (A0, R0) to be stable, the matrix on the right-hand side of (2.5) must
have eigenvalues with negative real parts. The conditions for such eigenvalues are that the
trace of the matrix, as the sum of the eigenvalues, has to be negative, and the determinant,
the product of the eigenvalues, has to be positive. With the trace

Tr = λ− γ, (2.6)

and the determinant

det = −λγ + λγαμ, (2.7)

the conditions for stability become

γ > λ, (2.8)

αμ > 1. (2.9)

The conditions are such that the adjustment in R (related to the parameter γ ) has to be
faster than the escape (as measured by λ). Similarly, the amplitude of the change in the
control variable with the deviation in the observable has to be larger than the inverse of
α, so that the changes in R outrun the changes in A. For what follows it will be useful to
visualise the stability condition (2.9) geometrically: since α is the slope of the tangent to
the lower branch at (A0, R0), the inequality (2.9) results in a control line through (A0, R0)
with a slope 1/μ < α which is shallower than that of the tangent at the operating point.
The feedback control procedure applied by Willis et al. (2017) corresponds in this context
to an immediate adjustment of R, i.e. to γ → ∞.

Before proceeding to numerical results, we briefly highlight the connection between the
present formulation of the linear control law given in (2.5) and linear feedback control. If
we combine the observable a and the control variable r into one state vector x, then the
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FIGURE 1. Schematic dynamics of the controlled system. The unstable lower branch (dashed
line) is curved towards smaller values of the observable for increasing control variable. The red
(grey) dot on the lower branch corresponds to an operating point. For an initial state below the
lower branch indicated by the light green (light grey) dot, the uncontrolled dynamics is such that
the value of the observable decreases, resulting in intermediate states further below the lower
branch as indicated by the green (dark grey) dot. The feedback control increases the control
variable until the lower branch is crossed, such that the uncontrolled dynamics now results in a
growing observable. The feedback control now decreases the value of the control variable until
the lower branch is crossed again to enter the region where the observable will decay. Iteration
of this procedure will eventually result in convergence towards the operating point.

uncontrolled linearised dynamics, where r = 0 and ṙ = 0, is given by(
ȧ
ṙ

)
︸︷︷︸

ẋ

=
(
λ 0
0 0

)
︸ ︷︷ ︸

A

(
a
r

)
︸︷︷︸

x

, (2.10)

with Jacobian A. The control law given in (2.2) makes r time dependent such that (2.5)
can be written in classical control-theoretic form as closed-loop feedback control

ẋ = Ax − BKx, (2.11)

where B is the control matrix and, for stabilisation according to linear optimal control or
full state feedback, the matrix K must be chosen such that

A − BK =
(
λ λα

−γμ −γ

)
has only eigenvalues with negative real part, see e.g. Anderson & Moore (1990), Sontag
(1998) and Burl (1999).

2.1. Two-dimensional linear model
Before applying the feedback control to a high-dimensional dynamical system such as
channel flow, we consider the dynamics of the linearised two-dimensional (2-D) system
given by (2.5), with Lyapunov exponent λ = 0.01, and lower-branch slope α = 1.5 × 10−5.
These values correspond to measurements of α and λ for an edge state in direct numerical
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FIGURE 2. Stabilisation of the linear model system given by (2.5). The (linear) lower branch
is indicated by the dashed line, it crosses the control line (solid black) at the operating point.
The time evolution of the system follows the red (grey) curve starting at the blue (dark grey)
square. (a) Monotonic relaxation for μ = 2 × 105 corresponding to negative real eigenvalues.
(b) Oscillatory relaxation for μ = 2.4 × 107 corresponding to complex eigenvalues with negative
real parts.

simulations of channel flow, which will be discussed in further detail in § 4. Figure 2
presents phase-space trajectories of this system for γ = 1 and two different values of the
control strength μ, i.e. μ = 2 × 105 and μ = 2.4 × 107. The tangent line as indicated in
orange (light grey) has a steeper slope than the control line (blue/dark grey) in both cases,
as required by (2.9), and both lines cross at the operating point. The time evolution follows
the green/grey curve, beginning at the red/grey points located in the top right quadrants of
the two panels, and it ends at the operating point. That is, in both cases the operating point
has been stabilised.

In both cases the instability has been removed, leading to eigenvalues of the matrix
in (2.5) that have negative real parts. The eigenvalues do not only yield information on
the stability of an equilibrium in the controlled system, they also determine the dynamic
relaxation process. For real eigenvalues we expect monotonic exponential relaxation, while
complex eigenvalues with non-zero imaginary part lead to an oscillatory approach to the
stabilised equilibrium. In the present linear 2-D model system, the eigenvalues are real for
μ = 2 × 105 and complex for μ = 2.4 × 107, and the relaxation towards the equilibrium
does indeed proceed differently for the two values of the control strength. For μ = 2 ×
105 the relaxation proceeds monotonically along the control line as shown in figure 2(a),
while μ = 2.4 × 107 results in oscillatory relaxation as shown in figure 2(b). The latter is
reminiscent of the schematic behaviour illustrated in figure 1.

2.2. Effect on the stable directions
Equilibria in higher-dimensional systems can have several stable and unstable directions.
Even if we assume that only one direction is unstable, as is generally the case for edge
states in canonical wall-bounded parallel shear flows, a 1-D control procedure may not
only have the desired influence on the unstable direction, it may also couple to the stable
directions. This effect is known in control theory, where its mitigation is essential in the
design of successful controllers (Barbagallo, Sipp & Schmid 2009). In order to illustrate
what the consequences of such a coupling can be, we consider a three-dimensional (3-D)
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FIGURE 3. Destabilisation of a stable direction for the 3-D model system given by (2.12). The
colour coding represents the number of eigenvalues of the matrix on the right-hand side of (2.12)
that have positive real parts. The coupling of the control to the unstable and stable directions is
parametrised by μ1 and μ2, respectively.

extension of the 2-D model given in linearised form in (2.5):

d
dt

⎛
⎜⎝

r

a1

a2

⎞
⎟⎠ =

⎛
⎜⎝

−γ −γμ1 −γμ2

λ1α1 λ1 0

−λ2α2 0 −λ2

⎞
⎟⎠
⎛
⎝ r

a1
a2

⎞
⎠ , (2.12)

where a1 corresponds to the unstable and a2 to the stable direction with λ1 > 0 and λ2 > 0.
The dynamics is coupled to the control procedure through μ1 and μ2, respectively. For
simplicity, we assume that the stable and unstable directions decouple. For a1 = a, λ1 = λ
and α1 = α as in figure 2, we construct arbitrary stable directions by randomly choosing
a2 > 0, λ2 > 0 and α2 > 0 to avoid a specific configuration. Subsequently and for fixed
values of a2 > 0, λ2 > 0 and α2 > 0, we calculate the number of eigenvalues of the matrix
on the right-hand side of (2.12) that have a positive real part as a function of μ1 and μ2.
An example of the results obtained from such a calculation is shown in figure 3. If the
control is weakly coupled to the dynamical system, we find one eigenvalue with positive
real part, as expected for a system with one stable and one unstable direction. Increasing
μ1 for small μ2 eventually stabilises the operating point, which can also be expected from
the results in the 1-D case. However, we find a large part of parameter space where one
or two eigenvalues have a positive real part, hence the control is not able to stabilise the
operating point if it overlaps significantly with the stable direction.

In summary, the success of the control strategy in higher-dimensional systems depends
on how the dynamics along the stable directions couples to the control. Stabilisation of
the operating point then requires a control strategy that acts on a hyperplane orthogonal
to all stable directions. Such a strategy can be constructed in numerical simulations only,
and we will come back to this point in § 5.2. In practice, the control is more likely to
destabilise stable directions with a small negative real part, which suggests that it may be
sufficient to design the control to be orthogonal to the least stable directions in order to
achieve stabilisation. Similar procedures are indeed sometimes applied in control theory

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

50
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.502


900 A10-8 M. Linkmann, F. Knierim, S. Zammert and B. Eckhardt

in the context of model reduction (Åkervik et al. 2007) and will be successful provided
the chosen modes are observable and controllable (Barbagallo et al. 2009).

3. Linear feedback control for the Navier–Stokes equations

Having introduced a general 1-D feedback control strategy and discussed its properties
in low-dimensional model systems, we now turn to its application to wall-bounded shear
flows, whose dynamics is governed by the incompressible Navier–Stokes equations

∂tu + u · ∇u = −∇p + νΔu + 1
ρ

f , (3.1)

∇ · u = 0, (3.2)

where u is the velocity field, p the pressure divided by the constant density ρ, ν the
kinematic viscosity and f a force that drives the flow. The implementation of the feedback
procedure introduced in § 2 requires a choice of observable and control variable. Here, care
must be taken in the non-dimensionalisation of (3.1), as the choice of control variable may
result in the usual characteristic scales becoming time dependent. Furthermore, (3.1) must
be supplemented with an auxiliary equation that describes the time evolution of the control
variable as a function of the observable. The feedback loop is then closed by coupling the
control variable to (3.1).

In principle, there are two conceptual choices for the control variable, one that results in
a modulation of the flow and one that results in an adjustment of f . Since (3.1) is usually
made dimensionless using a characteristic length scale h and a reference velocity U0, the
choice of control variable must be such that U0 and h remain time independent. Otherwise
the dimensionless form of (3.1) is not applicable any longer because the time derivative
does not commute with the now time-dependent reference velocity U0(t). This occurs if the
feedback is implemented through a modulation of the flow. Therefore, we focus here on the
second possibility, that of an adjustment of f in response to a control variable. Assuming
that f (t) fluctuates around a reference state f 0, the velocity scale U0 that is associated with
that particular value of the force is used to rescale (3.1). Specifically, the forcing is made
dimensionless in units of h/U2

0 , and variations in the force can be measured in the same
units. In what follows, U0 is the laminar centreline velocity and h the half-height of the
channel.

3.1. A pressure-based control strategy
For pressure-driven pipe or channel flow, the control input f can be identified with
a time-dependent streamwise pressure gradient dP/dx(t)ex that fluctuates around a
reference value (dP/dx)0ex . The controlled system in non-dimensionalised form then
reads

∂tu + u · ∇u + ∇p − 1
Re

Δu +
(

dP
dx

)
0

ex = −dP
dx

(t)ex , (3.3)

∇ · u = 0, (3.4)

Ṙ = −γ (R − R0) − γμ(A − A0), (3.5)

dP
dx

(t) = − 2
R0

(
R(t)
R0

− 1
)

, (3.6)

with A being an observable, R the control variable with (R0, A0) defining the operating
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point. Equation (3.6), which implements the feedback, is based on R representing a
Reynolds number such that R = R0 = Re results in no control input and the reference
pressure gradient is recovered. The time-dependent Reynolds number that is used by Willis
et al. (2017) cannot be realised with a change in the pressure gradient or similar, since that
would give a different velocity scale, as discussed above. As it stands, a modulation in
Reynolds number can only be obtained as a consequence of variations in viscosity, which
is difficult to achieve in experiments.

In order to stabilise the operating point, the control must overlap with the expanding
directions of the operating point’s tangent space. Since the linear operator representing
the linearised Navier–Stokes dynamics close to the operating point is non-normal, its
eigenvectors are not orthogonal. That is, it is in principle possible to stabilise an operating
point with a 1-D control procedure, provided that all unstable directions overlap. Here, the
proposed feedback control acts in the streamwise direction only and it is translationally
invariant in both streamwise and spanwise directions. That is, it can only stabilise unstable
directions that have a streamwise component with a non-zero streamwise and spanwise
mean. Periodic instabilities, for instance, cannot be stabilised. This is an example of a
more general effect that symmetries, translational invariance being an example thereof,
have on controllability and observability in linear feedback control (Grigoriev 2000).
Formally speaking, an n-dimensional system is controllable if the vectors wl

k = An−lbk for
1 ≤ k ≤ n and 1 ≤ l ≤ m, where A is the Jacobian governing the linearised dynamics and
bk denotes the kth column vector of the control matrix B = (b1, . . . , bm), form a basis of
the tangent space at the operating point. An equivalent formulation is that each eigenmode
must have non-zero overlap with at least one column vector of B. Symmetries may lead
to eigenspaces of the linear operator A of dimension larger than one, and hence basis
vectors of such eigenspaces exist which are orthogonal to all bk (Grigoriev & Cross 1998;
Grigoriev 2000). Similar issues also concern, in principle, the question of observability;
however, such complications do not arise in the present context as we have access to the
full state of the system at any point in time.

3.2. Adjoint-based control
The potentially destabilising effect of the control given by (3.3)–(3.6) calls for a strategy
that acts on the unstable direction only. In what follows we construct a control that
acts on a hyperplane orthogonal to the stable subspace of the ECS’s tangent space and
hence cannot couple and destabilise the contracting directions. Similar approaches are
used in controlling linear, infinite-horizon problems. There, the optimal control strategy
is of feedback type and proceeds by projection of the state vector onto its unstable
eigenspace and an appropriate choice of coupling coefficients such that the linear operator
representing the controlled system has only stable eigenmodes (Anderson & Moore 1990;
Burl 1999).

We consider a general n-dimensional dynamical system

ξ̇ = F(ξ), (3.7)

where F is a differentiable function that governs the time evolution of ξ . In the present
application ξ represents the Galerkin-truncated velocity field and F the time evolution
given by the appropriately truncated version of (3.1) in terms of a finite number of coupled
ordinary differential equations. Let ξ0 correspond to the operating point, then the linearised
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dynamics close to ξ0 are given by
δ̇ξ = JFδξ, (3.8)

where JF = JF(ξ0) is the Jacobian of F at ξ0. The tangent space at ξ0 is then spanned by
the right eigenvectors {vi}(i=1,...,n) of JF. Since JF is in general non-normal, the {vi} are
not mutually orthogonal, i.e. (vi, vj) /= δij, with (·, ·) being an inner product on the tangent
space at ξ0. Hence, a control procedure that overlaps with the unstable directions may also
overlap with the stable and the marginal ones. However, the dual basis {v∗

i }, defined as
the set of linear maps from the tangent space at ξ0 to C satisfying v∗

i (vj) = δij satisfies
the desired bi-orthogonality constraints by definition (vi, v

∗
j ) := v∗

i (vj) = δij. If we have
k < n unstable directions, v1, . . . , vk, a control that is constructed as a linear combination
of the duals v∗

1 , . . . , v
∗
k will be orthogonal to all stable and marginal directions. More

specifically, the purpose of a feedback control with control input f (ξ) is to stabilise ξ0,
that is, to ensure that all eigenvalues of JF + Jf , where Jf = Jf (ξ0) is the Jacobian of f
at ξ0, have negative or zero real parts. For reasons of clarity and conciseness, we assume
from now on that JF has one expanding direction ve, as the generalisation to more unstable
directions is straightforward. If we construct f to act along v∗

e such that the controlled
dynamical system is given by

ξ̇ = F(ξ) + f (ξ) = F(ξ) + κ(ξ)v∗
e , (3.9)

where κ is a function of ξ implementing the feedback, then the controlled linearised system
is

δ̇ξ = (
JF + Jf

)
δξ = (JF + ve ⊗ ∇κ) δξ, (3.10)

where ∇κ denotes the gradient of κ at ξ0 and we use tensor product notation for Jf , that is
(a ⊗ b)ij := aibj for two generic vectors a and b. Since the dimension of the tangent space
at any point equals that of the underlying manifold, we can expand δξ at any point in time
in terms of the basis vi

δξ(t) =
∑

i

ai(t)vi, (3.11)

where ai are time-dependent coefficients. Equation (3.10) becomes

∑
i

ȧi(t)vi = (JF + ve ⊗ ∇κ)
∑

i

ai(t)vi =
∑

i

(
λi +

∑
j

kjve ⊗ vj

)
ai(t)vi

=
∑

i

λiai(t)vi +
∑

i,j

ai(t)kj(v
∗
j , vi)ve

=
∑

i

λiai(t)vi +
∑

i,j

ai(t)kjδijve

=
∑
i /= e

λiai(t)vi +
(
λeae(t) +

(∑
i

kiai(t)

))
ve, (3.12)

where λi are the eigenvalues of JF and kj = (∇κ∗, vj). By taking the inner product of both
sides of this equation with v∗

e it can be seen that ξ0 is stabilised if ki = 0 for i /= e and if

λe + ke ≤ 0, (3.13)

that is, the gradient of the feedback function κ at the operating point must be colinear
with the unstable direction. In the present example of channel flow, the control input κ is
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determined by the choice of observable. An observable that is quadratic in the velocity
field will result in ∇κ being colinear with the operating point. If the latter then has a
significant overlap with the unstable direction, the choice of observable may work well.
Close inspection of the unstable direction can yield further information, for example if the
instability is mostly in span- or wall-normal directions, the cross-flow energy is a good
observable.

For time-independent operating points, i.e. equilibria of (3.7), with one unstable
eigenmode, the implementation of such a control procedure results in replacing the unit
vector ex on the right-hand side of (3.3) with the dual of the solution’sunstable eigenmode,
v∗

e , which has been normalised to be a unit vector. The generalisation to more unstable
directions is straightforward. For travelling-wave or periodic solutions, the implementation
is slightly more complicated as the time dependence of the target state has to be accounted
for. For a wave travelling in the streamwise direction with speed c the adjoint-based control
strategy is given by (3.4)–(3.5), with (3.3) replaced by

∂tu + u · ∇u + ∇p − 1
Re

Δu +
(

dP
dx

)
0

ex = 2
R0

(
R(t)
R0

− 1
)

σc(t)(v∗
e ), (3.14)

where σc is the shift operator in the streamwise direction

σc(t) : u(x, y, z) �→ u(x + ct, y, z). (3.15)

Shifts in spanwise direction can be accounted for analogously.
Projections onto bi-orthogonal bases, stable and unstable eigenmodes used in the

feedback strategy proposed here being only one example thereof, are used in controlling
high-dimensional systems where the algorithm requires a reduction of the number of
degrees of freedom to become viable (Antoulas, Sorensen & Gugercin 2001; Lauga &
Bewley 2003, 2004; Åkervik et al. 2007; Ehrenstein & Gallaire 2008; Henningson &
Åkervik 2008; Barbagallo et al. 2009). There, a high-dimensional system is modelled
by projection onto a lower-dimensional subspace spanned by an appropriately chosen set
of basis modes, and a control strategy for the reduced system is calculated. In order for
this control strategy to work on the full system, the subspace must, of course, include
all unstable eigenmodes, but more importantly also the set of stable eigenmodes that are
triggered by the control. Ehrenstein & Gallaire (2008) successfully stabilised an unstable
flow by projection onto a subset of stable eigenmodes; however, this is not a strategy that
works generically, and sometimes other bases such as proper orthogonal decomposition
modes constitute a better choice (Rowley 2005; Rowley & Dawson 2017).

We point out that the method defined in (3.14) is in general not experimentally
applicable. First, it requires information on the invariant solution and its stable and
unstable directions, which is usually not attainable in experiments. Second, the applied
forcing cannot be realised in practise, as it will need to act on the entire flow field and
at all scales. Here, we introduce this method as a simple and clear means to discuss the
limitations of global 1-D feedback control in general and to specifically emphasise (i) what
in principle needs to be done in order to stabilise an invariant solution, (ii) what difficulties
arise, in particular concerning the choice of observable, (iii) which obstacles need to
be overcome when considering to devise feedback control methods aimed at finding
and continuing invariant solutions in parameter space. Before proceeding to use these
methods to stabilise simple invariant solutions and a subsequent discussion of general
issues concerning the application of linear feedback control in this context, we briefly
outline the numerical method and then describe the target states.
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4. Datasets and numerical details

Direct numerical simulations (DNS) of channel flow have been carried out using
the pseudospectral open-source code channelflow2.0 (Gibson 2014; Gibson et al.
2019). The code numerically solves the incompressible Navier–Stokes equations (3.1) in
a rectangular domain with periodic boundary conditions in the streamwise and spanwise
(x, z) directions, and no-slip boundary conditions in the wall-normal (y) direction. The
spatial discretisation is obtained through Fourier expansions in x- and z-directions using
Nx and Nz collocation points, respectively, and a Chebyshev expansion in the y-direction
on Ny points. Aliasing errors in the periodic directions are removed by 2/3-Galerkin
truncation (Orszag 1971b). A third-order semi-implicit Adams–Bashforth scheme is used
for the temporal discretisation. The code has been adapted to run the controlled simulations
as the core dynamical system in order to make use of the methods for numerical stability
analysis provided in channelflow2.0. As discussed in the Introduction, the aim
here is to stabilise the simplest invariant solutions with one unstable direction, that is,
travelling-wave-type edge states in minimal flow units. For this reason all simulations in
this study are carried out in a short computational domains of size Lx/h × Ly/h × Lz/h =
2π × 2 × 2π and Lx/h × Ly/h × Lz/h = 2π × 2 × π. Further details of all simulations
are summarised in table 1.

The construction of the adjoint feedback procedure requires access to the stable,
neutral and unstable subspaces of the uncontrolled system. The corresponding eigenmodes
of the Jacobian of the uncontrolled system were calculated by Arnoldi iteration and
marginal and stable eigenmodes were subsequently used to construct the dual basis.
Stability analyses of the pressure-controlled system were also carried out using the Arnoldi
method.

4.1. Operating points: travelling waves in channel flow
The invariant solutions we wish to stabilise are travelling waves with one unstable
direction, they are edge states in minimal flow units, which have been obtained by means
of edge tracking in simulations with constant pressure gradient. In general, constant-flux
simulations with variable pressure gradient are closer to experimental conditions,
especially in small domains. For travelling-wave solutions this issue is mitigated as they
are relative fixed points and thus have no dynamics. As such, travelling-wave solutions
obtained with the constant-flux constraint result in a constant pressure gradient.

The structures differ in their spatial localisation and their degree of symmetry. The first
one, TW1, has been calculated at Re0 = 1394 in a domain of size Lx/h × Ly/h × Lz/h =
2π × 2 × 2π (Zammert & Eckhardt 2014) and is an edge state in the full space. It is
localised in the spanwise direction, with two low-speed streaks accompanied by four
vortices and is mirror symmetric about the midplane. The second one, TW-sym, has
been obtained by a Newton–Krylov search at Re0 = 1010 from an ECS in the domain
Lx/h × Ly/h × Lz/h = 2π × 2 × π that had originally been calculated with constant flow
rate (Zammert & Eckhardt 2015). It consists of two high-speed streaks, four low-speed
streaks and eight vortices and is not localised in the spanwise direction. Visualisations
of the streamwise-averaged structures and their respective leading unstable eigenmode
are presented in figures 4 and 5, respectively, where the colour coding represents the
streamwise velocity component and the superimposed arrows the cross-flow.

TW-sym is an edge state in a symmetry-invariant subspace, that is, a subspace invariant
under the action of a symmetry group, only. Calculations of TW-sym are therefore carried
out in a subspace that enforces mirror symmetry about the midplane (y = 0) and in the
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id Lx/h Ly/h Lz/h Nx Ny Nz control type observable Re0 μ ‖δu‖2/‖u∗‖2

TW1-A1 2π 2 2π 32 49 48 dP/dx L2-norm 1395 2 × 105 0.11
TW1-A2 2π 2 2π 32 49 48 dP/dx L2-norm 1395 6 × 105 0.11
TW1-A3 2π 2 2π 32 49 48 dP/dx L2-norm 1395 106 0.11
TW1-A-stab 2π 2 2π 32 49 48 dP/dx L2-norm 1395 0 − 106 4 × 10−5

TW1-B1 2π 2 2π 32 49 48 dP/dx Cf 1395 2 × 105 0.11
TW1-B2 2π 2 2π 32 49 48 dP/dx Cf 1395 106 0.11
TW1-B3 2π 2 2π 32 49 48 dP/dx Cf 1395 3 × 106 0.11
TW1-C1 2π 2 2π 32 49 48 v∗

e L2-norm 1395 106 0.11
TW1-C2 2π 2 2π 32 49 48 v∗

e L2-norm 1395 107 0.11
TW1-D1 2π 2 2π 32 49 48 v∗

e Ecf 1395 109 0.11
TW1-D2 2π 2 2π 32 49 48 v∗

e Ecf 1395 1010 0.11
TW-sym-A1 2π 2 π 48 65 48 dP/dx L2-norm 1010 104 0.06
TW-sym-A2 2π 2 π 48 65 48 dP/dx L2-norm 1010 5 × 104 0.06
TW-sym-A3 2π 2 π 48 65 48 dP/dx L2-norm 1010 105 0.06
TW-sym-B1 2π 2 π 48 65 48 dP/dx Ecf 1010 3 × 105 0.06
TW-sym-B2 2π 2 π 48 65 48 dP/dx Ecf 1010 5 × 105 0.06
TW-sym-B3 2π 2 π 48 65 48 dP/dx Ecf 1010 6 × 105 0.06
TW-sym-C1 2π 2 π 48 65 48 v∗

e L2-norm 1010 3 × 105 0.06
TW-sym-C2 2π 2 π 48 65 48 v∗

e L2-norm 1010 3.5 × 105 0.06
TW-sym-C3 2π 2 π 48 65 48 v∗

e L2-norm 1010 4.75 × 105 0.06
TW-sym-C4 2π 2 π 48 65 48 v∗

e L2-norm 1010 5.25 × 105 0.06
TW-sym-C5 2π 2 π 48 65 48 v∗

e L2-norm 1010 6 × 105 0.06

TABLE 1. Simulation parameters and observables. The Reynolds number is Re0 = U0 h/ν, where U0 is the laminar centreline velocity, h = Ly/2 half
the domain height, ν the kinematic viscosity, μ the control strength as in (3.5) and δu the perturbation about the respective operating point u∗. The
adjustment rate in (3.5) is γ = 1 in all cases. The control type dP/dx refers to the pressure-based control given in (3.3)–(3.6), while that labelled v∗

e
refers to the control along the dual vector of the unstable direction implemented according to (3.5), (3.6) and (3.14). The number of Fourier modes in
the x and z-directions, Nx and Nz, contain the dealiased modes.
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FIGURE 4. Visualisation of the edge states showing the deviation of the streamwise average
of the streamwise velocity component, 〈u〉x from the laminar profile. The cross-flow (v, w) is
indicated by the superimposed arrows. (a) Edge state at Re0 = 1394, (b) edge state at Re0 = 1010
calculated in its symmetry-invariant subspace.

spanwise direction about the plane z = π/2

sy

(
(u, v, w)t(x, y, z)

) = (u,−v, w)t(x,−y, z), (4.1)

sz
(
(u, v, w)t(x, y, z)

) = (u, v,−w)t(x, y,−z), (4.2)

where the superscript denotes the transpose. Invariant solutions obtained in
symmetry-invariant subspaces are also solutions with respect to the unrestricted dynamics,
where the number of unstable directions is usually higher (Duguet et al. 2008b; Kreilos
& Eckhardt 2012; Avila et al. 2013). In this context it is therefore of interest to assess the
effect of symmetry-invariant calculations on feedback stabilisation. For this reason, we
also carried out controlled simulations of TW1 within its symmetry-invariant subspace.
More precisely, the symmetry-invariant subspaces here are subspaces of the full domain
invariant under the transformations defined in (4.1) and (4.2) for TW-sym or, in case of
TW1, in (4.1) only.
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FIGURE 5. Visualisation of the unstable eigenmodes of TW1 (a) and TW-sym (b) showing the
deviation of the streamwise average of the streamwise velocity component, 〈u〉x from the laminar
profile. The cross-flow (v, w) is indicated by the arrows.

5. Stabilisation

5.1. Pressure-based control
Figure 6 presents phase-space trajectories of the controlled system for perturbations about
TW1 and TW-sym with ‖u‖2, the friction factor Cf = 2τw/(ρU2

0), where τw is the shear
stress at the bottom wall, and the cross-flow energy

Ecf (t) = 1
Lx LyLz

∫ Lx

0

∫ Ly/2

−Ly/2

∫ Lz

0
dx dy dz

(
v2(x, y, z, t) + w2(x, y, z, t)

)
, (5.1)

as functions of the control parameter R, i.e. series TW1-A, TW1-B, TW-sym-A and
TW-sym-B in table 1. Figures 6(a) and 6(b) correspond to results for series TW1-A
and TW1-B, respectively and figures 6(c) and 6(d) for TW-sym-A and TW-sym-B,
respectively. Figures 6(a)–6(d) contain datasets from simulations carried out with different
values of the control strength μ indicated by the colour gradient, where darker colours
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FIGURE 6. Phase-space trajectories for three different values of the control strength μ according
to table 1 and different observables obtained from controlled DNSs according to (3.3)–(3.6).
(a) TW1, L2-norm; (b) TW1, friction factor Cf ; (c) TW-sym, L2-norm; (d) TW-sym, cross-flow
energy Ecf . All calculations targeting TW-sym have been carried out in the symmetry-invariant
subspace introduced in § 4.

correspond to higher values of μ and hence stronger control. The corresponding control
lines, which must intersect at the operating point, are shown in black. As can be seen from
the data shown in the two panels, the feedback control results in phase-space trajectories
where the perturbed edge state is driven towards the operating point for all observables.
In the case of TW1-A, the trajectories resemble those from the model system discussed in
§ 3.1 and shown in figure 2. For the friction factor (TW1-B), the trajectories first approach
intermediate states on the control line and subsequently follow the control line towards
the operating point. For TW-sym-A the trajectories show large excursions and eventually
return to the operating point, while for TW-sym-B the dynamics evolves along the control
lines. We note that the trajectory passing through the point R = 0 as in figure 6(a)
does not necessarily result in laminar flow. At this point the control input cancels the
reference pressure gradient, resulting in an instantaneously vanishing production term for
the deviations of the laminar profile. However, deviations from the laminar profile can still
be present in the flow. Relaminarisation may occur if the time scale at which the control
acts is much larger than the time scale for the free decay of the cross-flow.

The simulations shown in figure 6 reached close vicinity of the operating point after
very short simulation times (approximately 20 time units for norm-controlled simulations
and approximately 50 time units for friction-controlled simulations) of both TW1 and
TW-sym. However, if the controlled system is evolved for very long times, the trajectories
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FIGURE 7. Time evolution of the control observables (a) and the cross-flow energy (b) for the
pressure-controlled simulations with target state TW1. Dynamics controlled with respect to the
L2-norm with μ = 106 and with respect to Cf with μ = 3 × 106 shown in red (grey) and blue
(dark grey), respectively.

leave the operating point again. This is demonstrated by the time evolution of ‖u‖2 shown
in red (light grey) and Cf shown in blue (dark grey) in figure 7(a) for the operating
point TW1. A deviation of ‖u‖2 from the reference value is visible after approximately
1000 time units, while Cf appears to remain constant. Figure 7(b) presents the time
evolution of the cross-flow energy with v and w being the wall-normal and spanwise
components of u = (u, v, w). The control is unable to prevent the dynamics from escaping
from the operating point towards the laminar fixed point. Interestingly, this happens on
a much shorter time scale compared to the departure of the control observables from
their target values. Similar observations can be made for the dynamics of TW1 controlled
with respect to Cf , for TW-sym and for controlled simulations of TW1 carried out in its
symmetry-invariant subspace (not shown).

The results shown in figure 7 suggest the presence of a residual instability in the
controlled simulations. According to the discussion in § 2.2, an instability in the controlled
system could result from the control being too weak to completely remove the original
instability, from the control being orthogonal to the unstable direction as would be the case
for strictly periodic instabilities or from an undesired destabilising effect of the control
on the stable directions. The first possibility can be ruled out by an exhaustive parameter
scan. The second possibility does not apply either, as the unstable directions have non-zero
streamwise mean as discussed in § 4.1 and thus overlap with the control. In what follows
we therefore investigate in detail how the control alters the tangent space structure of the
chosen invariant solutions.

5.1.1. Effect of the control on stable and unstable directions
In order to quantify the effect of the control on the tangent space of the invariant

solutions investigated here, stability analyses of TW1 with respect to the coupled system
consisting of DNS and feedback control as in (3.3)–(3.6) have been carried out, see series
TW1-A-stab listed in table 1. Figure 8 shows the eigenvalues of the Jacobian at TW1
for the free dynamics and for the L2-norm controlled system for different values of the
control strength μ. As can be seen, the free dynamics is such that TW1 has one unstable
direction as expected for an edge state. For low values of μ the corresponding single
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FIGURE 8. Spectrum of the Jacobian at TW1 for the combined system DNS with feedback
control according to (3.3)–(3.6) as a function of the control strength μ. The thick black dots
correspond to the uncontrolled system and the decreasing colour gradient indicates increasing
values of μ. The positive real eigenvalue corresponding to the original instability decreases
with increasing μ and eventually changes sign by jumping from 0.005 to −0.0025 on the real
axis. With increasing μ a new feedback-induced instability occurs, represented by the complex
eigenvalues with positive real parts.

positive real eigenvalue decreases with increasing μ. At the same time, a pair of complex
conjugate eigenvalues with negative real part move closer to the line where the latter
vanishes. Eventually, their real part becomes positive, indicating the presence of a new
unstable direction. For a small set of parameters, both old and new unstable directions are
present. That is, even though the original unstable direction is removed for large enough
μ, the control indeed destabilises stable directions of the uncontrolled system. The neutral
directions associated with continuous shift symmetries remain unaffected, as can be seen
by considering the eigenvalues with zero real parts in figure 8.

Willis et al. (2017) also calculated eigenvalues and Floquet exponents for their
successfully stabilised invariant solutions. In both cases there are stable eigenvalues whose
real parts move closer to zero in the controlled system, see figure 3(a) of Willis et al.
(2017) for the spectrum of a travelling wave, and figure 4(c) for the Floquet exponents of
a stabilised periodic orbit. In summary, a simple 1-D feedback control can have adverse
effects on the stable directions, whereby the real parts of the stable eigenvalues tend to
zero and may even become positive, as shown here. This precludes the application of
the pressure-based feedback control to the search for new invariant solutions in channel
flow following the procedure proposed by Willis et al. (2017) for pipe flow, as without
any information about eventual overlaps between the control and the stable directions
it is difficult to know a priori if such a feedback-induced instability indeed occurs.
Hence a black-box application of such feedback strategies without good knowledge of
the coefficients is not guaranteed to work. Before returning to this point in more detail in
the following section, we briefly discuss the experimental applicability of this method in
terms of turbulence control.

5.1.2. Potential experimental applicability
Although the feedback control does not stabilise the operating point, it is able to find

global target observables connected with the streamwise component of the flow, which
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do not require knowledge of all velocity components and are thus easier accessible
experimentally. This suggests that the proposed pressure-based feedback control can be
used to confine turbulent dynamics to a region of phase space selected by a given value
of e.g. the friction factor and to prevent large fluctuations in kinetic energy or drag.
Preliminary results for a wall-suction-based feedback control for plane Couette flow
(Linkmann & Eckhardt 2019) show that this is indeed the case, at least in small domains.
This suggests that further research into the effect of pressure-based linear feedback on
the global properties of a flow may be worthwhile pursuing. In order to fully assess the
potential experimental viability of such an approach, it is of paramount importance to
carry out numerical simulations in domains with large streamwise extent, far beyond the
minimal flow units used in the present study.

5.2. Adjoint control
Figure 9 shows phase-space trajectories with respect to the L2-norm and the cross-flow
energy and time series of the latter obtained with the control implemented according to
(3.14) and (3.4)–(3.6) for TW1, i.e. series TW1-C and TW1-D summarised in table 1.
Figures 9(a) and 9(c) correspond to DNS controlled with respect to L2-norm and
figures 9(b) and 9(d) to controlled runs with respect to the cross-flow energy. As can be
seen from the phase-space trajectories in figures 9(a) and 9(b), all controlled simulations
approach the targeted values of the chosen observables, as has been the case for the
streamwise-invariant control discussed in the beginning of § 5. The timeevolution of
the cross-flow energy (figures 9c and 9d) indicates that the controlled system now also
approaches the actual operating point and stays in its vicinity for approximately 200 time
units for the L2-norm control and for over 300 time units for cross-flow control. However,
eventually the state-space trajectory leaves the operating point again, as can be seen in the
time evolution shown in figure 9(c), for instance. The reason for this is most likely due to
the choice of observable and thus with the control input. According to § 3.2, the gradient
of the input function κ at the operating point must be colinear with the unstable direction
to achieve stabilisation. The results here suggest the presence of small overlaps. We will
come back to this point later.

Results from controlled simulations targeting TW-sym, all of which have been carried
out in the symmetry-invariant subspace introduced in § 4, that is, series TW-sym-C in
table 1, are presented in figure 10. Here, stabilisation has been achieved using the L2-norm
as an observable, as can be seen from the phase-space trajectories of runs TW-sym-C3,
TW-sym-C4 and TW-sym-C5 in figure 10(a) and the corresponding evolution of the
cross-flow energy in figure 10(c). Compared with the controlled dynamics targeting TW1
carried out in the full space and shown in figure 9, the approach to the operating point is
much slower, but the stabilisation is complete. For low values of the control strength μ,
i.e. for runs TW-sym-C1 and TW-sym-C2, the controlled dynamics gets trapped into new
invariant tori, where the mean values of the L2-norm and the cross-flow energy depend on
μ as shown by the phase-space plots and the time evolution of the cross-flow energy in
figures 10(c) and 10(d). In all cases the phase-space trajectories shown in figure 10 remain
in the vicinity of the control lines, that is, the control procedure confines the dynamics to
regions phase space close to the chosen control lines.

According to the discussion in § 3.2, the success of the adjoint method depends on
the choice of feedback function κ , which in turn depends on the choice of observable.
Concerning the choice of observable, several observations can be made from a comparison
of the visualisations of the ECS in figure 4 and those of their respective unstable directions
shown in figure 5. For both structures we note that the cross-flow varies very little between
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FIGURE 9. TW1: phase-space trajectories (a,b) and corresponding evolution of the cross-flow
energy (c,d) for two different values of the control strength μ for the adjoint-based control
procedure given by (3.14) and (3.4)–(3.6) with respect to the L2-norm (a,c, series TW1-C) and
the cross-flow energy (b,d, series TW1-D). The control lines are indicated in black.

the ECS and its unstable direction, while clear differences are visible in the streamwise
velocity component at least for TW1. This suggests that the cross-flow energy should work
better than the L2-norm as a control observable for TW1, which is indeed the case, as can
be seen by comparison between figures 9(c) and 9(d). For TW-sym the L2-norm worked
well. Finally, we note that stabilisation through the adjoint-based feedback strategy could
not be achieved using the friction factor Cf as an observable. Since Cf is linear in the
velocity field, its gradient at the operating point is a constant vector and its dual hence
not orthogonal to all stable directions. The high degree of symmetry enforced by the
calculations in the symmetry-invariant subspace facilitates stabilisation, as it only allows
instabilities that are shift-and-reflect symmetric, as is the target state itself. As such, an
overlap between the gradient of κ at the operating point and the unstable direction is much
easier to achieve, as they share the same symmetries. This sensitivity highlights some of
the limitations of global 1-D feedback control to stabilise exact coherent structures.

A few words on the performance limits, convergence and robustness of the control
protocol are in order. Firstly, as the control procedure is based upon the linearised
Navier–Stokes equations, it is designed to work in a neighbourhood of the operating
point. In order to assess the performance limit of the proposed controller, we carried
out a parameter scan varying the magnitude of the random perturbation δu at a fixed
value of μ. We found that the control protocol was successful for ‖δu‖2/‖u∗‖2 < 0.25,
where u∗ denotes the operating point (not shown). Second, the dual unit vectors v∗

e used
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FIGURE 10. TW-sym: phase-space trajectories (a,b) and corresponding evolution of the
cross-flow energy (c,d) for different values of the control strength μ for the adjoint-based control
procedure given by (3.14) and (3.4)–(3.6) with respect to the L2-norm ((a,c) TW-sym-C3-C5,
(b,d) TW-sym-C1-C2 of table 1). The green ellipsoids in (b) shows new limit cycles/invariant
tori in the controlled dynamics of TW-sym-C1 and TW-sym-C2. These are also shown in the
insets in energy input (I) – dissipation (D) coordinates. The control lines are indicated in black.
All calculations have been carried out in the symmetry-invariant subspace introduced in § 4.

in the calculations have been obtained approximatively by calculating the dual basis of
a subspace spanned by the unstable eigenmode, the neutral eigenmodes and the first
40 stable eigenmodes, ordered by decreasing Lyapunov exponent. For a smaller number
of unstable eigenmodes, the controlled dynamics did not recover edge state. Instead, it
resembles that obtained for weak values of the control strength shown in figures 10(b)
and 10(d), i.e. stable oscillatory solutions of the dynamical system given by (3.14)
and (3.4)–(3.6) were obtained. Using a larger number of stable modes results in faster
stabilisation as shown in figure 11 for example calculations of TW-sym-C3 using dual
bases calculated with respect to 40, 50 and 60 stable eigenmodes. Third, calculations
on finer grids require a more accurate calculation of the dual basis, i.e. with respect
to a higher-dimensional approximation of the solution’s stable subspace. For instance,
increasing the resolution from 48 to 64 Fourier modes in the homogeneous directions
required the dual basis to be calculated with respect to at least 80 stable directions to
stabilise TW-sym (not shown).
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FIGURE 11. Phase-space trajectories (a) and corresponding evolution of the cross-flow
energy (b) for TW-sym-C3 using the control procedure given by (3.14) and (3.4)–(3.6) with
respect to the L2-norm. The dual basis used in the control law has been calculated with respect
to 40 (black), 50 (blue/dark grey) or 60 (red/light grey) stable eigenmodes.

6. Discussion and conclusions

In this paper we considered the application of linear feedback control as a strategy to
stabilise invariant solutions of the Navier–Stokes equations. As an example of a canonical
shear flow with a subcritical transition to turbulence, we considered channel flow at
Reynolds numbers below the onset of linear instability at Re = 5772.22. We focussed
on the simplest possible problem, the stabilisation of edge states in minimal flow units,
here, travelling waves with one unstable direction. Using explicitly constructed feedback
strategies, the aim of the study was to point out and discuss the issues that arise when
applying linear feedback control in attempts to stabilise exact coherent structures. We
devised two feedback control procedures. The first one is pressure based, and thus in
principle experimentally viable. The second one is constructed to remain orthogonal to
the contracting and neutral subspaces of the target state’s tangent space. As it cannot be
implemented in the laboratory, it mainly serves to highlight the complications that arise,
in particular in comparison with the pressure-based method. Simulations of the controlled
systems were carried out for two target states that differ in their respective degrees of
spanwise localisation. In case of the de-localised state, all calculations were carried out in
its symmetry-invariant subspace.

The pressure-based control strategy was inspired by the work of Willis et al. (2017)
on feedback stabilisation of edge states in pipe flow, where the viscosity was adjusted
as a function of energy-type observables. In order to obtain a control procedure that, in
principle, can be carried out experimentally, we proposed to adjust the pressure gradient
instead of the viscosity as a function of either energy-type observables or the friction
factor. Even though the control resulted in the dynamics approaching the respective target
values of the observables used in the control strategy, the actual edge states were not
stabilised as the control procedure has a destabilising effect on some of the structures’
contracting directions. This highlights that the success of similar methods such as that
proposed by Willis et al. (2017) strongly depends on the system parameters and cannot
be guaranteed to work in general. Stabilisation can be achieved if the control acts along
the dual vector of the original unstable direction, that is, on a hyperplane orthogonal
to all stable and neutral directions. Here, it was found that care must be taken in the
choice of observable, because the latter results in different control input terms whose
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gradients may or may not overlap with the stable directions. However, we found that for
standard energy-type observables such as the L2-norm or the energy of the transverse
fluctuations, only the de-localised and highly symmetric target state was stabilised, while
for the spanwise localised target states the state-space trajectory of the controlled system
remained very close to the target state for an extended time interval. This emphasises the
limitations of global 1-D feedback in the present context.

Apart from the observations summarised above, a few further issues deserve further
attention in this context as they present obstacles that need to be addressed when designing
linear closed-loop control strategies for the stabilisation of exact coherent structures.

First, domains with periodic directions allow continuous symmetries in form of shifts
along these directions, resulting in neutral modes with zero mean given by the derivatives
of the target state in these directions, see e.g. Wolfe & Samelson (2006). For the specific
pressure-driven feedback this complication does not occur as the pressure gradient is
constant in both streamwise and spanwise directions and therefore orthogonal to all modes
with zero mean. However, generally speaking, this issue needs to be taken into account in
the design of linear control strategies applied to systems with continuous symmetries, in
particular as neutral modes can be quickly destabilised by the control. It may arise, for
instance, in control strategies that directly modulate the flow. The adjoint-based method
takes care of this problem by construction, with the important drawback that they can
only be used in numerical simulations. This raises the general question as to how to
design a practically relevant control strategy in systems with continuous symmetries that
either leaves the neutral subspace unaffected or stabilises also the neutral modes of the
uncontrolled system.

Second, a successful control strategy should in principle be applicable for a range of
Reynolds numbers. Considering specifically the stabilisation of edge states in the wider
context of turbulence control, the fact that edge states in plane Poiseuille flow disappear
at Reynolds numbers above the laminar stability threshold limits the applicability of
the methods proposed here to unsteady, but not turbulent, channel flow at subcritical
Reynolds numbers. However, similar complications arise also for shear flows like pipe
or plane Couette flow where the laminar profile is linearly stable at all Re. An important
challenge for the application of linear closed-loop control to stabilise invariant solutions
is connected with the contraction of the basins of attraction. In pipe or plane Couette
flow, the basin of attraction of the laminar profile contracts with increasing Re. A similar
effect occurs for a stabilised exact coherent structure, its basin of attraction will contract
with increasing Re and domain size. For the controlled system, the situation is even
more challenging as the increasing degree of instability requires higher feedback gain,
resulting potentially in a further contraction of the basin of attraction of the invariant
solution.

Third, flow control is ultimately focussed on questions of practical relevance. In the
present context, this includes the combination of feedback control with classical methods
for finding and continuing invariant solutions. For linear control to be practically relevant,
two conditions have to be satisfied: (i) the target state has to lie in the ergodic region of
state space, i.e. it should be approached closely by turbulent trajectories of the open-loop
flow and (ii) turbulent trajectories of open-loop flow should approach the target state to
within a distance smaller than the size of its region of attraction for closed-loop flow on
practically accessible time scales.

Having discussed the challenges and limitations of global 1-D feedback in the context
of invariant solutions, we now briefly mention applications where such strategies would
(i) either be applicable as they are or with minor modifications, or (ii) where stabilisation
of specific invariant solutions would be very useful.
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Even though the pressure-based method fails as a means to stabilise invariant solutions,
it is shown to target set values of the L2-norm, the cross-flow energy or the friction factor.
As such, pressure-based dynamic feedback may be a useful tool to accelerate or prevent
relaminarisation events. Since feedback strategies alter the stability of an exact solution to
the Navier–Stokes equations, they cannot only be used to stabilise an operating point, but
also to further destabilise it, if so desired, or to confine the dynamics to a certain region in
phase space. This may be useful in systems where there is an interest in avoiding certain
flow states, e.g. those with enhanced drag. Here, the issues discussed earlier are mitigated
by the fact that the controller only needs to be efficient when the state-space trajectory
approaches a small neighbourhood of the undesired state.

Recent results from numerical simulations of channel flow suggest that extreme
fluctuations in the streamwise component of the wall shear stress are less likely if the
flow is maintained by prescription of a constant flow rate compared with forcing through
a constant pressure drop or a fixed energy input (Quadrio, Frohnapfel & Hasegawa 2016);
however, the differences concerned rare events. Dynamic feedback could be a possibility
to avoid extreme fluctuations more effectively. In particular for shear flows with a pair of
exact coherent structures born in a saddle-node bifurcation, typical extreme events should
correspond to the state-space trajectory following the heteroclinic connection from the
lower to the upper branch. Stabilising states on the lower branch is an efficient way to
suppress such extreme events. Farazmand & Sapsis (2019) showed that extreme events
in 2-D Kolmogorov flow can be avoided by dynamically regulating the dynamics of
certain Fourier modes at the driving scale. Preliminary results show that a variant of
the pressure-based feedback strategy proposed here can be applied to damp transverse
fluctuations in plane Couette flow through adjustable wall suction (Linkmann & Eckhardt
2019). This calls for further investigations using in particular the pressure-based control
strategy.
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