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In previous computational fluid dynamics studies of breaking waves, there has
been a marked tendency to severely over-estimate turbulence levels, both pre- and
post-breaking. This problem is most likely related to the previously described (though
not sufficiently well recognized) conditional instability of widely used turbulence
models when used to close Reynolds-averaged Navier–Stokes (RANS) equations in
regions of nearly potential flow with finite strain, resulting in exponential growth
of the turbulent kinetic energy and eddy viscosity. While this problem has been
known for nearly 20 years, a suitable and fundamentally sound solution has yet
to be developed. In this work it is demonstrated that virtually all commonly used
two-equation turbulence closure models are unconditionally, rather than conditionally,
unstable in such regions. A new formulation of the k–ω closure is developed which
elegantly stabilizes the model in nearly potential flow regions, with modifications
remaining passive in sheared flow regions, thus solving this long-standing problem.
Computed results involving non-breaking waves demonstrate that the new stabilized
closure enables nearly constant form wave propagation over long durations, avoiding
the exponential growth of the eddy viscosity and inevitable wave decay exhibited by
standard closures. Additional applications on breaking waves demonstrate that the new
stabilized model avoids the unphysical generation of pre-breaking turbulence which
widely plagues existing closures. The new model is demonstrated to be capable of
predicting accurate pre- and post-breaking surface elevations, as well as turbulence
and undertow velocity profiles, especially during transition from pre-breaking to
the outer surf zone. Results in the inner surf zone are similar to standard closures.
Similar methods for formally stabilizing other widely used closure models (k–ω and
k–ε variants) are likewise developed, and it is recommended that these be utilized in
future RANS simulations of surface waves. (In the above k is the turbulent kinetic
energy density, ω is the specific dissipation rate, and ε is the dissipation.)
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1. Introduction
Among the most ubiquitous phenomena seen in natural aquatic environments,

coastal or otherwise, are free-surface waves. Such waves give rise to a highly diverse
range of complexity in terms of their fluid mechanics, with the bulk region beneath
non-breaking waves corresponding to nearly potential flow, bordered by a thin (usually
turbulent) boundary layer at the bottom and often a highly complicated multi-phase
(air and water) turbulent surf zone further shoreward. With the growth of computer
power, computational fluid dynamics (CFD) is increasingly being used to study various
free-surface wave processes, though the range of complexity mentioned above can
complicate applications with a single model. Problems involving the computational
study of surface waves commonly include their simple propagation (e.g. Paulsen
et al. 2014; Devolder, Rauwoens & Troch 2017), their interaction with structures (e.g.
Higuera, Lara & Losada 2013; Chen et al. 2014; Paulsen et al. 2014; Jacobsen, van
Gent & Wolters 2015; Schmitt & Elsaesser 2015; Hu, Greaves & Raby 2016) or the
highly complex of phenomena of breaking waves and surf zone dynamics.

Some of the earliest studies involving the computational study of breaking waves
include Sakai et al. (1986), who used the marker-and-cell (MAC) method developed
by Harlow & Welch (1965), and Lemos (1992), who was among the first to apply
the volume of fluid method (VOF), originally developed by Hirt & Nichols (1981).
Perhaps the most modelled experiments are the spilling and plunging breaking cases of
Ting & Kirby (1994, 1996). These have been widely used as validation for large eddy
simulation (LES) models (e.g. Watanabe & Saeki 1999; Hieu, Katsutohi & Ca 2004;
Christensen 2006), smooth particle hydrodynamics (SPH) models (e.g. Shao 2006;
Makris, Memos & Krestenitis 2016) as well as those based on Reynolds-averaged
Navier–Stokes (RANS) equations coupled with various two-equation turbulence
closure models, the focus of the present study. Such studies include those utilizing
closures within both the k–ε (e.g. Lin & Liu 1998; Bradford 2000; Xie 2013; Hsu
et al. 2015; Brown et al. 2016) and k–ω (e.g. Mayer & Madsen 2000; Jacobsen,
Fuhrman & Fredsøe 2012; Jacobsen, Fredsøe & Jensen 2014; Brown et al. 2016)
families (k being the turbulent kinetic energy density, ω the specific dissipation rate
and ε the dissipation).

In the RANS model studies of breaking waves mentioned above, there has
been a marked and collective tendency to predict turbulence levels that are much
higher than have been measured. Such over-predicted turbulence is often even most
apparent prior to breaking, where (in contrast to experimental findings and intuition)
computed turbulent kinetic energy levels can be the same order of magnitude as
within the surf zone (see e.g. Lin & Liu 1998; Bradford 2000; Hsu et al. 2015;
Brown et al. 2016). These effects can potentially cause premature wave decay, and
such discrepancies can carry over well into the outer surf zone, thus affecting the
computed sub-surface kinematics and subsequent surf zone dynamics as a whole.
The widespread over-production of turbulence in RANS modelling of surface waves,
especially prior to breaking, represents a significant and fundamental problem to their
computational study. It implies that such commonly used CFD models cannot even
manage the relatively simple task of long-term wave propagation without unphysical
dissipation, which should seemingly be a prerequisite to their application on more
complicated surf zone processes. Moreover, it implies that in many computational
studies of the surf zone, the results have most likely been polluted even prior to the
onset of the breaking process, which has usually been the very focus of study.

The underlying cause of this problem seems to not be sufficiently well recognized.
For example, following long-time simulations, Hsu, Sakakiyama & Liu (2002) found
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unrealistically high turbulence in what they characterized as supposed low turbulence
regions, hence being among the first to recognize this problem. They suspected
that this was ‘due to the convection and diffusion mechanism, which transports the
turbulence from the high turbulence region (e.g., the surf zone) to the low turbulence
region’. To combat this they included a damping mechanism on the eddy viscosity,
which effectively reduced the turbulence to acceptable levels. Bradford (2011) used a
k–` model (` being the mixing length) and somewhat similarly found that limiting
the mixing length to be less than or equal to the local flow depth maintained model
stability. In a study of breaking waves using several different two-equation closures
Brown et al. (2016) found that nearly all of their simulations of spilling breakers
resulted in significantly over-produced turbulence prior to breaking. While they did not
offer any explanation as to the underlying cause, they did recognize the detrimental
effect on the local undertow profiles through comparison with results where no closure
was utilized. Devolder et al. (2017) also recognized the problem of over-predicted
turbulence levels beneath computed surface waves (and the related unphysical decay
in the wave heights), and attributed this to too high eddy viscosity (hence turbulence)
near the air–water interface. To combat this they included a buoyancy production term
directly in the k-equation. While this term should likely be included in two-phase
models, and it limited the excessive production of turbulence to some degree, it does
not solve the fundamental problem; This can clearly be seen from their figure 7,
where the computed eddy viscosity is still many orders of magnitude larger than the
kinematic fluid viscosity.

Rather, the more likely explanation for the widespread over-prediction of turbulence
in RANS models of surface waves was provided prior to the studies mentioned just
above by Mayer & Madsen (2000). They specifically showed through analysis that the
standard k–ω model of Wilcox (1988) can become unstable when applied to a region
of potential flow beneath surface waves, leading to exponential growth of both the
turbulent kinetic energy and eddy viscosity. Although they did not specifically analyse
the k–ε model, they stated that it too suffers from similar issues. Mayer & Madsen
(2000) also made an ad hoc attempt to solve the problem by using the mean rotation,
rather than the strain rate, in their production terms. This, indeed, greatly reduced the
growth of the eddy viscosity and hence improved predictions of the wave breaking
point relative to their unmodified model. However (as will be discussed herein), there
are several fundamental deficiencies with this ad hoc modification, and it has not
been widely adopted (seemingly only by Jacobsen et al. 2012, 2014); indeed, Mayer
& Madsen (2000) did not recommend this change as a final solution, but instead
suggested further research into the problem.

Motivated largely by their suggestion, and especially by a desire to ultimately solve
this long-standing problem in a more fundamentally satisfying and definitive way, the
present work will revisit the two-equation closure instability problem identified by
Mayer & Madsen (2000), who strictly proved conditional instability of the k–ω
closure model. Their analysis will be briefly reviewed and extended to prove that this
model is, in fact, unconditionally unstable for the conditions they considered, with
a predictable asymptotic exponential growth rate when applied to a region of nearly
potential flow having finite strain. Building directly on the analysis, we will likewise
demonstrate how such models can be simply and elegantly stabilized, in a manner that
will importantly remain passive in other sheared regions of interest. The significant
advantages to utilizing the new stabilized closure model will be demonstrated directly
through examples involving simulations of non-breaking and breaking waves.

The present paper is organized as follows: stability analysis of several RANS
turbulence closure models will be performed in § 2, including a review of the work
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of Mayer & Madsen (2000). The analysis in the main text will focus on k–ω closure
models, including the standard model of Wilcox (1988), the ad hoc modification of
Mayer & Madsen (2000), as well as the more recent version presented by Wilcox
(2006). Building further from the analysis, this will subsequently lead to development
of a new and formally stable k–ω closure model that is otherwise compatible with
these earlier versions. The significant advantages of utilizing the stabilized model
will be demonstrated in § 3, for problems involving simple surface wave propagation,
as well as the simulation of the spilling breaking wave experiment of Ting & Kirby
(1994), where the problem of over-production of turbulence leading up to breaking is
known to be especially pronounced.

Similar analysis of several other widely utilized two-equation turbulence closure
models (k–ω SST (shear stress transport), standard k–ε, and RNG (re-normalised
group) k–ε models) is provided in appendix A for completeness. The analysis therein
demonstrates that these models are likewise unconditionally unstable in the same
sense as are those considered in the main text. Furthermore, we demonstrate that they
too can be formally stabilized with similar, relatively simple, modifications.

2. Stability analysis of RANS turbulence closure models beneath nearly potential
flow waves

2.1. Turbulence closure model
For many problems in fluid mechanics, it is neither practical nor computationally
feasible, to resolve all necessary scales for direct numerical simulation (DNS) or
even large eddy simulation (LES), both of which inevitably require high resolution
of three spatial dimensions. As an alternative, it is often necessary to instead work
within the confines of Reynolds-averaged Navier–Stokes (RANS) equations, thereby
necessitating a separate closure model for describing the effects of turbulence on
the mean flow. As a suitable description of turbulence for the present purposes, we
will adopt a generalized version of the widely used k–ω model, comprised of the
following transport equations for the turbulent kinetic energy density k= 1/2(u′iu′i):

∂ρk
∂t
+ uj

∂ρk
∂xj
= ρPk − ρPb − ρβ

∗kω+
∂

∂xj

[(
µ+ ρσ ∗

k
ω

)
∂k
∂xj

]
(2.1)

and the specific dissipation rate ω:

∂ρω

∂t
+ uj

∂ρω

∂xj
= ρPω − ρβω2

+ ρ
σd

ω

∂k
∂xj

∂ω

∂xj
+

∂

∂xj

[(
µ+ ρσ

k
ω

)
∂ω

∂xj

]
. (2.2)

Here ui are the mean components of the velocity, xj are the Cartesian coordinates, µ=
ρν is the dynamic molecular viscosity, ν is the kinematic viscosity, ρ is the density,
t is time and

τij =−u′iu′j = 2νTSij −
2
3 kδij (2.3)

is the Reynolds stress tensor, expressed in accordance with the Boussinesq approxima-
tion. Here the overbar signifies time (ensemble) averaging, a prime superscript denotes
turbulent (fluctuating) components, δij is the Kronecker delta,

Sij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
(2.4)
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is the mean strain rate tensor and

νT =
k
ω̃

(2.5)

is the eddy viscosity. The shear production term for k is

Pk = τij
∂ui

∂xj
= p0νT, p0 = 2SijSij. (2.6)

Similarly, the buoyancy production for k is formulated as

Pb =−
gi

ρ
ρ ′u′i = pbνT, pb = α

∗

bN2, N2
=

gi

ρ

∂ρ

∂xi
, (2.7)

where (g1, g2, g3)= (0, 0,−g) is gravitational acceleration and N is the Brunt–Väisälä
frequency. The production of ω is likewise taken as

Pω = α
ω

k
ω̃

˜̃ω
Pk = α

ω

˜̃ω
p0. (2.8)

It is emphasized that the basic form of the shear turbulence production term
(i.e. Pk = τij∂ui/∂xj) should be considered sacred, as it can be theoretically derived
through the Reynolds-averaging process; As the Reynolds stress τij appears both
here, as well as in the governing RANS equations, it is imperative that they be kept
identical. The production of the specific dissipation rate Pω, on the other hand, is
essentially empirical in nature (based on dimensional analysis, hence necessitating
the closure coefficient α on this term). It is hence not theoretically tied to the RANS
equations, and may therefore be treated with considerably more freedom.

The equations above can be considered a generalized form of the Wilcox (2006)
turbulence closure model. In addition to his basic model, we have specifically added
the previously defined buoyancy production term Pb in (2.1) for potential application
to two-phase (air–water) flows. A similar term was implemented for the k–ε model by
e.g. Rodi (1987), Burchard (2002) and Ruessink, van den Berg & van Rijn (2009), for
the k–ω model by e.g. Umlauf, Burchard & Hutter (2003) and Fuhrman, Schløer &
Sterner (2013) as well as for the k–ω SST model by Devolder et al. (2017). We have
likewise incorporated additional freedom via the introduction of two (rather than the
usual one) utility variables ω̃ and ˜̃ω within (2.5) and (2.8). These represent potential
stress limited versions of ω, to be determined and taken advantage of in what follows.
The generalized form presented above is convenient, as it can be reduced to a number
of common variations of the k–ω model in the literature, with suitable selections of
ω̃, ˜̃ω and closure coefficients. Throughout the present work (unless noted otherwise)
we will adopt the closure coefficients of Wilcox (2006, 2008): α = 0.52, β = 0.0708
(constant for two-dimensional flows), β∗= 0.09, σ = 0.5, σ ∗= 0.6, σdo= 0.125, with

σd =H
(
∂k
∂xj

∂ω

∂xj

)
σdo, (2.9)

where H(·) is the Heaviside step function, which takes a value of unity if the argument
is positive and zero otherwise. Additionally, we adopt the value α∗b = 1.36, which is
derived in appendix B.
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2.2. Turbulence production beneath potential flow waves
Let us now briefly review the production of turbulence beneath potential flow
progressive waves, as originally described by Mayer & Madsen (2000). Following
their work, and for the sake of simplicity, let us consider the velocity fields given by
Stokes first-order wave theory, where z= 0 is measured from the bed:

u=
Hσw

2
cosh(kwz)
sinh(kwh)

cos(kwx− σwt), (2.10)

w=
Hσw

2
sinh(kwz)
sinh(kwh)

sin(kwx− σwt). (2.11)

Here σw is the angular frequency, kw is the wavenumber, h is the water depth and H is
the wave height. If these velocity fields are inserted into (2.6), after period averaging,
there will be turbulent kinetic energy production corresponding to:

〈p0〉 =
k2

wH2σ 2
w

2
cosh(2kwz)
sinh2(kwh)

. (2.12)

Note that after further depth averaging, this becomes

〈〈p0〉〉 =
k2

wH2σ 2
w

2kwh tanh(kwh)
. (2.13)

Hence, the above demonstrates that there will be a non-zero production of turbulent
kinetic energy in a potential flow region beneath surface waves, provided that the eddy
viscosity is finite.

2.3. Analysis of the standard Wilcox (1988) k–ω model
Having established that standard methods for achieving turbulence closure will
potentially result in finite turbulence production in a region of potential flow, let us
now conduct a formal stability analysis of several widely used closure models. For
this purpose, consider a region of nearly potential flow, such that

pΩ = 2ΩijΩij� p0, Ωij =
1
2

(
∂ui

∂xj
−
∂uj

∂xi

)
(2.14)

in a fluid of constant density (hence Pb = pb = 0), where Ωij is the mean rotation
rate tensor and p0 is assumed fixed at some finite value. Following Mayer & Madsen
(2000), diffusive and convective terms will be neglected in the analysis for the sake of
simplicity, which is justifiable in the region above the bottom boundary layer. In this
case the governing generalized turbulence model equations (2.1) and (2.2) reduce to

∂k
∂t
=

k
ω̃

p0 − β
∗ωk, (2.15)

∂ω

∂t
= α

ω

˜̃ω
p0 − βω

2. (2.16)

Let us begin by analysing what will be deemed the standard (Wilcox 1988) k–ω
model. This corresponds to setting ω = ω̃ = ˜̃ω in the above leading to the further
reduced equations

∂k
∂t
=

k
ω

p0 − β
∗ωk, (2.17)
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∂ω

∂t
= αp0 − βω

2. (2.18)

This corresponds to the same form as considered by Mayer & Madsen (2000). (Note
that the closure coefficients in the Wilcox (1988) model are slightly different from
those used here, but have no qualitative influence on the analysis.) Mayer & Madsen
(2000) proved conditional instability of this model, stating that if at any instant

ω6

√
1− α
β∗ − β

p0 = 5
√

p0 (2.19)

then the turbulence model will become unstable, resulting in exponential growth of
the eddy viscosity.

In what follows, we will extend their analysis, and formally prove that the simplified
model, subject to the conditions described above, is in fact unconditionally unstable.
Moreover, we will establish a methodology to analytically determine the asymptotic
unstable growth rate. From inspection of (2.18), it is seen that this equation is
decoupled from the k equation (2.17). Hence, regardless of its initial value, ω will
ultimately evolve to a constant such that ∂ω/∂t= 0, corresponding in this case to

ω∞ =

√
p0α

β
≈ 2.71

√
p0. (2.20)

As this satisfies the constraint (2.19), this slight extension thus proves that the model
is, indeed, unconditionally unstable; this stronger finding has apparently also been
arrived at independently by Mayer ca. 2001 (personal communication, October 31,
2017). Moreover, once the specific dissipation rate reaches its asymptotic value ω =
ω∞, the k equation effectively becomes linearized, ultimately leading to equations of
the form

1
k
∂k
∂t
=

1
νT

∂νT

∂t
= Γ∞, (2.21)

having solutions such that k ∼ νT ∼ exp(Γ∞t), where Γ∞ is the asymptotic unstable
growth rate. For the standard k–ω model under consideration this works out to be

Γ∞ = (β − αβ
∗)

√
p0

αβ
≈ 0.125

√
p0. (2.22)

As an independent check of the analysis above, we have performed several
numerical simulations of (2.17) and (2.18). As a demonstration we will consider
a case with initial conditions ω = ω0 = 100

√
p0, such that the turbulence scales are

initially well separated from those of the mean flow, and k = k0 = 10ν
√

p0 such
that initially νT/ν = 0.1. Figure 1 shows the simulated temporal development of
k/k0, ω/

√
p0 and νT/ν. Included in the figure as the dashed lines are the predicted

asymptotic exponential growth rates for k and νT from the above analysis, as well as
the predicted asymptotic value ω∞. As can be seen ω quickly tends towards ω∞, and
once this occurs k and νT (which were initially declining) start growing exponentially
at precisely the growth rate Γ∞ predicted above.
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(a)

(b)

(c)

FIGURE 1. Simulated development (full lines) of (a) k/k0, (b) ω/
√

p0 and (c) νT/ν for
the Wilcox (1988) closure model. Dashed lines indicate predicted asymptotic exponential
growth rates in (a) k and (c) νT , as well as (b) the predicted asymptotic value ω=ω∞.

2.4. Analysis of the modified Mayer & Madsen (2000) k–ω model

In an effort to combat the unphysical growth of turbulence in their CFD simulation
of breaking waves, Mayer & Madsen (2000) made an ad hoc modification of their
production terms (Pk and Pω, though they did not modify the eddy viscosity outside
these terms) such that they were based on the vorticity, rather than the strain rate.
They did not formally analyse the resulting turbulence closure model for stability, and
this will therefore be investigated here. In the context of our simplified analysis, this
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ad hoc modification is equivalent to setting

ω̃= ˜̃ω=
p0

pΩ
ω (2.23)

whence (2.15) and (2.16) become

∂k
∂t
=

k
ω

pΩ − β∗ωk, (2.24)

∂ω

∂t
= αpΩ − βω2. (2.25)

These are identical to (2.17) and (2.18), but with p0 now replaced by pΩ . Hence,
without requiring further analysis, it is evident that in this model ω will tend
asymptotically to

ω∞ =

√
pΩα
β
≈ 2.71

√
pΩ (2.26)

at which point the unstable growth rate for k and νT will be

Γ∞ = (β − αβ
∗)

√
pΩ
αβ
≈ 0.125

√
pΩ . (2.27)

Thus, even with this alteration, since the vorticity would never be exactly zero in
a CFD model involving surface waves (due to both numerical error and/or imposed
boundary conditions) the resulting model is still formally unconditionally unstable,
although the asymptotic growth rate would be significantly reduced compared to the
standard k–ω model, since it is assumed that pΩ� p0.

Independent confirmation of the analysis above is provided via numerical solution
of the reduced governing equations, maintaining the same initial conditions as before
and now with pΩ/p0= 0.01. The resulting evolution of the eddy viscosity is depicted
in figure 2(a). Again this first declines, before ultimately growing exponentially at
precisely the asymptotic rate predicted above.

The ad hoc modification used by Mayer & Madsen (2000) represents an interesting
first attempt to control the instability that they identified, and which was expanded
upon in the preceding sub-section. Nevertheless, it cannot be considered a fundamen-
tally viable solution for several reasons. First, although weaker, the model is still
formally unconditionally unstable, as proved above. Second, Mayer & Madsen (2000)
effectively utilized different ω̃ in the production terms and in the eddy viscosity
outside of these terms, which is in direct violation of the Boussinesq approximation
(2.3); this is equivalent to simultaneously utilizing two different definitions of the
Reynolds stress tensor τij. Third, it is again emphasized that the turbulence production
term is theoretical in nature (derived directly from Reynolds averaging), and hence
rightly ought to be based on the strain rate rather than the vorticity, at least if the
standard Boussinesq approximation is utilized. While in simple uniform boundary
layer flows these may be equal, in more complex flows they can be quite different.
(For example, in the forthcoming simulation of spilling breaking waves we have
found that they can differ by a factor of 1–10 in most of the surf zone.) Hence, in
the context of surface waves this modification must be considered intrusive, resulting
in a significantly altered turbulence production term that is applied globally i.e. even
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(a)

(b)
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FIGURE 2. Simulated development of νT/ν (full lines) compared to the predicted
asymptotic exponential growth (dashed lines) for the (a) Mayer & Madsen (2000) k–ω
closure, (b) Wilcox (2006) k–ω closure and (c) present k–ω closure with λ1 = 0 and
λ2 = 0.05.

in sheared flow regions of primary interest (e.g. the surf zone), where the original
model should be maintained. This is evidenced directly by the work of Jacobsen
et al. (2012), who utilized the modified production terms of Mayer & Madsen (2000)
to simulate spilling breaking waves, and found that it was necessary to alter one
of the fundamental closure coefficients in isolation (from α = 0.52 to 0.4) to obtain
reasonable undertow profiles. This is likewise problematic, since as shown e.g. in
Wilcox (2006), the closure coefficients are carefully tuned, and are, among other
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things, related to the von Kármán constant κ according to

α =
β

β∗
− σ

κ2

√
β∗
. (2.28)

Hence, the alteration just mentioned corresponds to a model yielding κ ≈ 0.482 rather
than the accepted κ ≈ 0.4, and will therefore be inaccurate for simple steady uniform
boundary layer flows. Indeed, it must be pointed out that (likely in recognition of
some of the concerns presented above) Mayer & Madsen (2000) rightly concluded
that ‘at this stage we do not recommend this modification as generally applicable and
instead some new fundamental analysis and development seems necessary’, largely
inspiring the present work.

2.5. Analysis of the Wilcox (2006) k–ω model
As a third alternative, let us now similarly consider the stability of the Wilcox (2006)
k–ω closure model. In this closure model Wilcox (2006) added, among other things,
a stress-limiting feature, such that

ω̃= ˜̃ω=max
[
ω, λ1

√
p0

β∗

]
, (2.29)

where he suggested λ1= 7/8= 0.875. This feature essentially limits the resulting eddy
viscosity in regions where turbulence production exceeds the dissipation, and has been
shown to result in larger separation bubbles and greatly improve incompressible and
transonic flow predictions relative to models without this feature.

If the first argument in the limiter (2.29) dominates, then ω̃ = ˜̃ω = ω and the
model becomes identical to that analysed in § 2.3, which was already proven to be
unconditionally unstable in a nearly potential flow with finite p0. Alternatively, if the
second (stress limiting) argument dominates, then (2.15) and (2.16) become

∂k
∂t
=

k
λ1

√
β∗p0 − β

∗ωk, (2.30)

∂ω

∂t
=
αω

λ1

√
β∗p0 − βω

2. (2.31)

As before, setting the right-hand side of (2.31) equal to zero, we now find that ω will
tend to the asymptotic value

ω∞ =
α

λ1β

√
β∗p0 ≈ 2.52

√
p0. (2.32)

Inserting this value for ω back into (2.30) then leads directly to linearized expressions
of the form (2.21), where the unstable growth rate is

Γ∞ =
(β − αβ∗)

λ1β

√
β∗p0 ≈ 0.116

√
p0. (2.33)

Hence, this model is likewise formally unconditionally unstable in the situation
considered, although the stress limiter notably reduces the unstable growth rate
slightly relative to the standard k–ω model.

Independent confirmation of the analysis above is provided via numerical solution
of (2.15) and (2.16) while invoking (2.29), maintaining the same initial conditions
for ω and νT as before. The resulting evolution of the eddy viscosity is depicted
in figure 2(b). As before, following the initial decline, the eddy viscosity grows
exponentially at the rate predicted above.
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2.6. Analysis of a new stabilized closure
In this section an elegant and simple solution to the instability considered above,
which seems to widely plague most existing two-equation closure options (all that the
authors have analysed), will be presented. We seek a solution to this long-standing
problem that will be otherwise unintrusive i.e. such that the resulting model will
default to an existing closure in sheared flow regions, while still formally curing
the instability in regions of nearly potential flow. At the same time the solution
should remain true to the theoretically based terms in the k equation, maintain
full consistency with the Boussinesq approximation, and not require alteration of
any fundamental closure coefficients. We further aim for the solution to be readily
adaptable to similarly stabilize other two-equation closures in wide use.

As just shown in § 2.5, the stress-limiting feature in the Wilcox (2006) model
reduces the unstable growth rate, relative to the standard k–ω model. Working within
this established feature is therefore a natural place to attempt to remedy this problem.
To both formally stabilize the model and generally improve the CFD simulation of
surface waves with RANS models, we propose the following modifications to the
stress-limiting features. First, we propose to generalize ˜̃ω slightly such that:

˜̃ω=max
[
ω, λ1

√
p0 − pb

β∗

]
, (2.34)

where we have included buoyancy production for potential two-phase (air and water)
flow applications, for the sake of full consistency with (2.1). Obviously, this will not
affect the formal stability of the model, as constant density (hence pb= 0) is assumed
in the analysis. Second (and much more importantly in the present context), to
formally stabilize the instability considered at length above, we propose the following
modification to ω̃:

ω̃=max
[
˜̃ω, λ2

β

β∗α

p0

pΩ
ω

]
, (2.35)

where λ2� 1 is an additional stress limiter coefficient, the physical meaning of which
will be made explicitly clear in what follows. Note that the new addition to the limiter
in (2.35) is, by design, unintrusive, as it will become active only in a region of nearly
potential flow where p0 � pΩ . Moreover, note that (for single-phase incompressible
flows) if λ2 = 0 the model becomes equivalent to the Wilcox (2006) model, whereas
if λ1 = λ2 = 0 this model becomes equivalent to the standard k–ω model of Wilcox
(1988). It is hence fully compatible with the other standard closures that have been
specifically considered. (Note that to avoid any possibility of dividing by zero, the
denominator in (2.35) can be implemented numerically as pΩ + ξ , where ξ is a small
number near machine precision, although we strictly analyse the form above for the
sake of elegance.)

To demonstrate the formal asymptotic stability of the proposed new model, let us
first repeat the above analysis of the standard Wilcox (1988) model (momentarily
setting λ1 = 0, hence ˜̃ω= ω), but now with the new limiter active in ω̃. In this case,
the k equation (2.15) becomes

∂k
∂t
=
αβ∗

λ2β

kpΩ
ω
− β∗ωk, (2.36)
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whereas the ω equation from (2.16) remains equivalent to (2.18), and hence ω will
ultimately evolve to ω∞ from (2.20). Inserting this value into (2.36) leads to linearized
expressions of the form (2.21), where the exponential growth rate is

Γ∞ =

√
p0α

β
β∗
(

pΩ
λ2p0
− 1
)
. (2.37)

From this it can be seen that the new turbulence closure model will be formally stable
(i.e. Γ∞ 6 0) provided that

pΩ
p0

6 λ2. (2.38)

This hence provides a clear physical meaning for the added stress limiter coefficient
λ2, as it defines the threshold of pΩ/p0 identifying a region as effectively potential
flow. Note also that at the pure potential flow limit where pΩ = 0, the growth rate
is Γ∞ =−β∗

√
p0α/β =−β

∗ω∞ ≈−0.244
√

p0, and any turbulent kinetic energy will
decay similar to how it would in a quiescent fluid.

If instead, we repeat the analysis of the Wilcox (2006) model (now retaining λ1),
then the k equation will remain equivalent to (2.36), whereas the ω equation will be
equivalent to (2.31), and hence ω will tend towards ω∞ in (2.32). Inserting this value
as a constant within (2.36) then similarly leads to linearized expressions of the form
(2.21), where the unstable growth rate is

Γ∞ =
√

p0β
∗

(
pΩλ1

p0λ2
√
β∗
−
α
√
β∗

λ1β

)
. (2.39)

This will thus be stable provided that

pΩ
p0

6 λ2
αβ∗

λ2
1β
≈ 0.863λ2, (2.40)

where the standard coefficient values have been inserted. As the lead coefficient is near
unity, it is seen that this further generalization does not greatly affect the previously
mentioned physical interpretation of λ2. Note also that once ω=ω∞ if λ1<

√
αβ∗/β≈

0.813 then the first argument will inevitably dominate in (2.34), and the threshold for
stability will again be given by (2.38).

It should be noted that in uniform boundary layer flows p0 = pΩ , and thus the
new limiter will be completely inactive. Moreover, in other more complicated sheared
flow regions (e.g. both in the surf zone and the surface boundary layer region near
the air–water interface) pΩ and p0 will typically be the same order of magnitude,
and the new limiter will similarly remain inactive. Hence, the new closure will, by
design, effectively reduce to a standard closure, except in a region of nearly potential
flow (clearly defined by the choice of λ2), where such existing standard methods are
inherently unconditionally unstable. The value of λ2 should naturally be small, but also
large enough to work for practical applications since pΩ can always be expected to
have a small, but finite, value in the discretized world. Throughout this work λ2=0.05
is used to achieve such a balance.

The stabilization of the new model presented above has been confirmed via
numerical simulation of (2.15) and (2.16) while invoking (2.34) and (2.35), maintaining
the same initial conditions as before. An example (with λ1=0 and λ2=0.05) depicting
the temporal evolution of the eddy viscosity is provided in figure 2(c). Consistent
with the analysis above, exponential decay, rather than growth, is now observed. Thus,
the new closure model should remain stable in a region of nearly potential flow with
finite strain, in contrast to all of the other models considered previously.
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Model Reference ≈ω∞ ≈Γ∞

Standard k–ω Wilcox (1988) 2.71
√

p0 0.125
√

p0

k–ω Mayer & Madsen (2000) 2.71
√

pΩ 0.125
√

pΩ
k–ω Wilcox (2006) 2.52

√
p0 0.116

√
p0

k–ω SST Menter (1994) 2.72
√

p0 0.066
√

p0

Standard k–ε Launder & Sharma (1974) 2.31
√

p0 0.226
√

p0

RNG k–ε Yakhot et al. (1991) 2.70
√

p0 0.142
√

p0

TABLE 1. Summary of asymptotic ω values (ω∞) and unstable exponential growth rates
(Γ∞) for analysed existing two-equation turbulence closures.

2.7. Analysis of other existing closure models
The formal asymptotic stability of several other widely utilized two-equation
turbulence closure models is similarly considered in appendix A. These include: the
k–ω SST model originally formulated by Menter (1994), the standard k–ε model of
Launder & Sharma (1974) and the RNG k–ε model developed by Yakhot et al. (1991).
It turns out that all of these basic two-equation models are similarly unconditionally
unstable for the same conditions as analysed above. This is demonstrated analytically,
as well as via independent numerical simulations of the reduced governing equations.
The resulting asymptotic values for ω∞ and the unstable growth rates Γ∞ for each
of the pre-existing closure models analysed in the present work are summarized in
table 1.

Fortunately, and in line with the goals set forth above, these other widely utilized
closure models can also be formally stabilized via simple modifications to their
stress-limiting features, in a similar manner as presented in the preceding sub-section.
The necessary modifications to stabilize each model are described in full detail in
appendix A. With these modifications, asymptotic exponential decay (rather than
growth) in the turbulent kinetic energy and eddy viscosity is proved analytically,
as well as independently demonstrated through numerical simulation of the reduced
modified model equations, similar to the above.

To avoid the potential for excessive and unphysical over-production of turbulence
in nearly potential flow regions, it is recommended that these (or otherwise formally
stabilized and unintrusive) modified closure models be utilized in any future CFD
simulations of surface waves with two-equation RANS closure models, the significant
and fundamental benefits of which will be demonstrated in the next section.

3. Numerical simulation of surface waves

The advantages of utilizing a formally stable closure model will now be demonstra-
ted directly through the CFD simulation of surface water waves. Essential details of
the computational model are provided in the next sub-section, which will be followed
by test cases involving the simulation of both non-breaking and breaking waves.

3.1. Model description
For the purposes of CFD simulation, surface water waves will be considered in the
context of two-phase (air and water) flow. For this purpose the turbulence model
defined by (2.1) and (2.2) will be used to close a CFD model solving incompressible
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RANS equations

∂ρui

∂t
+ uj

∂ρui

∂xj
=−

∂p∗

∂xi
− gjxj

∂ρ

∂xi
+

∂

∂xj
(2µSji + τij), (3.1)

and the local continuity equation

∂ui

∂xi
= 0. (3.2)

In the above p∗ is the pressure in excess of hydrostatic. A scalar field γ is used to
track the two fluids, where γ = 0 represents pure air and γ = 1 pure water, with any
intermediate value representing a mixture. The distribution of γ is governed by an
advection equation

∂γ

∂t
+ uj

∂uiγ

∂xj
+ ur

j
∂ur

iγ (1− γ )
∂ur

j
= 0, (3.3)

where ur
j is a relative velocity used to compress the interface, as documented in

Berberovic et al. (2009). Any fluid property Φ in the flow is assumed to be given
by

Φ = γΦwater + (1− γ )Φair. (3.4)

The governing equations are solved within the open-source CFD environment
OpenFOAM (version foam-extend 3.1), making use of the waves2FOAM toolbox
developed by Jacobsen et al. (2012) for wave generation/absorption or specification
of initial conditions. This toolbox is built upon the widely used interFoam solver,
which utilizes the volume of fluid method (VOF). Unless stated otherwise, in both
the RANS (3.1), the advection of γ (3.3) and the turbulence model equations (2.1)
and (2.2) time derivatives are discretized using a first-order implicit Euler scheme.
Convection terms are discretized using a blend of central difference and upwind
schemes, depending on the ratio of successive gradients. Remaining schemes are
second-order accurate central difference schemes. For further details on this solver
the interested reader is referred to Deshpande, Anumolu & Trujillo (2012). In all
forthcoming cases the time step has been adjusted such that a maximum Courant
number Co = |ui|1t/1xi = 0.05 is maintained at all times. Such a low Courant
number is not typical but this ensures accurate velocity kinematics and enables nearly
constant form propagation of wave trains for long durations, as shown by Larsen,
Fuhrman & Roenby (2018b). Boundary conditions will be clarified on a case-by-case
basis in what follows.

3.2. Simulation of a simple progressive wave train
In this section computed results will be presented for the long-term propagation of
a periodic surface wave train. This is perhaps the simplest of computational wave
problems, and is a test that should ideally be passed by CFD models prior to their
application on more complicated problems. As an initial condition, a numerically
exact streamfunction wave (potential flow) solution of Fenton (1988) is specified,
with no net volume flux, and with period T = 2 s, wave height H = 0.125 m and
water depth h= 0.4 m (hence kwh= 0.664 and kwH = 0.207). It should be noted that
this wave is the same as that generated for the forthcoming simulation of the Ting &
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Kirby (1994) spilling breaker experiments. Being intermediately deep and moderately
nonlinear, these wave conditions are indeed well suited for generic study.

The computational domain is discretized into regular cells having horizontal and
vertical size 1x=1z= 0.01 m (corresponding to H/1z= 12.5 cells per wave height).
This resolution has been experienced to be sufficient for the accurate propagation
of this specific wave in a laminar set-up. This mesh also maintains an aspect ratio
1x/1z= 1, which can be important for accuracy, as noted by Jacobsen et al. (2012),
Jacobsen et al. (2014) and Roenby et al. (2017). The computational domain spans a
single wavelength, making use of periodic lateral boundaries. At the bottom boundary
a slip condition is applied. This is primarily for canonical demonstration purposes,
making the computational situation as close to potential flow as possible, such that
a turbulence closure model should ideally not influence the physics of the wave
propagation.

To demonstrate the performance of the proposed new turbulence closure relative
to standard approaches, we will compare computed results from the standard
Wilcox (1988) k–ω model (with the buoyancy production term also included
in (2.1), henceforth taken as granted) with those from our new closure with
λ1 = 0 and λ2 = 0.05. All other model settings are kept identical. We initially
set ω = ω∞ = 2.71

√
p0, where p0 = 0.66 s−2 is the depth- and period-averaged

value computed from the initial conditions, and with k = k0 = ω∞ν to initially yield
νT/ν = 1. This is intended as a direct test of the preceding simplified analysis in an
actual surface wave computation, where the standard closure should exhibit unstable
behaviour from the outset, whereas the proposed new closure should remain stable
indefinitely. We consider the initial condition for ω above to be most sensible in the
present context, since as shown previously, it will always tend to approximately this
value in the potential flow region beneath waves.

Figure 3 shows the computed temporal development of the (depth- and period-
averaged) non-dimensional eddy viscosity 〈〈νT〉〉/ν with both closure models
considered. Included in the figure (dashed line) is also the predicted development of
〈〈νT〉〉/ν= exp(Γ∞t) with the growth rate from (2.22). Figure 3 clearly shows that the
Wilcox (1988) k–ω model is indeed initially unstable, resulting in an exponentially
growing eddy viscosity (hence also k) that ultimately becomes several orders of
magnitude larger than the kinematic viscosity, before eventually levelling off. The
computed exponential growth rate is near that expected based on the simplified
analysis, which has neglected several terms. It is emphasized that the growth of
turbulence does not come from the bottom boundary layer, which is non-existent as a
slip condition has again been used. Nor does it stem from the free surface, where the
buoyancy production term in (2.7) suppresses turbulent kinetic energy in this region.
Rather, it is due to the instability of the potential flow region, as confirmed via the
close match with the theoretical growth rate. In contrast, also consistent with the
preceding analysis, our new modified closure remains stable, with the eddy viscosity
quickly decaying to physically insignificant levels.

The eventual levelling off of the eddy viscosity with the standard k–ω of Wilcox
(1988) can be explained as due to declining wave heights, which are a direct
consequence of the unphysical growth of the turbulent kinetic energy and eddy
viscosity. These eventually reach levels that are sufficiently high to cause unphysical
turbulent diffusion of the wave, with energy thus being extracted from the mean flow.
As a result of the decreased wave height the turbulence production quantity p0 is
likewise reduced. This can be seen from the surface elevation time series depicted
in figure 4(a), where the waves begin to decline after only t ≈ 20T . The decay in
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FIGURE 3. Computed temporal development of the depth- and period-averaged eddy
viscosity beneath a periodic wave train using the present k–ω closure model with λ1 = 0
and λ2 = 0.05 (full line), the Wilcox (1988) k–ω model (dashed line) as well as the
predicted development from (2.22) (dotted line).
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FIGURE 4. Computed time series of surface elevations in the simulation of a periodic
wave train using (a) the standard Wilcox (1988) k–ω model and (b) the proposed new
closure model with λ1 = 0 and λ2 = 0.05. The horizontal dashed lines represent the crest
and trough levels of the initial wave, for comparison. (These results use a ‘diffusive
balance’ in the schemes, as detailed in Larsen et al. 2018b.)

wave height is similar to what was shown by Mayer & Madsen (2000) and Devolder
et al. (2017). In contrast, the wave evolution computed with the new stabilized
closure maintains a nearly constant wave height, as seen from figure 4(b). The slight
decay seen is clearly due to minor numerical diffusion associated with the numerical
scheme, and not in any way related to the new turbulence closure, as it has effectively
switched itself off. This is clear from the previously mentioned extremely small eddy
viscosity in figure 3, as well as through comparison with an additional (otherwise
identical) simulation with the turbulence model switched off entirely, which results in
visually identical behaviour (not directly shown here for the sake of brevity). Note
that we have also made other, similar, simulations as above, with 0.02 6 λ2 6 0.1,
which result in similar surface elevations as in figure 4(b).
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FIGURE 5. Layout of the computational domain for the simulation of the spilling breaking
wave experiments of Ting & Kirby (1994).

This example demonstrates how the instability identified by Mayer & Madsen
(2000), and which is inherent in standard two-equation turbulence closure models as
shown herein, can manifest in their rather spectacular failure in even the simplest of
surface wave computations. The comparison above likewise demonstrates that such
failure can be avoided entirely by employing the simple new (stabilized) closure
proposed herein.

3.3. Simulation of spilling breaking waves
As a follow-up to the preceding example, let us now consider simulations of the
spilling breaking wave experiment of Ting & Kirby (1994), to demonstrate the
performance of the new model in a more physically complex situation. We focus here
exclusively on their spilling, rather than plunging, case as it is these incoming wave
conditions where the over-production of turbulence has consistently been observed in
prior studies. Quantitatively the reason for this can be explained by equation (2.13)
which yields 〈〈p0〉〉 = 0.55 s−2 and 〈〈p0〉〉 = 0.08 s−2 for their spilling and plunging
cases respectively, i.e. a much lower turbulence production and hence unstable growth
rate for the plunging case. It is emphasized that the strength of the instability does
not strictly depend on the breaker type (which also depends on the slope encountered),
but rather only on the characteristics of the incoming waves. (Note that the interested
reader can find results from similar simulations utilizing our stabilized closure on the
plunging breaking case in the PhD thesis of Larsen 2018.)

The model domain for these simulations consists of a flat region having water depth
h=0.4 m, connected to a region having constant 1:35 slope. For these simulations, the
same waves as considered previously (T = 2 s and H= 0.125 m with zero net volume
flux; kwh= 0.664 and kwH = 0.207) are generated on the horizontal bed. At the left
inlet boundary a relaxation zone of 4 m is used, which serves to absorb any waves
reflected by the slope, thus the incoming waves do not change over time. In figure 5 a
layout of the computational domain is seen. For the purposes of consistent comparison,
the origin is positioned at the same depth (h = 0.38 m) as in the experiments. No
roughness was indicated in the experiment, but it was stated that the bed was made
of plywood, and therefore the model bed is assigned a Nikuradse equivalent sand
roughness ks = 10−4 m.

The initial condition for ω is again taken as ω=ω∞= 2.71
√

p0, with p0 calculated
from (2.13) and with k = k0 = 0.1ω∞ν such that νT/ν = 0.1 (this is one order of
magnitude below that used in the previous progressive wave train test case in § 3.2).
In contrast to the previous idealized simulation in § 3.2, a no-slip boundary condition
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Case k–ω model λ1 λ2
˜̃ω ω̃ Line type

(figures 12 and 13)

1 Wilcox (1988) 0 0 =ω =ω Dashed light (blue) line
2 Wilcox (2006) 0.875 0 = ω̃ Equation (2.29) Dotted light (blue) line
3 Present 0 0.05 =ω Equation (2.35) Dashed dark (black) line
4 Present 0.875 0.05 Equation (2.34) Equation (2.35) Dotted dark (black) line
5 Present 0.2 0.05 Equation (2.34) Equation (2.35) Solid dark (black) line

TABLE 2. Summary of parameters used in the five different simulations of the Ting &
Kirby (1994) spilling breaking wave experiment.

is imposed at the bottom, meaning that a wave boundary layer will now develop
near the bed, as in reality. Turbulence quantities in the first cell near the bottom are
prescribed using the generalized wall functions presented in Fuhrman et al. (2014),
which build upon the generalized van Driest profile of Cebeci & Chang (1978).
These wall functions have been used successfully in the simulation of various scour
processes, see e.g. Baykal et al. (2015), Bayraktar et al. (2016), Larsen, Fuhrman &
Sumer (2016), Larsen et al. (2017) and Larsen et al. (2018a), and allow for near-bed
cells to lie in either the logarithmic or viscous sub-layer. On the flat region the
domain is discretized into cells with 1x=1z= 0.01 m, and on the slope the mesh is
gradually refined towards the shore while keeping a constant aspect ratio of unity. At
the right end of the domain the cells have a size 1x=1z= 0.0063 m. Near the bed,
layers of cells are refined in the vertical direction with near-bed cells having height
1z= 7.5× 10−4 m. This ensures that 1z+=1zUf /ν < 30 during the simulation, with
Uf being the friction velocity.

For the sake of systematic comparison, simulations of these experiments will
be considered using five different turbulence closure variants. These correspond
to: (Case 1) the standard Wilcox (1988) k–ω model, (Case 2) the Wilcox (2006)
k–ω model, as well as three variants of the proposed modified k–ω closure with
fixed λ2 = 0.05 and: (Case 3) λ1 = 0, (Case 4) λ1 = 0.875 and (Case 5) λ1 = 0.2.
The λ1 values in Cases 3 and 4 correspond to those associated with the models
of Wilcox (1988) and Wilcox (2006) (thus allowing direct comparison) i.e. Cases
3 and 4 correspond to stabilized versions of Cases 1 and 2, respectively. Case 5
utilizes an intermediate value for λ1, more in line with equation (9) of Durbin (2009)
(corresponding to λ1= 0.26). For ultimate clarity, the parameter settings used in these
five cases are listed in table 2. We shall henceforth refer to these simulations by their
case number, as indicated in table 2 and in the text immediately above.

Figure 6 shows computed snapshots depicting the surface and non-dimensional
eddy viscosity νT/ν from each of the five model variants mentioned above, following
a long simulation time of 100 periods, such that steady (repeatable) conditions have
effectively been reached. (As an indication of simulation time, each run requires
approximately three weeks when simulated in parallel on eight modern processors.)
Each plot is frozen at an instant where the wave is very close to breaking, such that
the location of the surf zone is evident (beginning approximately at x= xb = 6.4 m).
As can be seen, both the standard Wilcox (1988) (Case 1, figure 6a) and the Wilcox
(2006) k–ω models (Case 2, figure 6b) result in uniformly high eddy viscosity (orders
of magnitude larger than ν), even in the pre-breaking region. These high values are in
no way physical, as in real waves significant turbulence should not be expected prior
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FIGURE 6. (Colour online) Snapshots of νT/ν at t/T = 100 with the
wave right at breaking computed with the (a) standard Wilcox (1988)
k–ω model (Case 1), (b) Wilcox (2006) k–ω model (Case 2) and (c–e) present
stabilized k–ω closure model (respectively, Cases 3–5), where parameters for each case
are indicated in table 2. The free surface and bottom are marked by solid lines.

to breaking, see e.g. the measured turbulence levels from Ting & Kirby (1994) and
van der A et al. (2017), the particle image velocimetry (PIV) experiments of Chang &
Liu (1998), Grue & Jensen (2006), Kimmoun & Branger (2007) and Belden & Techet
(2011) or the dye experiment of Duncan et al. (1999). Rather, these high values are
again an artefact related to the inherent instability of these models in the nearly
potential flow regions which are prevalent leading up to the surf zone. Conversely,
regardless of the value of λ1, the three results using the proposed new stabilized
closure (figure 6c–e corresponding to Cases 3–5) predict negligible eddy viscosity in
the bulk region beneath the waves prior to breaking; significant eddy viscosity with
these stabilized models is rightly confined to the near-bed boundary layer and surf
zone, demonstrating a clear and qualitative correction over existing models. Figure 6
is hence a clear demonstration of how, due to their inherent instability, existing
standard turbulence closure models in wide use can result in severely polluted results
prior to wave breaking, often the very phenomenon of interest in CFD studies where
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FIGURE 7. (Colour online) Computed 〈pΩ〉/〈p0〉 below trough level for Case 5. The
region where 〈pΩ〉/〈p0〉< λ2 = 0.05 is indicated in white.

such models are employed. This figure likewise definitively demonstrates that the new
stabilized closure model proposed herein eliminates this problem altogether.

To provide further details on the computed vorticity-to-strain ratios found in the
present simulations, figure 7 depicts 〈pΩ〉/〈p0〉 beneath trough level, averaged over
60 < t/T < 120 for Case 5 (as an example of our stabilized approach). The colour
scheme in this figure has been chosen such that the white region corresponds to
nearly potential flow i.e. where 〈pΩ〉/〈p0〉 < λ2 = 0.05, and the new stabilizing
limiter would thus be (on average) active. Conversely, coloured (shaded) regions
correspond to sheared flow where this threshold value is exceeded, and the new
limiter would essentially be off. It is seen that the location where the nearly potential
flow region ends closely coincides to the beginning of the surf zone (again, beginning
approximately at x = xb = 6.4 m), as should be expected. Prior to breaking the
proposed limiter is typically active only in the nearly potential flow core region in
the middle of the water column, whereas it is inactive in the sheared regions below
and above, respectively corresponding to boundary layer regions which form where
the water interacts with the bed and air (note that 〈pΩ〉 and 〈p0〉 are the same order
of magnitude in these regions). This figure also clearly shows that in the surf zone
〈pΩ〉 and 〈p0〉 are generally within an order of magnitude of one another, although
they are often far from equal. In the inner surf zone they are even more similar
and are typically within a factor of two. This figure, in conjunction with the eddy
viscosity plots in figure 6, thus further confirms that (as designed) the new limiter
is primarily only active in the nearly potential flow region prior to breaking, while
essentially remaining passive in the surf zone and other sheared regions.

We will now further demonstrate the differences between results computed with
standard (unstable) and new closure models via further quantitative comparison against
the spilling breaker data set of Ting & Kirby (1994). To make proper comparisons,
as in the experiments, a relatively long warm up period is needed to establish stable
conditions in the computational flume. Before extracting data, models have therefore
been run for 60 periods. Such a long warm up period has not been common in
most previous numerical studies of the Ting & Kirby (1994) experiments. Jacobsen
et al. (2012) demonstrated, however, that at least 40 periods were necessary in
order to reach a constant volume of water in their domain. We have similarly found
that an additional 20 periods were necessary to achieve a convincing quasi-steady
situation. For comparison, it can be noted that the warm up length in the experiments
was 600 periods. Furthermore, in order to achieve stable mean values, the results
presented in the following have been obtained by averaging over an additional 60
periods following the warm up (i.e. simulations have been run for a total of 120
periods). For comparison, in the original experiments the results were averaged over
a comparable duration corresponding to 102 periods.
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FIGURE 8. (Colour online) Comparison of modelled (lines) and measured (circles, from
Ting & Kirby 1994) surface elevation envelopes (top and bottom lines) and mean water
levels (middle lines). Results in (a–e) correspond to Cases 1–5, respectively. Solid lines
represents the mean surface elevation and the shaded area represents plus and minus one
standard deviation.

Figure 8 shows comparison of the computed and experimental surface elevation
envelopes as well as the mean water levels for the five models mentioned above. The
solid lines represent the mean (ensemble averaged) values, whereas the shaded area
represents plus or minus one standard deviation, to give an indication of wave-to-wave
variability. It can be seen that all five models, in general, capture the evolution of the
mean surface elevations well. The horizontal position of the breaking point and surface
elevation at breaking is well captured, as is the subsequent decay in wave heights in
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FIGURE 9. (Colour online) Snapshots of the breaking process computed in (a) Case 3
(λ1= 0, λ2= 0.05) and (b) Case 4 (λ1= 0.875, λ2= 0.05), beginning at t= t0= 110T . Here
dark represents water, white represents air and light shades represent air–water mixtures.
The wave shown in (a) never actually spills.

the surf zone. These results compare well with surface elevations presented in other
numerical studies of these experiments, see e.g. Hieu et al. (2004), Jacobsen et al.
(2012), Xie (2013) and Brown et al. (2016). The most notable difference between the
models is the standard deviation in the surface elevations in the surf zone. As seen,
those results sharing λ1=0 (i.e. the Wilcox (1988) model, Case 1 shown in figure 8(a)
and our stabilized version of this model, Case 3 shown in figure 8c) demonstrate
little wave-to-wave variability. Conversely, the three results with the Wilcox (2006)
limiter active (λ1 > 0, Cases 2, 4 and 5, respectively depicted in figure 8b,d,e) result
in significant wave-to-wave variability during the breaking process. Such variability is
much more in line with the experiments (see e.g. figure 3 of Ting & Kirby 1994).

Further inspection has revealed that this lack in wave-to-wave variability computed
with λ1 = 0 is due to the waves not breaking properly. This is due to large eddy
viscosity computed in the crest (see figure 6a,c), leading to turbulent dissipation of
the wave rather than a convincing sequence of spilling breaking. This is illustrated
in figure 9, where snapshots of typical waves computed during the breaking process
are compared for Cases 3 (λ1= 0) and 4 (λ1= 0.875) i.e. two variants of the present
stabilized model having different λ1, but being otherwise identical. As a result of this
failure of the waves to properly spill with λ1= 0, there is little deviation in the surface
elevations experienced in successive waves in the surf zone. In contrast, the cases
computed with λ1 > 0, figure 8(b,d,e), spilling breaking occurs, leading to a much
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FIGURE 10. (Colour online) Comparison of modelled (lines) and measured (circles) phase-
averaged surface elevations at (a) x= 7.275 m (x̃= (x− xb)/hb = 4.397), (b) x= 7.885 m
(x̃= 7.462), (c) x= 8.495 m (x̃= 10.528) and (d) x= 9.11 m (x̃= 13.618).

more dynamic surf zone. These results indicate that using a Wilcox (2006)-type limiter
in the turbulent production is necessary to qualitatively capture the spilling breaking
process. In the authors’ opinion, while at first glance the five results in figure 8 may
appear similar, the inability of the k–ω models with λ1= 0 (figure 8a,c corresponding
to Cases 1 and 3) to predict proper spilling breakers (and corresponding wave-to-wave
variability) can be regarded as an important qualitative shortcoming. We emphasize
that the features discussed above (nature of breaking and subsequent wave-to-wave
variability) are primarily dependent on the Wilcox (2006)-type limiter (λ1), and have
little to do with the new stabilizing limiter (λ2) introduced in (2.35).

To further illustrate the difference between cases with λ1 = 0 and λ1 > 0, figure 10
shows a comparison between the experimental and computed phase-averaged surface
elevations for Cases 3 and 5 at four different post-breaking cross-shore positions. In
general the phase-averaged surface elevations match well for both cases, but there are
two noteworthy features. First, in figure 10(a–c) the increase in surface elevation in
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FIGURE 11. (Colour online) Comparison of computed (lines) and measured (Ting & Kirby
1994, circles) surface elevation envelopes and mean water levels using the Wilcox (1988)
model with a long (40 m) flat region. This plot can be compared directly with figure 8(a),
which depicts results computed with the same model, but where the flat region is only
4.7 m.

Case 3 is more rapid than in Case 5. This can again be explained by the wave not
properly breaking in Case 3 at these positions (as just shown in figure 9) resulting
in a maintained steeper wave front. Second, in figure 10(d) Case 5 is significantly
leading the experiments, indicating that the surface roller is apparently travelling too
fast in the inner surf zone. The implications of this on the wave kinematics will be
discussed later in this section.

Returning back to figure 8, considering the previous example from § 3.2, it may
be somewhat surprising that the Wilcox (1988) and Wilcox (2006) models perform
at all reasonably in terms of the mean surface elevations (figure 8a,b). One might
have expected that the large eddy viscosity would cause the waves to decay even
prior to breaking, as was seen in the previous demonstration involving a propagating
wave train (figure 4a). This is, in fact, a real possibility, and the reason why this did
not occur in the previous examples is merely due to the short propagation distance
(in this case only a few wave lengths) allotted prior to the onset of breaking, which
limits the extent of the turbulence over-production problem. Such pre-breaking wave
decay would most certainly occur if the pre-slope distance was extended sufficiently
further. To show this we have performed one additional simulation, but with the flat
region now being 40 m instead of 4.7 m. The resulting surface elevations using the
Wilcox (1988) model are shown in figure 11. Here it can be seen that the unstable
growth in the eddy viscosity has caused the incoming wave to decline significantly,
and as a consequence the horizontal position of the breaking point has shifted to be
further onshore. Importantly, this recognition implies that previously computed results
of breaking waves with non-stabilized closure models (prevalent in the literature) are
not unique, instead being heavily dependent on both the initial conditions and the
allotted propagation distance prior to shoaling and breaking. Results computed with
the new stabilized closure, on the other hand, will be fundamentally insensitive to
these issues.

As further comparison, figure 12 presents computed and measured (Ting & Kirby
1994) averaged turbulent kinetic energy k profiles at a total of eight positions,
corresponding to two pre-breaking positions (figure 12a,b), as well as six in the surf
zone (figure 12c–h). In the experiments only two components of the velocity were
measured, so k was approximated by k ≈ 1.33/2(u′2 + w′2). This approximation was
also used by Stive & Wind (1982) and Svendsen (1987), and comes from the results
of a plane wake from Townsend (1976). However more recent results from Scott
et al. (2005) indicate that

k≈ 0.75(u′2 +w′2) (3.5)
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in the surf zone, and this approximation has been used in what follows. Ting & Kirby
(1994) did not provide approximate k-profiles in the two pre-breaking positions and
the first post-breaking position (figure 12a–c) as well as the top three measurement
positions, but did provide profiles of the single component u′2. At these positions we
have alternatively utilized the approximation

k≈ 1.25u′2, (3.6)

again based on the measurements of Scott et al. (2005). It is thus emphasized that
the experimental k-profiles must all be regarded as approximate, but are still likely
reasonably indicative. For further discussions or indications on the uncertainties of
such approximations see e.g. Ting & Kirby (1996) and Scott et al. (2005).

To ease comparison the computed results in figure 12 are organized such that
results with light shaded (blue) lines correspond to non-stabilized closures (λ2 = 0,
Cases 1 and 2), whereas dark (black) lines correspond to formally stabilized models
(λ2 = 0.05, Cases 3–5). Moreover, results having the same line type share common
λ1 values, see again table 2. As might by now be expected, the standard Wilcox
(1988) (Case 1) and Wilcox (2006) (Case 2) k–ω models severely over-predict the
turbulence pre-breaking (light shaded/blue lines in figure 12a,b), which may again
be regarded as a direct consequence of the instability of these models. The depicted
over-production of turbulence using the Wilcox (1988) and Wilcox (2006) models is
typical of previous studies. In contrast, the new stabilized closure models (Cases 3–5)
predict low turbulent kinetic energy pre-breaking (dark black lines in figure 12a,b,
see also again figure 6), much more in line with the experiments. The improvement
seen with the new stabilized closures in figure 12(a,b), and related effects further
shoreward, can be regarded as the principal achievement of the present work: only
waves computed with the new stabilized closure arrive at the surf zone, and hence
begin the simulated breaking process, unpolluted. To most clearly see the isolated
effect of the stabilizing limiter λ2, Cases 1 and 2 can be respectively compared with
Cases 3 and 4.

The over-production of turbulence prior to breaking using the non-stabilized models
also has an effect on the post-breaking turbulence. As can be seen, both the Wilcox
(1988) and Wilcox (2006) models (Cases 1 and 2) predict higher turbulence levels
than their stabilized counterparts (respectively, Cases 3 and 4) during the initial
breaking process (figure 12c–e). This demonstrates that the unphysically high levels
of pre-breaking turbulence predicted by the non-stabilized models can indeed pollute
results extending well into the outer surf zone. Once the inner surf zone is reached
(figure 12f –h) the differences between the stabilized (dark black lines) and standard
(light shaded/blue lines) turbulence models become smaller. Rather, the results in
the inner surf zone are more governed by the value of the Wilcox (2006) stress
limiter coefficient λ1 and have relatively little to do with λ2. This can be clearly
seen in figure 12, where the results having the same line type i.e. Cases 1 and 3
(dashed lines), and Cases 2 and 4 (dotted lines), which were initially quite different
in figure 12(a–c), have become quite similar in figure 12( f –h). Thus, the stabilization
of the closure models achieved by utilizing λ2 > 0, as introduced herein, plays an
important role both prior to breaking and in the outer surf zone, while expectedly
becoming less important in the inner surf zone. This behaviour is as intended, as
it has again been the aim of the present work to produce a formally stabilized
closure model in potential flow regions, which defaults to a desired existing closure
in sheared regions (i.e. the surf zone in the present context). The results in figure 12,
as a whole, demonstrate that this has indeed been achieved.
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FIGURE 12. (Colour online) Comparison of modelled (lines) and measured (empty circles:
from (3.5), filled circles: from (3.6)) turbulent kinetic energy k profiles at (a) x =
−1.265 m (x̃ = (x − xb)/hb = −38.518), (b) x = 5.945 m (x̃ = −2.286), (c) x = 6.665 m
(x̃ = 1.332), (d) x = 7.275 m (x̃ = 4.397), (e) x = 7.885 m (x̃ = 7.462), ( f ) x = 8.495 m
(x̃= 10.528), (g) x= 9.11 m (x̃= 13.618) and (h) x= 9.725 m (x̃= 16.709).

To demonstrate the consequences directly on the flow properties, the computed
and measured averaged undertow velocity profiles 〈u(z)〉 are finally compared in
figure 13, at the same eight positions as in figure 12. Figure 13(a,b) clearly illustrates
the adverse effects associated with the pre-breaking over-production of turbulence
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FIGURE 13. (Colour online) Comparison of modelled (lines) and measured (circles)
undertow velocity profiles at (a) x = −1.265 m (x̃ = (x − xb)/hb = −38.518), (b) x =
5.945 m (x̃ = −2.286), (c) x = 6.665 m (x̃ = 1.332), (d) x = 7.275 m (x̃ = 4.397), (e)
x= 7.885 m (x̃= 7.462), ( f ) x= 8.495 m (x̃= 10.528), (g) x= 9.11 m (x̃= 13.618) and
(h) x= 9.725 m (x̃= 16.709).

inherent within the standard Wilcox (1988) and Wilcox (2006) models (Cases 1 and
2, respectively). The negative peaks in the computed undertow with these models
are consistently near the sea bed, whereas the measurements show these to be much
higher up. This qualitative difference is important and can be explained by the
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artificially high νT in the upper part of the wave increasing the flow resistance,
thus resulting in the strongest undertow near the bottom (similar to those profiles
measured deeper into the surf zone). In contrast, in the experiments, as well as with
the proposed new stabilized closure models (dark lines, Cases 3–5), the flow resistance
is largest near the bed at these positions, and hence the undertow is strongest in the
upper part of the flow.

The effects of over-produced turbulence in the outer surf zone are also clearly
visible, with the two models having λ1= 0 (Cases 1 and 3, dashed lines) maintaining
an erroneous undertow structure (figure 13c,d) while the cases with λ1 > 0 (Cases 2,
4 and 5) show a better evolution of the undertow structure at these positions. These
results thus, again, highlight the positive influence of the Wilcox (2006) stress limiter,
which was previously found essential to obtain properly spilling waves (figure 9).
The model which best matches the evolution of the measured undertow structure
from pre-breaking and throughout the outer surf zone (figure 13a–e, corresponding
to −1.265 m 6 x 6 7.885 m) is Case 5, corresponding to the present stabilized
(λ2 = 0.05) closure with the intermediate value λ1 = 0.2. Notably, this transition from
shoaling to the outer surf zone is a physically important and complex region of great
interest, as the physics associated with the pre-to-post breaking transformation are
related e.g. to the formation and dynamics of near-shore breaker bars, which play an
important role in coastal protection.

Consistent with the trends seen previously in the computed turbulent kinetic energy,
the results in the inner surf zone become grouped largely based on the value of λ1
utilized (figure 13f –h) i.e. the results using (otherwise identical) formally stabilized
or non-stabilized models are essentially similar in this region. The velocity profiles
computed with λ1 > 0 (Cases 2, 4 and 5) remain qualitatively correct in structure, but
become exaggerated by a factor of approximately two relative to those measured. It
can be noted that very similar results for the undertow in the inner surf zone have
been shown with various RANS closure models in Brown et al. (2016), as well as
with a LES model in Christensen (2006). In contrast, the models using λ1= 0 (Cases
1 and 3, dashed lines) actually result in more accurate undertow profiles in the inner
surf zone. These results are certainly interesting, although in the authors’ opinion they
should likely be regarded as fortuitous, given that these models did not result in (i)
properly spilling waves or (ii) correct turbulence/undertow structure at many positions
leading up to the inner surf i.e. a correct qualitative description of the breaking process
is lacking with these models. (We again emphasize that the undertow in the inner surf
zone is primarily dependent on the value of the Wilcox (2006)-type limiter λ1, and has
little to do with the new stabilizing λ2-limiter introduced in (2.35).)

Upon further inspection of the present results, the quantitative differences in the
undertow in the inner surf zone achieved with λ1=0 (Cases 1 and 3, dashed lines) and
the other models are believed to be related to the waves computed with λ1> 0 (Cases
2, 4 and 5) apparently travelling too fast once the inner surf zone is reached (see
again figure 10c). A surface roller travelling too fast, as is apparently the case with
λ1 > 0 as exemplified with Case 5 in figure 10(c), will result in increased flow near
the surface. This must be compensated by an increased undertow, hence promoting
the exaggerations seen in figure 13( f –h) with λ1 > 0.

The reason for the slower surface roller in Cases 1 and 3 (sharing λ1 = 0) relative
to the other models is believed to be related to their increased eddy viscosity (hence
flow resistance) in the upper part of the flow once in the inner surf zone. Such
differences in the eddy viscosity are demonstrated in figure 14, where the average
eddy viscosity profiles for Cases 3–5 at the two inner-most positions of the surf
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FIGURE 14. Comparison of modelled eddy viscosity profiles at (a) x = 9.11 m
(x̃= (x− xb)/hb = 13.618) and (b) x= 9.725 m (x̃= 16.709).

zone are shown. The higher eddy viscosity in Case 3 in the upper part of the flow
extracts energy from the mean flow, slowing the breaking wave down compared
to Case 5, as again shown in figure 10. Based on the locally improved undertow
prediction, it seems that Case 3 apparently yields the ‘correct’ eddy viscosity in the
inner surf zone. However, this model also clearly over-estimates k in the upper part
of the flow, as shown in figure 12(g,h) (seemingly a remnant of even more severe
over-predictions further offshore). In the inner surf zone νT ≈ k/ω. The implication
must then logically be that in Case 3 (similarly, Case 1) both k and ω are locally
erroneous, but by approximately the same factor, hence combining to produce an eddy
viscosity that is more or less correct. In contrast, the models with λ1 > 0 (Cases 2, 4
and 5) yield quite reasonable k-profiles in the inner surf zone (figure 12(g,h) implying
that only ω is locally erroneous. How to obtain an accurate eddy viscosity in the
upper part of flow in the inner surf zone, while still maintaining a proper description
of the breaking process leading up to this region, remains an open question meriting
further research.

In summary, of utmost importance, the present case definitively demonstrates that
the new stabilized closure proposed herein avoids entirely the important problem of
non-physical over-production of turbulence prior to breaking, a long-standing problem
in the CFD simulation of surface waves and the primary aim of the present paper.
This, in turn, significantly improves both the prediction of turbulent kinetic energy and
the evolution of the undertow as waves progress from the shoaling region to the outer
surf zone. Conversely, due to their inherent instability, surface waves propagated with
existing standard closure models can arrive at the surf zone already polluted, adversely
affecting their results locally and extending into the outer surf zone. As intended,
results with otherwise identical non-stabilized and stabilized closures become similar
once the inner surf zone is reached. Of the five model variations tested, no single
model has resulted in the best performance in all measured quantities at all positions,
with the undertow in the inner surf zone proving the most elusive for the models
which seem to give the best description leading up to this region. Nevertheless, having
CFD models which begin the breaking process unpolluted by unphysical background
turbulence is obviously important in studying the breaking process as a whole. Given
that the instability addressed in the present work is inherent within the nearly potential
flow region beneath waves, it is thus recommended that formally stabilized closure
models, such as those presented herein, be utilized in future studies involving the
RANS-based CFD study of surface waves.
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4. Conclusions

In this work the instability of two-equation turbulence closure models in a nearly
potential flow region beneath surface waves has been revisited, a long-standing
problem originally diagnosed by Mayer & Madsen (2000). It has been shown
analytically that this problem is widespread and seemingly plagues most (all that
the authors have analysed) commonly used two-equation closure models. These have
been demonstrated to be unconditionally (rather than conditionally, as shown by
Mayer & Madsen 2000) unstable, and the asymptotic exponential growth rates for
the turbulent kinetic energy and eddy viscosity for several closures have been derived
in closed form. Working within the confines of an established stress-limiting feature
in the k–ω model, a new and formally stable closure model is proposed. The new
closure model, by design, defaults to a desired unmodified k–ω model in uniform
boundary layer flows and other sheared regions, remains true to theoretically based
terms in the k-equation, is fully consistent with the Boussinesq approximation, and
does not require modification of any standard closure coefficients.

The new stabilized turbulence model has been implemented as closure to a
computational fluid dynamics model solving Reynolds-averaged Navier–Stokes
(RANS) equations, and directly tested for problems involving both non-breaking
and breaking surface waves. As a first idealized test a simple periodic progressive
wave train has been considered, which has been kept as close to potential flow as
possible. Consistent with analytic expectations, it is demonstrated that the standard
k–ω model results in exponential growth of the turbulent kinetic energy and eddy
viscosity, ultimately destroying the simulation by leading to non-physical decay of
the wave. Conversely, the new stabilized closure yields an eddy viscosity that decays
to insignificant levels, enabling a nearly constant form wave propagation over long
durations. This test has demonstrated how standard turbulence closure models in wide
use can, due to their inherent instability, fail quite spectacularly when applied to even
in the simplest of computational surface wave problems. The new stabilized closure,
on the other hand, does not adversely affect such simulations.

As a subsequent computational test, the spilling breaking experiment of Ting &
Kirby (1994) has been considered, corresponding to the precise incoming wave
conditions where the over-production of turbulence beneath surface waves has been
most pronounced in the literature. Consistent with several previous studies, it has been
shown that standard closure models can lead to severely over-predicted turbulence
levels even prior to wave breaking, with pre-breaking turbulent kinetic energy being
the same order of magnitude as within the surf zone. This is not physical, but again a
direct consequence of their instability, and implies that standard model results in such
applications may well be polluted before the phenomenon of physical interest (i.e. the
breaking process) has even begun. It is demonstrated that such pollution results in
erroneous structure of the undertow velocity profile, both pre-breaking and extending
into the outer surf zone. In contrast, the new stabilized closure has been demonstrated
to avoid unphysical over-production of pre-breaking turbulence altogether, and results
in a model that is able to produce the correct evolution of the undertow structure
from outside to within the surf zone. The new closure model has been demonstrated
to predict accurate surface elevation envelopes throughout the breaking process, as
well as reasonable turbulence and undertow profiles, especially prior to breaking and
in the outer surf zone. The effect of the formal stabilization in the potential flow
regions becomes expectedly less important in the inner surf zone, where results of
otherwise identical stabilized or non-stabilized models become similar.
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While the main text has focused on variations of the k–ω turbulence closure
model, analysis of several other widely used closures (both k–ω and k–ε types)
are similarly considered in appendix A. These are likewise demonstrated to be
unconditionally unstable, but can fortunately be formally stabilized through similar
simple modifications to their stress-limiting features. Given the potentially adverse
effects of doing otherwise, apparent from several previous studies as well as
demonstrated herein, it is recommended that these (or otherwise formally stabilized
approaches) be utilized in any future CFD studies involving surface waves based on
RANS equations coupled with two-equation closure models. The authors hope that
the present study will both raise awareness of this important problem, and that the
remedies proposed will enable more accurate simulations of surface waves with such
computational models going forward.
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Appendix A. Analysis of additional turbulence closure models
In this appendix three additional popular two-equation turbulence closure models

are analysed for stability in a region of nearly potential flow with finite strain. It is
demonstrated that, in their standard forms, these models are likewise unconditionally
unstable. Moreover, it is shown that each may be formally stabilized via the addition
of similar stress-limiting modifications, as devised in § 2.6. It is recommended that
the stabilized versions of these models be utilized in any future CFD simulations of
free-surface waves, to avoid non-physical exponential growth of the turbulent kinetic
energy and eddy viscosity in the nearly potential flow region, the significant benefits
of which have been demonstrated in the main text.

A.1. The k–ω SST model
In addition to the standard k–ω models considered in the main text, another widely
used variant is the k–ω SST (shear stress transport) model of Menter (1994).
Neglecting convective and diffusive terms as before, in this model the k equation is

∂k
∂t
=min(νTp0, c1β

∗ωk)− β∗ωk, (A 1)

combined with the ω equation from (2.18), from which it is evident that ω will
ultimately tend to ω∞ from (2.20). In this model the eddy viscosity is defined by

νT =
a1k

max(a1ω, F2
√

p0)
, (A 2)

where the denominator includes a stress-limiting feature somewhat similar to that used
in the Wilcox (2006) model. In the above c1= 10, a1= 0.31, and α and β are closure
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coefficients, which are a blend of inner (subscript 1) and outer constants (subscript 2)
based on

φ = F1φ1 + (1− F1)φ2, (A 3)

where φ represents either of these coefficients. The inner coefficients are α1= 0.5532
and β1= 0.075, whereas the outer coefficients correspond to α2= 0.4403 β2= 0.0828.
This model utilizes the following two blending functions:

Λ1 =min

{
max

( √
k

β∗ωzw
,

500ν
z2

wω

)
, 10

}
, (A 4)

Λ2 =min

{
max

(
2
√

k
β∗ωzw

,
500ν
z2

wω

)
, 100

}
, (A 5)

where F1= tanh(Λ4
1) and F2= tanh(Λ2

2), and zw represents the distance to the nearest
wall.

Due to the blending of inner and outer constants, the min condition in the
production term in the k equation (A 1) and the max condition in νT (A 2), the
analysis of the k–ω SST model is not as simple as in the standard k–ω model
variations. It is therefore necessary to split the analysis into three different cases:
First, if the first arguments in (A 1) and (A 2) are active, then this model is the same
as the standard k–ω model, and hence will result in exponential growth at the rate
predicted analytically by (2.22). As this rate is inevitably positive (i.e. regardless if
inner or outer coefficients are used) the model will be unstable, and it is hence clear
that the model will eventually tend to the inner coefficients, yielding F1 = 1 and
Γ∞ ≈ 0.124

√
p0. Second, suppose that the second term in the max condition of (A 2)

is active. Inserting the threshold ω=ω∞ into the k equation (A 1) yields

1
k
∂k
∂t
= Γ∞, Γ∞ =

√
p0

(
a1

F2
−

√
αβ∗
√
β

)
. (A 6)

Here Γ∞ is again inevitably positive, and thus inserting F2 = 1 and the inner
coefficient values yields Γ∞ ≈ 0.0656

√
p0. Third, suppose that the second term

in the min condition (A 1) is active. Inserting ω=ω∞ into (A 1) then similarly yields
the growth rate

Γ∞ = (c1 − 1)β∗
√
α

β

√
p0. (A 7)

This is also inevitably positive, and inserting inner coefficients yields Γ∞ ≈ 2.20
√

p0.
To conclude, the k–ω SST model is also unconditionally unstable, with an

asymptotic growth rate that is at least Γ∞ ≈ 0.0656
√

p0, although it may exhibit
preliminary exponential growth that is considerably larger. To independently demon-
strate the validity of the analysis above, the two differential equations (A 1) and
(2.18) (complete with the blending functions above, utilizing zw = 10

√
k0/p0) are

again solved numerically, with the same initial conditions as in § 2.3 (these are
maintained throughout the appendix). The result for νT/ν of the numerical solution is
shown in figure 15(a), where it is seen that after the initial evolution, the model (full
line) is unstable at an accelerated rate, before ultimately arriving at the asymptotic
Γ∞ ≈ 0.0656

√
p0 (dashed line) predicted above.
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FIGURE 15. Simulated development of νT/ν (full lines) compared to the asymptotic
exponential growth exp(Γ∞t) (dashed lines) for the (a) k–ω SST, (b) k–ε and (c) RNG k–ε
models. In (c) the grey dashed-dotted line presents numerical results when an oscillation in
the production is added as p0+ p̃0 sin(

√
p0t) and the grey dotted line depicts the predicted

exponential growth with Γ∞ calculated analytically from (A 21) with ω=ω∞ from (A 22).
After some initial development all numerical results are seen to follow precisely the
analytically predicted asymptotic exponential growth rates.

Similar to the standard variants, the k–ω SST model can be stabilized via a slight
modification to the stress-limiting feature. In this case the necessary modification
corresponds e.g. to redefining the eddy viscosity from (A 2) according to

νT =
a1k

max
(

a1ω, F2
√

p0, a1λ2
β

β∗α

p0

pΩ
ω

) , (A 8)
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where a new (third) argument has been added within the max function, designed to
only be active in a region of nearly potential flow i.e. where pΩ� p0. Adopting this
value within νT , and repeating the analysis above leads to the asymptotic growth rate

Γ∞ =
(pΩ − λ2p0)β

∗

λ2

√
α

p0β
. (A 9)

This is formally stable provided that pΩ/p0 6 λ2, in accordance with (2.38), such
that λ2 defines the effective potential flow threshold, as before. Note that at the
pure potential flow limit (where pΩ = 0) the growth (or in this case, decay) rate
is Γ∞ ≈ −0.244

√
p0. Exponential decay in line with that predicted by (A 9) is

independently confirmed by numerical solution of the reduced modified model
equations in figure 16(a).

A.2. The k–ε model
Another widely used class of turbulence closure models are those in the k–ε family.
Neglecting convective and diffusive terms, the standard high Reynolds number k–ε
model of Launder & Sharma (1974) reduces to the following two equations

∂k
∂t
= νTp0 − ε, (A 10)

∂ε

∂t
=C1Cµkp0 −

C2ε
2

k
, (A 11)

where the eddy viscosity is defined as

νT =
Cµk2

ε
. (A 12)

It is emphasized that, similar to the k–ω models considered previously, the eddy
viscosity is here retained as a variable only within the k equation; it has been
explicitly eliminated within the ε equation by invoking the definition (A 12). This
makes no difference to the model in its standard form, but is an important detail in
its formal stabilization, to be presented in what follows. The closure coefficients are
Cµ = 0.09, C1 = 1.44 and C2 = 1.92.

To analyse the stability of this model, it turns out to be convenient to utilize an
equivalent equation for the specific dissipation rate ω= ε/(Cµk):

∂ω

∂t
=

1
Cµk

∂ε

∂t
−

ε

Cµk2

∂k
∂t
= (C1 − 1)p0 −Cµ(C2 − 1)ω2. (A 13)

Although it is not directly modelled, this variable will still (regardless of the initial
conditions) evolve asymptotically to the constant

ω∞ =

√
(C1 − 1)p0

Cµ(C2 − 1)
≈ 2.31

√
p0 (A 14)

such that ∂ω/∂t= 0. Substituting ε=Cµωk with ω=ω∞ back into (A 10) and (A 11)
leads to linearized equations of the form (2.21) where the unstable growth rate is

Γ∞ =
Cµ(C2 −C1)

√
p0√

(C1 − 1)(Cµ(C2 − 1))
≈ 0.226

√
p0. (A 15)
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FIGURE 16. Simulated development of νT/ν (full lines) compared to the predicted
exponential decay exp(Γ∞t) (dashed lines) for stabilized versions of the (a) k–ω SST, (b)
k–ε and (c) RNG k–ε models. After some initial development all numerical results are
seen to follow precisely the analytically predicted asymptotic exponential decay rates.

Hence, similar to the pre-existing k–ω models considered previously, the standard k–ε
model is likewise unconditionally unstable for the conditions considered. The analysis
above is confirmed through independent numerical simulation of (A 10) and (A 11),
the results of which are shown in figure 15(b).

It can be noted that Mayer & Madsen (2000) stated, but did not directly show, that
the standard k–ε model would also have conditional uncontrollable growth of νT when
used to simulate surface waves. The analysis above demonstrates this formally, and
extends their conditional finding to be unconditional. The instability of the k–ε model
is also widely evidenced in simulation of surface waves, with the model resulting in
severely over-predicted turbulent kinetic energy, especially pre-breaking as shown by
several authors e.g. Bradford (2000) and Xie (2013).
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The standard k–ε model presented above can be formally stabilized via the
following simple modification to the eddy viscosity:

νT =
Cµk2

ε̃
, ε̃=max

(
ε, λ2

C2

C1

p0

pΩ
ε

)
. (A 16)

In most circumstances (sheared flow regions) the first argument in the max function
will be active, and the model is then identical to the standard k–ε model. In a region
of nearly potential flow, however, the second argument is designed to become active.
Letting ε̃ take this value, and repeating the analysis above leads to the growth rate

Γ∞ =
(pΩ − λ2p0)Cµ
√
λ2C2p0 − pΩ

√
C1C2

λ2(Cµ(C2 − 1))
. (A 17)

This is formally stable provided that pΩ/p0 6 λ2, where λ2 again defines the effective
potential flow threshold. Note that the singularity in (A 17) at pΩ/p0 =C2λ2 = 1.92λ2
is outside the range pΩ/p0 < C2λ2/C1 ≈ 1.33λ2, where the new limiter introduced in
(A 16) is active. Note also that at the limit where pΩ = 0 the decay rate is Γ∞ ≈
−0.375

√
p0. Exponential decay of the eddy viscosity in accordance with (A 17) is

demonstrated via independent numerical solution of (A 10) and (A 11), while invoking
(A 16), in figure 16(b) using the same initial conditions as before.

The strategy described above to stabilize a k–ε type model is slightly similar to
that employed by Hsu et al. (2002), who used a damping function to decrease the
eddy viscosity in ‘low turbulence’ regions. The solution suggested above, however, is
fundamentally different in that it is based directly on analysis of the problem at hand.

A.3. The RNG k–ε model
Neglecting convective and diffusive terms as before, the RNG k–ε model of Yakhot
et al. (1991) is again comprised of (A 10) and (A 11), but with C1 now defined as

C1 =C1ε −
ηrng(1− ηrng/η0)

1+ βrngη3
rng

, (A 18)

where η0=4.38, βrng=0.012 and ηrng=
√

p0k/ε, with closure coefficients Cµ=0.0845,
C1ε = 1.42 and C2 = 1.68. The eddy viscosity is again defined according to (A 12).
Due to the added complexity of this model our analysis will be performed with all
coefficient values invoked. Similar to before, we invoke the above into the equivalent
ω equation (A 13), which in this case leads to a complicated polynomial in ω. To find
the asymptotic value ω=ω∞ we set ∂ω/∂t= 0 and look for solutions of the form

ω∞ = A
√

p0. (A 19)

After some simplification, this ultimately leads to the following fifth-order polynomial:

A5
− c3A3

+ 225.846A2
− 556.477A− c0 = 0, (A 20)

where c3 = 7.30943 and c0 = 145.377. This has the lone physical (real and positive)
root A = 2.702. Invoking this back into (A 10) and (A 11) then leads to linearized
equations of the form (2.21), with unstable growth rate

Γ∞ =
p0

ω∞
−Cµω∞ (A 21)
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yielding Γ∞ ≈ 0.142
√

p0. Hence, this model is also unconditionally unstable. The
unstable growth rate found analytically above is confirmed via independent numerical
simulation of (A 10) and (A 11), after invoking (A 18), in figure 15(c).

Interestingly, in the study of breaking waves by Brown et al. (2016), the RNG k–ε
model was the only closure model of those tested not to result in excessive turbulence
prior to breaking. To investigate the potential reasons for this observation, we have
extended the analysis above to also consider the addition of an oscillatory production
component i.e. p0 + p̃0 sin(σwt). Repeating the analysis above, it can be shown that,
to leading order in p̃0, the addition of the oscillating component modifies the (now
period averaged) asymptotic value for ω to

〈ω∞〉 ≈ 2.702

√
p0 + 0.1795

p̃2
0

p0
, (A 22)

which is obviously an extension of the steady-state result (A 19). We have likewise
simulated such a case numerically, taking σw =

√
p0 =

√
p̃0 for simplicity, and the

resulting time evolution of the eddy viscosity is depicted as the dashed-dotted line in
figure 15(c). From (A 22) this case yields 〈ω∞〉≈ 2.93

√
p0, which when inserted back

into (A 21) results in the predicted period-averaged growth rate 〈Γ∞〉 ≈ 0.0927
√

p0.
While still positive, this is considerably less than would be expected from the strictly
steady-state analysis from either the standard or RNG k–ε models. This predicted
exponential growth is likewise depicted in figure 15(c) as the dotted line, which
matches nearly perfectly the long-term (period averaged) growth rate exhibited by the
independent numerical simulation. Hence, this extension of the steady-state analysis
(as well as the simple numerical simulation) likely demonstrates why reduced growth
rates in the CFD simulation of surface waves have seemingly been observed in
practice with the RNG k–ε model. Note that similarly adding oscillatory components
to p0 e.g. in the numerical simulation of the reduced standard k–ε or k–ω models
does not lead to significant deviations from the growth rates Γ∞ predicted by the
steady-state linear stability theory. Hence, this behaviour is seemingly a rather unique
feature of the RNG k–ε model, and can clearly be attributed to the modified term in
the ε equation. Nevertheless, despite the potentially reduced growth, this closure is
still formally unconditionally unstable at the steady-state limit, and its performance
as a whole for simulating surface waves leaves much to be desired. For example, it
was ranked as the least accurate of all of the closure models tested by Brown et al.
(2016), severely overestimating turbulence levels in the inner surf zone.

In any event, similar to the standard k–ε model, the RNG k–ε model can be
formally stabilized via the following simple modification to the eddy viscosity:

νT =
Cµk2

ε̃
, ε̃=max

(
ε, 1.2603λ2

C2

C1ε

p0

pΩ
ε

)
. (A 23)

As before, in most circumstances (sheared flow regions) the first term in the max
argument will be active, and the model is then identical to the standard RNG k–ε
model, whereas in a region of nearly potential flow the second term will be active.
Letting ε̃ take this value, we will seek a solution for the (steady state) asymptotic
value for ω of the form

ω∞ ≈ A
√

p0 + B
pΩ
λ2
. (A 24)
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To accomplish this we set ∂ω/∂t = 0, and Taylor expand the resulting ω equation
about pΩ = 0. Collecting O(1) terms leads, after some simplification, to a polynomial
of the form (A 20), now with c0 = 491.512 and c3 = 24.7128. This has the lone
physical (real and positive) root A = 3.716. Inserting this value for A and then
requiring that O(pΩ) terms vanish subsequently yields B=−0.425254, thus defining
the leading-order contributions for ω∞. Inserting ω=ω∞ from (A 24) back into (A 10)
and (A 11) leads to linearized equations of the form (2.21), where the asymptotic
growth rate is

Γ∞ =
0.3140(pΩ − λ2p0)

λ2

√
p0 −

0.4253pΩ
λ2

. (A 25)

This is again formally stable provided that pΩ/p0 6 λ2, where λ2 again defines the
effective potential flow threshold. Note that the singularity in (A 25) at pΩ/p0 ≈

2.351λ2 is outside the range pΩ/p0 < 1.2603C2/C1ελ2≈ 1.49λ2 where the new limiter
introduced in (A 23) is active. Note also that at the limit where pΩ = 0 the decay rate
is Γ∞ ≈ −0.314

√
p0. Exponential decay in accordance with (A 25) is demonstrated

via independent numerical solution of the modified RNG k–ε equations, i.e. after
invoking (A 23), in figure 16(c).

Appendix B. Derivation of the buoyancy production closure coefficient α∗b
To derive a value for the buoyancy production closure coefficient α∗b , consider a

sheared flow region such that ω̃ = ˜̃ω. Neglecting convective and diffusive terms, but
retaining shear and buoyancy production terms, we may reduce (2.1) and (2.2) to

∂k
∂t
= p0νT − α

∗

bN2νT − β
∗kω (B 1)

∂ω

∂t
= α

ω

k
p0νT − βω

2, (B 2)

where the eddy viscosity is intentionally kept general. To find steady-state conditions,
we set both equations above equal to zero, and solve for p0 and N2. This leads to the
steady-state Richardson number

Ri∞ =
N2

p0
=
β − αβ∗

α∗bβ
≈

0.339
α∗b

. (B 3)

According to Schumann & Gerz (1995) (see also Burchard 2002) the constraint Ri∞6
0.25 should be satisfied, implying that, at minimum, we must require α∗b ≈1.36, which
is the value adopted throughout the present work. Note that this is quite similar to the
value 1/0.7≈ 1.4 used by several other authors (e.g. Rodi 1987; Ruessink et al. 2009;
Fuhrman et al. 2013), and conveniently enables the constraint above to be satisfied
without requiring an additional buoyancy production closure term in the ω equation.
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