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Abstract
The financial system can be shown to be a complex adaptive system consisting primarily of a
federation of systems and systems of systems. There are significant similarities between the char-
acteristics of natural systems and financial systems suggesting that the type of analysis employed in
understanding natural systems could have application in financial system analysis. Cladistics analysis
has been used extensively for analysis of biological systems and has accordingly been used in the
social sciences for some years but a rigorous justification for adopting the analysis has not been
undertaken. This paper discusses the appropriateness of applying cladistics analysis to financial
systems, and then considers the appropriate methodology to be adopted for analysis of different
financial events.
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1. Introduction

Traditional statistical analysis remains the dominant methodology for analysing financial systems,
and by way of illustration, in the 2017 editions of a top-rated financial journal, of the 62 papers
published, 55 included traditional statistical methods. But the financial system can be shown to be a
complex adaptive system (CAS) which means the system is continually changing and the outcome of
the system’s reactions to internal or external disruptions cannot be predicted from a reductionist
analysis. This emergence phenomenon of the financial system has been recognised for some time with
consequent questioning of the appropriate tools for analysis. We would argue that traditional sta-
tistical approaches have limited application for modelling the ambiguity risks in the financial systems
as defined by Ganegoda & Evans (2014). Danielsson (2008) and Danielsson et al. (2016) both
observed that traditional statistical models were fragile as to their assumptions and mechanisms for
understanding financial systems, as well as inconsistent due to the endogenous uncertainty inherent
in the financial systems. It seems that understanding financial systems under such complexity requires
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a solution that can provide a holistic picture of the system. We are of the view that cladistics analysis
is capable of providing such a holistic view of the relationships occurring in the financial systems.
Cladistics analysis is a method to classify events in a CAS into related sets. This method has been
applied to different areas, and whilst initially developed for biological applications, it has now been
extended to the social sciences. In the social sciences, the methodology has been used to analyse
management systems (Mitleton-Kelly, 2003), product development (McCarthy et al., 2006), cultural
inheritance in social systems (Matthews et al., 2013), operational risk in banks (Li et al., 2017a),
world economic risks (Evans et al., 2017) and credit risks (Shi et al., 2018a). In these applications
outside of biology, there has been an assumption that cladistics analysis was appropriate as the
systems being analysed were CAS. Whilst a system being a CAS is essential to justify the adoption of
cladistics analysis, other criteria apply and also the exact methodology to be applied will vary
depending on the particular characteristics of the CAS. In this paper we will discuss the justification
for adopting cladistics analysis for financial events, the different algorithms that are applicable to
particular sets of financial events, and provide some insights into the value of cladistics analysis of
financial events.

2. Similarities of Biological and Financial Systems

The most important similarity between biological and financial systems is that they are both CAS.
CAS and their attributes have been widely discussed by John Henry Holland (1995), Arthur,
Durlauf & Lane (1997), Cilliers (1998), Mitleton-Kelly (2003), Mitchell (2009) and Holland
(2014). Whilst there is not a commonly accepted definition of a CAS, it is generally accepted there
are four basic attributes to identify a CAS, namely, there are numerous components, there is no
central control, there are interactions amongst the components, and there is emergence of the
system as a result of interactions. The major financial institutions were shown by Schweitzer et al.
(2009) to be highly connected with loops existing between the financial institutions, indicating
that financial institutions are strongly inter-connected. Schweitzer et al. (2009) argued that such
interdependence may result in instability of the network which is a signal of emergence of a
system. The financial industry also has no central control as was recognised as early as Adam
Smith (1776) when he talked about “an invisible hand” operating in the markets. Similarly, in the
financial industry, there is no global control for the trading activities of participants, and reg-
ulators are concerned only with specific geographic areas as shown by Evans & Li (2018a) who
demonstrated that the global banking system was a federation of systems (FOS)1. It is relatively
easy to observe the emergent property of a CAS in the financial industry as it is impossible to
predict the market change by observing one or two financial institutions. The interactions of all
the financial institutions create the emergent property with the activities of agents in the financial
industry being influenced by other agents, resulting in coevolution (ul-Haq, 2005; Song &
Thakor, 2010). Song & Thakor (2010) found that co-evolution in banks was generated by the
effect of including securitisation of other banks’ assets in bank equity capital. Evans & Li (2018a)
argued that the extent of the interdependence of the global banking system was so high as to
require a change in the regulation of banks from an FOS to an SOS basis. The above discussion
leads to the conclusion that the global financial system presents the essential characteristics of a
CAS, that is, numerous agents, interactions among agents, no central control and emergence.
Allan et al. (2010) demonstrated the parallels of evolution in financial risks and biology in that
financial risks have unique characteristics similar to DNA in biology. Allan et al. (2012)

1 Whilst globally the financial system is an FOS, within counties the financial system may well be a system of
systems (SOS) which vary from FOS in the extent to which there is some central control.
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investigated financial risk evolution using Darwinian criteria and found financial risk evolution
satisfied all the criteria, namely variation, competition, inheritance, accumulation of modifica-
tions and adaptation. The conceptual parallels between biological evolution and financial events
can be summarised as:

1. Characteristics: in biological evolution, the characteristics are phenotype, that is, there are
observable characteristics and molecular sequence changes can affect the phenotype (Griffiths
et al., 2005). For financial events, the characteristics are determined from the descriptions and
records of the events and the characteristics are an abstraction and summarisation of these
descriptions rather than the records themselves.

2. Evidence: the evidence of biological evolution includes observation of fossils and current species.
The evidence of evolution of financial events is similarly based on historical records and
descriptions of the characteristics of events and descriptions of the characteristics of current events.

3. Random variation and selection: in biological evolution, the variation is caused by some
environmental determinants or happenstance, hence selection occurs from natural selection or
genetic drift (Lande, 1976). For financial events the environment (e.g. innovation, regulation and
transactions) is the main source of variation with risk management or controls (or the lack of
controls) being the mechanism that determines what new combinations of characteristics will
emerge.

4. Inheritance: Inheritance exists for financial events through the occurrence of events with the same
combinations of characteristics as historical events.

Given the justification of financial systems as a CAS and these conceptual parallels of biological
evolution and emergence of financial events, we can draw the conclusion that it is feasible to apply
cladistics analysis in studies related to financial events.

3. Cladistics Analysis

In applying cladistics analysis, it is important to consider the format of the data, as this will
affect the algorithm selection, the encoding methods that transform the data to meet the needs of
the particular analysis, and the interpretation of the resultant phylogenetic tree. The investi-
gation of evolution in biology has used two different data types, namely, molecular data and
morphological data. Morphological data records the form, structure and structural features of
species, including appearance (e.g. colour) and internal structure (e.g. bones). Molecular
data analyses DNA and proteins to gain information on evolutionary relationships. There is
debate as to whether to adopt molecular-based analysis or morphological-based analysis,
but Wiens (2000) pointed out the most common cause of incongruence was due to under
sampling of characters and taxa. Hillis (1995) argued that a combination of molecular and
morphological data would yield a better estimation of the true evolution. Wiens (2000) argued
that the data used could be molecular or morphological, or a combination of these two, so as
long as the selection can be justified and the results are properly interpreted. Encoding in
cladistics analysis refers to the transformation of the characteristics into a format that can be
used by the various algorithms available. Pleijel (1995) delineated four different encoding
methods for cladistics analysis which essentially relate to whether or not the presence of a
characteristic needs to be encoded as well as the absence of the characteristic. The different
encoding methods are:
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1. Linked multi-states which requires the absence and the presence for each characteristic to be
encoded but there are fixed characteristic combinations permissible;

2. Independent multi-states which requires the absence or presence of each characteristic to be
encoded, but there are no fixed combinations of characteristics;

3. Independent binary states which only requires either the absence or the presence of the
characteristic to be encoded but where all characteristics need to be encoded;

4. Binary states for all characteristics where only the presence or absence of characteristic is encoded
and not all characteristics are required to exist.

A classic way to illustrate the outcome of a cladistics analysis is by estimating phylogenetic trees. In
biology, a phylogenetic tree (or cladogram) is a graph that presents the inferred evolutionary rela-
tionships among different species. A phylogenetic tree can be transformed into various shapes (e.g.
diagonal-up, rectangular-right, rectangular-up, diagonal-down and circle, as discussed by Baum &
Smith (2013)), but these shapes are just different ways of showing the same inferred evolution. The
rectangular-right tree is visually easy to understand and an example is illustrated in Figure 1. A
phylogenetic tree diagram consists of leaves, branches and nodes. The leaves, for example, A, B, C
and D in Figure 1, represent different species (organisms, genes) in an evolutionary context. A
rotation of branches under a node will not change the relationships. For instance, denoting the leaves
under node a in Figure 1 as ((A, B), C) if it is rotated as ((B, A), C) or (C, (A, B)), it is still the same
tree.

There are two different approaches for inferring phylogenetic trees, namely, distance-based methods
and character-state based. Distance-based methods usually construct a phylogenetic tree based on a
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Figure 1. An example of a tree.
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distance matrix of pairwise genetic distances (Felsenstein, 1988). The main distance-based methods
include cluster analysis such as UPGMA (unweighted pair group method using arithmetic averages,
Sokal &Michener (1958)) and WPGMA (weighted-pair group method with arithmetic means, Sokal
& Michener (1958)) which assume a consistent evolutionary rate, minimum evolution (Kidd &
Sgaramella-Zonta, 1971; Rzhetsky & Nei, 1993) and minimises the total distance and neighbour-
joining (Saitou & Nei, 1987; Studier & Keppler, 1988). Character-state-based approaches, or
sequence-based methods rely on the state of the character, and all possible trees are evaluated to
generate the one that optimises the evolution. The main character-state-based methods include
maximum likelihood methods (Felsenstein, 1981), which includes Bayesian methods, and parsimony
methods (Camin & Sokal, 1965; Kluge & Farris, 1969; Fitch, 1971). Bayesian methods and max-
imum likelihood methods are both statistical inference methods. The parameters of Bayesian
methods are variables with distributions whilst the parameters of maximum likelihood methods are
unknown constants. Bayesian inference relies on prior probabilities (Rannala & Yang, 1996; Yang
& Rannala, 1997). Both maximum parsimony and maximum likelihood methods are character-
based methods, and they rely on different phylogenetic characteristics, for example, genetic, mor-
phological and molecular attributes to construct the trees. Character-state-based methods are often
considered more powerful than distance-based methods (Rastogi, Mendiratta, & Rastogi, 2008), as
they use raw data while distance-based methods transform raw data into a distance matrix which
introduces information loss. These two methods of constructing the trees are based on different
philosophies. The main assumption of parsimony is simplicity (Farris, 1983), which results in the
minimum number of homoplasies (i.e. a character that different species share is not inherited from a
common ancestor). Farris (1983) first made the justification that the minimisation of ad hoc
hypothesis of homoplasy maximises the explanatory power. Sober (1975) considered simplicity as a
matter of how much extra information has to be obtained to enable the theory to answer the research
question, while the less information is needed, the more informative is the theory. Some others
(Queiroz & Poe, 2001; Kluge, 2006; Wiley & Lieberman, 2011) attribute parsimony to “Ockham’s
razor,” which states that simpler hypotheses are preferred over complex ones. The alternative
methodology, maximum likelihood, is a statistical concept based on the probability of given data.
There is debate around the philosophy of phylogenetic inference (Popper, 1959; Popper, 1983;
Popper, 2002; Helfenbein & DeSalle, 2005). Popper changed the term “degree of conformation” to
“degree of corroboration” (Popper, 2002) and argued that hypotheses should survive from the most
severe tests. Popper (2002) saw truth as eternal while corroboration as temporal and further gave a
formula for the degree of corroboration:

C h; e; bð Þ= p e; hbð Þ�p e; bð Þ
p e; hbð Þ�p eh; bð Þ + pðe; bÞ

There are four terms to be examined: probability (p), background knowledge (b), empirical evidence
(e) and hypothesis (h). The logical probability “of a statement is complementary to its degree of
falsifiability” (Popper, 2002), and “the support given by e to h becomes significant only when
p e; hbð Þ�p e; bð Þ � 1 = 2” (Popper, 1983). For hypothesis with high content, p(eh, b) is close to 0 (K.
Popper, 2002). For a given (e) and (b), p(e, b) is constant and therefore the trees with highest p(e, hb)
will be the tree with the strongest corroboration. In the context of cladistics analysis, background
knowledge (b) is the assumptions inherent in the method, empirical evidence (e) is the data, and
hypothesis (h) is the hypothesis of relationships (Queiroz, 2004). Carpenter (1992), Siddall & Kluge
(1997), Carpenter, Goloboff, & Farris (1998) and Farris, Kluge, & Carpenter (2001) argued that the
parsimony methodology corresponds to the philosophy of Karl Popper, and it is a better method
compared to the principle of likelihood, whilst Queiroz (1988), Faith & Cranston (1991), Queiroz &
Poe (2001), Queiroz (2004) and Queiroz (2014) doubted the argument and argued the equally
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compatible, or even superiority of likelihood with Popperian corroboration. Farris (1973), Felsen-
stein (1973) and Goldman (1990) argued that parsimony can be expressed under a likelihood
framework because C(h, e, b) is straightforward in a likelihood framework. As well as the philo-
sophical debate, there has also been debate at the practical level of the alternative methodologies.
Wright & Hillis (2014) and Puttick et al. (2017) claimed that Bayesian analysis outperforms par-
simony methods for discrete morphological data but O’Reilly et al. (2016) wrote “only minor
differences are seen in the accuracy of phylogenetic topology reconstruction between the Bayesian
implementation … and parsimony methods”. Schrago, Aguiar, & Mello (2018) used empirical data
to compare Bayesian inference and maximum parsimony, and found more trees at the 95% con-
fidence level for Bayesian inference compared to a maximum parsimony method and concluded
Bayesian inference was less precise than maximum parsimony. Brown et al. (2017) and Goloboff
et al. (2018) also recommended caution for the model being applied to morphological data as the
methods applied by Puttick et al. (2017) and O’Reilly et al. (2017) might, as pointed out by Goloboff
et al. (2018), cause long branch attraction for parsimony methods (Felsenstein, 1978). Hence, in
practice, parsimony methods are at least not worse than, maximum likelihood methods (Puttick
et al., 2017) and it is the most widely applied method for morphological data (Wright & Hillis,
2014; Puttick et al., 2017). Another consideration is what is known as long branch attraction. When
the evolutionary rate is extremely unbalanced, there will be a long branch attraction which leads to
inconsistency of tree estimation (Felsenstein, 1978). With two possible character states, each with a
possibility of P and Q to change, when P2≤Q(1 −Q), there might be a long branch attraction
problem. For small Q, the situation is approximated by P≤

ffiffiffiffiffi
Q

p
(Felsenstein, 1978). If there is a

significant difference in the evolution rate, modified parsimony methods that reduce the impact of the
evolutionary rate (Lake, 1987; Willson, 1999) or maximum likelihood methods, which are less
sensitive to long branch attraction, should be considered. The final consideration is to recognise the
necessity to align the research method and the research objective. There are several algorithms for
constructing a cladistics tree using the parsimony criterion. Camin & Sokal (1965) introduced the
first algorithm to apply parsimony in constructing a cladogram. Later, Kluge & Farris (1969)
presented the Wagner parsimony algorithm for constructing a cladogram and generating the most
parsimonious tree. Fitch (1971) and Farris (1973) introduced other methods for tree construction.
These algorithms have different assumptions, with the main differences being:

1. Camin-Sokal parsimony assumes evolution is irreversible, that is, a derived character state cannot
return to its ancestral state.

2. Wagner parsimony assumes evolution is reversible, and the rates of change in either direction is
roughly the same. It also assumes ordered characters, that is, a change from state 3 to state 1 must
pass through state 2.

3. Fitch parsimony assumes evolution is reversible with approximately the same change rate in each
direction, and it considers all characters as unordered, that is, a change from state 3 to state 1
does not have to go through state 2.

4. Dollo parsimony (Dollo, 1893) assumes the transition from the ancestral state is very rare, but
there is no restriction on transitions from derived state to ancestral state.

4. Applying Cladistics Analysis to the Financial System

The application of cladistics analysis to the financial systems is then not straightforward and it is
necessary to ensure the research method and the research objective are aligned. One of the issues
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that arises is that for biological molecular data there are only four nucleobases, namely adenine
(A), cytosine (C), guanine (G), thymine (T) as the fundamental genetic code for DNA, and A, G, C,
uracil (U) for RNA but it is difficult to identify comparable basic characteristics for financial
events. The financial event characteristics are usually derived from descriptions of the events and
are then estimations of underlying basic characteristics and are not constant across different
financial events in the same way that the nucleobase characteristics are constant in biology. For
instance, the bank operational risk studies (Li et al., 2017a, 2017b) estimated the major drivers of
operational risk events across different regions by transforming the descriptions of the events to
some characteristics but other financial risk studies (Evans et al., 2017; Shi et al., 2018a) used very
different characteristics to that of Li et al. (2017a, 2017b) as the research objectives were to
analyse WEF global risks and credit risk. Morphological data which considers characteristics
would then seem a better choice for analysis of financial events and since likelihood methods (as
well as Bayesian methods) are model based, which is hard to generate for financial events, par-
simony is a reasonable basis to adopt (Goloboff et al., 2017). For financial event characteristic
encoding, there are four main objectives:

1. The encoding should reflect the attributes under investigation. It is important to note that, unlike
the application in biology, the encoding of financial events is not an objective process, and the
selection of characteristics and the identification of different states must be chosen so as to
correctly represent the information contained in the source data and match the purpose of
the study.

2. The encoding should help reduce the total number of events. As the financial data may have
millions of events, it is vital to reduce the number of events to a practical level. One way to limit
the number of unique events is to apply binary encoding to the source data.

3. The encoding should reflect the underlying assumption in the algorithm being applied, for
example, if the Camin-Sokal algorithm is applied, then the cause of events should be set
constantly as state 1.

4. Continuous characteristics should be transformed into discrete data for cladistics analysis. There
are several methods to transform continuous data into discrete data, for example, simple gap-
coding (Mickevich & Johnson, 1976), segment coding (Colless, 1980) and generalised gap-coding
(Archie, 1985). These methods create gaps to produce discrete codes for continuous data
(Kitching et al., 1998).

Based on these objectives, we would argue that for financial events, encoding method 3 as outlined in
section 3 would be appropriate as using binary encoding for the presence and absence of a char-
acteristic results in categorical data, which reduces the states (compared to encoding methods 1 and 2)
and the number of characteristics (compared to encoding method 4). However, this encoding
method, as discussed before, will require careful selection of the characteristics to present the
attributes of the financial events. Another issue worth mentioning is the information loss when
transforming continuous characteristics. Wiens (2001) proposed a method for transforming con-
tinuous characteristics based on gap-weighting (Thiele, 1993), which leads to less information loss
than gap-coding (Mickevich & Johnson, 1976). The interpretation of the phylogenetic trees for
financial events is also quite different to that for biological application which focuses more on the
structure of the leaves (A, B, C, D, E, F) in Figure 1, to provide classification of species but in
financial event studies, they represent the financial events that occurred. Nodes, for example, a, b, c
and d in Figure 1, correspond to lineage-splitting events, and in financial event studies, they are the
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characteristics of events. The branches, that is, the connections between nodes, also have a different
meaning for financial event studies where these branches specify relationships rather than an evo-
lutionary path, as there is no time line involved and financial event analysis is an unrooted tree.
Given the hierarchical structure of the phylogenetic trees for financial events the left most char-
acteristics can be referred to as level 1 characteristics, for example, nodes a and b in Figure 1. The
second characteristics along the path are denoted as level 2 characteristics, for example, nodes c and
d in Figure 1, and so on. The level 1 characteristics for financial events can be thought of as the most
systemic characteristics as they apply to the most events and therefore are of most interest in
controlling the occurrence of the events as controlling these characteristics will have the most impact
on financial losses. There are also other issues to consider, including the rate of change of the
combination of characteristics that result in a new financial event as this will not be a constant as
demonstrated in Li et al. (2018) where the rate of change for credit defaults and capital markets was
shown to significantly increase as a tipping point was approached but operational risk events did not
show a similar rate of change over the same time period. In determining the appropriate algorithm
for financial event studies, since Dollo parsimony includes the unrealistic assumption for financial
events that transition from an ancestral state is very rare and Fitch parsimony is a generalised
Wagner methodology, we recommend either Fitch parsimony or Camin-Sokal parsimony. If the
number of characteristics is small and all the states are irreversible, Camin-Sokal parsimony is
recommended, as it allows a simple and intuitive way to transform data. In the bank operational risk
studies, Li et al. (2017b) used Camin-Sokal method to construct the trees. However, if the char-
acteristics are in multiple states, or the number of events and characteristics are large, Fitch parsi-
mony will be more efficient.

5. Empirical Illustrations

To illustrate the value of cladistics analysis relative to traditional statistical analysis we have included
a brief comparative analysis for credit risks, operational risk events and motor vehicle insurance
claims.

5.1. Credit risks

Ali et al. (2016) used a multi-factor regression methodology to assess the relevance of characteristics
of bankrupt individuals and Table 1 shows the statistical results of their analysis.

The statistically significant causes were identified as age, couple (i.e. couples are more likely to go
bankrupt than single people), metropolitan, (i.e. people living in cities are more likely to go bankrupt
than people living outside of cities), clerical/machinery (i.e. people engaged in clerical jobs or jobs
associated with machinery are more likely to go bankrupt) and income. Shi et al. (2018b) used
cladistics analysis on data from the same source as Ali et al. (2016) and was able to provide much
richer insights into bankruptcies using the Carmin-Sokal algorithm. The consistent systemic char-
acteristics identified by the cladistics analysis were age, gross income, spouse income, no real assets
and major city, which shows differences to the results for Ali et al. (2016) and suggests that
bankruptcies occur predominately within the pre-retirement population and importantly, are driven
by what Shi et al. (2018b) defined as socio-economic issues rather than characteristics controllable by
the individual. The cladistics analysis also was able to identify some emerging characteristics that

Analysis of financial events under an assumption of complexity

367

https://doi.org/10.1017/S1748499518000337 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499518000337


existed at a lower level than the systemic characteristics, namely, motor vehicle ownership, super-
annuation and insurance, credit card liabilities, primary income source and gender that may emerge
as a systemic characteristic, that is, further socio-economic characteristics related to asset ownership
and liabilities may emerge as systemic characteristics. Further analysis considering the macro-
economic factors of the change in GDP, change in interest rates and the change in unemployment
rates indicated that the change in interest rates and the change in the unemployment rate were very
significant drivers of individual bankruptcies and rank with the micro-economic factors of age and
gross income. The use of cladistics then was able to identify that both micro-economic and macro-
economic factors were systemic factors in influencing bankruptcy, and that there were emerging
characteristics that needed to be watched, which is not possible with regression type analysis. The
cladistics analysis identifies the factors/characteristics that are the most common in affecting bank-
ruptcies, which is a very different concept to regression analysis which is focused on finding weights
for various factors such that in aggregate, the outcome of the equation is as close as possible to the
observed values and is an “on average” estimate.

5.2. Operational risk events

Another interesting example of where cladistics analysis can yield richer insights into financial
events is analysis of operational risk events. Chernobai et al. (2011) used regression analysis to
identify that most operational losses in US banks over the period 1980–2005 could be traced to
a breakdown of internal control, and that the banks with greater operational risk events tended
to be younger and more complex, have higher credit risk, more anti-takeover provisions and
chief executive officers (CEOs) with higher stock option holdings and bonuses relative to salary
than other banks. This analysis highlights one of the issues involved with statistical analysis in
that it requires factors that can be quantified and that in itself brings issues of relevancy and
reliability of the outcomes. A comparable cladistics analysis using the Carmin-Sokal algorithm
of US bank operational risk events over the period 2008–2014 by Li et al. (2017a) identified the

Table 1. Relationship between unsecured debt and multiple demographic and personal attributes occurring in
combination (OLS regression results).

Variable Coefficient St Err Beta t stat P value Signif sign

Age 549.54 15.08 0.2368 36.4480 0.0000 +
Female –3,549.67 402.40 –0.0572 –8.8210 0.0000 –

Couple 4,264.54 700.91 0.0678 6.0840 0.0000 +
Children –489.60 449.26 –0.0077 –1.0900 0.2758
Previously bankrupt –7,295.69 506.11 –0.0896 –14.4150 0.0000 –

Remote rural 355.84 1,889.42 0.0012 0.1880 0.8506
Metropolitan 5,493.67 422.63 0.0818 12.9990 0.0000 +
Single income 226.33 708.85 0.0034 0.3190 0.7495
Manager/professional 11,150.80 566.83 0.1329 19.6720 0.0000 +
Clerical/machinery 2,083.44 504.26 0.0274 4.1320 0.0000 +
Labourer –3,069.74 583.59 –0.0347 –5.2600 0.0000 –

Income 0.19 0.0082 0.1540 23.1450 0.0000 +
(Constant) –15,477.89 1,094.11 –14.1470 0.0000

Note 1: OLS regression diagnostics: Multiple R 0.3805.
Note 2: Adjusted R2 0.1448; F-stat 317.55; signif p=0.0000; d.f. 12 and 22,504 (residual).
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systemic drivers were regulatory issues, multiple people involved, poor controls, legal issue,
internal fraud, crime, external fraud, misleading information, computer hacking and “big
banks involved” which is significantly different to Chernobai et al. (2011). The different results
in this instance are primarily due to the ability of cladistics analysis to work with
characteristics rather than just statistical data. The Li et al. (2017a) results are of value to both
banks and regulators in terms of trying to manage operational risk events as the cladistics
analysis over time was able to also show stability of the systemic drivers, giving
management and regulators greater confidence to concentrate on these characteristics alone to
reduce operational risk events. Appendix A includes a more detailed explanation of how the
cladistics analysis was applied to US operational risk events and is extracted from Li et al.
(2017a).

5.3. Motor vehicle insurance claims

Whilst Boucher & Denuit (2006) were primarily concerned with establishing the effects of
alternative methodologies for Poisson regression when analysing motor vehicle claims, their
analysis showed that categorising young drivers as a homogenous group from a risk perspective
was not appropriate and that individual characteristics should be considered. When applied to
financial events, and subject to aligning the choice of characteristics to both the research
outcome and the algorithm being applied, cladistics analysis will show systemic characteristics
and could be applied to analyse the issue being raised by Boucher & Denuit (2006). Whilst not
specifically addressing the issue raised by Boucher & Denuit (2006); Evans & Li (2018b) used
cladistics analysis with the Fitch algorithm and encoding to transform the continuous char-
acteristics into a binary format to determine the systemic characteristics of over 200,000 motor
vehicle claims and concluded that whereas the policies had been underwritten with 16 rating
factors, there were only 3 systemic characteristics, and importantly, there were another 3
emerging systemic characteristics. Cladistics analysis could be easily used to research further
the systemic characteristics of the younger drivers identified in Boucher & Denuit (2006)
subject to data availability.

6. Conclusion

Given the financial systems are CAS which exhibit emergence through interactions of agents in the
financial systems, and move through transition phases, then traditional statistical analysis will only
be reliable where the predictive time horizon is very short, and over longer periods should be
expected to have a high failure rate due to emergence of the financial system. Cladistics analysis
offers an additional basis of analysis for financial systems and will show the systemic drivers of
events and the emergence of new systemic characteristic combinations or stability if a temporal
analysis is undertaken. For a richer analysis of financial systems, a cladistics analysis should be
undertaken to compliment traditional statistical analysis.
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Appendix A

An application of cladistics analysis to US bank operational risks2

We extracted data from the ORIC International3 database of operational risk events for US banks
from 2008 to the middle of 2014 and after filtering and cleaning the data, the US data contained
1371 unique risk events. We derived from the data a set of characteristics as shown in Appendix B4

to use in the analysis. Several software programs are able to perform cladistics analysis using the
maximum parsimony algorithm, and in this study, we used software from Systemic Consult5.
Alternative software is available in R. Figure A1 presents an example of the output of the cladistics
analysis. This tree is read from left to right. The left most characteristic, that is, “Internal fraud”,
can be thought of as the “level 1” characteristic and occurs for a group of risk events. These level 1
characteristics are important, as whilst all the characteristics leading to a risk event must be linked
for that risk event to occur, if an institution can break the chain of linking characteristics, then the
risk event won’t occur. Given the level 1 characteristics are those characteristics that are common
to several risk events, then it is logical to concentrate on managing these systemic characteristics to
mitigate risk events occurring. The level 2 characteristics, that is, “Multiple people” and “Single
person” are not as systemic as the level 1 characteristic, and the level 3 characteristics in this figure,
that is, “Poor controls”, “Crime” and “Big banks involved” are the un-systemic characteristic for
each event. One characteristic can appear in different places and at different levels, that is, in this
tree, “Crime” appears at level 3 for different events. The value of applying cladistics analysis to
financial events is the ability to derive the level 1 characteristics and establish their stability, as that
is a necessary prerequisite to their being an efficient target for risk mitigation. Tables A1 and A2
show the level 1 characteristics we derived for the US banks for both cumulative and independent
periods.

2 Extracted from Li et al. (2017a)
3 https://www.oricinternational.com/
4 The derivation of the characteristic set is subjective, but involves using word counting software to determine

the most common descriptions of events as reported which then need to be adjusted to meet the criteria for
cladistics analysis that the selected characteristics either were involved or were not involved for each event.

5 http://www.systemicconsult.com/
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Table A1. Level 1 characteristics for cumulative periods for US banks.

2008–2010 2008–2011 2008–2012 2008–2013 2008–2014

Regulatory issues x x x x
Multiple people x x
Poor controls x x x
Legal issue x x x x
Internal fraud x x x x
Crime
External fraud x x x x
Single person x
Misleading information x x
Derivatives
ATM
Complex transaction x
Computer hacking x x x
Complex products
Money laundering
Software issue
International transaction
Overcharging
Credit card
Employment issues
Insurance
Manual process
Bank cross-selling
Offshore fund
Big banks involved x x x x x

Note 1: The significant level 1 characteristics are “regulatory issues,” “legal issues,” “internal fraud,” “external
fraud” and “big banks involved.”

Figure A1. An example of cladistics tree for US Bank Operational Risks.
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Table A2. Level 1 characteristics for independent periods for US banks.

2008–2010 2011–2012 2013–2014

Regulatory issues x x
Multiple people x x
Poor controls x x x
Legal issue x x
Internal fraud x x
Crime x x
External fraud x x
Single person x
Misleading information x x
Derivatives
ATM
Complex transaction
Computer hacking x x
Complex products
Money laundering
Software issue
International transaction
Overcharging
Credit card
Employment issues
Insurance
Manual process
Bank cross-selling
Offshore fund
Big banks involved x x x

Note 1: The significant level 1 characteristics are “regulatory issues,” “multiple people,” “poor controls,”
“legal issue,” “internal fraud,” “crime,” “external fraud,” “misleading information,” “computer hacking” and
“big banks involved.” From Tables A1 and A2 we can observe that the level 1 characteristics that emerge for the
US market are “big banks involved,” “poor controls,” “regulatory issues,” “legal issues,” “internal fraud” and
“external fraud.” These characteristics not only emerge in each independent period but also for the entire period
and suggest US banks, in both their daily management and business activities, are weak in process control, and
historically, may not have paid sufficient attention to regulations or had weak compliance processes. The value
this analysis brings is that it identifies sustainable systemic drivers of operational risks, providing banks with
clear direction as to where they need to improve their operational processes if they wish to reduce operational
losses.
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Appendix B: Characteristics used in the US bank operational risk analysis

Table B1. Characteristics used in the US bank operational risk analysis

Characteristic Definition

1 Poor controls Event where controls that should have been in place were not or were ineffective
2 Single person Event initiated by an individual
3 Crime Event involving theft other than by deception
4 Internal fraud Event involving fraudulent activity by a member of staff
5 External fraud Event involving fraudulent activity by an external person(s)
6 Multiple people Event imitated by many people
7 Regulatory failure Event where a government regulation was breached
8 International

transaction
Event involving a transaction occurring across a country border

9 ATM Event involving an ATM
10 Complex

transaction
Event involving a transaction that involved many parts

11 Legal issue Event where a customer took an institution to court for remedy, but the event was not a
regulatory breach

12 Credit card Event involving use/misuse of a credit card
13 Human error Event where a staff member made a mistake
14 Misleading

Information
Event where the product/service details were not made clear to a customer

15 Complex products Event involving products that had numerous components
16 Bank cross-selling Event involving a bank selling a product/service to a customer that was different to what

the customer originally bought from the bank
17 Overcharging
18 Employment issues Event where employment contract conditions or government regulations relating to

employment were breached
19 Computer hacking Event involving hacking into a system
20 Manual process Event involving a manual process
21 Offshore fund Event where a transaction involved a fund that was domiciled outside the country where

the investor was located
22 Money laundering Event where funds were transferred for the purposes of creating a false impression that

the transaction was legitimate
23 Software system Event involving a software issue
24 Insurance Event involving an insurance product
25 Derivatives Event involving a derivative transaction
26 Big banks involved Event involving big banks
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