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Unsteady three-dimensional sources in deep
water with an elastic cover and their applications
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The velocity potential is derived for a transient source of arbitrary strength undergoing
arbitrary three-dimensional motion. The initially quiescent fluid of infinite depth is
assumed to be inviscid, incompressible and homogeneous. The upper surface of the
fluid is covered by a thin layer of elastic material of uniform density with lateral stress.
The linearized initial boundary-value problem is formulated within the framework of
the potential-flow theory, and the Laplace transform technique is employed to obtain
the solution. The potential of a time-harmonic source with forward speed is obtained
as a particular case. The far-field wave motion at long time is determined via the
method of stationary phase. The problems of radiation (surge, sway and heave) of the
flexural–gravity waves by a submerged sphere advancing at constant forward speed
are investigated. The method of multipole expansions is used. Numerical results are
obtained for the wave-making resistance and lift, added-mass and damping coefficients.
The effects of an ice sheet and broken ice on the hydrodynamic loads are discussed in
detail.
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1. Introduction
Within the framework of linear theory, knowledge of the velocity potential due

to fundamental singularities moving under a free surface allows one to tackle the
problem of wave generation by a partially immersed or completely submerged body
(e.g. Wehausen & Laitone 1960). In the same way, it is possible to determine the wave
motion in a more complicated case when the upper boundary of the fluid has an elastic
cover of infinite extent. Wave motion due to fundamental line and point singularities
with time-dependent strength submerged in a fluid with an elastic cover and/or an
inertial surface has been investigated in recent years. Basically, two kinds of unsteady
problems were considered: instantaneous or time-harmonic singularities with fixed
location. Chowdhury & Mandal (2006) analytically derived the velocity potentials for
the motion due to fundamental singularities in the forms of two-dimensional line
source, line multipoles and three-dimensional point multipoles submerged in a fluid of
uniform finite depth. The generation of unsteady waves by concentrated disturbances
in infinitely deep water was studied by Lu & Dai (2006, 2008a) for an elastic cover
and an inertial surface, respectively. The inertial surface represents the effect of a thin
uniform distribution of non-interacting floating matter. Fluid of finite depth, covered by
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Unsteady three-dimensional sources in deep water 393

a thin elastic plate or by an inertial surface with capillary effect, was considered by
Lu & Dai (2008b). In these three papers, the asymptotic representations of the wave
motion for long time with a fixed distance-to-time ratio were derived with the method
of stationary phase.

The study of wave problems in water covered by a thin elastic sheet has
considerable practical importance in application to natural and man-made systems
such as ice sheets and very large floating structures (VLFS) like oil storage bases,
offshore pleasure cities, floating airport runways, etc. Considerable attention has been
paid to three-dimensional flexural oscillations of an ice sheet due to a moving pressure
area (e.g. Kheysin 1967; Squire et al. 1996; Bukatov & Zharkov 1997). In contrast,
studies of the ice-cover effect on the motion of a submerged body have been carried
out only recently. The radiation problem at zero forward speed for a sphere submerged
in a uniform and two-layer fluid have been considered by Das & Mandal (2008, 2010)
and Mohapatra & Bora (2010). The added-mass and damping coefficients for a sphere
in heave and sway motion were obtained for a range of key parameters such as
wavenumber, submersion depths of the sphere, and flexural rigidity of the ice cover.
The radiation problem for forced oscillations of a submerged body is similar to the
diffraction problem of the scattering of periodic waves incident on a fixed body.
Das & Mandal (2006, 2007) studied the oblique incidence of waves on a horizontal
circular cylinder submerged in a uniform and a two-layer fluid. In the latter case, an
external disturbance can be caused by both surface and internal waves. Scattering of
water waves by a sphere and wave-induced exciting forces were studied by Mohapatra
& Bora (2012). The two-dimensional problem of small oscillations of a horizontal
cylinder of arbitrary cross-section submerged in a linearly stratified fluid of finite
depth was studied by Sturova (2011). The added-mass and damping coefficients were
calculated as a function of the oscillation frequency for the case of an ice sheet and for
three special cases: broken ice, free surface and rigid lid.

The translating motion of a submerged body under ice cover was studied
numerically and experimentally by Kozin, Chizhumov & Zemlyak (2010). The
deflections and the strains in the ice cover were computed for an elongated body
using the finite element method in combination with the boundary element method.
The influence of the thickness of continuous ice cover on its stress–strain state and the
possibility of dynamic destruction of the ice cover by a moving submerged body were
studied. Unsteady horizontal motion of a slender body was studied by Pogorelova,
Kozin & Zemlyak (2012). The submerged body was simulated by a prescribed
source–sink system. It was shown that the destruction of the ice cover by a moving
slender body is possible in limited ranges of ice thickness, depth of the body and its
velocity. The wave patterns generated by a steadily moving submerged sphere in deep
water under ice cover were considered by Sturova (2012). The steady hydrodynamic
load (wave resistance and lift) acting on the body and the ice-cover deformations were
determined. The generation of the flexural–gravity waves by a two-dimensional dipole
situated under the ice sheet in a fluid of infinite depth was investigated by Savin &
Savin (2012) and Il’ichev, Savin & Savin (2012). The impulsive start of a horizontal
uniform motion of the dipole was considered. As is well known, the two-dimensional
dipole is a model of a circular cylinder moving in a fluid. In spite of the extensive
literature on flexural–gravity waves, in the author’s opinion, the effect of the ice cover
on the motion of a submerged body has still not been fully elucidated.

In this paper, the velocity potential of a transient three-dimensional source of
arbitrary strength and in arbitrary motion is derived. A thin elastic plate of infinite
extent with lateral stress is assumed to cover the upper surface of the fluid domain.
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394 I. V. Sturova

The initially quiescent fluid of infinite depth is assumed to be inviscid, incompressible
and homogeneous. This velocity potential is fundamental to the analysis of various
types of body motion under the influence of waves. Other sources can be obtained
from this source by specifying the appropriate strength and motion, among them
the sources that were considered by Chowdhury & Mandal (2006) and Lu & Dai
(2006, 2008a,b). The case of a translating and oscillating source is considered in more
detail. The basic properties of the wave motion in the far field are determined. This
information is used for the solution of the radiation problem for a submerged sphere at
forward speed by the multipole expansion method based on the results by Wu (1995)
for a free surface. Numerical results are obtained for the hydrodynamic load: wave
resistance and lift, added masses and damping coefficients.

2. Mathematical formulation
Consider a fixed, rectangular coordinate system Oxyz, where the (xy)-plane

coincides with the undisturbed upper surface of the fluid, and the positive z-axis
points upwards. The initially quiescent fluid of infinite depth is assumed to be
inviscid, incompressible and homogeneous. The upper surface is covered by a thin
layer of elastic material of uniform density with lateral stress. The motion of the
fluid is generated due to a point-mass source of time-dependent strength, which
starts operating at time t = 0. The linearized initial- and boundary-value problem is
formulated within the framework of potential flow. The position of a source and its
strength at time t > 0 are given by ξ(t) = (ξ(t), η(t), ζ(t)) and µ(t), where ζ(t) < 0
and µ(t)= 0 for t < 0. This transient source is the most general source.

The motion of the fluid can be described by a velocity potential Φ(x, t) (t > 0). In
the linear theory, Φ satisfies, in the fluid domain,

1Φ = µ(t)δ(x− ξ(t)), −∞< x, y<∞, z< 0, (2.1)

where 1 denotes the three-dimensional Laplace operator, x = (x, y, z) and δ is the
Dirac delta-function.

If w(x, y, t) denotes a small vertical displacement of the upper surface from its
equilibrium position, then the linearized kinematic and dynamic conditions at the
upper surface are given by

∂w/∂t = ∂Φ/∂z, D12
2w+ Q12w+M∂2w/∂t2 + ρ∂Φ/∂t + gρw= 0, z= 0, (2.2)

where D= Eh3
1/[12(1−ν2)], M = ρ1h1, 12 ≡ ∂2/∂x2+∂2/∂y2, ρ is the density of the

fluid, g is the acceleration of gravity, E is the Young’s modulus for the elastic cover,
Q is its lateral stress (with compression at Q > 0 and stretch at Q < 0), and ν, ρ1

and h1 are the Poisson’s ratio, density and thickness of the elastic cover, respectively.
Moreover, since the disturbance must vanish at infinity, it is required that

lim
z→−∞

∇Φ = 0, lim
R→∞
∇Φ = 0 (t > 0), R2 = (x− ξ(t))2 + (y− η(t))2. (2.3)

The initial conditions at z= 0 are

Φ = w= ∂w/∂t = 0, t = 0. (2.4)

The first equation in (2.2) implies that there is no cavitation between the elastic plate
and the fluid surface.

There are some particular cases of this problem, which are presented in table 1. If
the elastic parameter D is zero, but Q = −T (T > 0), then the plate-covered surface
reduces to a flexible membrane. If, in addition, the surface density of the plate M = 0,
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Flexible membrane D= 0, Q=−T (T > 0)
Free surface with surface tension D=M = 0, Q=−T (T > 0)
Inertial surface D= Q= 0
Usual free surface D= Q=M = 0

TABLE 1. The particular cases of the problem considered.

then the upper boundary of the fluid becomes a free surface with surface tension and
T is called the coefficient of surface tension. As D = Q = 0, the plate-covered surface
reduces to an inertial surface, which represents the effect of a thin uniform distribution
of non-interacting floating matter, for example, broken ice (e.g. Lu & Dai 2008b). If,
in addition, also M = 0, then the upper boundary of the fluid becomes the usual free
surface.

The initial-value problem (2.1)–(2.4) is solved by the standard method. The solution
of this problem can be written as

Φ = χ + φ, χ = µ(t)(r−1
1 − r−1

2 ), r2
1,2 = R2 + (z∓ η(t))2. (2.5)

The governing equation for φ is now simply the Laplace equation

1φ = 0, −∞< x, y<∞, z< 0, (2.6)

and the initial conditions, obtained by inserting (2.5) into (2.4), are

φ = ∂φ/∂t = 0, z= 0, t = 0. (2.7)

In order to obtain the formal solution for the harmonic function φ(x, t), it is
convenient to introduce the Laplace transform with respect to t. Let us assume that
f̄ (x, s) denotes the Laplace transform of the function f (x, t) in the form

f̄ (x, s)=
∫ ∞

0
f (x, t)e−st dt, s> 0. (2.8)

Taking the Laplace transform for the boundary conditions (2.2) and using the initial
conditions (2.7), we obtain

(D12
2 + Q12 + s2M + gρ)

∂φ̄

∂z
+ ρs2φ̄ =−(D12

2 + Q12 + s2M + gρ)
∂χ̄

∂z
, z= 0.

(2.9)

From the well-known representation of r−1 (e.g. Gradshteyn & Ryzhik 1980, 6.611
and 3.937),

1√
x2 + y2 + z2

= 1
2π

∫ ∞
−∞

∫ ∞
−∞

e−k|z|

k
ei(k1x+k2y) dk1 dk2, k2 = k2

1 + k2
2, (2.10)

we can write

χ(x, t)= µ(t)
2π

∫ ∞
−∞

∫ ∞
−∞

1
k
[e−k|z−ζ(t)| − e−k|z+ζ(t)|]ei[k1(x−ξ(t))+k2(y−η(t))] dk1 dk2, (2.11)

which leads to

∂χ̄

∂z

∣∣∣∣
z=0

=− 1
π

∫ ∞
0
µ(t)e−st

∫ ∞
−∞

∫ ∞
−∞

ekζ(t)+i[k1(x−ξ(t))+k2(y−η(t))] dk1 dk2 dt. (2.12)
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396 I. V. Sturova

We seek the solution for φ̄(x̄, s) in the form

φ̄ =
∫ ∞
−∞

∫ ∞
−∞
Ω(k1, k2, z, s)ei(k1x+k2y) dk1 dk2. (2.13)

Substituting this relation in (2.6) and using the boundary condition in (2.3) as z→
−∞, we have Ω(k1, k2, z, s) = ekzF(k1, k2, s). The function F(k1, k2, s) is determined
from (2.9) in the form

F = Λ(k)+ s2M

π(ρ + kM)[s2 + ω2(k)]
∫ ∞

0
µ(t)ekζ(t)−i[k1ξ(t)+k2η(t)]−st dt,

Λ(k)= Dk4 − Qk2 + gρ,

 (2.14)

where

ω(k)=
√

kΛ(k)/(ρ + kM). (2.15)

Equation (2.15) is the dispersion relation for the flexural–gravity waves at infinite
depth of fluid. This function determines the wavenumber k for a specified frequency ω.

Taking the inverse Laplace transform of (2.13), we obtain

φ = 1
π

∫ ∞
−∞

∫ ∞
−∞

1
ρ + kM

∫ ∞
0
µ(τ)ek(z+ζ(τ ))+i[k1(x−ξ(τ ))+k2(y−η(τ))]Υ (k1, k2, t, τ ) dτ dk1 dk2,

(2.16)

where

Υ = 1
2πi

∫ σ+i∞

σ−i∞

Λ(k)+ s2M

s2 + ω2(k)
es(t−τ) ds. (2.17)

The value σ is chosen so that the integration path in (2.17) is situated from the right
of all singularities that represent the roots of the equation s2 + ω2(k) = 0. It is clear
that this equation has only two pure imaginary roots s = ±iω(k). The function Υ is
different from zero only at t > τ and is equal to

Υ (k1, k2, t, τ )= ρΛ(k) sin[ω(t − τ)]
ω(k)(ρ + kM)

. (2.18)

Further, if the following integral representation of the zeroth-order Bessel function of
the first kind J0 is used (e.g. Wehausen & Laitone 1960, p. 491)

J0(kR(τ ))= 1
2π

∫ π
−π

eik[(x−ξ(τ )) cos θ+(y−η(τ)) sin θ ] dθ, (2.19)

the function φ(x, t) can be written as

φ = 2ρ
∫ t

0
µ(τ)

∫ ∞
0

ω(k)

ρ +Mk
ek(z+ζ(τ ))J0(kR(τ )) sin(ω(k)(t − τ)) dk dτ. (2.20)

If D = Q = M = 0, this solution is consistent with the velocity potential for the
usual free surface and coincides with the result given by Wehausen & Laitone (1960,
equation (13.49)).

It is known that the dispersion relation (2.15) imposes a limitation on the
compressive force Q. The condition Q < Q∗ ≡ 2

√
gρD ensures the stability of the

floating elastic plate (e.g. Kheysin 1967). In the present analysis, it is assumed also
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FIGURE 1. Dependence of Q̄0 and k̄0 on M̄.

that Q < Q0 < Q∗, where Q0 is defined by the condition of a positive group velocity
cg(k) = dω/dk for all wavenumbers k > 0. The method of evaluation of Q0 was
given by Bukatov (1980) for a fluid of finite depth. The value Q0 and its associated
wavenumber k0 are found from the two equations cg(k0) = 0 and dcg(k)/dk|k=k0 = 0.
For deep water, the value k0 is determined as the positive root of the polynomial

Dk4
0(8Mk0 + 15ρ)− 3gρ2 = 0 (2.21)

and the value Q0 is equal to

Q0 = Dk4
0(4Mk0 + 5ρ)+ gρ2

k2
0(2Mk0 + 3ρ)

. (2.22)

At M = 0, the non-dimensional values k̄0 = k0(D/gρ)
1/4 and Q̄0 = Q0/

√
gρD are

determined explicitly: k̄0 = 5−1/4 ≈ 0.669, Q̄0 =
√

20/3 ≈ 1.491. Figure 1 shows the
non-dimensional values Q̄0 and k̄0 as functions of M̄ =M/(g/ρ3D)1/4. It can be seen
that the values k0 and Q0 decrease with increasing M.

All particular cases of the upper cover can be divided into two groups. For an
inertial surface and the usual free surface, both the phase and group velocities
decrease monotonically from infinity to zero with increasing wavenumber. For an
elastic cover, a flexible membrane and a free surface with surface tension, both
the phase cf (k) = ω/k and group velocities cg(k) have minimal values, denoted by
Uf = cf (kf ) and Ug = cg(kg), respectively. Here kf corresponds to the wavenumber
at which dcf (k)/dk|k=kf = 0, and analogously kg < kf is defined by the equation
dcg(k)/dk|k=kg = 0. The wavenumber kf is the positive root of the polynomial

Dk4
f (2Mkf /ρ + 3)− Qk2

f − 2gMkf − gρ = 0. (2.23)

According to (2.15), the minimal phase velocity Uf is equal to

Uf =
√
Λ(kf )/[kf (ρ +Mkf )]. (2.24)

The value kg is determined as the positive root of the 10th-degree polynomial

Dk5
g[4DM(2Mkg + 5ρ)k4

g + C1k3
g − 28ρQMk2

g + C2kg + 48gρ2M]
+C3k4

g − gρ2(4QMk3
g + 6ρQk2

g + 4gρMkg + gρ2)= 0, (2.25)
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FIGURE 2. The wavenumbers (a) k̄f and (b) k̄g plotted against Q̄ for different values of
h1. The open and filled symbols represent k̄f and k̄g at Q = M = 0 and, respectively:
1, h1 = 0.5 m; 2, h1 = 1 m; 3, h1 = 2 m. The velocities (c) Ūf and (d) Ūg plotted against
Q̄ for different values of h1. Dash-dotted lines represent the approximate solution (A 3) for Uf

at small stress. The filled symbols represent Ūg at Q=M = 0 and, respectively: 1, h1 = 0.5 m;
2, h1 = 1 m; 3, h1 = 2 m.

where

C1 = 3(5ρ2D− 4QM2), C2 = 2ρ(12gM2 − 11ρQ),
C3 = ρ(30gρ2D+ 3ρQ2 − 4gQM2).

}
(2.26)

The minimal group velocity Ug is equal to

Ug =
ρ(5Dk4

g − 3Qk2
g + gρ)+ 2Mk3

g(2Dk2
g − Q)

2(ρ +Mkg)
3/2
√

kgΛ(kg)
. (2.27)

For special cases (see table 1), the values kf , kg and Uf , Ug are defined in the
Appendix.

Figure 2(a,b) shows the non-dimensional values (k̄f , k̄g) = a(kf , kg) calculated from
equations (2.23) and (2.25), respectively, as functions of the non-dimensional lateral
stress Q̄= Q/

√
gρD for the case of ice cover. The following input data are used:

E = 5 GPa, ν = 0.3, ρ = 1025 kg m−3, ρ1 = 922.5 kg m−3 (2.28)

at an ice thickness of h1 = 0.5, 1, 2 m. The value a = 10 m is the scale of length.
The open symbols 1, 2, 3 denote the values of k̄f at Q = M = 0 in (A 2) for
h1 = 0.5, 1, 2 m, respectively. The filled symbols denote similar values k̄g in (A 5).
Figure 2(c,d) shows the influence of the lateral stress on the minimal values of the
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Unsteady three-dimensional sources in deep water 399

phase and group velocities (Ūf , Ūg)= (Uf ,Ug)/
√

ag calculated from (2.24) and (2.27),
respectively, for different values of ice thickness. The dash-dotted lines correspond to
Ūf given by (A 3) for small lateral stress. The filled symbols 1, 2, 3 denote the values
Ūg given by (A 5) at Q = M = 0 for the different values of h1. The magnitude of
Q̄ characterizing the ice compression (stretch) is changed within the following limits:
−1.5 6 Q̄ 6 1.5. As seen from figure 2(a,b), the wavenumbers kf and kg decrease
with increasing ice thickness and increase with lateral stress, whereas the opposite
behaviour takes place for minimal phase and group velocities Uf and Ug. Note that
the realistic ice lateral stress is small (e.g. Schulkes, Hosking & Sneyd 1987) and can
be taken as Q = 0. However, the lateral stress may be important for artificial floating
platforms. It is known that the solutions of the hydroelastic problem for sea ice and
VLFS in many cases are similar (Squire 2008).

3. Velocity potential of translating and oscillating source

The total velocity potential (2.5) with the function φ(x, t) in the form (2.20) can be
applied to different particular cases by prescribing the special choice of µ(t) and the
motion of the source. Thus, if

µ(t)= µ0 cos σ t and ξ is fixed, (3.1)

one has the potential function for a stationary source of oscillating strength, switched
on impulsively at t = 0. If one takes

µ(t)= µ0, ξ(t)= ξ0 + ut, η(t)= η0, ζ(t)= ζ0, (3.2)

one obtains the velocity potential for a source that is switched on at t = 0 and
afterwards moves uniformly in the direction Ox. These two cases may be combined
by choosing the source strength in the form (3.1) and its motion in the form (3.2).
For finite t, the velocity potential of a time-harmonic source with forward speed in a
coordinate system moving with velocity u in direction Ox (x̄= x− ut) is given by

Φ(x̄, y, z, t)= µ0 cos σ t (r−1
1 − r−1

2 )+ φ(x̄, y, z, t), (3.3)

where, from an integral representation J0 in (2.19),

φ = 4
∫ π/2

0

∫ t

0
cos σ(t − τ)

∫ ∞
0

F (k, γ ) cos(k cos γ (X + uτ)) sin(ω(k)τ ) dk dτ dγ,

(3.4a)

F (k, γ )= µ0ρω(k)

π(ρ + kM)
ek(z+ζ0) cos(kY sin γ ), X = x̄− ξ0, Y = y− η0, (3.4b)

and the range of the γ integration is reduced in the quadrant [0,π/2]. Using the
function-product relations for sine and cosine, (3.4a) becomes

φ =
∫ π/2

0

∫ t

0

∫ ∞
0

F (k, γ )(sinΨ1 + sinΨ2 + sinΨ3 + sinΨ4) dk dτ dγ, (3.5)
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where

Ψ1,2(k, τ, γ )= [ω(k)+ σ ]τ ± k(X + uτ) cos γ − σ t, (3.6a)
Ψ3,4(k, τ, γ )= [ω(k)− σ ]τ ± k(X + uτ) cos γ + σ t. (3.6b)

As t→∞, the principal physical features of the wave motion in the far field can be
determined by the asymptotic analysis of the double integral for k and τ in (3.5) using
the method of stationary phase (e.g. Born & Wolf 1964, Appendix III). An especially
important role is played by the critical (stationary) points at which

∂Ψn/∂k = ∂Ψn/∂τ = 0 (n= 1, . . . , 4). (3.7)

The fulfilment of these equations permits the determination of the wavenumbers and
the direction of propagation for the waves in the far field.

The function Ψ1 has no points of stationary phase in the integration angle range
[0,π/2] because the partial derivative

∂Ψ1/∂τ = ω(k)+ σ + kU, U = u cos γ, (3.8)

has no zeros in this range. The function Ψ2 has no more than two critical points. The
equation

ω(k)+ σ − kU = 0 (3.9)

has two roots denoted by k(1)2 and k(2)2 , with k(1)2 < k(2)2 only if u > U1(σ ) = cg(k∗1)
and 0 < γ < γ1, where the wavenumber k∗1 satisfies the equation kcg(k) − ω(k) = σ
and γ1 = arccos(U1/u). It follows from the dispersion relation (2.15) that k∗1→ kf and
U1→ Uf at σ → 0. If the conditions mentioned above do not hold, the function Ψ2

has no critical points. The values k(i)2 (i = 1, 2) are defined as the positive roots of the
polynomial

Dk5 − (Q+MU2)k3 − U(ρU − 2σM)k2 + (ρg+ 2ρσU − σ 2M)k − ρσ 2 = 0 (3.10)

satisfying (3.9). The direction of propagation for these waves is determined from the
fulfilment of the equality

∂Ψ2/∂k = (cg(k)− U)τ − X cos γ = 0. (3.11)

The waves corresponding to k(i)2 (i= 1, 2) propagate upstream (X > 0) at cg(k
(i)
2 )−U >

0 and downstream (X < 0) at cg(k
(i)
2 )− U < 0.

The function Ψ3 always has only one critical point. The equation

ω(k)− σ + kU = 0 (3.12)

has one zero k3 for any γ ∈ [0,π/2]. The value k3 is defined as the positive root of
the polynomial (3.10) satisfying (3.12). The waves corresponding to the wavenumber
k3 always propagate downstream.

The function Ψ4 has no more than three critical points. The equation

ω(k)− σ − kU = 0 (3.13)

always has one root k(1)4 and two additional roots k(2)4 and k(3)4 only at σ < σ ∗ ≡
ω(kg) − kgUg and U3 < U < U2. The functions U2(σ ) and U3(σ ) are determined as
follows: U2 = cg(k∗2) and U3 = cg(k∗3). Here the values k∗2 < kg < k∗3 are the roots of the
equation

ω(k)− kcg(k)= σ. (3.14)
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FIGURE 3. The influence of lateral stress on the non-dimensional frequency σ̄ ∗ for
different values of h1. The symbols 1, 2, 3 represent the values of σ̄ ∗ at Q = M = 0 for
h1 = 0.5, 1, 2 m, respectively.

It follows from the dispersion relation (2.15) that k∗2 → 0, k∗3 → kf and U2 →
∞, U3→ Uf at σ → 0, but k∗2, k∗3 → kg and U2,U3→ Ug at σ → σ ∗. If, for given
σ < σ ∗, the velocity u> U2(σ ), three roots exist for γ2 < γ < γ3; however, if U3(σ ) <

u < U2(σ ), then three roots exist only for 0 < γ < γ3, where γ2 = arccos(U2/u) and
γ3 = arccos(U3/u). The values k(j)4 (j = 1, 2, 3) are determined as the positive roots of
the polynomial

Dk5 − (Q+MU2)k3 − U(ρU + 2σM)k2 + (ρg− 2ρσU − σ 2M)k − ρσ 2 = 0 (3.15)

satisfying (3.13). The waves corresponding to the wavenumbers k(j)4 propagate
upstream if cg(k

(j)
4 )− U > 0 and downstream otherwise.

The behaviour of the values kf , Uf and kg, Ug for the ice cover with the
input data (2.28) is shown in figure 2(a–d). The influence of the lateral stress on
the non-dimensional frequency σ̄∗ = σ∗√a/g at different values of ice thickness is
illustrated in figure 3. The frequency increases with the lateral stress and decreases
with the ice thickness. The symbols 1, 2, 3 represent the values σ̄∗ at Q =M = 0 for
h1 = 0.5, 1, 2 m, respectively.

Figure 4(a) shows the variation of Uj (j = 1, 2, 3) with σ for the ice cover with
the input data (2.28), Q = 0 and h1 = 0.5 m. The curves U1, U2, U3 divide the
(σU)-plane into four regions Gn (n = 1, . . . , 4). All six waves are present in the far
field for values σ and U from the region G1: k(1)2 , k(2)2 , k3, k(1)4 , k(2)4 , k(3)4 . There are
four waves for the regions G2 and G3: k(1)2 , k(2)2 , k3, k(1)4 and k3, k(1)4 , k(2)4 , k(3)4 ,
respectively. There are only two waves for the region G4: k3, k(1)4 . Figure 4(b)
represents the similar picture for capillary–gravity waves, where the input data for
water at 20 ◦C are used: T = 0.0728 N m−1, ρ = 998 kg m−3.

The basic properties of the flexural–gravity waves generated by oscillating pressure
moving over the ice plate were investigated by Bukatov & Cherkesov (1977), Bukatov
(1980) and Bukatov & Yaroshenko (1986) for two- and three-dimensional problems
and a fluid of finite depth. In this paper, these results for the kinematic properties of
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FIGURE 4. Dependence of Uj (j= 1, 2, 3) on the frequency for (a) flexural–gravity waves
and (b) capillary–gravity waves.

the far-field waves are presented in simpler form for deep water. It should be noted
that the properties of these waves do not depend on the location of the disturbance: on
the upper surface, inside the fluid or on the bottom.

For an inertial surface (D = Q = 0), the function Ψ2 has only one critical point,
because in this case (3.9) has one root k2 for any γ ∈ [0,π/2]. As before, the function
Ψ3 has only one critical point. The value of k3 is always less than that of k2. For Ψ4,
there are two critical points for certain values of γ only at σ < σcr ≡√gρ/M. In this
case, (3.13) has two roots k(1)4 and k(2)4 , with k(1)4 < k(2)4 at U < U∗ = cg(k∗4), where k∗4 is
the root of (3.14). The value k∗4 is defined as the positive root of the polynomial

M2(gρ − σ 2M)k3 + ρM(gρ − 3σ 2M)k2 + 0.25ρ2(gρ − 12σ 2M)k − ρ3σ 2 = 0 (3.16)

satisfying (3.14). For u < U∗, both k(1)4 and k(2)4 exist for γ ∈ [0,π/2]. However, when
u > U∗, k(1)4 and k(2)4 exist only for γ > arccos(U∗/u). For the usual free surface
(D = Q = M = 0), we have the well-known result: k∗4 = 4σ 2/g, U∗ = 0.25g/σ . The
influence of the frequency σ on the non-dimensional parameter σU∗/g for broken
ice with the values ρ and ρ1 from (2.28) at different values of ice thickness
h1 = 0.5, 1, 2 m is illustrated in figure 5. There are four waves for the region
G1, i.e. k2, k3, k(1)4 , k(1)4 , and only two waves k2, k3 exist for the region G2.

Consider next the properties of the wave motion in the far field for the particular
cases of the problem analysed. At u = 0, a source of oscillating strength has a fixed
position. In this case, for the elastic cover, the functions Ψ1 and Ψ2 have no critical
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FIGURE 5. The non-dimensional parameter σU∗/g plotted against the frequency σ for
different thicknesses of broken ice: h1 = 0.5, 1, 2 m.

points, but each of the functions Ψ3 and Ψ4 always have one critical point, k3 and
k4, respectively, with k3 = k4. The wave corresponding to the wavenumber k3 always
propagates downstream, whereas the wave k4 propagates upstream. For the inertial
surface (D = Q = 0), progressive waves in the far field do not exist at M > 0 and
σ > σcr.

At σ = 0, the source of fixed strength moves horizontally with constant velocity.
In this case, for the elastic cover, the functions Ψ1 and Ψ3 have no critical points,
but both the functions Ψ2 and Ψ4 have no more than two coinciding critical points
k(1)2 = k(1)3 and k(2)2 = k(2)3 , with k(1)2 < k(2)2 . These points exist only if u > Uf and
0 < γ < γ0, where γ0 = arccos(Uf /u). These values are determined from the equation
cf (k) = U, as evident from (3.9). It is well known (e.g. Squire et al. 1996) that the
group velocity of the flexural–gravity waves exceeds the phase velocity at shorter
wavelength (large wavenumber), but is less than the phase speed at longer wavelength
(small wavenumber). Accordingly, the waves corresponding to the wavenumbers k(1)2

and k(1)3 always propagate downstream, whereas the waves associated with k(2)2 and k(2)3
propagate upstream. For the inertial surface (D= Q= 0), both the functions Ψ2 and Ψ4

always have only one critical point, k2 and k4, respectively, which are equal to

k2 = k4 =
{
(
√
ρ2U2 + 4gρM − ρU)/(2UM), M > 0,

g/U2, M = 0.
(3.17)

In this case, the phase velocity of any wave exceeds its group velocity, and the
gravity waves in the far field always propagate downstream. The foregoing analysis is
necessary, in particular, for the solution of the wave radiation problem of a submerged
body with forward speed.

4. Wave radiation by a submerged sphere at forward speed
Consider the radiation problem for a submerged sphere of radius a advancing at

constant forward speed u. The coordinate system Oxyz is moving with the sphere with
the same speed, and x points in the direction of u. The centre of the sphere is located
at x = y = 0, z = −h (h > 0). We also define a spherical coordinate system (r, θ, β)
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404 I. V. Sturova

with the origin fixed at the position of the centre of the sphere:

x= r sin θ cosβ, y= r sin θ sinβ, z= r cos θ − h. (4.1)

The total potential Φ may be expanded as

Φ(x, y, z, t)= u[φ̄(x, y, z)− x] + Re

[
3∑

j=1

ηjφj(x, y, z) exp(iσ t)

]
, (4.2)

where φ̄ is the steady potential due to unit forward speed, and φj (j = 1, 2, 3) are
radiation potentials corresponding to oscillations of the body in three degrees of
freedom (surge, sway and heave) with amplitudes ηj and angular frequency σ . Notice
that the three-dimensional body in the general case can oscillate with six degrees of
freedom, but, evidently, the rotation of a sphere about its centre does not disturb an
inviscid fluid.

If w denotes the small vertical displacement of the upper surface from its
equilibrium position, then we can write by analogy with (4.2)

w(x, y, t)= w̄(x, y)+ Re

[
3∑

j=1

ηjwj(x, y) exp(iσ t)

]
. (4.3)

The velocity potential Φ(x, y, z, t) should satisfy the Laplace equation in the fluid
domain. In the frame of reference moving with the sphere at constant speed u, the
boundary conditions (2.2) at the upper surface (z= 0) change to(

∂

∂t
− u

∂

∂x

)
w= ∂Φ

∂z
, (4.4)

D12
2w+ Q12w+M

(
∂

∂t
− u

∂

∂x

)2

w+ ρ
(
∂

∂t
− u

∂

∂x

)
Φ + gρw= 0. (4.5)

Using the expansions (4.2) and (4.3), we have at z= 0

∂w̄

∂x
=−∂φ̄

∂z
,

(
D12

2 + Q12 +Mu2 ∂
2

∂x2
+ gρ

)
∂φ̄

∂z
+ ρu2 ∂

2φ̄

∂x2
= 0, (4.6)(

iσ − u
∂

∂x

)
wj = ∂φj

∂z
,

[
D12

2 + Q12 +M

(
iσ − u

∂

∂x

)2

+ gρ

]
wj

+ ρ
(

iσ − u
∂

∂x

)
φj = 0. (4.7)

The boundary conditions on the body surface S (r = a) are

∂φ̄/∂n= n1, ∂φj/∂n= iσnj + umj (j= 1, 2, 3), (4.8)

where

(n1, n2, n3)= (nx, ny, nz), (m1,m2,m3)=−(n ·∇)∇(φ̄ − x). (4.9)

Here n= (nx, ny, nz) is the inward normal of the body surface S. Also, the condition at
large depth is

lim
z→−∞

∇Φ = 0. (4.10)

Traditionally, to make the problem unique, a radiation condition is implemented, which
requires that only the outgoing wave with group velocity larger than the forward speed
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can be found far in front of the body. However, we do not need the radiation condition
when considering the radiation problem as the limit of the unsteady problem as
t→∞. It is known that the radiation condition in the frequency domain results from
the causality condition, which is not needed when solving a time-dependent problem.
The asymptotic analysis for the unsteady solution makes it possible to determine the
wave motion in the far field at long time.

The hydrodynamic force F acting on the sphere is equal to F = ∫S Pn ds, where
P(x, y, z, t) is the hydrodynamic pressure in the fluid (i.e. the full pressure with
the hydrostatic pressure removed). This can be obtained from Euler’s integral (e.g.
Wehausen & Laitone 1960, p. 461) as

P=−ρ
(
∂Φ

∂t
+ |∇Φ|

2

2

)
. (4.11)

The hydrodynamic moment about the centre of the sphere is zero.
Using the expansion (4.2), we can write

F= F(st) + Re[F(r) exp(iσ t)], (4.12)

where F(st) and F(r) are the steady and radiation forces, respectively. The value of F(st)

is equal to

F(st) =−1
2
ρu2

∫
S
∇(φ̄ − x)∇(φ̄ − x)n ds. (4.13)

We denote the x-, y-, z-components of F(st) as F1, F2, F3. The components of the
radiation force F(r) can be represented as

F(r)i =
3∑

j=1

ηjτij, τij =−ρ
∫

S
[iσφj + u∇(φ̄ − x)∇φj]ni ds (i= 1, 2, 3). (4.14)

The multipole expansion method (Wu 1995) is used to solve the problem considered.
We write the steady potential φ̄(x, y, z) in terms of the following expansion based on
associated Legendre functions Pm

n :

φ̄ =
∞∑

n=0

n∑
m=0

Ām
n

[
an+1

rn+1
Pm

n (cos θ) cos mβ + an+1im

2π(n− m)!
∫ π
−π

∫
L

T1

Z1
V cos mγ dk dγ

]
,

(4.15)

where

T1(k, γ )= Z1(k, γ )+ 2ρu2k cos2γ, Z1(k, γ )=Λ(k)− k(ρ +Mk)u2 cos2γ, (4.16a)
V(k, γ )= kn exp[k(z− h+ i(x cos γ + y sin γ ))]. (4.16b)

Here the first term in the square brackets in (4.15) is for the sphere in an unbounded
fluid domain and the second term is introduced to satisfy the conditions (4.3) and
(4.10).

The integration route L in (4.15) is from zero to infinity. There are singularities
in the integrand. Using the results of § 3 for a source of fixed strength moving
horizontally with constant speed, it can be easily shown that the equation Z1(k, γ )= 0
has two positive roots k(1)2 and k(2)2 if u|cos γ |> Uf . For convenience, we introduce the
notation κ1 = k(1)2 and κ2 = k(2)2 . The integration route L should pass over the singularity
κ1 and under the singularity κ2 when |γ |< π/2, and vice versa when |γ |> π/2.
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By applying the condition on the body surface (4.8) for the steady potential and
following the approach of Wu (1995), we obtain the system of linear algebraic
equations for determination of unknown coefficients Ām

n :

n+ 1
a

Ām
n +

nεm

2π

∞∑
n′=0

n′∑
m′=0

an+n′

(n+ m)!(n′ − m′)! I0(m
′, n′,m, n)Ām′

n′ = δn1δm1, (4.17)

where ε0 = 1 and εm = 2 if m> 0, δij is the Kronecker delta-function,

I0(m, n,m′, n′)=−(−1)(m−m′)/24
∫ π/2

0
pv
∫ ∞

0
kn+n′e−2kh cos mγ cos m′γ

T1(k, γ )

Z1(k, γ )
dk dγ

(4.18)

if m− m′ is even and

I0(m, n,m′, n′)= (−1)(m−m′−1)/24π
∫ γ0

0
cos mγ cos m′γ

2∑
j=1

(−1)jκn+n′
j e−2κjh

T1(κj, γ )

Z′1(κj, γ )
dγ

(4.19)

if m − m′ is odd. Here the notation pv indicates the principal-value integration,
Z′1(κj, γ )≡ ∂Z1/∂k|k=κj (j= 1, 2) and the value γ0 is defined as

γ0 =
{

0, u< Uf ,

arccos(Uf /u), u> Uf .
(4.20)

For an inertial surface (D = Q = 0), the equation Z1(k, γ ) = 0 has only one positive
root at all values of the speed u. In this case, the second term in the sum of (4.19)
should be omitted and the value of γ0 in (4.20) is equal to π/2. Note that there is
an explicit solution for this root in accordance with (3.17) and the integration over k
in (4.18) can be calculated using the exponential integral (e.g. Wu & Eatock Taylor
1988).

The solution of (4.17) may be obtained by truncating the infinite series at a finite
number n = N, depending on the accuracy required. Once the solution is found, the
components of the steady hydrodynamic force in (4.13) can be obtained. Using the
results given by Wu (1995), we have

Fj = 1
2
ρu2

∫
S
(φ̄ − x)mj ds (j= 1, 2, 3), (4.21)

where

F1 =−2ρπu2

[ ∞∑
n=1

n∑
m=0

1
εm

n+ 2
n+ 1

(n+ m+ 2)!
(n− m)! Ām

n Ām+1
n+1

−
∞∑

n=2

n−2∑
m=0

1
εm

n+ 1
n

(n+ m)!
(n− m− 2)! Ā

m
n Ām+1

n−1

]
, (4.22)

F3 = 4ρπu2
∞∑

n=1

n∑
m=0

1
εm

n+ 2
n+ 1

(n+ m+ 1)!
(n− m)! Ām

n Ām
n+1. (4.23)

As a consequence of the symmetry of the sphere, we have F2 = 0. The solution of the
steady problem is described in more detail in Sturova (2012).
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The multipole expansion for the radiation potential φj(x, y, z) has the form

φj =
∞∑

n=0

n∑
m=0

Am
n

[
an+1

rn+1
Pm

n (cos θ) cos mβ + an+1im

2π(n− m)!
∫ π
−π

∫
L

T2

Z2
V cos mγ dk dγ

]

+
∞∑

n=0

n∑
m=0

Bm
n

[
an+1

rn+1
Pm

n (cos θ) sin mβ + an+1im

2π(n− m)!
∫ π
−π

∫
L

T2

Z2
V sin mγ dk dγ

]
,

(4.24)

where

T2(k, γ )= Z2(k, γ )+ 2ρ(σ − uk cos γ )2, (4.25a)
Z2(k, γ )= kΛ(k)− (σ − uk cos γ )2(ρ +Mk). (4.25b)

Both integrands are singular in (4.24) when the equation Z2(k, γ ) = 0 is satisfied. The
function Z2(k, γ ) can be represented in the form

Z2(k, γ )= (ρ +Mk)[ω(k)− σ + uk cos γ ][ω(k)+ σ − uk cos γ ]. (4.26)

Therefore, at |γ | < π/2, the zeros of the function Z2(k, γ ) coincide with the critical
points of the functions Ψ2 and Ψ3, defined in § 3. At |γ | > π/2, the zeros of the
function Z2(k, γ ) coincide with the critical points of the functions Ψ1 and Ψ4. The
paths at the singularities depend on the direction of propagation for the waves in the
far field.

By applying the condition on the body surface (4.8) for the radiation potential, we
obtain the system of equations for the unknown coefficients Am

n and Bm
n :

n+ 1
a

Am
n +

nεm

2π

∞∑
n′=0

n′∑
m′=0

an+n′(−i)mim′

(n+ m)!(n′ − m′)! I1(m
′, n′,m, n)Am′

n′ = Cm
n , (4.27)

Bm
n = 0 (4.28)

for surge (j= 1);

Am
n = 0, (4.29)

n+ 1
a

Bm
n +

nεm

2π

∞∑
n′=0

n′∑
m′=0

an+n′(−i)mim′

(n+ m)!(n′ − m′)! I2(m
′, n′,m, n)Bm′

n′ = Dm
n (4.30)

for sway (j= 2); and

n+ 1
a

Am
n +

nεm

2π

∞∑
n′=0

n′∑
m′=0

an+n′(−i)mim′

(n+ m)!(n′ − m′)! I1(m
′, n′,m, n)Am′

n′ = Gm
n , (4.31)

Bm
n = 0 (4.32)

for heave (j= 3). Here

I1(m, n,m′, n′)=−2
∫ π

0

∫
L

kn+n′e−2kh cos mγ cos m′γ
T2

Z2
dk dγ, (4.33)

I2(m, n,m′, n′)=−2
∫ π

0

∫
L

kn+n′e−2kh sin mγ sin m′γ
T2

Z2
dk dγ, (4.34)
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Cm
n = iσδn1δm1 + u

a2

{
(n+ 1)

[
1− εm

εm−1
Ām−1

n−1 +
1
2
(n− m)(n− m− 1)Ām+1

n−1

]
+ n(n+ 2)

n+ 1

[
εm − 1
εm−1

Ām−1
n+1 −

1
2
(n+ m+ 2)(n+ m+ 1)Ām+1

n+1

]}
, (4.35a)

Dm
n = iσδn1δm1 − u

a2
(εm − 1)

{
(n+ 1)

[
1
εm−1

Ām−1
n−1 +

1
2
(n− m)(n− m− 1)Ām+1

n−1

]
− n(n+ 2)

n+ 1

[
1
εm−1

Ām−1
n+1 +

1
2
(n+ m+ 2)(n+ m+ 1)Ām+1

n+1

]}
, (4.35b)

Gm
n =−iσδn1δm0 + u

a2

[
(n− m)(n+ 1)Ām

n−1 +
n(n+ 2)

n+ 1
(n+ m+ 1)Ām

n−1

]
. (4.35c)

Once the solutions of (4.27), (4.30) and (4.31) are found, the values of τij, with the
added masses µij and the damping coefficients λij, can be obtained from (4.14), using
the results (Wu 1995)

τij = σ 2µij − iσλij = ρ
∫

S

∂φ∗i
∂n
φj ds, (4.36)

where

τ11 = 4πρa2
∞∑

n=1

n∑
m=0

1
εm

1
2n+ 1

(n+ m)!
(n− m)!C

m∗
n

[
2n+ 1

n
Am

n (1)−
a

n
Cm

n

]
, (4.37)

τ22 = 4πρa2
∞∑

n=1

n∑
m=0

1
εm

1
2n+ 1

(n+ m)!
(n− m)!D

m∗
n

[
2n+ 1

n
Bm

n (2)−
a

n
Dm

n

]
, (4.38)

τ33 = 4πρa2
∞∑

n=1

n∑
m=0

1
εm

1
2n+ 1

(n+ m)!
(n− m)!G

m∗
n

[
2n+ 1

n
Am

n (3)−
a

n
Gm

n

]
, (4.39)

τ13 = 4πρa2
∞∑

n=1

n∑
m=0

1
εm

1
2n+ 1

(n+ m)!
(n− m)!C

m∗
n

[
2n+ 1

n
Am

n (3)−
a

n
Gm

n

]
, (4.40)

τ31 = 4πρa2
∞∑

n=1

n∑
m=0

1
εm

1
2n+ 1

(n+ m)!
(n− m)!G

m∗
n

[
2n+ 1

n
Am

n (1)−
a

n
Cm

n

]
, (4.41)

while all other hydrodynamic coefficients are zero. Here the symbol ∗ denotes complex
conjugate, and Am

n (1), Bm
n (2) and Am

n (3) are the solutions of (4.27), (4.30) and (4.31),
respectively.

5. Numerical results for the hydrodynamic load
Numerical calculations are performed for ice cover using the input data (2.28). The

sphere is submerged at h = 2a and its radius is equal to a = 10 m. The results for
hydrodynamic load are obtained by taking N = 5. It was found that further increase of
N does not affect the first four digits after the decimal point.

Figure 6 gives the wave resistance and lift coefficients of a sphere submerged
under the usual free surface and broken ice as functions of non-dimensional speed
ū = u/

√
ga. Non-dimensional coefficients are defined from (4.22) and (4.23) as

F̄1 = −F1/(πgρa3) and F̄3 = F3/(πρa2u2). The results for the wave resistance in
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FIGURE 6. The influence of forward speed on the steady hydrodynamic load for the free
surface (solid lines) and broken ice (dashed, dash-dotted and dotted lines) at h1 = 0.5, 1, 2 m,
respectively: (a) wave resistance and (b) lift. Open circles correspond to the results by Wu &
Eatock Taylor (1988) for a free surface.

the case of the usual free surface are compared with the values tabulated by Wu &
Eatock Taylor (1988), which are shown by open circles in figure 6(a). Good agreement
is found. In figure 6(b), the horizontal arrows indicate the values of the lift for two
limiting cases: u→ 0 (F̄3 = 0.0120) and u→∞ (F̄3 = −0.0115). The first case
corresponds to a rigid lid on the upper boundary of the water, whereas the second
case corresponds to a weightless fluid with free surface. The solutions of the steady
problem for these cases can be easily obtained by the multipole expansion method. For
the rigid lid, the boundary condition on the upper boundary of the fluid for the steady
potential has the form

∂φ̄/∂z= 0, z= 0. (5.1)

Then we have in (4.15) T1/Z1 = 1, and in (4.17)

I0(m, n,m′, n′)=− 2π(n+ n′)!
εm(2h)n+n′+1

δmm′ . (5.2)

For the weightless fluid with a free surface, the boundary condition has the form

φ̄ = 0, z= 0. (5.3)
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FIGURE 7. Effect of lateral stress of the ice sheet with h1 = 0.5 m on the steady
hydrodynamic load: (a) wave resistance and (b) lift.

Then we have T1/Z1 =−1 in (4.15), and the relation for I0(m, n,m′, n′) coincides with
(5.2) taken with inverse sign. Waves are not generated in these two cases and the wave
resistance is zero. Figure 6 shows that the maximum values of wave resistance and
lift take place for a sphere moving under a free surface. For broken ice, the extreme
values of the steady force decrease with increasing ice thickness but the qualitative
behaviour of the steady force does not change. It is seen that the lift tends to the value
for the rigid-lid condition at the free surface, when the velocity of the sphere tends to
zero.

The steady hydrodynamic force for a sphere moving under an ice sheet of thickness
h1 = 0.5 m at different values of the lateral stress is shown in figure 7. Both the wave
resistance and the lift have discontinuities at u = Uf . Similar behaviour of the wave
resistance was found by Yeung & Kim (1998) for a moving load on a floating elastic
plate. It was shown that the discontinuity of the wave resistance has a finite value.
At u < Uf , the wave resistance is equal to zero but the lift increases sharply with
u. At u > Uf , the wave resistance increases with stretching of the ice cover. As in
figure 6(b), the horizontal arrows in figure 7(b) indicate the values of the lift for two
limiting cases. The lift coefficient tends to the value for the rigid lid at u→ 0 and to
the value for the weightless fluid at u→∞ regardless of the lateral stress.

Figure 8 presents the radiation load, with the added-mass coefficients shown
in figure 8(a–d) and damping coefficients shown in figure 8(e–h), for a sphere
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FIGURE 8. The radiation force at ū = 0.4 for a free surface (solid lines) and for broken
ice (dashed, dash-dotted and dotted lines) at h1 = 0.5, 1, 2 m, respectively: (a,e) surge,
(b,f ) sway, (c,g) heave, (d,h) surge–heave. Open circles correspond to the results by Wu &
Eatock Taylor (1988) for a free surface.

submerged under a free surface and broken ice as functions of non-dimensional
frequency σ̄ 2 = σ 2a/g. These results correspond to ū = 0.4. They are obtained from
(4.37)–(4.40), with the following normalization:

µ̄ij = µij/(πρa3), λ̄ij = λij/(πρa3σ). (5.4)

The results for the free surface are compared with the tabulated values in Wu &
Eatock Taylor (1988) and shown by open circles in figure 8. The results for τ31 are
omitted here, because at low forward speed we have τij =−τji (i 6= j) (for more details,
see Wu & Eatock Taylor (1988)). Some coefficients of the radiation load vary sharply
in the vicinity of the critical frequency, which corresponds to σ̄ 2 ≈ 0.3906 for the
usual free surface. As shown in figure 5, the critical frequency decreases with increase
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FIGURE 9. The radiation force at ū= 0.4 for an ice sheet: (a,e) surge, (b,f ) sway, (c,g) heave,
(d,h) surge–heave.

of the ice thickness for broken ice: σ̄ 2 ≈ 0.3460, 0.3146, 0.2712 at h1 = 0.5, 1, 2 m,
respectively.

The effect of an ice sheet on the added-mass and damping coefficients is shown
in figure 9. The radiation load is calculated at ū = 0.4 for different values of lateral
stress and ice thickness: Q= 0, h1 = 0.5, 1, 2 m, and Q̄=−0.5, 0.5, h1 = 1 m. For
comparison, the values of the radiation force for a sphere submerged under a rigid lid
are shown by the crosses in figure 9(a–c,h). At the rigid lid, the boundary condition
for the radiation potentials φj (j = 1, 2, 3) at z = 0 is used in a form similar to (5.1).
Then we have T2/Z2 = 1 in (4.24), and

I1(m, n,m′, n′)=− 2π(n+ n′)!
εm(2h)n+n′+1

δmm′, I2(m, n,m′, n′)=− π(n+ n′)!
(εm − 1)(2h)n+n′+1

δmm′ (5.5)
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FIGURE 10. As figure 9, at ū= 1.

in (4.33) and (4.34), respectively. In this special case, only the diagonal added-mass
coefficients µjj (j = 1, 2, 3) and λ13 = −λ31 are non-zero. We can see from figure 9
that the values of the diagonal added-mass coefficients for the ice sheet and the rigid
lid are very close for all the parameters considered. However, for the value of the
damping coefficient λ13, the same effect is observed only at relatively thick ice cover
with h1 = 2 m. It should be noted that the radiation force in the case of an ice sheet is
smaller than that in the case of broken ice at low forward speed. The value of forward
speed ū = 0.4 is less than the minimum group velocity of the flexural–gravity waves
for all the cases considered in figure 9 (cf. figure 2d). Consequently, the waves in the
far field correspond only to the region G4 in figure 4(a).

For a higher forward speed, ū = 1, the added-mass and damping coefficients
are shown in figure 10. The radiation force is calculated for different values of
ice thickness and lateral stress as in figure 9. In contrast to ū = 0.4, the value
of the forward speed is now greater than the minimum group velocity for two
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FIGURE 11. The radiation load at u = 0 for a free surface (solid lines) and for broken
ice (dashed, dash-dotted and dotted lines) at h1 = 0.5, 1, 2 m, respectively: (a,c) surge,
(b,d) heave. Open circles correspond to the results by Wang (1986) for a free surface.

cases: h1 = 0.5 m, Q = 0 (Ūg ≈ 0.7937) and h1 = 1 m, Q̄ = 0.5 (Ūg ≈ 0.7907). In
these cases, some components of the radiation force change sharply at frequencies
that are close to the boundaries of the regions G3 and G4 in figure 4(a). These
frequencies are 0.1751 < σ̄ < 0.2478 at h1 = 0.5 m, Q = 0 and 0.1969 < σ̄ < 0.2353
at h1 = 1 m, Q̄ = 0.5. At h1 = 1 m, Q = 0, the value of the minimum group velocity
is equal to Ūg ≈ 1.023, which is very close to the value of the forward speed of
the sphere. In this case, some components of the force change sharply in the vicinity
of the critical frequency σ̄∗ ≈ 0.2433. Similar to the case of low forward speed, the
values of the diagonal added-mass coefficients for an ice sheet and a rigid lid are very
close in the range of parameters considered. However, for the damping coefficient λ13,
similar behaviour is observed only at relatively thick ice cover with h1 = 2 m.

As a particular case of the radiation problem with forward speed, we can take
u = 0 and consider the radiation problem for the submerged sphere without forward
speed. For this problem, the solution is significantly simplified and only the diagonal
coefficients of the radiation force τjj (j = 1, 2, 3), with τ11 = τ22, have non-zero values.
The basic properties of the wave motion in the far field are given in § 3. Figure 11
shows the added-mass and damping coefficients for a sphere submerged under the
usual free surface and under broken ice at different values of the ice thickness:
h1 = 0.5, 1, 2 m. The results for the free surface are compared with the values
tabulated by Wang (1986), which are shown by open circles in figure 11. Good
agreement is found. In figure 11(a,b), the horizontal arrows indicate the values
of the added-mass coefficients µ̄11 and µ̄33, respectively, for two limiting cases:
σ → 0 (µ̄11 ≈ 0.6825, µ̄33 ≈ 0.6985) and σ →∞ (µ̄11 ≈ 0.6512, µ̄33 ≈ 0.6360).
The first case corresponds to a rigid lid on the upper boundary of water, whereas
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FIGURE 12. The radiation load for the ice sheet at u= 0: (a,c) surge, (b,d) heave.

the second corresponds to a weightless fluid with a free surface. The solutions
of the radiation problem for these two cases can be easily obtained by the
multipole expansion method, using the boundary conditions for the radiation potentials
φj (j= 1, 3) at z= 0 similar to (5.1) and (5.3), respectively. The approximate values of
added-mass coefficients in these two cases are given in the reference book by Korotkin
(2009, §§ 4.2.1 and 5.6.1, respectively). The wave motion is not generated in these
cases and the damping coefficients λ11 and λ33 are equal to zero. It is interesting to
note that the presence of broken ice on the upper boundary of the water does not
produce a significant change of the extremum values of the radiation load but slightly
shifts their positions towards lower frequencies.

The effect of an ice sheet on the added-mass and damping coefficients at u = 0 is
shown in figure 12. The radiation force is calculated for different values of lateral
stress and ice thickness: Q = 0, h1 = 0.5, 1, 2 m, and Q̄ = −0.5, 0.5, h1 = 1 m.
At σ → 0, the added-mass coefficients tend to the values for a rigid lid, which are
shown by the horizontal arrows in figure 12(a,b). It is seen from figures 11 and
12 that the maximum values of the radiation force decrease with the ice thickness.
Previously, the problem of wave radiation by a submerged sphere in deep water and
in water of uniform finite depth with unstressed ice cover was considered by Das
& Mandal (2008). All the curves for the added-mass and damping coefficients that
were presented in that paper for deep water are confirmed fully using the present
method. The numerical results obtained in the present paper suggest that an increase
of the compression force (stretching stress) is equivalent to a decrease (increase) of the
ice-cover thickness.
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6. Conclusion
Within the framework of linearized theory, the velocity potential of an unsteady

source has been derived for a fluid of infinite depth with an elastic solid cover.
The cover is assumed to have a small thickness and uniform density. Taking into
account the lateral stress imposed at the elastic cover makes it possible to consider
the particular cases of an inertial surface, a flexible membrane, and a free surface
with surface tension. The velocity potential for a source of arbitrary strength, starting
from rest and moving along an arbitrary path, is derived first by solving an initial-
and boundary-value problem using the Laplace transform. The result is similar in form
to the transient source in a fluid with the usual free surface. An oscillating source
with forward speed is derived from the transient source by specifying the appropriate
strength and motion and considering the limiting case as time t→∞. The principal
characteristics of the flexural–gravity waves in the far field are investigated with the
method of stationary phase for double integrals.

As a sample application, a numerical solution of the radiation problem (surge, sway
and heave) for water waves excited by a submerged sphere with forward speed is
presented. The method of multipoles and the decomposition of the velocity potential in
spherical harmonics are used to reduce the problem to the solution of an infinite
system of linear equations. Numerical results are obtained for the hydrodynamic
load acting on a submerged sphere that is moving in deep water with an ice cover.
When the flexural rigidity and the density of the ice cover are taken to be zero,
the numerical results for the hydrodynamic load for water with a free surface are
recovered. It is shown that the hydrodynamic load acting on the submerged sphere
depends significantly on its translating speed and the angular frequency as well as the
thickness of the ice cover and its lateral stress. The solutions obtained can be used as
a benchmark for the numerical methods developed for a submerged body of arbitrary
shape. The approach proposed in this paper can be extended to the case of a fluid of
finite depth.
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Appendix
At M = 0, kf can be obtained from (2.23) as

k2
f = (Q+

√
Q2 + 12gρD)/(6D). (A 1)

At Q= 0, we have from this solution

kf

(
D

gρ

)1/4

= 3−1/4 ≈ 0.760, Uf

(
ρ

g3D

)1/8

= 2
271/8

≈ 1.325. (A 2)

For a small stress, there is a nearly linear decrease of Uf with respect to Q (Schulkes
et al. 1987)

Uf ≈ 2
(

g3D

27ρ

)1/8(
1− 3

4
ε

)
, ε = arcsinh

Q√
12gρD

. (A 3)
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For capillary–gravity waves (D = M = 0, Q = −T), we have (e.g. Wehausen &
Laitone 1960, p. 515)

kf =
√

gρ/T, Uf =
√

2(gT/ρ)1/4. (A 4)

The explicit solutions for kg and Ug can be obtained from (2.25) and (2.27) at
M = Q= 0:

kg

(
D

gρ

)1/4

= p≡
(

4√
15
− 1
)1/4

≈ 0.426, Ug

(
ρ

g3D

)1/8

= 5p4 + 1

2
√

p(p4 + 1)
≈ 0.878.

(A 5)

For capillary–gravity waves, we have

kg

√
T

gρ
=
√

2√
3
− 1≈ 0.393, Ug

(
ρ

gT

)1/4

= 33/8(
√

3− 1)√
2(2−√3)

1/4 ≈ 1.086. (A 6)
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