
Math. Proc. Camb. Phil. Soc. (2020), 169, 507–545 C© Cambridge Philosophical Society 2019 507
doi:10.1017/S0305004119000276

First published online 25 July 2019

Weak∗ and entropy approximation of nonhyperbolic measures:
a geometrical approach

BY LORENZO J. DÍAZ

Departamento de Matemática PUC-Rio, Marquês de São Vicente 225, Gávea, Rio de
Janeiro 22451-900, Brazil.

e-mail: lodiaz@mat.puc-rio.br

KATRIN GELFERT

Instituto de Matemática, Universidade Federal do Rio de Janeiro
Av. Athos da Silveira Ramos 149, Cidade Universitária - Ilha do Fundão,

Rio de Janeiro 21945-909, Brazil.
e-mail: gelfert@im.ufrj.br

AND BRUNO SANTIAGO

Instituto de Matemática e Estatística, Universidade Federal Fluminense
Rua Professor Marcos Waldemar de Freitas Reis, s/n,

Bloco H - Campus do Gragoatá São Domingos, Niterói 24210-201, Brazil.
e-mail: brunosantiago@id.uff.br

(Received 19 April 2018; revised 13 February 2019)

Abstract

We study C1-robustly transitive and nonhyperbolic diffeomorphisms having a partially
hyperbolic splitting with one-dimensional central bundle whose strong un-/stable foliations
are both minimal. In dimension 3, an important class of examples of such systems is given by
those with a simple closed periodic curve tangent to the central bundle. We prove that there is
a C1-open and dense subset of such diffeomorphisms such that every nonhyperbolic ergodic
measure (i.e. with zero central exponent) can be approximated in the weak∗ topology and in
entropy by measures supported in basic sets with positive (negative) central Lyapunov expo-
nent. Our method also allows to show how entropy changes across measures with central
Lyapunov exponent close to zero. We also prove that any nonhyperbolic ergodic measure
is in the intersection of the convex hulls of the measures with positive central exponent and
with negative central exponent.
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1. Introduction

Consider a boundaryless Riemannian compact manifold M and its space Diff1(M) of
C1-diffeomorphisms endowed with the uniform topology. We consider the C1-open subset of
Diff1(M), denoted by RTPH1(M), formed by diffeomorphisms f with a C1-neighbourhood
V f whose elements satisfy the following properties, (H1)–(H3):

(H1) Every diffeomorphism g in V f is nonhyperbolic.
(H2) There is a partially hyperbolic splitting T M = E ss ⊕ E c ⊕ Euu with three non-trivial

bundles such that E ss is uniformly contracting, E c is one-dimensional, and Euu is
uniformly expanding.

To state hypothesis (H3), we first recall that by partial hyperbolicity, there exist invariant
foliations F ss and F uu tangent to E ss and Euu and called strong stable and strong unstable
foliations, respectively (see [26]).

(H3) The strong stable and the strong unstable foliations of any g ∈V f are both minimal
(that is, every leaf of the foliation is dense in the whole space).

Recall that a diffeomorphism is transitive if it has a dense orbit and is C1-robustly
transitive if it has a C1-neighbourhood consisting of transitive diffeomorphisms. Since
the minimality of any strong foliation implies transitivity, condition (H3) implies that
every diffeomorphism in RTPH1(M) is transitive. Since (H3) requires this property in a
neighborhood, every f ∈ RTPH1(M) is robustly transitive.

To comment on our hypotheses, while (H1) and (H2) are quite natural, (H3) may at first
seem to be rather restrictive. To describe a natural setting where f satisfies the latter is a
bit more elaborate and relies on the existence of a simple closed periodic1 curve γ f tangent
to E c. Since partially hyperbolic splittings have well defined continuations and the curve
γ f is normally hyperbolic, it has well defined continuations in a C1-neighborhood of f
(see [26]). Note that the existence of a closed periodic curve tangent to E c immediately
prevents hyperbolicity. The main examples of robustly transitive diffeomorphisms having
simple closed periodic curves fall into two classes: those having an invariant foliation tangent
to E c consisting of circles (see [5, 21, 36]) and those having simultaneously closed and
non-closed leaves tangent to E c. Examples of the latter are appropriate perturbations of the
time-one map of a transitive Anosov flow [5] and a certain class of diffeomorphisms in [12]
(involving a so-called Dehn twist and the time-one map of a hyperbolic geodesic flow).

To return to the discussion of simultaneous minimality of both strong foliations, first
assume that dim M = 3 and that U is an open set of Diff1(M) consisting of transitive dif-
feomorphisms f satisfying (H2) and each having some closed periodic curve γ f tangent to
E c (thus satisfying (H1)). In this setting, by [10] there is a C1-open and -dense subset of U
consisting of diffeomorphisms for which both foliations are minimal and hence satisfy (H3).
For examples in higher dimensions, as recently communicated [39], robustly transitive per-
turbations of the time-one maps of Anosov flows (in any dimension) also provide examples
of diffeomorphisms having simultaneously minimal foliations.

Note that there is an important class of nonhyperbolic partially hyperbolic robustly transi-
tive systems, called DA-diffeomorphisms [31], which a priori do not belong to RTPH1(M)

1That is, there exists n ≥ 1 such that f n(γ f )= γ f .
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Weak∗-entropy approximation of nonhyperbolic measures 509

because they do not have closed curves tangent to the central bundle E c and hence, so far, it
is unknown if (H3) is satisfied.

The next definition involves the notion of a blender-horseshoe, see Section 2 for the
precise definition and discussion.

Definition 1·1 (The set MB1(M)). The set2 MB1(M) is the subset of RTPH1(M) con-
sisting of diffeomorphisms with a pair of blender-horseshoes (one contracting in the central
direction and one expanding in the central direction).

Remark 1·2 (Properties of MB1(M)). Conditions (H1) and (H2) imply that the set
MB1(M) is C1-open and C1-dense in RTPH1(M), see Proposition 2·9. In fact, to get such
blender-horseshoes, hypothesis (H3) is not used at all and, indeed, the existence of the
blender-horseshoes is, besides some geometrical hypothesis, the (implicit) key element in
[10] to prove the minimality of the foliations (even though the term “blender-horseshoe”
was only coined later [7]). We will explore the dynamics of these blender-horseshoes, see
Section 2, which will also be an important ingredient in our constructions. For details see
Proposition 2·9 and Remark 2·10.

Assume now that M has dimension three and consider the set RTC1(M) of robustly transi-
tive diffeomorphisms of M having a closed simple periodic curve and a partially hyperbolic
splitting with three bundles. Then the set MB1(M) is C1-open and C1-dense in RTC1(M),
see [10].

Remark 1·3 (Essential hypotheses). The proofs of our results do not involve any per-
turbation. The essential hypotheses we do use for every f under consideration are the
following:

(i) partial hyperbolicity with splitting T M = E ss ⊕ E c ⊕ Euu and with one-dimensional
center;

(ii) existence of a pair of blender-horseshoes, one contracting in the central direction and
one expanding in the central direction;

(iii) minimality of both strong foliations.

Note that the simultaneous existence of blender-horseshoes of different type implies
nonhyperbolicity. Further, minimality implies transitivity.

Observe that the robustness of the above properties comes along naturally. Indeed, partial
hyperbolicity and existence of blender-horseshoes are both robust properties, while a priori
the minimality of the strong foliations is not. However, the existence of blender-horseshoes
forces the robustness of minimality (this is indeed the heart of the proof in [10]).

Nonhyperbolicity is closely related to the existence of zero Lyapunov exponents. Given
f ∈ Diff1(M), a point x ∈ M is Lyapunov regular if there are a positive integer s(x), num-
bers χ1(x) < · · ·<χs(x)(x), called the Lyapunov exponents of x , and a D f -invariant splitting
Tx M = ⊕s(x)

i=1 Fi
x such that for all i = 1, . . . , s(x) and v ∈F i

x , v �= 0, we have

lim
n→±∞

1

n
log ‖D f n

x (v)‖ = χi (x).

2This notation refers to minimality and existence of blender-horseshoes.
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Note that in our partially hyperbolic setting there is some � such that F � = E c and we denote
the corresponding Lyapunov exponent by χ c.

We denote by M( f ) the set of f -invariant probability measures of f and by Merg( f )
the subset of ergodic measures. We equip the space M( f ) with the weak∗ topology. Given
μ ∈Merg( f ), Oseledets’ multiplicative ergodic theorem [33] claims that the set of Lyapunov
regular points has full measure and s(·)= s(μ) and χi (·)= χi (μ), i = 1, . . . , s(μ), are con-
stant μ-almost everywhere. The latter numbers are called the Lyapunov exponents of μ. If
χ c(μ)= 0 then μ is called nonhyperbolic. Note that in our setting the other exponents of
μ are nonzero. We denote by Merg,0( f ) the subset of Merg( f ) of nonhyperbolic measures.
Thus, the occurrence of a zero exponent is related to the central direction only and there is a
natural decomposition

Merg( f )=Merg,<0( f )∪Merg,0( f )∪Merg,>0( f ),

where Merg,<0( f ) and Merg,>0( f ) denote spaces of measures μ such that χ c(μ) < 0 and
χ c(μ) > 0, respectively.

The exploration of nonhyperbolic ergodic measures is a very active research field which
started with the pioneering work in [23]. Note that by [2] there is a C1-open and -dense
subset of RTPH1(M) consisting of diffeomorphisms f such that Merg,0( f ) is nonempty
and contains measures with positive entropy. The main focus of this paper is to study how
nonhyperbolic ergodic measures insert in the space of ergodic measures. The main result
is how nonhyperbolic measures are weak∗ and in entropy approached by hyperbolic ones
which are supported on basic sets. We also conclude about the topological structure of the
space of ergodic measures. For previous results about the denseness of hyperbolic measures
supported on periodic orbits, see [13]. Our paper is a continuation of a line of arguments
in [16, 17] where these questions were studied in a skew-product setting and where a gen-
eral axiomatic framework to attack this problem was introduced, see the discussion after
Corollary 2.

Remark 1·4. By a very classical result, mainly started by Katok [27, 28], every hyperbolic
ergodic measure can be approximated by periodic ones. Here one can consider approxima-
tion in the weak∗ topology. Moreover, one can approximate by means of ergodic measures
supported on basic sets which converge weak∗ and in entropy, that is, given μ hyper-
bolic ergodic, there is a sequence �n of basic sets such that Merg( f, �n)→μ in the weak∗
topology and that htop( f, �n)→ h(μ). Katok’s result was first shown for C1+ε surface dif-
feomorphisms [28, supplement S·5], but extends also to higher-dimensional manifolds and
C1- and dominated diffeomorphisms (see, for example, [15, 20, 30] and references therein
and also [42]). Below we will present an analogous version for nonhyperbolic ergodic
measures.

Given f ∈ MB1(M) and a hyperbolic set �⊂ M of f , denote by M( f, �)⊂M( f ) the
subset of measures supported on �. We define analogously Merg( f, �). We say that a hyper-
bolic set � is central contracting (central expanding) if on T� the bundle E ss ⊕ E c is stable
(E c ⊕ Euu is unstable). Recall that a set is basic if it is compact, f -invariant, hyperbolic,
locally maximal, and transitive.

Given a countable dense subset {ϕ j } j≥1 of continuous (nonzero) functions on M , recall
that
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D(ν, μ)
def=

∞∑
j=1

2− j 1

2‖ϕ j‖∞

∣∣∣∣
∫
ϕ j dν −

∫
ϕ j dμ

∣∣∣∣ , ‖ϕ‖ def= sup|ϕ|,

provides a metric which induces the weak∗ topology on M( f ).
The following is a consequence of Theorem 5·1 which is stated under the minimal

hypotheses which we require to construct central expanding (contracting) basic sets as
stated.

THEOREM 1 (Approximation in weak∗ and entropy). For every f ∈ MB1(M) every non-
hyperbolic ergodic measure μ of f has the following properties. For every δ > 0 and every
γ > 0 there exist a pair of basic sets �− being central contracting and �+ being central
expanding such that the topological entropy of f on �∓ satisfy

htop( f, �∓) ∈ [h(μ)− γ, h(μ)+ γ ].

Moreover, every measure ν∓ ∈M( f, �∓) is δ-close to μ. In particular, there are hyperbolic
measures ν∓ ∈Merg( f, �∓) satisfying

χ(ν−) ∈ (−δ, 0) and χ(ν+) ∈ (0, δ)

and

h(ν∓) ∈ [h(μ)− γ, h(μ)+ γ ].
The program for proving the above result was laid out in [16, section 8·3]. The result

above is the corresponding version of [16, theorem 1] (in a step skew-product setting with
circle fiber maps) in the present setting. The main difficulties of this translation are discussed
below in Sections 1·1 and 1·2. During the final preparation of this manuscript, we noticed
that a preprint with a similar result was announced in [43].

We have the following straightforward consequence of the above.

COROLLARY 2 (Restricted variational principles). For every f ∈ MB1(M)

htop( f )= sup
μ∈Merg,<0( f )∪Merg,>0( f )

h(μ).

Note that, in contrast to [18, theorem 2] or [40], in general there are yet no general tools
to establish the uniqueness of hyperbolic measures of maximal entropy. See also the results
and discussion in [34].

Recall that an ergodic measure is periodic if it is supported on a periodic orbit. It is a
classical result by Sigmund [37] that periodic measures are dense in M( f, �) for any basic
set �, and hence every hyperbolic ergodic measure is approximated by hyperbolic periodic
ones. The above result then immediately implies that this is also true for nonhyperbolic
ergodic measures.

COROLLARY 3 (Periodic approximation). For every f ∈ MB1(M) and every μ ∈
Merg( f ) is approximated by hyperbolic periodic measures. Moreover, every μ ∈Merg,0( f )
is approximated by periodic measures in Merg,<0( f ) and in Merg,>0( f ), respectively.
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Let us observe that a similar result was previously obtained in [13] assuming minimality
of strong foliations and concluding correspondingly about the nature (more precisely the
index, that is, number of negative Lyapunov exponents) of the measures supported on the
hyperbolic periodic orbits.

The following result shows how entropy “changes across measures with Lyapunov expo-
nent close to zero”. As for Theorem 1, it will be an immediate consequence of a Theorem 6·1
correspondingly stated under the minimal hypotheses.

THEOREM 4. For every f ∈ MB1(M) and every μ ∈Merg( f ) with α = χ(μ) < 0, there
is a positive constant K ( f )≥ (log ‖D f ‖)−1 such that for every δ > 0, γ > 0, and β > 0,
there is a basic set � being central expanding such that:

(i) its topological entropy satisfies

htop( f, �)≥ h(μ)

1 + K ( f )(β + |α|) − γ ;

(ii) every ν ∈Merg( f, �) satisfies

β

1 + K ( f )(β + |α|) − δ < χ(ν) <
β

1 + 1
log‖D f ‖ (β + |α|) + δ,

and

D(ν, μ) <
K ( f )(β + |α|)

1 + K ( f )(β + |α|) + δ.

The same conclusion is true for α > 0 and every β < 0, changing in the assertion β + |α| to
|β| + α.

If h(μ)= 0 then � is a hyperbolic periodic orbit.

The result above corresponds to [16, theorem 5].

Remark 1·5 (Continuations in the weak∗ and in entropy of ergodic measures). A conse-
quence of Theorem 1 is that for every f ∈ MB1(M) any ergodic measure μ of f has a
continuation in the following sense. Every diffeomorphism g sufficiently C1-close to f has
an ergodic measure μg close to μ in the weak∗ topology and with entropy close to the one of
μ. If the measure is hyperbolic this is essentially a reformulation of Remark 1·4. In the non-
hyperbolic case, just note that the measures supported on �± are close (in the weak∗ and in
entropy) to μ. Hence measures supported on the (well and uniquely defined) continuations
of �± for diffeomorphisms nearby f are close to μ. Note that these continuations of μ are
hyperbolic. A much more interesting question, related to Theorem 4, is if for g close to f
the diffeomorphism g has a nonhyperbolic measure close to μ (in the weak∗ and in entropy).
This remains an open question. Note that by [2], C1-open and -densely, the diffeomorphisms
close to f have nonhyperbolic ergodic measures with positive entropy, but it is unclear and
unknown if those can be chosen close to μ.

Finally, observe that our constructive method provides a way to obtain the hyperbolic
sets �± (and hence their continuations) based on skeletons, see Section 5·2. Our notion
of skeleton follows the one introduced in [16] and depends on a blender-horseshoe, two
connection times to such a blender-horseshoe, and finitely many (long) finite segments of
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orbits (where the finite central exponent is close to zero). In our context, all these ingredients
are persistent. Our concept of skeleton is different (although with somewhat similar flavor)
from the one introduced in parallel in [19], that we call here DVY-skeleton. The latter is a
finite collection of hyperbolic periodic points with no heteroclinic intersections such that
the strong unstable leaf of any point x in the manifold intersects transversally the stable
manifold of the orbit of some point in the skeleton. Open and densely in MB1(M), DVY-
skeletons consist of just one point (this follows from the minimality of the strong foliations
and by the fact that the manifold is a homoclinic class, see Section 7). Note that, in general,
the DVY-skeletons may collapse by perturbations.

The space M( f ) equipped with the weak∗ topology is a Choquet simplex whose extreme
points are the ergodic measures (see [41, chapter 6·2]). In some cases the set of ergodic
measures Merg( f ) is dense in its closed convex hull M( f ) in which case (assuming that
M( f ) is not just a singleton) one refers to it as the Poulsen simplex3, see also [29]. Although,
in general, M( f ) is very far from having such a property, it is a consequence of [3] that each
of the subsets Merg,<0( f ) and Merg,>0( f ) is indeed a Poulsen simplex. We investigate further
these simplices and study the remaining set of nonhyperbolic (ergodic) measures. Properties
of this flavour were also studied in [1]. Let us observe that it is still is an open question
whether hypotheses (H1)–(H3) imply that M( f ) itself is a Poulsen simplex.

THEOREM 5 (Arcwise connectedness). There is an C1-open and -dense subset of
MB1(M) consisting of diffeomorphisms f for which the intersection of the closed con-
vex hull of Merg,<0( f ) and the closed convex hull of Merg,>0( f ) is nonempty and contains
Merg,0( f ). Each of the sets Merg,<0( f ) and Merg,>0( f ) is arcwise connected. Moreover, every
measure in Merg,0( f ) is arcwise connected with any measure in Merg,<0( f ) and Merg,>0( f ),
respectively.

Indeed, the open and dense subset in the above corollary is the subset of MB1(M) for
which the entire manifold is simultaneously the homoclinic class of a saddle of index s and
of index s + 1, respectively. See the proof of Theorem 5.

The above theorem partially extends results in [22] to our C1 partially hyperbolic setting.
The results in [22] are stated for (i) measures supported on an isolated homoclinic class
whose saddles of the same index are all homoclinically related and assuming that (ii) f is
C1+ε. Concerning (ii), nowadays it is often used that the hypothesis C1+ε can be replaced
by C1 plus domination. Concerning (i), we will see that these conditions are satisfied in our
setting. Indeed, see Section 7, the set MB1(M) can be chosen such that these two hypotheses
hold for every of its elements. Theorem 5 is proved in Section 7. See also [17, section 3·1]
for a proof of this type of results in a step skew product setting.

1·1. The axiomatic approach in [16, 17]

As we have mentioned, this paper is a continuation of [16, 17], where the corresponding
results where obtained for step skew-products with circle fiber maps. The axiomatic setting
proposed in [16] considers three main hypotheses formulated for the underlying iterated

3Given a nonempty metrisable convex compact subset K of a locally convex topological vector space, we
say that K is a Choquet simplex if every point of K is the barycenter of a unique probability measure
supported on the set of extreme points of K . A Poulsen simplex is a Choquet simplex where the extreme
points are dense in K . See [38].
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function system (IFS) of the skew-product: transitivity, controlled expanding (contracting)
forward covering relative to an interval (called blending interval), and forward (backward)
accessibility relative to an interval. In [16, section 8·3] it is explained how these conditions
are in fact motivated by the setting of diffeomorphisms in MB1(M): the controlled expand-
ing (contracting) forward covering property mimics the existence of expanding (contracting)
blenders, while the forward (backward) accessibility mimics the minimality of the strong
unstable (stable) foliation. As discussed in [17], the axioms mentioned above capture the
essential dynamical properties of diffeomorphisms in MB1(M). In this paper, we complete
the study initiated in [16, 17]. A key ingredient in the study of MB1(M) is the minimality of
the strong invariant foliations. In [10] blender-horseshoes are used to prove this minimality,
although at that time this concept was not yet introduced and the term blender-horseshoe
does not appear in [10], and the authors refer to so-called complete sections (see Section 2·6
and Proposition 2·9). The next step, once these blender-horseshoes are obtained, is to
study their dynamics and to state the precise correspondence of their expanding/contracting
covering properties. This is done here in Section 2 and Proposition 2·3.

1·2. Idea of the proof

The proof is essentially based on the following ingredients. First we use blender-
horseshoes with are just hyperbolic basic sets with an additional geometrical superposition
property. The second ingredient are the minimal strong foliations. Our construction will use
so-called skeletons. A skeleton X consists of arbitrarily long orbit pieces that mimic the
ergodic theoretical properties of the given nonhyperbolic measure μ. The cardinality of the
skeletons card X is of order of emh(μ), where m is the length of each individual orbit segment
in the skeleton. Using minimality, we see that these segments can be connected in uniformly
bounded time to the “domain of the blender". Technical difficulties are the control of dis-
tortion related to the central direction as well as the absence of a central foliation. This last
difficulty is circumvented by the use of “fake local invariant foliations" introduced in [14].

The hyperbolic set in Theorem 1 is obtained as follows: using the segments of orbits
provided by the skeleton property we construct card X pairwise disjoint full rectangles in
the “domain of the blender" such that for a fixed iterate N (which is of the order of m)
the image of each rectangle intersects in a Markovian way each rectangle. This provides a
hyperbolic basic set whose entropy is close to h(μ) and its exponents are close to 0.

1·3. Organisation of the paper

In Section 2, we review all ingredients to construct blender-horseshoes and state and prove
Proposition 2·3 about the controlled expanding/contracting forward central covering prop-
erty. In that section, we also prove their C1-open and -dense occurrence in RTPH1(M). In
Section 3, we state a general result on how to approximate the individual quantifiers of an
ergodic measure by individual orbits. In Section 4, we recall fake invariant foliations to deal
with the problem that in general there is no foliation tangent to the central bundle. Section 5
is dedicated to the proof of Theorem 1 and is the core of this paper. Theorem 4 is proven in
Section 6, while Section 7 gives the proof of Theorem 5.

2. Blender-horseshoes

In this section, we review the construction of blender-horseshoes in [7] using the existing
partially hyperbolic structure of the diffeomorphisms. Here, besides the topological proper-
ties of blender-horseshoes, we will also need an additional quantitative controlled expanding
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Fig. 1. Affine blender-horseshoe.

forward central covering, see Proposition 2·3. In Section 2·6, we state the open and dense
occurrence of blender-horseshoes in our setting, see Proposition 2·9.

2·1. Definition of a blender-horseshoe

We will follow closely the presentation of blender-horseshoes in [7] based on ingredients
such as hyperbolicity, cone fields, and Markov partitions, and sketch its main steps. We also
provide some further information which is not explicitly stated in [7].

We say that a maximal invariant set� of f is an unstable blender-horseshoe if there exists
a region C diffeomorphic to [−1, 1]s+1+u such that

�
def=

⋂
i∈Z

f i (C)⊂ int(C)

and� is a hyperbolic set with s-dimensional stable bundle and (1 + u)-dimensional unstable
bundle which satisfies conditions (BH1)–(BH6) in [7, section 3·2]. The set C is the domain
of the blender-horseshoe. A stable blender-horseshoe is an unstable blender-horseshoe for
f −1. Roughly speaking, it is a “horseshoe with two legs” having specific properties and
being embedded in the ambient space in a especial way that it is has a “geometric super-
position property”: stated in the simplest way, there is an interval (a, b)⊂ [−1, 1] such that
for every (x s, x) ∈ [−1, 1]s × (a, b) any disk of the form D = {(xs, x)} × [−1, 1]u intersects
the local stable manifold of�. A key feature is that this property also holds for perturbations
of such disks.

To explain the simplest model, consider an affine horseshoe map f such that in the cen-
tral direction the map acts as a multiplication x �→ λx for some λ ∈ (1, 2); the maximal
compact invariant set being contained in the rectangle [−1, 1]s × {0} × [−1, 1]u . Refer to
Figure 1 and the notation there. Note that this rectangle is not normally hyperbolic but f
is partially hyperbolic (consider the case of ε= 0 in Figure 1). We now perturb f in such
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a way, keeping affinity, that “one of the legs is moved to the left” in the central direction
changing the dynamics in the central direction in the rectangle CB to x �→ λx − ε, ε > 0
small. This provides an example of an affine unstable blender-horseshoe where the domain
is C = [−1, 1]s × [−δ, ε(λ− 1)−1 + δ] × [−1, 1]u , δ > 0 small. A precise construction with
all the details can be found in [11] (though the term blender is not used there). Indeed, this
example corresponds to the prototypical blender-horseshoes in [7, section 5·1]. Figure 1
shows a prototypical blender-horseshoe and illustrates at the same time all the elements in
the (general) construction in this section.

The main result in this section is Proposition 2·3 which derives a controlled expanding
forward central covering property, that is, the existence of some forward iteration along
which any small enough unstable strip S “crossing the domain of the blender-horseshoe” is
uniformly expanded (in the central direction) and covers (in the central direction) the entire
domain. This occurs with uniform control on iteration length and expansion strength which
depend on the central size of S only. This property has its correspondence to the Axiom
CEC+ in [16] there stated for an IFS.

Recall that we assume that f is a partially hyperbolic diffeomorphism with a globally
defined splitting E ss ⊕ E c ⊕ Euu, where s = dim E ss ≥ 1, u = dim Euu ≥ 1, and dim E c = 1.
Here the hyperbolic structure of the blender-horseshoe fits nicely with the partially hyper-
bolic one of f . In particular, E s = E ss and Eu = E c ⊕ Euu and the stable manifolds are the
strong stable manifolds of f .

Conditions (BH1) and (BH3) in [7] state the existence of a Markov partition and, in par-
ticular, imply that the set � is conjugate to a full shift of two symbols, denoted by A and B.
The Markov partition provides two disjoint “sub-rectangles" CA and CB of C that codifies
the dynamics, that is,�= ⋂

i∈Z f i(CA ∪ CB) and to each point x ∈� the conjugation asso-
ciates the sequence (ξi)∈Z ∈ {A,B}Z defined by f i(x) ∈ Cξi . This implies that f has a fixed
point P ∈ CA and a fixed point Q ∈ CB.

Condition (BH2) refers to the existence of strong stable Css, strong unstable Cuu, and
unstable Cu invariant cone fields (about E ss, Euu, and Eu def= E c ⊕ Euu, respectively). More
precisely, given ϑ > 0 we denote

Css
ϑ

def= {v= vss + vc + vuu : vi ∈ Ei , i ∈ {ss, c, uu}, ‖vc + vuu‖ ≤ ϑ‖vss‖}.
We simply refer to Css if ϑ is not specified. Analogously for Cu, Cuu. Here we also consider
a cone field Cc contained in Cu about the central bundle with the analogous definition. Note
that Css is backward invariant, Cu and Cuu are forward invariant, while Cc is not invariant.
In our case, due to the partial hyperbolicity, the (global) existence of these cone fields is
automatic and the key point is the existence of λbh > 1 (and some appropriate norm ‖·‖
equivalent to the initial one, [24]) such that

‖D fx(v)‖ ≥ λbh‖v‖, for every x ∈ CA ∪ CB and v ∈ Cu. (2·1)

This means that the, otherwise neutral, central direction is indeed expanding in CA and CB.
The explanation of the remaining conditions (BH4)–(BH6) demands some prelimi-

nary work. We consider the parts the boundary of the “rectangle" C corresponding
to (∂[−1, 1]s)× [−1, 1] × [−1, 1]u and [−1, 1]s × [−1, 1] × (∂[−1, 1]u) and call them
strong stable and strong unstable boundaries, denoted by ∂ ssC and ∂uuC, respectively.4

4Note that in [7], ∂ssC is called stable boundary and denoted by ∂sC. As here simultaneously we have
stable and strong stable bundles, we prefer this notation.
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ss-complete and uu-complete disks. A ss-complete disk is a disk of dimension s (that is a set
diffeomorphic to [−1, 1]s) contained in C and tangent to the cone field Css whose boundary
is contained in ∂ ssC. Similarly, a uu-complete disk is a disk of dimension u contained in C
and tangent to the cone field Cuu whose boundary is contained in ∂uuC. It turns out that ss-
and uu-complete disks containing a point x ∈ C are not unique.

The local stable manifold Ws
loc(x, f ) of a point x ∈� is the connected component of

Ws(x, f )∩ C that contains x .5 Similarly, for the local strong unstable manifold Wuu
loc(x, f )

of x ∈�. Note that Ws
loc(x, f ) is a ss-complete disk and Wuu

loc(x, f ) is a uu-complete disk
for every x ∈�.

Condition (BH4) is a geometrical condition that claims that uu-complete disks cannot
intersect simultaneously Ws

loc(P, f ) and Ws
loc(Q, f ).

uu-complete disk in-between. Condition (BH4) also implies there are two homotopy
classes of uu-complete disks in C disjoint from Ws

loc(P, f ), called disks to the right and
disks to the left of Ws

loc(P, f ). Similarly for Ws
loc(Q, f ). A uu-complete disk that is to

the right of Ws
loc(P, f ) and to the left of Ws

loc(Q, f ) is called in-between Ws
loc(P, f ) and

W s
loc(Q, f ), or shortly in-between. We denote these disks by Duu

bet. Choosing appropriately
right and left, we have Wuu

loc(x, f ) ∈Duu
bet for every x ∈� \ {P, Q}.

For each uu-complete disk in Duu we consider the sets

Duu
A

def= Duu ∩ CA and Duu
B

def= Duu ∩ CB.

Conditions (BH5)–(BH6) claims that for every Duu ∈Duu
bet then either f (Duu

A
) ∈Duu

bet or
f (Duu

B
) ∈Duu

bet (and there are cases such that both sets are in-between). This concludes the
sketch of the description of a blender-horseshoe.

Remark 2·1 (Orientation). Recall again that there is a (global) partially hyperbolic split-
ting of the tangent bundle of the manifold T M = E ss ⊕ E c ⊕ Eu. In the definition of a
blender-horseshoe, we will also require that for f restricted to CA ∪ CB, the tangent map
D f preserves orientation in the bundle E c. Note that this is also implicitly assumed in [7].

2·2. u-strips in-between and expanding central covering

Similarly as in [5, section 1·a], we introduce the notion of a u-strip. First, a curve in C is
called central if it is tangent to Cc. A u-strip is a closed disk S of dimension 1 + u tangent to
the unstable cone field Cu that is simultaneously foliated by uu-complete disks and by central
curves (a central foliation of S). Given a u-strip S, a curve α ⊂ S is called (S, c)-complete
if it is a curve (whole leaf 6) of some central foliation of S. To a u-strip S we associate its
(inner) width defined by

w(S)
def= inf{|α| : α is (S, c)-complete}.

We say that a u-strip is in-between if it is foliated by uu-complete disks in-between. To
each u-strip S in-between we associate the sets SA

def= S ∩ CA and SB

def= S ∩ CB. We say that
a u-strip S is c-complete if its intersects simultaneously Ws

loc(P, f ) and Ws
loc(Q, f ).

5Note that here Ws
loc(x, f )=Wss

loc(x, f ).
6We define the strong unstable boundary of a strip in the same spirit of ∂uuC, a complete leaf joins the two
components of that boundary.
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Remark 2·2. Conditions (BH5) and (BH6) and the expanding condition (2·1) imply that for
a given u-strip S which is in-between there are two possibilities (see the arguments in [7,
lemma 4·5]):

(i) either f (SA) or f (SB) contains a u-strip S′ in-between with w(S′)≥ λbh w(S);
(ii) or either f (SA)∩Ws

loc(P, f ) �=∅ or f (SB)∩Wu
loc(P, f ) �=∅.

Moreover, if S is c-complete then f (SA) and f (SB) are both c-complete.

For our goals we need a more precise “quantitative" version of the “expanding" returns in
the remark, that we call controlled expanding forward central covering stated below.

PROPOSITION 2·3 (Controlled expanding forward central covering). Let λbh > 1 be as in
(2·1). There is C > 0 such that for every u-strip S in-between there is a positive integer
�(S),

�(S)
def=

⌈ |logw(S)|
log λbh

+ C

⌉
+ 1,

such that for every �≥ �(S) there is a subset S′ ⊂ S such that

(a) f k(S′) is contained in C for all k ∈ {0, . . . , �} and
(b) f �(S′) is a c-complete u-strip.

The proof of the above proposition will be completed in Section 2·5.

2·3. Further properties of blender-horseshoes

To get Proposition 2·3, we state additional properties (BH7), (BH8) and (BH9). Note
that they are not additional hypotheses on the blender-horseshoe but rather straightforward
consequences of (BH1)–(BH6) and the constructions in [7] and obtained taking a sufficiently
thin strong unstable cone field.

(BH7) The intersection f −1(Ws
loc(P, f ))∩ C consists of two connected components:

Ws
loc(P, f ) and a second component Ws

loc(xP , f ), where xP is a homoclinic point7

of P in�. Similarly, f −1(Ws
loc(Q, f ))∩ C consists of two connected components,

Ws
loc(Q, f ) and Ws

loc(xQ, f ), where xQ is a homoclinic point of P in �.

As above, we can speak of uu-complete disks to the left/right of Ws
loc(xP , f ) and of

Ws
loc(xQ, f ). Similarly as in condition (BH4) the blender-horseshoe we have the following:

(BH8) Every uu-complete disk which intersects Ws
loc(xP , f ) is to the left of Ws

loc(xQ, f )
and every uu-complete disk intersecting Ws

loc(xQ, f ) is to the right of Ws
loc(xP , f ).

In particular, any uu-complete disk intersecting Ws
loc(xP , f ) and any uu-complete

disk intersecting Ws
loc(xQ) are disjoint. Moreover, there is � > 0 so that every u-strip

intersecting Ws
loc(xP , f ) and Ws

loc(xQ, f ) has minimal width bigger than �.

The points xP and xQ are auxiliary in order to quantify the size of the geometric super-
position region (compare Figure 1). Note that, in order to prove Proposition 2·3 it is enough

7A point is a homoclinic point of P if it belongs simultaneously to the stable and to the unstable manifold of
P . Note that, in our setting, a homoclinic point is automatically transverse, that is, those manifolds intersect
transversally.
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to show that given any u-strip S in-between there is a number n of iterates (depending on
|logw(S)| only) so that we obtain a u-strip which intersects the local stable manifold of P
and whose part to the right of P has some least size (indeed, λbh�). This in turn is guaranteed
when f n−1(S) intersects simultaneously Ws

loc(xP , f ) and Ws
loc(xQ, f ). This is a sketch of

the content of Lemmas 2·6, 2·7, and 2·8.

Remark 2·4. Condition (BH8) implies that there are three possibilities for a u-strip S in-
between:

(i) it is to the left of Ws
loc(xQ, f );

(ii) it is to the right of Ws
loc(xP , f );

(iii) it intersects simultaneously Ws
loc(xP , f ) and Ws

loc(xQ, f ), hence by (BH8) it has
minimal width at least �.

Next condition is an improved version of Remark 2·2 (and it is shown as in [7, lemma
4·5]).

(BH9) Consider a strip S in-between. Then:
a. if S is to the left of Ws

loc(xQ, f ) then f (SA) contains a u-strip S′ in-between with
w(S′)≥ λbhw(S);

b. if S is to the right of Ws
loc(xP , f ) then f (SB) contains a u-strip S′ in-between

with w(S′)≥ λbhw(S),

Remark 2·5. There is a number τ > 0 with the following property:

(i) every u-strip in-between to the right of Ws
loc(xP , f ) has (inner) width less than τ ;

(ii) every u-strip in-between to the left of Ws
loc(xQ, f ) has (inner) width less than τ .

In other words, any u-strip in-between with (inner) width bigger than τ intersects simulta-
neously Ws

loc(xP , f ) and Ws
loc(xQ, f ). Compare Figure 1.

2·4. Iterations of u-strips

The next step is the iteration of u-strips to obtain covering properties. The key in this pro-
cess is that here we have more accurate control of the image of the strips as in the (standard)
blenders (compare with [5, lemma 1·7]).

LEMMA 2·6 (Simultaneous intersections). Consider a u-strip S in-between. Let w=
w(S) and define N = N (w) as the first integer with λN

bhw> τ , where λbh is the expansion
constant in (2·1) and τ is as in Remark 2·5. Then there is a first n ∈ {0, . . . , N } such that:

(i) f n(S) contains a u-strip S′ in-between that intersects simultaneously Ws
loc(xP , f )

and Ws
loc(xQ, f );

(ii) we have f i( f −n(S′))⊂ C for all i = 0, . . . , n.

Considering the strip S′ in Lemma 2·6 and recalling that xP is a homoclinic point of P
and xQ is a homoclinic point of Q, we have that f (S′

A
) intersects Ws

loc(Q, f ) and that f (S′
B
)

intersects Ws
loc(P, f ).

Proof of Lemma 2·6. The proof is by induction, using arguments as in [7, lemma 4·5].
Let S0 = S. If S0 intersects simultaneously Ws

loc(xP , f ) and Ws
loc(xQ, f ) we are done.
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Otherwise, by Remark 2·4, either S0 is to the left of Ws
loc(xQ, f ) or S0 is to the right of

Ws
loc(xP , f ). If the first case consider S0

A
and observe that by (BH9) we have that f (S0

A
)

contains a u-strip S1 in-between with w(S1)≥ λbhw(S0). In the second case, consider S0
B

and observe that by (BH9) we have that f (S0
B
) contains a u-strip S1 in-between with

w(S1)≥ λbhw(S). Note that f −1(S1)⊂ S0 ⊂ C.
We now proceed inductively, assume that we have defined u-strips in-between S =

S0, . . . , Sn that do not intersect simultaneously Ws
loc(xP , f ) and Ws

loc(xQ, f ), satisfy either
Si ⊂ f (Si−1

A
) or Si ⊂ f (Si−1

B
), according to the case, andw(Si)≥ λi

bhw. As in the first induc-
tive step, we take Sn+1 ⊂ f (Sn

A
) if Sn is to the left of Ws

loc(xQ, f ) or Sn+1 ⊂ f (Sn
B
) otherwise.

In both cases, we have that

w(Sn+1)≥ λbhw(S
n)≥ λn+1

bh w.

The choices of τ and N imply that there is a first n with 0 ≤ n ≤ N such that Sn intersects
simultaneously Ws

loc(xP , f ) and Ws
loc(xQ, f ). Hence f n(S) contains a u-strip S′ = Sn in-

between that intersects simultaneously Ws
loc(xP) and Ws

loc(xQ). Note that by construction
f i ( f −n(Sn)) is contained in C for all i = 0, . . . , n. This completes the proof of the lemma.

In what follows, for convenience, we consider a u-strip S together with a family of uu-
complete disks DS = {Duu

S,i }i∈I foliating S (note that this foliation is not unique) and write
(S,DS). We say that a u-strip (S,DS) is quasi to the right of Ws

loc(P, f ) if there is i0 ∈ I
with Duu

S,i0
∩Ws

loc(P, f ) �=∅ and for every i �= i0 the disk Duu
S,i is to the right of Ws

loc(P, f ).
Note that this means, in particular, that the intersection with Ws

loc(P, f ) occurs in the strong
unstable boundary of the strip.

LEMMA 2·7. Let S be a u-strip in-between which intersects simultaneously Ws
loc(xP , f )

and Ws
loc(xQ, f ). Then f (SB) contains a u-strip quasi to the right of Ws

loc(P, f ) with
minimal width λbh�, where � was defined in (BH8).

Proof. To prove the lemma, recall that u-strips intersecting simultaneously Ws
loc(xP , f ) and

Ws
loc(xQ, f ) have minimal width at least � (see (BH8)) and use the fact that the expansion

of central curves is given by (2·1). Recall also Remark 2·1 about the preservation of the
orientation.

Given a u-strip (S,DS)whose interior intersects Ws
loc(P, f ), we consider the uu-complete

disk Duu
S, j of S intersecting Ws

loc(P, f ). Note that, since the intersection of Ws
loc(P, f ) with

S is transverse, the disk Duu
S, j is uniquely defined. Observe that (S \ Duu

S, j ) has two connected
components, a component consisting of uu-complete disks to the right of Ws

loc(P, f ) and a
component consisting of uu-complete disks to the left of Ws

loc(P, f ). We denote the closures
of these components by Sright and Sleft and observe that they intersect along the disk Duu

S, j .
Note that Sright is quasi to the right of Ws

loc(P, f ). We can argue similarly with strips S which
are quasi to the right of Ws

loc(P, f ), in that case S = Sright (thus Sleft =∅).
Finally, note that there is a number ν > 0 such that every u-strip S that is quasi to the right

of Ws
loc(P, f ) with w(S) > ν also intersects Ws

loc(Q, f ).

LEMMA 2·8. Consider a u-strip S with S ∩Ws
loc(P, f ) �=∅ such that w(Sright)=w> 0.

Define L = L(w) as the first integer with λL
bhw> ν, where λbh is the expansion constant in
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(2·1). Then for every �≥ L it holds that f �(Sright) contains a c-complete u-strip S� such that
f i( f −�(S�))⊂ C for all i = 0, . . . , �.

Proof. The proof follows as in Lemma 2·6. Let S0 = Sright and note that f (S0
A
) contains u-

strip S1 that is quasi to the right of Ws
loc(P, f ) and satisfies w(S1)≥ λbhw(Sright). Now it is

enough to argue inductively.

2·5. Proof of Proposition 2·3
Consider a u-strip S in-between and let w=w(S). By Lemma 2·6, there is a first

0 ≤ n ≤ N ≤ max
{

0,
log τ/w

log λbh

}
+ 1 ≤ |logw|

log λbh
+ C1,

for some C1 independent of w, such that f n(S) contains a u-strip S′ in-between that inter-
sects simultaneously Ws

loc(xP , f ) and Ws
loc(xQ, f ). By Lemma 2·7, we have that f (SB)

contains a u-strip S̃ quasi to the right of Ws
loc(P, f ) with w(S̃)≥ λbh�. Note that S̃right = S̃.

Take L = L(λbh�) as in Lemma 2·8 and note that f L(S̃) contains a c-complete u-strip Ŝ.
Note that, by the lemma, ν < λL

bh(λbh�)≤ λbhν and hence L ≤ C2 for some universal con-
stant C2 independent on w. Recalling that the image of a c-complete u-strip contains a
c-complete u-strip, see Remark 2·2, we have that for every k ≥ n + 1 + L , the set f k(S)
contains a c-complete u-strip Ŝ such that its pre-image f −k(Ŝ)

def= Ŝk ⊂ S satisfies (a) and (b)
in the proposition. Finally, taking �(S)= n + 1 + L we have

�(S)= n + 1 + L ≤ |logw|
log λbh

+ C1 + C2,

ending the proof of the proposition.

2·6. Occurrence of blender-horseshoes

We close this section recalling the following result about the existence of blender-
horseshoes.

PROPOSITION 2·9. There is a C1-open and -dense subset MB1(M) of the set RTPH1(M)
consisting of diffeomorphisms f such that there are an unstable blender-horseshoe for f n+

for some n+ ≥ 1 and an unstable blender-horseshoe for f −n− for some n− ≥ 1.

Proof. By [7, lemma 3·9], having a blender-horseshoe is a C1-open property. Let us
now explain why having a blender-horseshoe is a C1-dense property in RTPH1(M). In
our context, due to the nonhyperbolicity assumption, we have that C1-open and -densely
in RTPH1(M) the diffeomorphisms have simultaneously saddles of indices dim E ss and
dim E ss + 1, this follows from the ergodic closing lemma in [32]. With the terminology
in [6, 7], the saddles of diffeomorphism in RTPH1(M) have real central eigenvalues (this
follows from the fact that dim E c = 1). The robust transitivity assumption and the connect-
ing lemma [4, 25] imply that C1-densely in RTPH1(M) there are diffeomorphisms with
heterodimensional cycles associated to these saddles with real central eigenvalues. By [6,
theorem 3·3], these cycles generate strong homoclinic intersections (saddle nodes whose
strong stable and strong unstable manifolds meet quasi-transversally). Finally, [6, theorem
4·1] implies that by arbitrarily small C1-perturbations these strong homoclinic intersections
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yield blender-horseshoes for some iterate of the map (stable or unstable, according to the
chosen perturbation). We observe that though the terminology blender-horseshoe was not
used in [6] the construction corresponds exactly to the prototypical blender-horseshoes in
[7, section 5·1]. In this way, it follows we have shown that having (stable and unstable)
blender-horseshoes (for some iterate) is a C1-dense property in RTPH1(M).

Remark 2·10 (Choice of blender-horseshoes). In what follows, we denote by MB1(M) the
C1-open and -dense subset of RTPH1(M) of diffeomorphisms f which have simultaneously
an unstable blender-horseshoe (for some iterates f n+) and an unstable blender-horseshoe
(for f −n−). In what follows, for each f ∈ MB1(M) we fix an unstable blender-horseshoe
�+ with reference domain C+ with respect to some iterate f n+ . For simplicity of notation,
to emphasise the domain of the blender, we will write (�+

f ,C+
f , f n+) when referring to

this blender and we denote by P+ and Q+ the corresponding fixed points (but omitting the
dependence of n+, P+, and Q+ on f ).

2·7. Blender-horseshoes and strong foliations

Given an unstable blender-horseshoe (�+
f ,C+

f , f n+) and a point x ∈ C+
f denote byF uu

C+
f
(x)

the connected component of F uu(x)∩ C+
f containing x . We similarly define the set F ss

C+
f
(x).

Above we defined when a uu-complete disk is in-between. Now, considering the sets

Wall f (R
+) def=

⋃
x∈Ws

loc(R
+, f n+ )

F uu
C+

f
(x), for R ∈ {P, Q},

we say that a ss-complete disk is in-between the uu-walls Wall f (P+) and Wall f (Q+) if it is
disjoint with these two sets and intersects some uu-complete disk in-between. The construc-
tion of a blender-horseshoe implies that there are ss-complete disks in-between the walls
and that being in-between the walls is an open property.

Given a set U ⊂ C+
f , we define its ss-saturation and its uu-saturation by

U ss def=
⋃
x∈U

F ss
C+

f
(x) and U uu def=

⋃
x∈U

F uu
C+

f
(x).

We say that U is in-between the uu-walls of this blender-horseshoe if for every x ∈ U the set
F ss

C+
f
(x) is a ss-complete disk in-between the uu-walls and the set F uu

C+
f
(x) is a uu-complete

disk in-between which is disjoint to the uu-walls.
The fact that for every f ∈ MB1(M) every strong unstable and every strong stable leaf

is dense in the ambient space M , respectively, implies immediately the following lemma.
Denote by F uu(x, δ) the ball centered at x and with radius δ in the leafF uu(x) of the foliation
F uu. Define the set F ss(x, δ) similarly.

LEMMA 2·11. Given f ∈ MB1(M) and an unstable blender-horseshoe (�+
f ,C+

f , f n+)

consider open sets V +,U+ ⊂ C+
f which are in-between its uu-walls such that V + ⊂

V + ⊂ U+.

(i) There is κ0 = κ0(V +) > 0 such that every x ∈ M and every κ ≥ κ0 the set F uu(x, κ)
contains a uu-complete disk�uu ⊂ V +uu and the set F ss(x, κ) contains a ss-complete
disk �ss ⊂ V +ss.
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(ii) There is δ = δ(U+, V +) > 0 such that for every uu-complete disk �uu ⊂ V +uu and
every u-strip S containing �uu of (inner) width w(S) < δ we have S ⊂ U+uu. In
particular, S is in-between.

Analogously to what was defined above, given any x ∈ M and small δ > 0, denote by
�uu(x, δ) a uu-disk centered at x of radius δ. Note that forward iterations of this disk by f
converges to segments of leaves of the strong unstable foliation F uu while increasing expo-
nentially its diameter. Analogously for ss-disks �ss(x, δ) and backward iterations. These
observations lead to the following corollary of Lemma 2·11.

COROLLARY 2·12. In the setting of Lemma 2·11 and with the same notation, for every
δ > 0, there is tcon = tcon(V +, δ) > 0 such that for every x ∈ M and for every t ≥ tcon the set
f t(�uu(x, δ)) contains a uu-complete disk in V +uu and the set f −t(�ss(x, δ)) contains a
ss-complete disk in V +ss.

Note that tcon can be chosen such that

tcon ≤ log |κ0(V +)| − log δ

log λuu
min

+ C,

where λuu
min denotes the minimal expansion of D f in the cone field Cuu and C > 0 is some

universal constant.

We will close this section by the following “safety" remark which we will use in
Section 5·1
Remark 2·13 (Safety neighborhoods). Given f ∈ MB1(M), consider an unstable blender-
horseshoe (�+

f ,C+
f , f n+) and open sets V +, N+, U+ ⊂ C+

f which are in-between its

uu-walls and such that V + ⊂ V + ⊂ N+ ⊂ N+ ⊂ U+. There is θ > 0 with the following prop-
erty: Consider any u-strip S withw(S) < θ and containing a uu-complete disk in V +uu. Then
S ⊂ N+uu and F ss(x, θ)∩ C+

f ⊂ U+uu for every x ∈ S.

Remark 2·14 (Safety domain of a blender). In the same spirit of the remark above, we
consider a safety neighborhood of the domain of a blender-horseshoe. Note that given a
(say) unstable blender-horseshoe (�+

f ,C+
f , f ) the set � f is contained in the interior of

C+
f . We can assume that there is a slightly greater domain Ĉ+

f (also homeomorphic to a
rectangle) containing C+

f in its interior where the cone fields can be extended (satisfying the
same invariance and expansion/contraction properties) and such that the maximal invariant
set of Ĉ+

f is also � f . We define the strong stable and strong unstable boundaries of Ĉ+
f

similarly as we did for C+
f and note that corresponding boundaries are disjoint (and hence at

some positive distance). Since the cone fields are defined on Ĉ+
f we can speak of ss-complete

and uu-complete disks and u-strips relative to Ĉ+
f (we will emphasise such a dependence).

Any of such ss-disk complete relative to Ĉ+
f contains a ss- disk relative to Ĉ+

f . Similarly, for
uu-complete disks and u-strips. We can also define in the obvious way the sets F uu

Ĉ+
f
(x) and

F ss
Ĉ+

f
(x) and the saturations V +uu

Ĉ+
f

and V +ss
Ĉ+

f
of a subset V + of C+

f .

The next result is a straightforward extension of Lemma 2·11 and Corollary 2·12 where a
safety constant τ is introduced.
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Remark 2·15. Given f ∈ MB1(M), let us consider an unstable blender-horseshoe
(�+

f ,C+
f , f n+), open sets V +, N+ ⊂ C+

f , with V + ⊂ V + ⊂ N+, which are in-between the
uu-wall of the blender, and a safety domain Ĉ+

f . Then there is a safety constant τ =
τ(C+

f , Ĉ+
f , V +, N+) > 0 such that if �uu is a uu-disk which is complete relative to Ĉ+

f and
contained in V +uu

Ĉ+
f

then every uu-disk at Hausdorff distance less than τ with �uu contains a

uu-disk which is complete relative to C+
f and contained in N+uu.

Moreover, the number tcon in Corollary 2·12 can be chosen such that for every x ∈ M and
for every t ≥ tcon the set f t(�uu(x, δ)) contains a uu-disk in V +uu

Ĉ+
f

that is complete relative

to Ĉ+
f .

Similarly, the number tcon can be chosen such that for every x ∈ M and for every t ≥ tcon

the set f t(F ss(x, δ)) contains a ss-disk in V +ss
Ĉ+

f
that is complete relative to Ĉ+

f .

3. Approximation of ergodic measures

The following is just a reformulation of [16, proposition 3·1]. It is a consequence of ergod-
icity, partial hyperbolicity, the definition of a Lyapunov exponent, the Brin-Katok theorem,
the Birkhoff ergodic theorem, and the Egorov theorem. We refrain from repeating its proof
that can be translated ipsis litteris. Recall the definition of separated points in [41, chapter 7].

PROPOSITION 3·1. Let f ∈ RTPH1(M) and μ ∈Merg( f ). Let α = χ c(μ). Consider contin-
uous functions ϕ1, . . . , ϕ� : M →R.

Then for every κ ∈ (0, 1), r ∈ (0, 1), εH ∈ (0, 1), εE > 0, and εB > 0 there exists ε0 > 0
such that for every ε ∈ (0, ε0) there are a positive integer n0 and a subset �′ ⊂ M satisfying
μ(�′) > 1 − κ such that:

(1) there exists K0 > 1 such that for every n ≥ 0 and every x ∈�′ we have

K −1
0 en(α−εE ) ≤ ‖D f n|Ec

x
‖ ≤ K0en(α+εE ),

and for every j = 1, . . . , �, denoting ϕ j = ∫
ϕ j dμ, we have

−K0 + n(ϕ j − εB)≤
n−1∑
�=0

ϕ j ( f �(x))≤ K0 + n(ϕ j + εB);

(2) for every m ≥ n0 there is a set of (m, ε)-separated points {xi } ⊂�′ of cardinality Mm

satisfying

Mm ≥ L−1
0 em(h(μ)−εH ).

4. Fake invariant foliations and distortion estimates

4·1. Fake invariant foliations

Recall that we are considering a partially hyperbolic diffeomorphisms with a splitting
into three bundles E ss ⊕ E c ⊕ Euu. Let E cs def= E ss ⊕ E c and E cu def= E c ⊕ Euu. Recall that the
foliations F ss tangent to E ss and F uu tangent to Euu are well defined. However, as we are not
assuming dynamical coherence (that is, that the bundle E cs and the bundle E cu integrate to
foliations) we need to find substitutes which serve as foliations (almost) tangent to E ss ⊕ E c,
E c, and E c ⊕ Euu. For that we use so-called fake invariant foliations introduced in [14]
stated in our context.
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Analogously to our notations above, given a foliation Ŵ of some set B, for every x ∈ B
and ρ > 0 denote by Ŵ(x) the leaf of this foliation which contains x and by Ŵ(x, ρ) the
ball centered at x and with radius ρ in the leaf Ŵ(x).

Similarly, as we did in Section 2·1, we define cone fields C�ϑ of size ϑ about E� for
� ∈ {ss, cs, c, cu, uu}. Note that in the case of a unstable blender-horseshoe we had Cu = Ccu.

PROPOSITION 4·1 ([14, proposition 3·1]). Let f ∈ RTPH1(M). Then for every ϑ > 0 there
are constants ρ > ρ1 > 0 such that for every p ∈ M the neighborhood B(p, ρ) is foli-
ated by foliations Ŵss

p , Ŵc
p, Ŵuu

p , Ŵcs
p , and Ŵcu

p with the following properties, for each
β ∈ {ss, cs, c, cu, uu}:

(i) almost tangency: For each q ∈ B(p, ρ) the leaf Ŵβ
p(q) is C1 and the tangent space

of TqŴ
β
p is in a cone field of size ϑ about Eβ(q);

(ii) local invariance: For each q ∈ B(p, ρ), we have

f (Ŵβ
p(q, ρ1))⊂ Ŵ

β

f (p)( f (q), ρ),

f −1(Ŵβ
p(q, ρ1))⊂ Ŵ

β

f −1(p)( f −1(q), ρ);

(iii) coherence: Ŵss
p and Ŵc

p subfoliate Ŵcs
p . Ŵuu

p and Ŵc
p subfoliate Ŵcu

p .

Remark 4·2. Without loss of generality, after possibly changing the metric of M (see [24]),
if choosing ϑ sufficiently small, we assume that there is λfk > 1 such that for every p ∈ M
and every v ∈ Css

ϑ (p), v �= 0, we have ‖D f p(v)‖ ≤ λ−1
fk ‖v‖ and for every w ∈ Cuu

ϑ (p), w �= 0,
we have ‖D f −1

p (w)‖ ≤ λ−1
fk ‖w‖.

4·2. Distortion in the the central direction

Given a curve γ , let

Dist f |γ def= sup
x,y∈γ

‖D f |Txγ ‖
‖D f |Tyγ ‖

be the maximal distortion of f in the curve γ .
Consider the modulus of continuity

Modϑ(δ)
def= sup{Modϑ(δ, x) : x ∈ M},

where

Modϑ(δ, x)
def= sup

{
log

‖D f |Txγ ‖
‖D f |Tyγ ‖

: y ∈ γ, γ ∈ �c
ϑ(x, δ)

}
,

where �c
ϑ(x, δ) denotes the family of curves centered at x of length 2δ and tangent to Cc

ϑ .
Note that Modϑ(δ)→ 0 as δ→ 0.

We need the following distortion control similar to [16, corollary 3·5]. It would be imme-
diate if we would have a true foliation tangent to the central direction E c. Since, however,
we have to work with fake invariant central foliations and hence need to take into account
the variation of their tangent spaces from the true tangent bundle E c, we provide its proof.
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PROPOSITION 4·3 (Distortion for zero exponents). Given ϑ > 0 and εD > 0 choose δ0 such
that Modϑ(2δ0)≤ εD. Given ε > 0 and K > 0, let

r
def= δ0 K −1e−m(ε+εD).

Then for every every x ∈ M and every m ≥ 1 such that

‖D f �|E‖ ≤ K e�ε for all � ∈ {0, . . . ,m},
where E = TxŴ

c
x and Ŵc

x is the fake invariant foliation associated to the cone field of size
ϑ about E c and x, we have

|log Dist f �|Ŵc
x (x,r)

| ≤ �εD, for every � ∈ {0, . . . ,m}.

Proof. Let Z = Ŵc
x(x, r). Let us denote by |γ | the length of a curve γ . The proof is by

(finite) induction on �. Note that the claim holds for �= 0. Suppose that the claim holds for
every �= 0, . . . , i for some i > 0. This means that we have |log Dist f �|Z | ≤ �εD for every
� ∈ {0, . . . , i}, which by the hypothesis of the proposition implies that

| f i (Z)| ≤ ‖D f i |Tx Z‖ · Dist f i |Z · |Z |
≤ K eiε · eiεD · r ≤ K eiε · eiεD · δ0 K −1e−m(ε+εD)

= δ0e−(m−i)(ε+εD) ≤ δ0.

Hence |log Dist f | f i (Z)| ≤ εD . Now we apply the chain rule and obtain

|log Dist f i+1| f i+1(Z)| ≤ iεD + εD,

which is the claim for i + 1. We can repeat these arguments until i = m.

4·3. Distortion in the stable and unstable direction

The next lemma is a standard consequence of uniform expansion/contraction along
un-/stable (fake) foliations and sometimes referred to as tempered distortion. See for instance
the proof of [2, lemma 2·4] in a similar context.8

LEMMA 4·4. Given ϑ > 0, let ρ > ρ1 > 0 be as in Proposition 4·1. For every εss
D, ε

uu
D > 0,

there is m0 ≥ 1 such that for every m ≥ m0 we have:

(i) for x, y, p ∈ M satisfying f �(y) ∈ Ŵuu
f �(p)( f �(x), ρ1) for all � ∈ {0, . . . ,m} we have

∣∣∣ log
‖D f �|TxŴc

p
‖

‖D f �|TyŴc
p
‖
∣∣∣ ≤ �εuu

D ;

(ii) for x, y, p ∈ M satisfying f −�(y) ∈ Ŵss
f −�(p)( f −�(x), ρ1) for all � ∈ {0, . . . ,m} we

have ∣∣∣ log
‖D f −�|TxŴc

p
‖

‖D f −�|TyŴc
p
‖
∣∣∣ ≤ �εss

D.

8There, the proof is stated for so-called flip-flop families and the only property required is that they are
tangent to un-/stable expanding/contracting cone fields.
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5. Construction of the hyperbolic sets �± in Theorem 1

In this section we will prove the following result.

THEOREM 5·1. Assume that f is a C1-diffeomorphism with a partially hyperbolic splitting
T M = E ss ⊕ E c ⊕ Euu with three non-trivial bundles such that E ss is uniformly contracting,
E c is one-dimensional, and Euu is uniformly expanding such that the strong stable and the
strong unstable foliations are both minimal and f has an unstable blender-horseshoe for f n

for some n ≥ 1. Then every nonhyperbolic ergodic measure μ of f has the following prop-
erties. For every δ > 0 and every γ > 0 there exists a basic set �+ being central expanding
whose topological entropy satisfies

htop( f, �+) ∈ [h(μ)− γ, h(μ)+ γ ].
Moreover, every measure ν+ ∈M( f, �+) is δ-close to μ. In particular, there are hyperbolic
measures ν+ ∈Merg( f, �+) satisfying

χ(ν+) ∈ (0, δ) and h(ν+) ∈ [h(μ)− γ, h(μ)+ γ ].
There is the corresponding result claiming the existence of a central contracting basic

set under the assumption that there is a stable blender-horseshoe. Its proof follows by
considering f −1 instead of f .

Note that Theorem 1 is an immediate consequence of the above theorem. For that just
recall that every f ∈ MB1(M), by definition, has a stable and an unstable blender-horseshoe
and the strong foliations are both minimal (see Proposition 2·9).

In the course of this section, given a diffeomorphism f satisfying the hypotheses of
Theorem 5·1 and a nonhyperbolic ergodic measure μ, we will construct the basic set �+

claimed in this theorem. This section is organised as follows. In the preliminary Section 5·1
we collect and fix some quantifiers from previous sections. In Section 5·2 we introduce
so-called skeletons. In Section 5·3, we complete the preparatory choice of quantifiers. In
Section 5·4, we define the set �+. Its construction is geometrical and involves the results in
previous sections. In Section 5·5, we see that �+ is a hyperbolic set with stable index s and
entropy close to the one of μ (see Proposition 5·12). In Section 5·6, we see that the ergodic
measures supported on �+ are close to μ (see Proposition 5·14).

5·1. Preliminaries

Consider f as in Theorem 5·1, let μ ∈Merg,0( f ). Denote h = h(μ).
Fix an unstable blender-horseshoe (�+

f ,C+
f , f n+) given by Proposition 2·9. Fix open sets

V +, N+,U+ ⊂ C+
f in-between the uu-walls of the blender-horseshoe satisfying V + ⊂ V + ⊂

N+ ⊂ N+ ⊂ U+. Consider also a safety domain Ĉ+
f and an associated safety constant τ =

τ(C+
f , Ĉ+

f , V +, N+) > 0 as in Remark 2·15. The blender is endowed with cone fields C�ϑ0
,

� ∈ {ss, cs, c, cu, uu}, of opening ϑ0 > 0 arbitrarily small, that extend to the whole manifold
M . Fix also θ > 0 as in Remark 2·13 (note that this constant implicitly depends on the
opening of the cone fields fixed above).

For simplicity, in what follows, we assume that n+ = 1.
Let us denote

m
def= min{‖D fx(v)‖: x ∈ M, v ∈ Tx M, ‖v‖ = 1},

M
def= max{‖D fx(v)‖: x ∈ M, v ∈ Tx M, ‖v‖ = 1}.

(5·1)
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Fix small numbers εH > 0, εE > 0, and εB > 0. Note that there is a finite set �= {ϕ j } of
continuous potentials over M such that if a probability measure ν satisfies

max
ϕ j ∈�

∣∣∣∣
∫
ϕ j dν −

∫
ϕ j dμ

∣∣∣∣< εB (5·2)

then the distance between ν and μ is smaller than 2εB .
Choose ϑ ∈ (0, ϑ0) such that the variation of D f in a ϑ-cone field about E c is bounded

by εE , that is for every x ∈ M

sup
v,w∈Cc

ϑ (x),‖v‖=‖w‖=1

∣∣∣ log
‖D fx(v)‖
‖D fx(w)‖

∣∣∣< εE , (5·3)

For convenience, let us first restate Corollary 2·12 in the setting of this section.

Remark 5·2 (Quantifiers in fake invariant and true foliations). Given ϑ > 0, consider the
fake invariant foliation Ŵuu

p , p ∈ M , associated to Cuu
ϑ and the associate numbers ρ > ρ1 >

0 given in Proposition 4·1. Recall also the definition of the expansion (and contraction)
constant λfk > 1 along strong fake curves as in Remark 4·2.

We now fix the constants related to distortion properties. Given ϑ as above, fix εD > 0
sufficiently small and let δ0 satisfy as in Proposition 4·3

Modϑ(2δ0)≤ εD and also δ0 ∈ (0, ρ1). (5·4)

Moreover, given ρ > ρ1 > 0 as in Remark 5·2, we choose εss
D > 0 and εuu

D > 0 sufficiently
small and we let m0 as in Lemma 4·4. We now let

ε2
def= 2εE + εss

D + εuu
D + εD and ε1

def= ε2 + εss
D (5·5)

and assume that εE , ε
ss
D, ε

uu
D , εD were chosen small enough such that

ε1 � log λfk.

5·2. Skeletons

We now choose the “skeleton” for the construction of our basic set. Here, we reformulate
the skeleton property in [16, section 4] to our partially hyperbolic context. It is a conse-
quence of the interplay of Proposition 3·1 which is entirely based on ergodic theory and the
minimality of the strong un-/stable foliations which is a purely topological property.

For the first part, concerning the ergodic properties of our nonhyperbolic ergodic measure
μ, by Proposition 3·1, for εH , εE , and εB > 0 chosen as above and with h = h(μ) and α =
χ(μ) there exists ε0 > 0 such that for every ε ∈ (0, ε0) there are constants K0, L0 ≥ 1 and an
integer n0 ≥ 1 such that for every m ≥ n0 there exists a finite set X= {xi } of (m, ε)-separated
points satisfying the following:

(i) card X≥ L−1
0 em(h−εH );
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(ii) for every �= 0, . . . ,m and every i one has

K −1
0 e−�(α+εE ) ≤ ‖D f �|Ec

xi
‖ ≤ K0e�(α+εE ), (5·6)

recall that we assume α = χ(μ)= 0;9

(iii) for every ϕ j ∈�, denoting ϕ j = ∫
ϕ j dμ, for every n ≥ 0 and every i we have

− K0 + n(ϕ j − εB)≤
n−1∑
�=0

ϕ j ( f �(xi))≤ K0 + n(ϕ j + εB). (5·7)

For the following, fix now the quantifier ε ∈ (0, ε0) and the hence associated constants
K0, L0 ≥ 1 and n0 as described above.

Fix now δ > 0 satisfying

δ <min
{ ε

15
,
ρ1

10

}
. (5·8)

To complete the second part of the skeleton, concerning minimality, with the quanti-
fiers chosen in Remark 5·2, consider a connecting time tcon

def= tcon(V +, ϑ, δ/4)≥ 1 as in
Corollary 2·12 and Remark 2·15. Then for every p ∈ M , every x ∈ B(p, ρ1), and every
t ≥ tcon:

(i) f t(Ŵuu
p (x, δ/4)) contains a uu-disk contained in V +uu

Ĉ+
f

;

(ii) f −t(F ss(x, δ/4)) contains a ss-disk contained in V +ss
Ĉ+

f
,

where in both cases the disks are complete relative to Ĉ+
f .

Finally, to conclude, we make an appropriate choice of m ≥ n0. Let us first consider the
constants

N
def=M−tcon min{θ, τ

4
,
ε

15
, δ0}.

In what follows we fix now the remaining quantifier m satisfying

m ≥ max
{

m0, n0,
|log N|

3ε1
,

log 12 + log ρ1 + log K0

log λfk − (
√
ε1 + ε1)

}
. (5·9)

After these choices, we fix

X=X(h, α, δ, εH , εE , εB, ε,m)
def= {xi } (5·10)

as above.

5·3. Postliminaries

To conclude the choices of quantifiers, let us now choose a size of fake central curves.
Given m as in (5·9) and ε1 as in (5·5), we define

δc
def= e−m

√
ε1 . (5·11)

For further reference, observe that with (5·9) we have the following

δc <M−tcon min{θ, τ
4
,
ε

15
, δ0, δ} (5·12)

9We will use the case α < 0 in Section 6.
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and with (5·8) and (5·9)

λ−m
fk δ < λ

−m
fk ρ1 <

1

12
δc K −1

0 e−mε1 <
1

12
δc K −1

0 e−mε2 . (5·13)

5·4. Construction of the set �+

The set �+ is obtained as follows. We will construct disjoint full rectangles Ci , i ∈
{1, . . . , card X}, of the form

Ci =
⋃

x∈Rcu
i

F ss
C+

f
(x),

where Rcu
i is a small disk in some fake center unstable set contained in the domain C+

f

of the blender-horseshoe. We see that there is some N ∼ m, independent of i , such that
f N (Ci ∩ Rcu

i ) is a c-complete u-strip of the blender-horseshoe.10 This will imply that f N (Ci)

intersects in a “Markovian way" each C j . We will define �+ as the orbit of the maximal
invariant set of f N in the union of these rectangles, see Section 5·4·7. We see that, for
x ∈ �+, D f N |Ecu

x
is uniformly expanding, D f N |E ss

x
is uniformly contracting, and the central

exponents of points in �+ are small. Moreover, the restriction of f N to �+ is conjugate to
the full shift on card X symbols. Thus, since N ∼ m, this set has entropy close to h(μ). For
details see Proposition 5·12 in Section 5·5. Finally, in Section 5·6 we see that the ergodic
measures supported on �+ are close to μ.

We now explain the construction of the rectangles Rcu
i . Each rectangle Rcu

i is obtained foli-
ating a central fake curve γi (centred at some point yi ) by small fake uu-sets. The orbit of yi

“shadows" during m iterates the point xi in the skeleton. From this we get that, during these
m iterates, “their central derivatives" are close. Thereafter, and after a controlled time, this
point lands in the domain of the blender. Similarly, the point yi after a controlled time back-
ward lands in that domain. The choice of the point yi is done in Section 5·4·1. To construct
the curve γi we need some estimates of the central derivative, see Section 5·4·2. After some
preliminary constructions (auxiliary rectangles in Section 5·4·3 and blending-like proper-
ties in Section 5·4·4), the construction of the rectangles Rcu

i is completed in Section 5·4·5.
Finally, in Section 5·4·6, we see that the orbits of points in different full rectangles Ci are
sufficiently separated.

5·4·1. Beginning of the construction
Now we apply the connecting properties in Section 5·2 to each point of the skeleton X=

{xi } in (5·10) as follows. We will consider fake invariant foliations Ŵ�
f �(zi )

, � ∈ {c, cu, uu},
for �= 0, . . . ,m, where Ŵcu is subfoliated by Ŵc and Ŵuu, respectively. We will also
consider the (true) strong stable foliation F ss.

Recall that there is �ss ⊂F ss(xi , δ/4) such that f −tcon(�ss) is a ss-disk contained in V +ss
Ĉ+

f

complete relative to Ĉ+
f . This implies that there exists zi ∈�ss such that

f −tcon(zi) ∈ V +
Ĉ+

f
and f −tcon(Ŵuu

zi
(zi , δ/4))⊂ N+uu

Ĉ+
f
.

10In the following we will write ψ1(m)∼ψ2(m) if limm→∞ ψ1(m)/ψ2(m)= 1.
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Fig. 2. Construction of rectangles: choosing reference points.

Observe now that there is �uu ⊂ Ŵuu
zi
(zi , δ/4) such that

f �(�uu)⊂ Ŵuu
f �(zi )

( f �(zi), δ/4) for every � ∈ {0, . . . ,m}
and

f m(�uu)= Ŵuu
f m (zi )

( f m(zi), δ/4).

Hence, again by Remark 5·2 and the connecting properties for the skeleton in Section 5·2,
there is�uu

0 ⊂ f m(�uu) such that f tcon(�uu
0 ) is a uu-disk contained in V +uu

Ĉ+
f

complete relative

to Ĉ+
f . Finally, choose any point yi ∈ f −m(�uu

0 ). These considerations prove the following
lemma (compare also Figure 2).

LEMMA 5·3. For every i = 1, . . . , card X there exist points zi and yi having the following
properties:

(i) f −tcon(yi) ∈ N+ ⊂ C+
f ;

(ii) f tcon+m(yi) ∈ C+
f is in some uu-disk complete relative to Ĉ+

f in V +uu
Ĉ+

f
;

(iii) zi ∈F ss(xi , δ/4);
(iv) f �(yi) ∈ Ŵuu

f �(zi )
( f �(zi), δ/4), for each �= 0, . . . ,m.

5·4·2. Distortion estimates nearby the orbit of yi

Recalling (5·6) and applying the second part of the distortion Lemma 4·4 to xi and zi , for
every �= 0, . . . ,m we get

K −1
0 e�(−εE −εss

D) ≤ ‖D f �|Ec
zi
‖ ≤ K0e�(εE +εss

D).
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Then applying the first part of Lemma 4·4 to zi and any y ∈ Ŵuu
zi
(zi , δ/4), for every �=

0, . . . ,m we get

K −1
0 e�(−εE −εss

D−εuu
D ) ≤ ‖D f �|Ec

y
‖ ≤ K0e�(εE +εss

D+εuu
D ).

With (5·3), for every �= 0, . . . ,m we have

K −1
0 e�(−2εE −εss

D−εuu
D ) ≤ ‖D f �|TyŴc

zi
‖ ≤ K0e�(2εE +εss

D+εuu
D ). (5·14)

We now apply Proposition 4·3 to ϑ and εD with δ0 as in (5·4) satisfying Modϑ(δ0)≤ εD and
to ε= 2εE + εss

D + εuu
D and K = K0 and let

r
def= 1

2
δc K −1

0 e−mε2 <
1

2
δ0 K −1

0 e−mε2, (5·15)

where we use that δc < δ0, see (5·12). Hence, by this proposition, together with (5·14), for
every y ∈ Ŵuu

zi
(zi , δ/4) we obtain that for every x ∈ γ def= Ŵc

zi
(y, 2r) for every �= 0, . . . ,m

we have

K −1
0 e−�ε2 ≤ ‖D f �|Txγ ‖ ≤ K0e�ε2 . (5·16)

Remark 5·4. Take any y ∈ Ŵuu
zi
(zi , δ/4) any x ∈ Ŵc

zi
(y, 2r). Applying again Lemma 4·4 as

above, we get the following estimate for every z ∈F ss(x, δ/4)

K −1
0 e−�ε1 ≤ ‖D f �|Ec

z
‖ ≤ K0e�ε1,

for every �= 0, . . . ,m, where ε1 is as in (5·5).

5·4·3. Fake central curves and auxiliary center-unstable rectangles
We now study the deformation of the fake central curves under forward iterations of f .

Consider the central curve γi = Ŵc
zi
(yi , r). Consider its image f m(γi) and denote its extreme

points by a and b. Consider the uu-disks

�̂uu(p)
def= Ŵuu

f m (zi )
(p, δ/4), p ∈ {a, b}.

Since by (5·8), (5·15), (5·11), and (5·9) we have δ/2 + r + δ/2 ≤ ρ1 these disks are indeed
contained in the fake leaf Wcu

f m (zi )
( f m(zi), ρ1) and hence are well defined. Now take their

pre-images

�̃uu( f −m(a))
def= f −m(�̂uu(a)) and �̃uu( f −m(b))

def= f −m(�̂uu(b)).

Recalling the choice of λfk > 1 in Remark 4·2, these disks have diameter at most λ−m
fk δ and

are tangent to Cuu
ϑ . By our choice of m in (5·13), we have λ−m

fk δ < r/6. In this way, for every
point �̂uu( f −m(a)) there is a fake central curve which ends in Ŵuu

zi
( f −m(b), δ/4) and for

every point �̂uu( f −m(b)) there is a fake central curve which ends in Ŵuu
zi
( f −m(a), δ/4).

Hence, we get that for every fake central curve which starts in �̂uu( f −m(a)) and ends in
�̂uu( f −m(b)) is well defined and has length between r/2 and 2r (compare Figure 3). Denote
by L the set consisting of all such fake central curves. Taking the union of all such curves in
L, we define the center-unstable rectangle Rcu

i,0 by

Rcu
i,0

def=
⋃
γ∈L

γ.
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Fig. 3. Definition of the center-unstable rectangle Rcu
i,0 ⊂ Ŵzi (zi , ρ).

Finally, for each � ∈ {0, . . . ,m}, we let

Rcu
i,�

def= f �(Rcu
i,0).

Consider now the family of curves f �(ζ ), ζ ∈L and �= 0, . . . ,m. We claim that all of them
are fake central curves contained in Ŵcu

f �(zi )
( f �(zi), ρ1). Indeed, combining Lemma 4·4 with

the estimates (5·16), with the notation (5·5) every curve f �(ζ ), ζ ∈L, has length between

1

2
r · K −1

0 e−�ε2 ≤ | f �(ζ )| ≤ 2r · K0e�ε2 .

Hence, by the choice of r in (5·15), we have

1

4
δc K −2

0 e−mε2 e−�ε2 ≤ | f �(ζ )| ≤ δce
−mε2 e�ε2 ≤ δc. (5·17)

Now recall that δc < δ0 <ρ1, see (5·4) and (5·12). Arguing exactly as above we get the
claimed property.

Arguing as above, but now interchanging the roles of the central and unstable directions,
we have that for every p ∈ Rcu

i,m the intersection

�uu(p)
def= Rcu

i,m ∩ Ŵuu
f m (zi )

(p, δ)

contains a disk of inner diameter at least δ/4. Therefore, by the property of the connecting
times of the skeleton in Section 5·2, for every t ≥ tcon the set f t(�uu(p)) contains a uu-disk
in V +uu

Ĉ+
f

which is complete relative to Ĉ+
f .

Remark 5·5 (Summary of the above construction).

(i) For every p ∈ f m(γi) the intersection Rcu
i,m ∩ Ŵuu

f m (zi )
(p, ρ) contains a disk of inner

diameter at least δ/4.
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(ii) For every p ∈ Rcu
i,m the curve α = Rcu

i,m ∩ Ŵc
f m (zi )

(p) has length satisfying

1

4
δc K −2

0 e−m2ε1 ≤ |α| ≤ δc.

(iii) The set f tcon(�uu(yi)) contains a uu-disk V +uu
Ĉ+

f
which is complete relative to

Ĉ+
f . Observing that, for every p ∈ Rcu

i,m , the Hausdorff distance between �uu(p)
and �uu(yi) is at most δc and invoking (5·12), we have that f tcon(�uu(p)) and
f tcon(�uu(yi)) are at Hausdorff distance which is smaller than the safety constant
τ . Hence, by Remark 2·15 the set f tcon(�uu(p)) contains a uu-disk �̃uu(p) (complete
relative to C+

f ) which is contained in N+uu. Define the following set

Si
def=

⋃
p∈γi

�̃uu(p)⊂ N+uu ⊂ C+
f .

(iv) By construction and the forward-invariance of Ccu by domination, the set Si is tangent
to Ccu. Note also that it is contained in a smooth surface, by construction. Note also
that it is a u-strip.

(v) Define

R̂cu
i,m

def= f −tcon(Si)⊂ Rcu
i,m .

LEMMA 5·6. For every i ∈ {1, . . . , card X} the (inner) width of Si can be estimated by

mtcon
1

8
δc K −2

0 e−m2ε1 ≤w(Si)≤ 2δcM
tcon,

where m and M are defined in (5·1).

Proof. Take α ∈ Si a (Si , c)-complete curve (that is, in particular, tangent to Cc
ϑ ). Hence,

α is also tangent to Ccs
ϑ . By backward-invariance of Ccs

ϑ , f −tcon(α) is tangent to Ccs
ϑ . As, by

construction, α is a subset of the fake invariant foliation Ŵcu which in turn is tangent to Ccu
ϑ ,

we obtain that f −tcon(α) is tangent to Ccu
ϑ and consequently tangent to Cc

ϑ .
Now, recall that f −tcon(α) is contained in R̂cu

i,m which is in turn foliated by central fake
curves tangent to Cc

ϑ whose lengths are estimated in item (ii). To estimate the length of
f −tcon(α) we only need to take into consideration the opening of the central cone field.
Arguing as above, we get

1

8
δc K −2

0 e−m2ε1 ≤ | f −tcon(α)| ≤ 2δc.

The lemma now follows from the definitions of m and M in (5·1).

5·4·4. Blending
We shall apply now the controlled expanding central covering property (Proposition 2·3)

to the u-strip Si which gets expanded in the central direction to obtain a c-complete u-strip
of the blender-horsehoe. An important point will be to estimate both from below and above
of the time needed to get this property.

We have the following corollary from Lemma 5·6 and Proposition 2·3. For the definition
of the expansion constant λbh in the blender-horseshoe see (2·1).
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COROLLARY 5·7. There is universal constant C > 0, such that for every i ∈ {1, . . . , card X}
and for every �≥ �m,ε1 , where

�m,ε1

def=
⌈ |tcon log m− log 8 + log δc − 2 log K0 − m2ε1|

log λbh
+ C

⌉
+ 1

there is a subset S′
i ⊂ Si such that:

(i) f k(S′
i) is contained in C+

f for every k ∈ {0, . . . , �} and
(ii) f �(S′

i) is a c-complete u-strip.

5·4·5. Construction of the full rectangles
First, for each u-strip Si , we consider the corresponding set S′

i ⊂ Si given in Corollary 5·7
and define

R̃cu
i,m

def= f −tcon(S′
i)⊂ R̂cu

i,m .

We now consider the saturation by strong stable leaves of size δ of the cu-rectangles above,

Ri,0
def=

⋃
x∈ f −m (R̃cu

i,m )

F ss(x, δ/4)⊂ R′
i,0

def=
⋃

x∈ f −m (R̂cu
i,m )

F ss(x, δ/4).

Remark 5·8 (The full rectangles Ci ). Consider the connected component of f −tcon(R′
i,0)∩

C+
f which contains f −tcon(yi ) and denote it by C ′

i (note that in passing to the subset R̂cu
i,m

we possibly excluded the image point of yi which before served as a “reference point” of
our construction, this is the only reason that we consider this auxiliary set C ′

i ). This set is
contained in N+ss and is the union of ss-complete disks. We denote by Ci the connected
component of f −tcon(Ri,0)∩ C+

f contained in C ′
i . The full rectangle Ci can be also defined as

follows then

Ci =
⋃

x∈Rcu
i

F ss
C+

f
(x), where Rcu

i
def= f −(tcon+m)(R̃cu

i,m),

compare Figure 4. Now, recalling the definition of �m,ε1 in Corollary 5·7, let

N = Nm,ε1

def= tcon + m + tcon + �m,ε1 (5·18)

and observe that, by its very construction, f N (Rcu
i ) is a c-complete u-strip.

For further reference, observe that the following property follows immediately from the
definition of δc in (5·11).

LEMMA 5·9. �m,ε1 log λbh ∼ m(
√
ε1 + 2ε1).

5·4·6. Separation and disjointness of the full rectangles
LEMMA 5·10 (Disjointness). The sets Ci are pairwise disjoint.

Proof. Indeed, we will prove a slightly stronger fact that any pair of points vi ∈ f tcon(Ci) and
v j ∈ f tcon(C j ), i �= j , is (m, ε/3)-separated.
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Fig. 4. Construction of the full rectangles Ci .

Recall from the skeleton properties in Section 5·2 that {xi } is (m, ε)-separated. Recall also
the choices of yi and zi in Lemma 5·3. Observe that, by uniform contraction on strong stable
manifolds and by Lemma 5·3(i) and (ii), by we obtain that for every �= 0, . . . ,m

d( f �(yi), f �(xi))≤ d( f �(yi ), f �(zi))+ d( f �(zi), f �(xi))≤ δ

4
+ δ

4
≤ 2

ε

15
,

where the latter follows from (5·8).

Claim 5·11. For all v ∈ f tcon(Ci), max�=0,...,m−1 d( f �(xi), f �(v)) < ε/3.

Since the points {xi } are (m, ε)-separated this claim implies the lemma.

Proof. Take any v ∈ f tcon(Ci). Using the “local product structure coordinates” provided
by the strong stable foliation and the fake invariant foliation Ŵcu, we can find points
v′ ∈F ss(v, δ/4)∩ Ri,0 and v′′ ∈ Ŵuu

zi
(v′, δ/4). Then, arguing as before, we have for every

�= 0, . . . ,m

d( f �(v), f �(v′′))≤ 2
ε

15
.

Finally, by the choice of the central fake curves of length at most r in (5·17), we obtain for
every �= 0, . . . ,m

d( f �(v′′), f �(yi))≤ δc <
ε

15
.

Thus, for every �= 0, . . . ,m we have d( f �(v), f �(xi)) < ε/3, which implies the claim.

The proof of the lemma is now complete.
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5·4·7. Definition of �+

Consider the full rectangles Ci , i ∈ {1, . . . , card X} and the return time N = Nm,ε1 defined
in (5·18) and let

�+ = �Nm,ε1

def=
N−1⋃
n=0

f n(�+), �+ def=
{

x : f k N (x) ∈
card X⋃

i=1

Ci for all k ∈Z

}
.

5·5. Hyperbolicity and entropy of the set �+

PROPOSITION 5·12 (Hyperbolicity of �+). For every m ≥ 1 large enough, the set �+ =
�Nm,ε1

is a basic set with stable index s such that f Nm,ε1 |�+ is conjugate to the full shift on
card X symbols. Moreover, the topological entropy of f on �+ satisfies

m(h(μ)− εH )− | log L0|
Nm,ε1

≤ htop( f, �+)≤ m(h(μ)+ εH )+ | log L0|
Nm,ε1

.

Proof. As in [16] it is enough for every point in the auxiliary set �+ to estimate the finite
time Lyapunov exponent corresponding to multiples of the return time N = Nm,ε1 . Note that
the points of f tcon(Ci) “shadow” the orbit piece xi , . . . , f m(xi). By the construction of Ci

and by Remark 5·4, during this shadowing period, the derivative in the central direction for
the point f tcon(y), where y ∈ Ci , satisfies for each � ∈ {0, . . . ,m},

K −1
0 e−�ε1 ≤ ‖D f �|Ec

f tcon (y)
‖ ≤ K0e�ε1 .

Taking into account twice the transition time tcon and the blending time �= �m,ε1 , we obtain

K −1
0 e−mε1m2tconλ�bh ≤ ‖D f Nm,ε1 |Ec

y
‖,

where m and M are defined in (5·1) and λbh > 1 in (2·1). Hence, we obtain

1

Nm,ε1

log ‖D f Nm,ε1 |Ec
y
‖ ≥ − log K0 − mε1 + 2tcon log m+ � log λbh

2tcon + m + �m,ε1

def= C(m, ε1).

By Lemma 5·9, we have � log λbh ∼ m(
√
ε1 + 2ε1). This implies that

C(m, ε1)∼ m
(−ε1 + √

ε1 + 2ε1

)
m + �m,ε1

,

where the suppressed constants depended only on the diffeomorphism f , the blender-
horseshoe quantifiers (expansion constants and opening of the cone fields) but neither on
m nor on ε1. Thus, the numerator is positive and if m was sufficiently large, then each finite
time central exponent is (uniformly) strictly positive and hence the set �+ is uniformly
central expanding.

We will refrain from proving the upper bound, which is analogous and anyway follows
from Lemma 5·15 by including the continuous function ϕ = log ‖D f |Ec‖ into the family �
considered there.

Note that, by construction, �+ is compact and f -invariant.
To prove that f Nm,ε1 |�+ is conjugate to the full shift on card X symbols we use the next

claim. First, given a full rectangle Ci we say that (a local) manifold S tangent to cone field
Ccu intersects Ci in a Markovian way if S intersects (transversally) F ss

C+
f
(x) for all x ∈ Rcu

i .
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Claim 5·13. Let S be a (local) manifold tangent to Ccu that intersects Ci in a Markovian
way and i ∈ {1, . . . , card X}. Let Si = S ∩ Ci . Then the set f Nm,ε1 (Si) intersects C j in a
Markovian way for every j ∈ {1, . . . , card X}.
Proof. First observe that, by Remark 5·8, the claim is true for S = Rcu

i . Then observe that
for any S as in the claim, the contraction on the strong stable leaves implies that the sets
f Nm,ε1 (Si) and f Nm,ε1 (Rcu

i ) are close. Hence, the claim follows.

Now, the fact that the restriction of f Nm,ε1 to �+ is conjugate to the full shift on card X
symbols is an easy consequence of the uniform expansion of D f |�+ along E cu, the uniform
contraction along E ss, and Claim 5·13. This conjugation together with Lemma 5·9 gives the
estimates for the entropy for f on �+.

The proof of the proposition is now complete.

5·6. Controlling Birkhoff averages

The control of the Birkhoff averages is similar to the control of the central Lyapunov
exponent. The statement for the exponents would be almost immediate from the following,
though we needed to show that exponents are not only close to the central exponent χ(μ),
but also positive. Moreover, we needed to show that �+ was uniformly expanding in the
central direction.

Recall the choice of the number εB in Section 5·1. We now prove the following result.

PROPOSITION 5·14 (Weak∗ approximation). For m ≥ 1 large enough, we have D(ν, μ) <
4εB for every probability measure ν supported on �+.

Recall the choice of the finite set �= {ϕ j } of continuous potentials over M and equation
(5·2). The next lemma implies the above proposition.

LEMMA 5·15. For every x ∈ �+, every ϕ j ∈�, and every n large enough∣∣∣∣∣∣
1

n

n−1∑
j=0

ϕk( f j (x))−
∫
ϕkdμ

∣∣∣∣∣∣< 3εB .

Proof. In a similar way as we did for the Lyapunov exponent, it suffices to prove this lemma
for finite time averages relative to multiples of the return times N = Nm,ε1 defined in (5·18)
and for points y ∈ �+ ∩ Ci , for any i = 1, . . . , card X.

Recall that εB and the corresponding finite family � was chosen in the very beginning of
Section 5·1. Let us denote

‖�‖ def= max
ϕ j ∈�

‖ϕ j‖C0 .

Now recall that after this preliminary step only, the size ρ > 0 of fake invariant center-
unstable foliations was chosen. Following that, we made the choice of δ which bounded
the distance of points in the “fake unstable direction” and the “strong stable direction” for
any point sufficiently close to yi (and hence to xi ). Finally, choosing m ≥ 1 sufficiently
large, we made the choice of δc which bounded the distance of points in the “fake cen-
tral direction”. The construction of the full rectangles Ci was done in such a way that
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their iterations by f tcon, . . . , f tcon+m have those distances controlled from the skeleton orbit
xi , f (xi), . . . , f m(xi) (see the proof of Lemma 5·10). Assuming that these choices where
done appropriately, we can argue that we have the following estimates. Given y ∈ �+ ∩ Ci ,
for its finite-time orbit

{y, f (y), . . . , f k(y), . . . , f 2tcon+m+�m,ε1 (y)},
the part close to the skeleton for k = tcon, . . . , tcon + m can be estimated by∣∣∣∣∣ 1

m

m−1∑
k=0

ϕ j ( f tcon+k(y))− 1

m

m−1∑
k=0

ϕ j ( f k(xi))

∣∣∣∣∣ ≤ εB (5·19)

for every ϕ j ∈�. We refrain from giving explicit estimates. Hence, estimating the finite-time
Birkhoff average at one return to �+, we obtain

1

N

N−1∑
k=0

ϕ j ( f k(y))≤ 1

N
(2tcon + �m,ε1)‖�‖ + 1

N

m−1∑
k=0

ϕ j ( f tcon+k(y))

together with the analogous lower bound. Now, combining (5·19) with the property (5·7) of
the skeleton, we obtain∣∣∣∣∣ 1

N

N−1∑
k=0

ϕ j ( f k(y))−
∫
ϕ j dμ

∣∣∣∣∣ ≤ 2tcon + �m,ε1

2tcon + m + �m,ε1

‖�‖ + m

2tcon + m + �m,ε1

2εB

def= D(m, ε1, εB).

By Lemma 5·9, we have m/Nm,ε1 ∼ 1/(1 + (log λbh)
−1(

√
ε1 + 2ε1)), which implies that

when choosing m � 1 sufficiently large, we get

D(m, ε1, εB)≤ 3εB .

This proves the lemma.

6. Going from negative to positive exponents:
proof of Theorem 4

In this section we will prove the following result which immediately implies Theorem 4,
here also notice that the case α > 0>β follows considering f −1 instead of f .

THEOREM 6·1. Assume that f is a C1-diffeomorphism with a partially hyperbolic splitting
T M = E ss ⊕ E c ⊕ Euu with three non-trivial bundles such that E ss is uniformly contracting,
E c is one-dimensional, and Euu is uniformly expanding such that the strong stable and the
strong unstable foliations are both minimal and f has an unstable blender-horseshoe for f n

for some n ≥ 1. Then for every μ ∈Merg( f ) with α = χ(μ) < 0, there is a positive constant
K ( f )≥ (log ‖D f ‖)−1 such that for every δ > 0, γ > 0, and β > 0, there is a basic set �
being central expanding such that:

(i) its topological entropy satisfies

htop( f, �)≥ h(μ)

1 + K ( f )(β + |α|) − γ ;
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(ii) every ν ∈Merg( f, �) satisfies

β

1 + K ( f )(β + |α|) − δ < χ(ν) <
β

1 + 1
log‖D f ‖ (β + |α|) + δ

and

D(ν, μ) <
K ( f )(β + |α|)

1 + K ( f )(β + |α|) + δ.

If h(μ)= 0 then � is a hyperbolic periodic orbit.

We remark that the constant K ( f ) in the above theorem is related to the minimal
expansion rate in the center direction defined in (2·1) in the unstable blender-horseshoe.

The proof of Theorem 6·1 is very similar to the one of Theorem 5·1. Hence, we only
sketch the main differences.

Consider an ergodic measure μ satisfying α
def= χ(μ) < 0 and let β > 0. Denote h = h(μ).

Fix as before an unstable blender-horseshoe, together with a safety domain and positive
constants τ, ϑ0, θ > 0. Assume, for simplicity, n+ = 1. As in Section 5·1, fix εH , εE , εB , the
constant ϑ , and consider the fake invariant foliations with associate numbers ρ > ρ1 > 0.
Fix εD, ε

ss
D, ε

uu
D , δ0 and m0 as before. Define ε2, ε1 as in (5·5). Without loss of generality, we

can assume that those quantifiers were chosen small enough such that we also have

− |α| + 2εE + εss
D + εuu

D < 0 and εD <β. (6·1)

By Proposition 3·1, there exists ε0 > 0 so that for every ε ∈ (0, ε0) there are constants
K0, L0 ≥ 1 and an integer n0 ≥ 1 such that for every m ≥ n0 there exists a finite set X= {xi }
of (m, ε)-separated points so that:

(i) card X≥ L−1
0 em(h−εH );

(ii) for every �= 0, . . . ,m and every i one has

K −1
0 e−�(α+εE ) ≤ ‖D f �|Ec

xi
‖ ≤ K0e�(α+εE ). (6·2)

Choose ε ∈ (0, ε0) and fix the corresponding constants K0, L0, n0.
Fix δ as before. Fix the connecting time tcon as before.
Finally, make an appropriate choice of m sufficiently large as before. And assume also

that we have

e−m(β+|α|+ε2) < e−mβ < δ0 K −1
0 e−mεD . (6·3)

Define

δc
def= e−mβ.

Choose points yi , zi as in Lemma 5·3. As in Section 5·4·2, together with (6·2), for any
point y ∈ Ŵuu

zi
(zi , δ/4), for every �= 0, . . . ,m we get

K −1
0 e�(−|α|−2εE −εss

D−εuu
D ) ≤ ‖D f �|TyŴc

zi
‖ ≤ K0e�(−|α|+2εE +εss

D+εuu
D ). (6·4)

Let

r
def= 1

2
δc = 1

2
e−mβ. (6·5)
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We now apply Proposition 4·3 to ϑ and εD with δ0 as in (5·4) satisfying Modϑ(δ0)≤ εD and
to ε= 2εE + εss

D + εuu
D and K = K0. Note that the hypothesis of this proposition is indeed

satisfied because for all � ∈ {0, . . . ,m} we have

‖D f �|Ec
y
‖ ≤ K0e�(−|α|+2εE +εss

D+εuu
D ) ≤ K0e�εD ,

where we used (6·1). Hence, recalling that by (6·3) we have

1

2
e−mβ = r < δ0 K −1

0 e−mεD ,

by this proposition together with (6·4), for every x ∈ γ def= Ŵc
zi
(y, r) for every �= 0, . . . ,m

we have

K −1
0 e−�(|α|+ε2) ≤ ‖D f �|Txγ ‖ ≤ K0e−�(|α|−ε2).

Now the construction of the auxiliary center-unstable rectangles Rcu
i,0 is as in Section 5·4·3.

Observe that they now are much “thinner in the fake central direction” than before and
hence also always well defined (we stay always in the domain of the (locally defined) fake
foliation). Recall again that our overall assumption is a partially hyperbolic splitting. In
particular, the subbundles Euu and E c are dominated. Hence, the same arguments about the
variation of the length of central curves foliating a center-unstable “strip” in Section 5·4·3
apply. Thus, we define Rcu

i,0
def= ⋃

γ∈L γ as before and for every curve γ ∈L for every � ∈
{0, . . . ,m} we have

1

2
r · K −1

0 e−�(|α|+ε2) ≤ | f �(ζ )| ≤ 2r · K0e−�(|α|−ε2)

and by our choice of r in (6·5) obtain

1

4
K −1

0 e−m(β+|α|+ε2) ≤ | f m(ζ )| ≤ e−m(β+|α|−ε2) < δc < δ0,

where we used (6·3). Therefore, itens (i), (iii)–(v) in Remark 5·5 hold true. Moreover, instead
of item (ii) in Remark 5·5 we have:

(ii) for every p ∈ Rcu
i,m the curve α = Rcu

i,m ∩ Ŵc
f m (zi )

(p) has length satisfying

1

4
K −1

0 e−m(β+|α|+ε1) ≤ |α| ≤ δc.

As for Lemma 5·6, we show that for every i ∈ {1, . . . , card X} the (inner) width of the u-strip
Si can be estimated as follows

1

8
mtcon K −1

0 e−m(β+|α|+ε1) ≤w(Si)≤ δcM
tcon,

where m and M are defined in (5·1).
Similarly as in Corollary 5·7 define now

�m,ε1

def=
⌈ |tcon log m− log 8 − log K0 − m(β + |α| + ε1)|

log λbh
+ C

⌉
+ 1.

Applying then Proposition 2·3, we get a universal constant C > 0 such that for every i ∈
{1, . . . , card X} and for every �≥ �m,ε1 there is a subset S′

i ⊂ Si such that:
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(i) f k(S′
i) is contained in C+

f for every k ∈ {0, . . . , �} and
(ii) f �(S′

i) is a c-complete u-strip.

Observe that

�m,ε1 log λbh ∼ m(β + |α| + ε1). (6·6)

The construction of the full rectangles Ci is again as in Section 5·4·5. Analogously,
one verifies that they are pairwise disjoint. Define as before Nm,ε1

def= 2tcon + m + �m,ε1 . One
defines the set �+ as in Section 5·4·7. As in Remark 5·4, it is a consequence that the point
f tcon(y), for any y ∈ Ci , satisfies for each k ∈ {0, . . . ,m},

K −1
0 e−k(|α|+ε1) ≤ ‖D f k |Ec

f tcon (y)
‖ ≤ K0e−k(|α|−ε1).

Taking into account twice the transition time tcon and the blending time �= �m,ε1 , we obtain

K −1
0 e−m(|α|+ε1)m2tconλ�bh ≤ ‖D f Nm,ε1 |Ec

y
‖.

Hence, we obtain

1

Nm,ε1

log ‖D f Nm,ε1 |Ec
y
‖

≥ − log K0 − m(|α| + ε1)+ 2tcon log m+ �m,ε1 log λbh

2tcon + m + �m,ε1

def= C(m, ε1).

Finally, using now (6·6), note that

C(m, ε1)∼ −m(|α| + ε1)+ m(β + |α| + ε1)

m + 1
log λbh

m(β + |α| + ε1)
∼ β

1 + 1
log λbh

(β + |α|) > 0.

This sketches the proof that �+ is central expanding and provides the claimed lower bound
for the Lyapunov exponents of any orbit and hence any measure supported on �+. The upper
bound is analogous.

In order to estimate the entropy of f on �+, observe

htop( f, �+)∼ log card X

Nm,ε1

∼ m(h(μ)− εH )

m + �m,ε1

∼ h(μ)

1 + 1
log λbh

(β + |α|) .

Finally, to argue about the weak∗ approximation of the given measure μ as in Section 5·6,
observe that �+ is built very close to the orbit pieces of μ-generic points provided from the
skeleton. Thus, orbital measures in the skeleton arbitrarily well approximate μ. The return
time from one Markov rectangle into another one is Nm,ε1 = 2tcon + m + �m,ε1 . Thus, any
ergodic invariant measure supported on �+ has generic orbits that always stay a fraction
m/(2tcon + m + �m,ε1) of its time as close to μ as desired. Hence, the weak∗-deviation from
μ is of order

�m,ε1

m + �m,ε1

∼
1

log λbh
m(β + |α|)

m + 1
log λbh

m(β + |α|) .

Letting K ( f )= 1/ log λbh, finishes the sketch of the proof of the theorem.

https://doi.org/10.1017/S0305004119000276 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000276


Weak∗-entropy approximation of nonhyperbolic measures 543

7. Arcwise connectedness: proof of Theorem 5

For completeness, recall that the homoclinic class of a hyperbolic periodic point Q f of a
diffeomorphism f , denoted by H(Q f , f ), is the closure of the set of transverse intersection
points of the stable and unstable manifolds of the orbit of Q f . Two hyperbolic periodic
points Pf and Q f of f are homoclinically related if the stable and unstable manifolds of
their orbits intersect cyclically and transversely. The homoclinic class of Q f can also be
defined as the closure of the periodic points of f that are homoclinically related to Q f . A
homoclinic class is a transitive set whose periodic points form a dense subset of it. The
stable index of a hyperbolic periodic point is the dimension of its stable bundle. Note that,
in our partially hyperbolic context with one-dimensional center bundle, there are only two
types of hyperbolic periodic points: those with stable index s and those with s + 1. The
fact that the central bundle is one-dimensional also forces the intersection between invariant
manifolds of hyperbolic periodic points of the same index to be transverse.

Now recall that by [8, proposition 7·1] there is an open and dense subset of RTPH1(M)
consisting of diffeomorphisms f having a pair of saddles Pf and Q f of stable index s and
s + 1, respectively, such that the homoclinic classes satisfy

H(Pf , f )= M = H(Q f , f ). (7·1)

This result just summarises previous ones in [9, 10, 35]. Moreover, the minimality of both
the strong stable and the strong unstable foliations together with the partial hyperbolicity
immediately imply that every pair of saddles of the same index is homoclinically related.
In this case, the fact that the homoclinic class is isolated is immediate and thus, we are in
the setting of [22]. Thus, in what follows we will assume that the set MB1(M) additionally
satisfies (7·1) and fix f ∈ MB1(M).

Recall that the convex hull of a set N ⊂M( f ) is the smallest convex set containing N,
denoted by conv(N), and that the closed convex hull of N is the smallest closed convex
set containing N, denoted by conv(N). By [38, theorem 5·2 (i)–(ii)], we have conv(N)=
conv(N), where N denotes the weak∗ closure of N. Our hypotheses imply that we can
invoke [3, theorem 2], that is, every μ ∈ conv(Merg,<0( f )) can be approximated in the weak∗
topology by ergodic measures (in Merg,<0( f )). In other words, we have

Merg,<0( f )⊂ conv(Merg,<0( f ))⊂Merg,<0( f )

(the first inclusion is trivial) and hence, taking closures and applying the above comment,
we can conclude

conv(Merg,<0( f ))= conv(Merg,<0( f ))=Merg,<0( f ).

Analogously for Merg,>0( f ). On the other hand, by Theorem 1, we have

Merg,0( f )⊂Merg,<0( f )∩Merg,>0( f )

= conv(Merg,<0( f ))∩ conv(Merg,>0( f )),

which proves the first claim in the corollary.
We now prove that the set of measures Merg,<0( f ) is arcwise connected, the proof for

Merg,>0( f ) is analogous. Here we will largely follow arguments in [22], see also the presen-
tation in [17, section 3·1]. Take any pair of measures μ0, μ1 ∈Merg,<0( f ). By Corollary 3,
each μi is accumulated by a sequence of hyperbolic periodic measures ν i

n ∈Merg,<0( f )
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supported on periodic points Pi
n , i = 0, 1 respectively. By assumption, these points are

homoclinically related and hence, there exists a basic set �= �(μ0, μ1) containing them.
Recall from [29, 37] that M( f, �) is a Poulsen simplex. Hence there is a continuous arc
m0 : [1/3, 2/3] →Merg( f, �)⊂Merg,<0( f ) joining the measures ν0

1 =m0(1/3) and ν1
1 =

m0(2/3). For any pair of measures ν0
n , ν

0
n+1, the same arguments apply and, in particu-

lar, there exists a continuous arc m0
n : [1/3n+1, 1/3n] →Merg,<0( f ) joining the measure

ν0
n =m0

n(1/3
n+1) with ν0

n+1 =m0
n(1/3

n). Using those arcs and concatenating (appropri-
ate parts of) their domains, we obtain an arc m̄0

n : [1/3n+1, 1/3] →Merg,<0( f ) joining
ν0

n+1 = m̄0
n(1/3

n+1) and ν0
1 = m̄0

n(1/3). The same applies to the measures ν1
n , defining arcs

m̄1
n : [1 − 1/3n, 2/3] →Merg,<0( f ) joining ν1

n+1 and ν1
1 . Define now m∞|(0,1) : (0, 1)→

Merg,<0( f ) by concatenating (appropriate parts of) the domains of those arcs. We complete
the definition of an arc m∞ : [0, 1] →Merg,<0( f ) by letting m∞(0)= limn→∞ m̄0

n(1/3
n) and

m∞(1)= limn→∞ m̄1
n(1 − 1/3n). By definition, m∞ joins μ0 and μ1. Note that in the last

step we assume that μ0, μ1 do not belong to the image of m∞, if one of these measures does
belong it is enough to cut the domain of definition of m∞ appropriately.

The analogous construction can be done to construct an arc connecting any measure
in Merg,0( f ) to any measure in Merg,>0( f ) using Theorem 1 and then the second part of
Corollary 3.
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