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This study investigates the suppression of the sound produced when a jet, issued from
a circular nozzle or hole in a plate, goes through a similar hole in a second plate. The
sound, known as a hole tone, is encountered in many practical engineering situations.
The mean velocity of the air jet u0 was 6–12 m s−1. The nozzle and the end plate
hole both had a diameter of 51 mm, and the impingement length Lim between the
nozzle and the end plate was 50–90 mm. We propose a novel passive control method
of suppressing the tone with an axisymmetric obstacle on the end plate. We find that
the effect of the obstacle is well described by the combination (W/Lim, h) where W
is the distance from the edge of the end plate hole to the inner wall of the obstacle,
and h is the obstacle height. The tone is suppressed when backflows from the obstacle
affect the jet shear layers near the nozzle exit. We do a direct sound computation
for a typical case where the tone is successfully suppressed. Axisymmetric uniformity
observed in the uncontrolled case is broken almost completely in the controlled case.
The destruction is maintained by the process in which three-dimensional vortices in
the jet shear layers convect downstream, interact with the obstacle and recursively
disturb the jet flow from the nozzle exit. While regions near the edge of the end plate
hole are responsible for producing the sound in the controlled case as well as in the
uncontrolled case, acoustic power in the controlled case is much lower than in the
uncontrolled case because of the disorganized state.

Key words: absolute/convective instability, aeroacoustics, jets

1. Introduction
The sound produced when a jet, issued from a circular nozzle or hole in a plate,

goes through a second plate that has a hole of the same diameter is referred to as a
hole tone. The hole tone is a fluid dynamic self-excited oscillation where axisymmetric
coherent vortices are produced in the naturally unstable jets, convected downstream,
and the generation and feedback of induced disturbances occur from some points in

† Email address for correspondence: matsuura.kazuo.mm@ehime-u.ac.jp
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the flow near the surface on which the vortices are impinging (Rayleigh 1945; Blake
1986; Howe 1998; Ginevsky, Vlasov & Karavosov 2010). Jet tone phenomena that are
similar to the hole tone and involve impinging surfaces include the edge and ring tones
(Rockwell & Naudascher 1979; Blake 1986; Ginevsky et al. 2010). The interaction
of the jet shear layer and the surface gives rise to strong self-excited oscillations
with frequencies determined by the flow speed, the initial thickness of the mixing
layer, and the distance from the nozzle edge to the downstream obstacle (Ginevsky
et al. 2010). Past research on the hole tone was summarized in the introduction of
Matsuura & Nakano (2012). Practically, we encounter the tone in many systems such
as solid propellant rocket motors, automobile intakes and exhaust systems, ventilation
systems, gas distribution systems, and whistling kettles. It often becomes a source of
unfavourable sound and vibration. The present study investigates the suppression of
the tone.

Rayleigh (1945), on the basis of his observations, conjectured on the original hole
tone mechanism, now known as a feedback mechanism (Rayleigh 1945; Rossiter
1962; Chanaud & Powell 1965; Rockwell & Naudascher 1979). This mechanism is
considered to consist of four elements, i.e. the birth of disturbances in the jet shear
layer, the convection and amplification of the disturbances leading to the formation
of vortices, the generation of pressure waves due to vortex impingement, and the
upstream propagation of pressure waves that initiates the disturbances by means of
a receptivity process. In the mechanism, as a result of the axisymmetric instabilities
of the jet, each vortex is convected over the impingement length, i.e. the gap, Lim
during a time of the order of Lim/uc, at the shear-layer convection velocity uc that is
typically about half the mean jet speed at the nozzle exit u0. An impulsive disturbance
is generated when the vortex impinges on the downstream edge, which initiates the
formation of a new vortex in the shear layer. The impulse takes a finite time ∼Lim/c∞
to travel back across the gap, where c∞ is the speed of sound. Based on this picture,
the frequency f of the vortex formation satisfies n/f ∼ Lim/uc + Lim/c∞, where
the values n = 1, 2, 3, etc. correspond to the various stages of operation (Rossiter
1962). Matsuura & Nakano (2012) conducted direct computations of a hole tone
feedback system at Mach numbers around 0.029. They found two regions of large
contribution to instantaneous acoustic power. The region of the largest contribution
is the outer edge of a separation region near the upstream edge of the end plate
hole. The second is the upstream side of the end plate near the hole edge. The
former is considered to be the major sound source of the pressure waves propagating
inside the jet, whereas the latter is considered to be the major sound source of the
pressure waves propagating outside the jet. Considering these results, they proposed
an axisymmetric throttling mechanism linking mass flow rates through the end plate
hole, vortex impingement and global pressure propagation. Although understanding of
aeroacoustic dynamics of the hole tone has developed considerably, control methods
with which to suppress the tone have been scarcely reported.

The suppression of the hole tone appears to result in the interception of the cycle
of the feedback. When we think back to the hole tone mechanism, the interception
of the feedback corresponds to artificially altering at least one of the four elements
mentioned above. Ginevsky et al. (2010) reported two suppression methods for
self-excited oscillations due to jet impingement on a baffle. One is to reduce the
azimuthal homogeneity of jet mixing layers near a nozzle by introduction of three
cones, which causes weak attenuation of coherent structures. The other is to disrupt
the jet coherent structures at the point of their collision with the baffle. The two
methods are related to the first and third elements. Langthjem & Nakano (2010)
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910 K. Matsuura and M. Nakano

conducted a numerical simulation of the hole tone feedback cycle based on a
three-dimensional discrete vortex method. Evaluation of the sound generated by the
self-sustained flow oscillations was based on the Powell–Howe theory of vortex sound
and a boundary integral/element method. They investigated the effects of imposing
non-axisymmetric perturbations of the jet on sound reduction including both standing
and travelling (rotating) waves. The method is related to the first element mentioned
above.

More generally, much attention has been paid to control for suppressing flow-
induced oscillation because of its fundamental interest and practical applications
(Cattafesta et al. 2003; Rowley & Williams 2006; Ginevsky et al. 2010; Izawa
2011). Roughly speaking, strategies are categorized into passive and active control
(Gad-el-Hak 2000). Passive control does not need a power supply, and has the
advantage that the control system is simpler than an active control system, which
requires actuators. Possible examples of the passive control of fluid dynamic
oscillation are disturbing flows by making vortices irregular with a tripping wire,
serration or chevron nozzle, stabilizing unstable flows with a plate, planing off
corners to weaken pressure pulses or remove the cause of oscillation, and changing
the Reynolds number. Although there are such possibilities, the applicability and
limitations of passive control are not well established for the hole tone. Therefore,
this study focuses on the passive control of the hole tone.

We propose a brand-new passive control method for the hole tone using an
axisymmetric obstacle on the end plate that is different from the above methods. The
obstacle is used to block and return upstream, as a turbulent flow, the fluid flowing
in the radial direction along the end plate, which is a portion of the jet that did not
flow out of the end plate hole after vortex impingement.

In § 2, we explain the strategy of the passive control we propose, and experimental
details such as the experimental apparatus, proposed obstacle shapes for suppressing
the hole tone, and experimental conditions. In § 3, we present experimental results for
various obstacle sizes, air-jet velocities and impingement lengths. By these, we show
that overall effect of the obstacles on suppressing the hole tone can be summarized
in terms of the two parameters W/Lim and h, where W is the distance from the edge
of the end plate hole to the inner wall of the obstacle, and h is the obstacle height.
We also show the effect of changing the obstacle height on the velocity profile of the
jet shear layer, the effect of changing the impingement length on the velocity profile,
and flow structures where the hole tone is or is not successfully suppressed. In § 4, we
explain the numerical analysis conducted in the following section. In § 5, we perform
a direct sound computation to clarify the effect of the obstacle on vortical structures
and instantaneous acoustic power. In § 6, we draw conclusions from this study.

2. Experimental system

First, we explain the strategy of the passive control of the hole tone we propose
in figure 1. Figure 1(a) shows the feedback loop of the baseline hole tone. As
mentioned in the introduction, the feedback phenomena are considered to consist
of four elements. These elements occur in phase to maintain the feedback loop.
We explain the present control strategy in figure 1(b). It efficiently disorganizes the
feedback loop by disturbing the birth and growth of organized vortical structures
in jet shear layers using flows dammed up and reversed by the obstacle, which
originally escape in the radial direction from entering the end plate hole after vortex
impingement.
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Nozzle exit

Downstream
end plate

Vortex
impingement
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vortices
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acoustic feedback
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Jet
Formation of vortices is

disorganized by backflows
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without any generation

of strong pressure waves

(a)

(b)

Acoustic feedback

FIGURE 1. Explanation of the present passive control strategy of the hole tone.
(a) Baseline hole tone feedback loop. (b) Disorganization of the feedback loop.

Figure 2 shows the experimental system with the proposed obstacle for the
passive control of the hole tone. The nozzle plate and the downstream end plate
are rectangular, with dimensions of 300 mm × 300 mm and 270 mm × 200 mm,
respectively. The hole and end plate are acoustically compact. The diameters of the
nozzle and end plate hole are both d0 = 51 mm. The thickness of the end plate is
10 mm. The impingement length Lim is the variable distance between the nozzle
exit and the end plate. The ring obstacle is attached to the end plate, as shown in
figure 2. The inner radius, outer radius and height of the obstacle are denoted as
ri, re and h, respectively. Here, the difference re − ri is kept at 5 mm. The distance
from the upstream edge of the end plate hole to the inner wall of the obstacle is
defined as W ≡ ri − d0/2. We vary ri, h, Lim and u0. Table 1 gives the obstacle sizes
(ri, h), impingement lengths Lim, and air-jet mean velocities u0 tested for each setting
(ri, h, Lim). The obstacles are grouped into eight types depending on ri. Types A, B,
C, D, E, F, G and H correspond to ri = 25.5, 30.5, 33.0, 35.5, 38.0, 40.5, 43.0 and
45.5 mm, respectively. We vary h for each type, and vary Lim using the end plate
with each obstacle of (ri, h). Then, we vary u0 for each combination of (ri, h, Lim).
The table also shows the important configuration parameter W/Lim.

Air from a centrifugal blower goes through an approximately 160 mm long
mouthpiece before leaving the nozzle. When the end plate is removed, the ratios
of the half-width to the momentum thickness (Michalke 1984) in the shear layers
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FIGURE 2. Experimental system. Dimensions are in mm.

of the jet issuing from the nozzle exit are Rh/δθ = 48.8, 25.5, 14.2 and 17.5 for
u0 = 6, 8, 10 and 12 m s−1, respectively. Here, Rh is the jet half-width such that a
streamwise velocity uz(Rh) = u0/2 and δθ is the momentum thickness at the nozzle
exit. The shape factors of the boundary layers just upstream of the nozzle exit
when the end plate is removed are 2.41, 2.40, 2.36 and 2.35 for u0 = 6, 8, 10 and
12 m s−1, respectively, and the boundary layer states at the nozzle exit are laminar
for all the jet velocities. Shear layer profiles are measured by an I-type hot wire. The
sampling rate of the hot wire is 5 kHz. It has been established that the insertion of
the hot wire does not influence the hole-tone frequency and amplitude. The intensity
of the free-stream disturbance at the nozzle exit when the end plate is removed is
approximately 1.2–1.5 % for the above jet velocities.

The jet velocities have inevitable uncertainties due to changes in the experimental
environment, including its thermal non-equilibrium, although we calibrated our wind
tunnel for each run and tried to keep the room temperature at 20 ◦C with an air
conditioner. Accepting the uncertainties, we regard the jet velocities in the range
from 9.5 to 10.4 m s−1 as 10 m s−1. Sound pressure (SP) is measured at r= 92 mm
by a condenser microphone as shown in figure 2. The signal is passed through a
microphone preamplifier to a fast Fourier transform (FFT) analyser. The sampling
rate of the microphone is 2.56 kHz. We obtained a spectrum from 2048 sampled
data points by FFT. We performed 20 times of ensemble average to obtain a final
spectrum. The microphone is located sufficiently away from the centreline and does
not affect jet flows. To take instantaneous snapshots of the jet shear layers, a laser
sheet is used with a high-speed video camera with the smoke of evaporated glycol
solvent injected into the jets. The thickness of the laser sheet is approximately 1 mm.
The sampling rate of the snapshots is 1500 frames s−1. It has been established that
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Disorganization of a hole tone feedback loop by an obstacle 913

Type ri (mm) h (mm) Lim (mm) W/Lim u0 (m s−1)

A 25.5 2, 5 50 0.000 10
B 30.5 2, 3, 5, 8 50 0.100 10
C 33.0 2, 3, 4, 8 50 0.150 10

60 0.125
70 0.107
80 0.094
90 0.083

D 35.5 2, 3, 5 50 0.200 6, 8, 10, 12
2.5, 8 50 0.200 10

2, 2.5, 3, 5, 8 60 0.167 10
70 0.143
80 0.125
90 0.111

E 38.0 3 50 0.250 10
F 40.5 2, 3, 4, 6, 8 50 0.300 10

60 0.250
70 0.214
80 0.188
90 0.167

G 43.0 3, 4, 5, 6, 7 50 0.350 10
60 0.292
70 0.250
80 0.219
90 0.194

H 45.5 4, 5, 6, 7, 8 50 0.400 10
60 0.333
70 0.286
80 0.250
90 0.222

TABLE 1. Obstacle size (ri, h), impingement length Lim, and air-jet velocities u0 tested
for each system setting (ri, h, Lim); W ≡ ri − d0/2.

the sheet goes through the centre of the hole. The smoke is injected at the air intake
of the centrifugal blower so that the injection does not disturb the jet.

3. Experimental results
3.1. Characteristics of tone suppression by an obstacle in terms of the sound

pressure spectrum
On the basis of the SP spectrum, we study the effect of changing the obstacle size
on suppressing the hole tone when u0 = 10 m s−1 and Lim = 50 mm. Figure 3 shows
the measured SP spectra for types A, B, D, and H. The results of changing h are
shown for each type. ‘Baseline’ in the legend means the baseline hole tone without
any obstacle on the end plate. When type A is used with h = 2 and 5 mm, peaks
around the frequency f0 of the baseline hole tone still appear with only slight shifts
in frequency. The SP spectra for both heights are narrowband, similar to the baseline
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FIGURE 3. Effect of obstacle size on the hole tone suppression when u0= 10 m s−1 and
Lim = 50 mm: (a) Type A (ri = 25.5 mm), (b) type B (ri = 30.5 mm), (c) type D (ri =
35.5 mm), (d) type H (ri = 45.5 mm).

case, indicating that the feedback loop with organized vortices remains unchanged in
the flow fields. This is also understood from the visualization of flow structures shown
later in figure 11(a). Therefore, type A obstacles of both heights are not effective in
suppressing the tone. Roughly speaking, adding an obstacle with W = 0 is equivalent
to reducing Lim from the standpoint of shear-layer impingement on the inner corner.
According to the simple relation for the feedback loop between the tone frequency f
and Lim which was mentioned in the introduction, f is inversely proportional to Lim.
So, the frequency shift without change of overall spectral shape is expected, with a
tone at higher frequency when the obstacle is installed with respect to the baseline.
When type B with h = 2 mm is used, peaks appear around f0 and the subharmonic
frequency f0/2. The levels of the power spectrum (PS) for broadband frequencies
other than f0 and f0/2 also increase. When h= 5 mm, the peak around f0/2 becomes
higher than that around f0. As found from the shifts in peak frequencies, type B
succeeds in affecting the jet shear layer. However, an unwanted strong peak around
f0/2 appears when h = 5 mm. When h = 8 mm, the peak around f0/2 decreases
with a slight shift of the original f0 peak to a lower frequency. The maximum PS is
reduced by 13 dB compared with the baseline case. When type D is used, the peak
at f0 remains unchanged when h= 2 mm. However, when h > 3 mm, the SP spectra
become broadband and the peak at f0 almost vanishes. A new peak appears at f0/2.
The maximum peak around f0/2 is approximately 15 dB lower than that around f0 for
the baseline hole tone. The SP spectrum for h= 5 mm is almost identical to that for
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FIGURE 4. Effect of the jet speed u0 on the hole tone suppression for obstacle type D
(ri= 35.5 mm) when Lim= 50 mm: (a) u0= 6 m s−1, (b) u0= 8 m s−1, (c) u0= 10 m s−1,
(d) u0 = 12 m s−1.

h= 3 mm, and the tone suppression effect therefore become saturated. When type H
is used, the SP spectrum becomes broadband compared with the baseline hole tone,
but the peak around f0 remains unchanged when h = 5 mm. When h = 8 mm, the
magnitudes of the peaks at f0/2 and f0, which are approximately 15 dB lower than
the peak of the baseline hole tone, are almost the same. When we define an effective
obstacle as one that reduces the maximum PS of the baseline case by 10 dB, type
B with h = 8 mm, type D with h = 3 and 5 mm, and type H with h = 8 mm are
judged as effective when Lim = 50 mm and u0 = 10 mm. Common features in these
cases are the appearance of a peak at f0/2 and an increase in the PS of broadband
frequencies other than f0 and f0/2. They correspond to an interaction between the
corner vortex and the jet coming from the nozzle exit, which we call the main jet,
and the appearance of turbulence. The former is explained in § 5.4, and the latter is
understood from the visualization of flow structures shown later in figure 11.

Next, we study the effect of changing u0 on suppressing the hole tone for type D
with Lim = 50 mm. Figure 4 shows the measured SP spectra for u0 = 6, 8, 10 and
12 m s−1. The results of changing h are shown for each case. When h= 2 mm, the
PS for broadband frequencies other than f0 increase a little overall for all u0. The
peak at f0 is unaffected. When h > 3 mm, the original peak is remarkably reduced.
Peaks that are not observed in the baseline hole tone appear at low frequencies close
to f0/2 except for u0 = 12 m s−1. While the PS at these frequencies become the
most dominant, the tone is considerably reduced for all u0. Therefore, the obstacle
is effective in suppressing the tone, irrespective of the values of u0 considered here.
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FIGURE 5. Effective and ineffective obstacles in suppressing the hole tone when u0 =
10 m s−1. (a) Effective and ineffective obstacles when Lim= 50 mm. (b) Change between
effective cases and ineffective cases when Lim is varied (the size of the symbols is changed
to separate different series where they overlap.)

3.2. Overall effect of the obstacles on suppressing the hole tone when u0 = 10 m s−1

Following the above discussion on the characteristics of tone suppression by an
obstacle in terms of the SP spectrum, figure 5 shows the effect on suppressing the
hole tone for a wide range of system settings (ri,h,Lim) when u0=10 m s−1. The data
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the baseline case when Lim = 50 mm and u0 = 10 m s−1.

are summarized by the two parameters W/Lim and h. Figure 5(a) shows effective and
ineffective obstacles when Lim=50 mm and u0=10 m s−1. Here we use the definition
of an effective obstacle proposed in § 3.1 and draw a curve of the border between
the effective and ineffective obstacles. The effective region has a tongue-like shape
with the effective point of the minimum h∼ 2.5 mm around W/Lim= 0.2. Figure 5(b)
shows changes between effective cases and ineffective cases when Lim is varied for
u0 = 10 m s−1. We tested 22 obstacle sizes of ri = 33, 33.5, 40.5, 43 and 45.5 mm
for Lim of 50–90 mm. We call a trace of varying Lim on the plot between W/Lim and
h for each obstacle size a ‘series’. Within a series, changes between effective and
ineffective cases are observed definitely when the series crosses the border introduced
previously between the effective and ineffective cases, as confirmed by the series 2©,

3©, 6©, 7©, 8©, 15©, 18©, 19© and 20©. This evidence strongly supports the use of the
parameters W/Lim and h, and the validity of the curve separating the effective and
ineffective cases on the plot of the parameters. On the other hand, strictly speaking,
there are exceptions because the criterion of 10 dB is arbitrarily set. Peaks around
f0/2 do not become large as Lim increases in series 4©, and high peaks remain at f0
even if Lim increases in series 14© near the bottom of the effective region, although
the results are not shown here.

Figure 6 shows reductions in the overall SP level (OASPL) of the frequency range
below 2 kHz compared with the baseline case when Lim= 50 mm and u0= 10 m s−1.
Larger suppression effects approximately of 4–6 dB for h = 3–8 mm are observed
for 30.5 mm 6 ri 6 35.5 mm than for ri larger than 40.5 mm. Except for type A,
effects of tone suppression are observed. Generally, the reduction in the overall
sound pressure level increases as h increases. Also, the effects of increasing h when
h is small are larger than those when h is large as found from the comparison
of data around h = 2 and 5 mm. It might seem that the reduction of 4–6 dB
mentioned above is small. Because broadband components increase while the discrete,
i.e. peak, components are reduced, reductions in the OASPL appear to be modest.
However, because the noisy peak component is greatly reduced, sound quality changes
drastically.
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FIGURE 7. Effect of the obstacle height on the velocity profiles of the jet shear layers
when u0 = 10 m s−1 for obstacle type B with Lim = 50 mm where dr ≡ r − d0/2 and
urz≡√u2

r + u2
z . (a) Mean velocity profile urz and its half-uncertainties χ . (b) Profiles of

the r.m.s. of velocity fluctuation urz′′ and its half-uncertainties χ .

3.3. Effect of the system setting on the velocity profiles of jet shear layers

Figures 7 and 8 show the effect of changing h on the velocity profiles of the jet shear
layers and associated data uncertainties when u0 = 10 m s−1 and Lim = 50 mm for
types B and D. The profiles of the mean velocity and the root-mean-square (r.m.s.)
of the velocity fluctuations with the uncertainties are shown at z = 10, 20, 30 and
40 mm. Measurements are conducted three times to evaluate a velocity profile for each
obstacle size. We change h on two different paths in figure 5(a). One is a path for
W/Lim = 0.1 using type B with h = 2, 5 and 8 mm. The cases of h = 2 and 5 mm
lie in the ineffective region, while the case of h= 8 mm lies in the effective region.
The other is a path for W/Lim = 0.2 using type D with h= 2, 3 and 5 mm. The case
of h = 2 mm lies in the ineffective region, while the cases of h = 3 and 5 mm lie
in the effective region. Figures 7(a) and 8(a) have two abscissae. One is the time
average of

√
u2

r + u2
z , where ur and uz are the instantaneous velocity components in

the r and z directions, respectively. We denote the averaged velocity as urz. The other
is the maximum of half of the 90 % confidence intervals χ of urz among h= 2, 5 and
8 mm, i.e.

χ ≡ max
h∈(2,5,8)

{
tNmax−1

σ√
Nmax

}
. (3.1)
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FIGURE 8. Effect of the obstacle height on the velocity profiles of the jet shear layers
when u0=10 m s−1 for type D with Lim=50 mm where dr≡ r−d0/2 and urz≡√u2

r + u2
z .

(a) Mean velocity profile urz and its half-uncertainties χ . (b) Profiles of the r.m.s. of
velocity fluctuation urz′′ and its half-uncertainties χ .

Here, by assuming xi as a single experimental datum of urz

Nmax = 3, x≡ 1
Nmax

Nmax∑
i=1

xi, σ ≡
√√√√ 1

Nmax − 1

Nmax∑
i=1

(xi − x)2, (3.2a–c)

and tNmax−1 = 2.920 for Student’s t-distribution (Student 1908).
Similarly, figures 7(b) and 8(b) also have two abscissae. One is the r.m.s. of the

velocity fluctuations urz′′ ≡ urz − urz. The other is the maximum half of the 90 %
confidence intervals of urz′′ among h= 2, 5 and 8 mm evaluated similarly to the case
of urz and denoted also as χ . In figures 7 and 8, the ordinate is dr≡ r− (d0/2).

For type B with Lim = 50 mm, the effect of changing h is generally small except
for z = 40 mm, which is consistent with the fact that the jet shear layers are not
so much affected, and consequently, the path fully lies in the ineffective region.
However, for type D with Lim = 50 mm, large differences between h= 2 and 3 mm
are observed in profiles of both urz and urz′′, which is consistent with the fact that
h = 2 mm is ineffective and h = 3 mm is effective. The differences are evident not
only at z = 40 mm but also at z = 10 mm, which means that backflows from the
obstacle, which are also found in figure 11 shown later, strongly affect the nozzle
exit, where disturbances begin to grow in the jet shear layers, when h > 3 mm. The
results for h= 3 and 5 mm are almost the same, which is consistent with figure 3(c).
This fact means that a region near the interior corner of the obstacle determines the
strength of backflows.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

50
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.504


920 K. Matsuura and M. Nakano

12
10
8
6
4
2
0

dr
 (

m
m

)
(a)

(b)

–2
–4

12
10
8
6
4
2
0

dr
 (

m
m

)

–2
–4

2 6 10 2 6 10 2 6 10 2 6 100.4 0.8 1.2 0.4 0.8 1.2 0.4 0.8 1.2 0.4 0.8 1.2

0 1 0.4 0 1 0 10.40.2 0.2 0.40.2 0 1 0.40.2

FIGURE 9. Effect of the impingement length Lim on the velocity profiles of the jet shear
layers when u0 = 10 m s−1 for type D with h = 3 mm where dr ≡ r − d0/2 and urz ≡√

u2
r + u2

z . (a) Mean velocity profile urz and its half-uncertainties χ . (b) Profiles of the
r.m.s. of velocity fluctuation urz′′ and its half-uncertainties χ .

Figures 9 and 10 show the effect of changing Lim with fixed h on the velocity
profiles of the jet shear layers when u0 = 10 m s−1. Lim is varied on two different
paths. One path is (W, h) = (10 mm, 3 mm), i.e. type D, with Lim = 50, 60, 70, 80
and 90 mm corresponding to W/Lim = 0.20, 0.166, 0.142, 0.125 and 0.111. The path
corresponds to series 7© in figure 5(b). The first three cases are effective, and the
others are ineffective. The other path is (W, h) = (15 mm, 4 mm), i.e. type F, with
Lim = 50, 60, 70, 80 and 90 mm corresponding to W/Lim = 0.30, 0.250, 0.214, 0.187
and 0.166. The path corresponds to series 11© in the figure. This path lies fully in the
effective region.

When Lim = 50 and 60 mm for type D with h = 3 mm, urz and urz′′ for dr > 0
are non-zero, which means that backflows from the obstacle affect the nozzle exit.
As Lim increases, urz and urz′′ for dr > 0 approach zero at z = 10 and 20 mm.
Therefore, influences of the backflows from the obstacle on the nozzle exit vanish
as Lim increases, which is consistent with the fact that Lim = 80 and 90 mm belong
to the ineffective region. In the case of type F with h= 4 mm, urz and urz′′ do not
approach zero and the velocity profiles remain almost the same, which means that
backflows from the obstacle continue to affect the nozzle exit even if Lim increases.
This is because the inner diameter of type F is larger than that of type D, and
consequently backflows reach further upstream. This trend is consistent with the fact
that this case lies fully in the effective region.

Summarizing the above discussion, figures 7–10 show that the nozzle exit regions
are strongly affected by backflows from the obstacles in the effective cases. In
figure 5(a), we separated the obstacles into effective and ineffective based on the
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FIGURE 10. Effect of the impingement length on the velocity profiles of the jet shear
layers when u0 = 10 m s−1 for type F with h = 4 mm where dr ≡ r − d0/2 and urz ≡√

u2
r + u2

z . (a) Mean velocity profile urz and its half-uncertainties χ . (b) Profiles of the
r.m.s. of velocity fluctuation urz′′ and its half-uncertainties χ .

definition proposed in § 3.1. When we compare urz′′ at z = 10 mm in parts (b) of
figures 7–10, urz′′ at dr ∼ 2 mm, i.e. near the jet shear layers of the nozzle exit,
is larger than approximately 0.4 m s−1 in all the effective cases: thus urz′′, which
shows the influence of backflows, of 0.4 m s−1 appears to be another threshold for
the separation of obstacles.

3.4. Flow structures when the hole tone is successfully suppressed

Figure 11(a–f ) shows flow structures for various obstacle shapes when u0= 10 m s−1

and Lim= 50 mm. Schematic flow structures are shown in addition to the experimental
snapshots of the flow structures obtained with the laser-smoke method. Figures 11(a),
11(c) and 11(e) are ineffective cases, and 11(b), 11(d) and 11( f ) are effective cases. In
11(b), 11(d), 11(e) and 11( f ), we see vortical rotation and flow paths in the snapshots
as a motion blur due to a slow shutter. In the ineffective cases, we can see regular
organized vortices in the jet shear layers, which means that the regular feedback loop
is maintained. In the effective cases, highly turbulent flows eject from the inner side
of the obstacle, and then mix with and recursively disturb the jet from the nozzle at
upstream positions sufficiently sensitive to break regular organized vortices. This is
confirmed by the disordered state of the white mist. The turbulent backflows explain
the broadband distribution of the PS in figures 3 and 4. The influence of the backflows
is also confirmed both by the swelling of the velocity profiles near dr= 8 and 10 mm
and by the non-zero velocities for dr> 0 near the nozzle exit in figure 8.
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 11. Visualization of flow structures for various obstacle shapes when u0 =
10 m s−1 and Lim = 50 mm (upper: experimental snapshot, lower: schematic flow
structure). (a) Type A (ri= 25.5 mm), h= 5 mm (ineffective). (b) Type B (ri= 30.5 mm),
h = 8 mm (effective). (c) Type D (ri = 35.5 mm), h = 2 mm (ineffective). (d) Type D
(ri= 35.5 mm), h= 3 mm (effective). (e) Type H (ri= 45.5 mm), h= 5 mm (ineffective).
( f ) Type H (ri = 45.5 mm), h= 8 mm (effective).

We now re-examine figure 5(a) considering the flow structures mentioned above.
When W is small, vortices in the jet shear layers tend to collide with the obstacle.
The obstacle is ineffective because recirculation with backflows, which affects the jet
shear layers, is not generated. On the other hand, when W is large, vortices in the
jet shear layers collide with the hole edge. Because the momentum of fluid which
does not go through the end plate hole and proceeds in the radial direction becomes
too small to affect the jet shear layers, the obstacle is again ineffective. The range
of W in which the recirculation with backflows strongly affects the jet shear layers
is between the above two limits. The division of W by Lim includes two effects. One
is that the jets diverge as they go downstream, i.e. non-parallel effects, and the other
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Disorganization of a hole tone feedback loop by an obstacle 923

is that the influence of the recirculation with backflows becomes local near the end
plate as Lim increases. The value of h indicates the degree of blockage of the radially
flowing fluid.

4. Numerical analysis
In the previous section, we showed that the passive control method using the

axisymmetric obstacle we propose is effective in suppressing the hole tone, and
also clarified the effective combination of parameters, i.e. (W/Lim, h). In all the
effective cases, turbulent backflows affecting the shear layers of the main jet, and
the appearance of the subharmonic frequency of the baseline hole tone are observed.
In order to explain the mechanism which leads to these common features, and to
show the link between the features and tone suppression, we conduct a direct sound
computation. Details of the present numerical method are explained in Matsuura
& Nakano (2012). The governing equations are the unsteady three-dimensional fully
compressible Navier–Stokes equations in general coordinates (ξ , η, ζ ). The perfect gas
law closes the system of equations. Sutherland’s formula for viscosity is adopted and
a constant Prandtl number of Pr = 0.72 is assumed. The equations are solved using
the finite-difference method. Spatial derivatives that appear in the metrics, convective
and viscous terms are evaluated using the sixth-order tridiagonal compact scheme
(Lele 1992). Near boundaries, the fourth-order one-sided and classical Padé scheme is
used at the boundaries and one point internal to them. Time-accurate solutions to the
governing equations are obtained using the third-order explicit Runge–Kutta scheme.
The time increment is constant and set at 1t = 2.4 × 10−4Lim/c∞ in all flow fields.
The Courant–Friedrichs–Lewy (CFL) numbers of the present computations, which are
defined by the maximum sums of a contravariant velocity and the speed of sound
scaled by metrics as

CFL≡1t max
(
|U1| + c∞

√
ξxiξxi, |U2| + c∞

√
ηxiηxi, |U3| + c∞

√
ζxiζxi

)
, (4.1)

are around 0.4. Here, (x, y, z)= (x1, x2, x3) are Cartesian coordinates, Ui (i= 1, 2, 3)
are the contravariant velocities, ξi, ηi, ζi (i = x, y, z) are the metrics. In addition to
the above-mentioned spatial discretization and time integration, a tenth-order implicit
filtering (Gaitonde & Visbal 2000) is introduced to suppress numerical instabilities
that arise from central differencing in the compact scheme. The filter parameters that
appear in the left-hand side are set to be 0.33 for i = 2 and imax − 1, 0.492 for
2 < i < imax − 1. Near the boundaries, implicit filters of orders p = (4, 4, 6, 8, 10)
for i= (2, . . . , 6) and i= (imax− 1, . . . , imax− 5), are used. Here, i∈ (k, l), and indices
j, k, l respectively run in the circumferential θ , radial r and streamwise z directions
in the general coordinate system applied to the computational grid mentioned later.
Periodicity in the θ direction is treated strictly without employing a one-sided biased
scheme near the branch cut with regard to the derivative and filtering scheme. This O-
type topology has a singularity at the centreline. To circumvent this, primitive values,
circumferentially averaged at k= 2, are inserted into the primitive values at k= 1:

fj,1,l = 1
jmax − 1

jmax−1∑
i=1

fi,2,l, ∀(j, l) ∈ {1, . . . , jmax} × {1, . . . , lmax}. (4.2)

The present numerical method has been well validated for the prediction of transitional
and turbulent subsonic flows (Matsuura & Kato 2007; Matsuura & Nakano 2012).
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Nozzle exit wall
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to far boundary

End plate
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Obstacle
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Zone 1
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Inflow

r

z
Nozzle exit

FIGURE 12. Computational grid for θ = 0 rad. (Every fifth grid line in the r and z
directions is drawn.)

We choose the obstacle geometry of type D, i.e. ri= 35.5 mm, with h= 5 mm for
the computation as mentioned later in § 5. The impingement length Lim and the air-
jet velocity u0 are 50 mm and 10 m s−1, respectively. This computation assumed the
standard atmospheric conditions, i.e. a temperature of 20 ◦C and a pressure of 1 atm
as the ambient conditions. At 20 ◦C, u0= 10 m s−1 corresponds to a Reynolds number
Re=u0d0/ν=3.39×104 and a Mach number Ma=u0/c∞=0.029, where the speed of
sound c∞= 343 m s−1 and the kinematic viscosity ν= 1.51× 10−5 m2 s−1. Figure 12
shows an overview of the computational grid consisting of seven zones. We generate
cylindrical-coordinate grids (r, θ, z) of the O-type topology in each zone. The total
number of grid points is 9.07× 106. The nozzle exit corresponds to z= 0 mm. Exact
overlapping of five grid lines in the normal direction to an interface is used between
neighbouring zones. The z= 0 plane outside the nozzle in figure 12 is modelled as a
wall, which is consistent with a corresponding experimental system shown in figure 4
of Matsuura & Nakano (2011). The nozzle exit plate is removed in figures 15 and 17
for drawing clarity.

Mesh widths are made fine so as to capture jet shear layers accurately in the
r direction, and in the separation regions near the nozzle exit, the end plate hole
and the obstacle in the r and z directions. The maximum grid width 1max in the
z direction between the nozzle exit and the end plate is ∼1.00 mm. The minimum
grid width 1min/d0 is 4.9 × 10−4. Compared to the computational grids used in
previous computations for the baseline hole tone (Matsuura & Nakano 2011, 2012),
we only change the distribution of grid points near the obstacle.

The initial condition is an interpolated flow field onto the present grid of the
baseline hole tone where self-sustained oscillation occurs. Regarding the boundary
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conditions, the sponge layer method (Freund 1997) assuming inflow velocity
profiles consistent with experimental data is used near the nozzle inlet, i.e. Ωz,in =
[d0/51, d0/2] × [0, 2π) × [−d0/2.55, −d0/10.2]. In the baseline and obstacle cases,
shear layers near the nozzle exit are perturbed by inherently generated flows. To
avoid disrupting naturally oscillating structures, no excitation such as random forcing
is imposed at the inlet boundary. Although some fundamental convective instability
of round jets is well known (Michalke 1984), little is known at present about
the effects of inlet disturbances on the hole tone and they will be investigated
in the future. The regions Ωr,ex = [7.11d0, 41.7d0] × [0, 2π) × [0, 41.4d0] and
Ωz,ex = [d0/51, 41.7d0] × [0, 2π)× [13.6d0, 41.4d0] are also treated as sponge regions.
A time-averaged flow field obtained with a separate simulation is used as a reference
flow field. Near the far boundaries, grid stretching similar to the methodology of
Rai & Moin (1993) is used to accelerate the sponge layer method. We verify the
computational method with experimental data for this problem in § 5.

In § 5, flow regions responsible for strong sound production are evaluated with
the vortex sound theory developed by Howe (1975, 1980). The theory shows that
when an acoustic oscillation occurs in an inviscid, isentropic but rotational flow, then
instantaneous acoustic power Pac is generated in a volume V , which is given by

Pac =
∫

V
pacdV, pac ≡−ρ∞(ω× u) · uac, (4.3)

where pac is instantaneous acoustic power per unit volume, u is the instantaneous fluid
velocity, ω=∇× u is the vorticity, uac is the acoustic particle velocity, and ρ∞ is the
mean density of the fluid. The procedures to evaluate instantaneous acoustic power Pac
are described in Appendix B of Matsuura & Nakano (2012). We solve the Poisson
equation of the velocity potential φ, i.e. (B.3) of Matsuura & Nakano (2012), in a
domain with the same shape as the grid mentioned above, except that far boundaries
in the r and z directions are trimmed to r= 5.35d0 and z= 4.07d0. Here, we denote
as G1 the trimmed grid of 8.2M grid points. We use two additional grids, G0,G−1, to
compute φ. The grid G0 is generated from G1 by thinning out basically every two grid
lines in all the directions, and has approximately 1M grid points. The grid G−1 has
approximately 0.14M grid points and is generated from G0 by thinning out similarly.
We finally obtain φ and Pac on G0. To accelerate solving the Poisson equation on G0,
the same equation is iteratively solved first on G−1, and its converged solution is used
as an initial condition for solving φ iteratively on G0. In this study, we consider Pac
generated in the following volume V:

V ≡ {(r, θ, z); (r, θ, z) ∈ (V1 ∪ V2 ∪ V3)\V4} (4.4)

where

V1 ≡ [d0/51, 4.93d0] × [0, 2π)× [40 mm, 50 mm], (4.5)
V2 ≡ [d0/51, d0/2] × [0, 2π)× [50 mm, 60 mm], (4.6)
V3 ≡ [d0/51, 4.93d0] × [0, 2π)× [60 mm, 65 mm], (4.7)
V4 ≡ (ri, re)× [0, 2π)× (50− h mm, 50 mm]. (4.8)

A time-averaged flow field is necessary for evaluating uac. In this study, we use the
flow field averaged both for 9.46Lim/u∞ and in the θ direction. The adequacy of the
average time length is confirmed by comparing the flow field with that averaged for
15.1 Lim/u∞ in terms of the velocity profiles around jet shear layers.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

50
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.504


926 K. Matsuura and M. Nakano

5. Computational results
5.1. Evolution of flow quantities from the initial condition to an equilibrium state

under the passive control
Following the discussion about the effective region in figure 5(a) at the end of
§ 3.4, an intermediate value of W/Lim, e.g. 0.2, is typical for the obstacle effects.
We therefore select type D with Lim = 50 mm, which realizes W/Lim = 0.2, for the
analysis. We choose h to be 5 mm because the results become almost invariant
when h > 3 mm for this type. As found from figures 3(c) and 11(d), the measured
data of the selected case exhibit tone suppression with turbulent backflows and the
emergence of a new peak at f0/2, which are key features observed in common for
the effective cases. In this regard, the selected case is considered a representative one
for investigating the effective cases, i.e. the effective region in figure 5(a).

As mentioned in § 4, we started our computation by attaching the obstacle on
the end plate abruptly in a developed flow field of the baseline hole tone. Because
measurements are conducted sufficiently long after the obstacle is attached on the end
plate, we first discuss the computational results of a fully developed stage. For this
purpose we here identify a stage where flows are in equilibrium by considering the
time evolution of flow quantities from the initial condition. Although the flow fields
are turbulent and three-dimensional because of the obstacle, the relationships among
mass flow rates through the end plate hole, the radial velocities and streamwise
velocities may be explained by an axisymmetric model in an average sense, which is
also inferred from the existence of the most dominant peak at f0/2 in the SP spectrum.
Circumferentially averaged ur and uz are denoted 〈ur〉θ and 〈uz〉θ , respectively.

Figure 13 compares the time histories of the non-dimensional mass flow rates
through the end plate hole ṁ†

h, the circumferentially averaged radial velocities 〈ur〉θ
near the hole inlet (r, z) = (25.5 mm, 49.5 mm), the circumferentially averaged
streamwise velocities 〈uz〉θ at the hole inlet (r, z) = (25.2 mm, 50.5 mm), and the
number of circumferential grid points among jmax = 97 points, i.e. the histogram, at
(r, z) = (25.5 mm, 49.5 mm) and an instantaneous time t where pressure fluctuation
1p= p− p∞(p∞ = 101, 325 Pa) belongs to an interval (−80+ 4(m− 1),−80+ 4m]
characterized by m ∈ {1, . . . , 40}, i.e.

Nm(t)= #{ j| − 80+ 4(m− 1)<1pj(t)6−80+ 4m, 16 j6 97}, m= 1, . . . , 40. (5.1)

Non-dimensional mass flow rate ṁ†
h is defined by

ṁ†
h ≡

ṁh

π(d0/2)2ρ∞u0
, (5.2)

and the mass flow rates ṁh are evaluated as

ṁh ≡
∫
Ω

ρuzrdrdθ, Ω ≡ {(r, θ); (r, θ) ∈ [0, d0/2] × [0, 2π)}. (5.3a,b)

The abscissa t∗ is the time non-dimensionalized by Lim and c∞: t∗= 0 corresponds to
the initial condition, i.e. the time when the obstacle is attached abruptly to the end
plate in the flow field of the baseline hole tone determined previously. In the figure,
time histories for t∗ = 259–854 are omitted.

In figure 13, there are three stages of flow states. Stage A is a time period where
baseline hole tone oscillations still remain. Except for strong pressure propagation
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FIGURE 13. Comparisons of (a) the time histories of mass flow rates through the end
plate hole ṁ†

h, (b) circumferentially averaged radial velocities 〈ur〉θ at the inlet of the hole,
(c) cumferentially averaged streamwise velocities 〈uz〉θ at the inlet of the hole, (d) the
number of circumferential grid points where pressure fluctuation belongs to the interval
Nm(t), m= 1, 2, . . . , 40, defined by (5.1).

immediately after the obstacle is attached on the end plate, developed vortices in
the jet shear layers do not change rapidly, and flow structures approaching the hole
therefore do not change for a while in the stage. All the quantities are clearly
sinusoidal until around t∗ = 120, and become disordered thereafter, which means that
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FIGURE 14. Comparisons of SP spectra between the computations and experiments both
for the baseline and obstacle cases when u0 = 10 m s−1 and Lim = 50 mm at (r, z) =
(1.80d0, Lim/2). Type D with h= 5 mm is used in the obstacle case. The results for the
baseline case are reproduced from Matsuura & Nakano (2012).

there is deviation from the original state with the oscillation at a frequency f0 due
to the obstacle. Stage C is a time period where flow states reach a new equilibrium,
and corresponds to the measurements. Turbulent oscillations without apparent regular
variation, which are different from those in Stage A, are observed. As explained later
in figure 17, the flow fields of the baseline hole tone with periodic vortex rings are
broken and fine turbulent structures are generated in this stage. The periods of the
dominant variation of ṁ†

h, ur and uz become longer than those in Stage A except for
small and rapid variation on the long and slow variation. The long and slow variation
results from interaction between large recirculation regions formed near the obstacle
corner and the main jet, which is mentioned later regarding figure 16. Stage B is the
intermediate time period between Stages A and C.

5.2. Validation of computation for the new equilibrium state
Here, we examine the validity of the present computations by comparing SP spectra
and qualitative behaviour of backflows between the computations and experiments.

First, figure 14 compares SP spectra between the computations and experiments
when u0 = 10 m s−1. The comparisons are made for two cases: the baseline hole
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FIGURE 15. Behaviour of massless particles seeded from the neighbourhood of the end
plate hole edge (type D with h = 5 mm, Lim = 50 mm): (a) t∗ = 855, (b) t∗ = 912,
(c) t∗ = 1028, (d) t∗ = 1143.

tone, and the obstacle case of type D with h= 5 mm when Lim= 50 mm. To estimate
the SP spectra in the computations, we use the time series data of pressure variation
at (r, z) = (1.80d0, Lim/2) during the time periods of 478 Lim/c∞ and 962 Lim/c∞
for the baseline and obstacle cases, respectively. For the latter case the time series
data are collected for t∗ = 446–1408 which is well after Stage B. Regarding the
experiments, the SP spectrum has a narrowband distribution in the baseline case and
the most dominant peak corresponds to the frequency of the baseline hole tone. In the
obstacle case, the original peak disappears completely and the SP spectrum becomes
broadband. Meanwhile, a new peak lower than the original peak emerges around f0/2.
The present computations successfully predict the narrowband distribution for the
baseline case, the broadband distribution without the original peak and the emergence
of the low peak around f0/2 in the obstacle case from a qualitative viewpoint. For the
baseline case, the most dominant peak frequency and sound level of the hole tone are
330 Hz and 86.3 dB in the computation and 320 Hz and 78.1 dB in the experiment.
For the obstacle case, these values are 143 Hz and 70.2 dB in the computation
and 167.5 Hz and 63.5 dB in the experiment. Our computations for both cases also
reasonably predict the frequencies and PS obtained by experiments from a quantitative
viewpoint.
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FIGURE 16. Time variation of circumferentially averaged pressure fluctuation (contours)
and velocity fields (arrows) near the obstacle due to shear layer impingement on the hole
edge for type D with h= 5 mm when Lim = 50 mm. The contours lines are drawn with
32 levels in the range [−30 Pa, 30 Pa]. Solid lines: positive region, dashed lines: negative
region. (a) t∗= 1135 (τ = 0), (b) t∗= 1143 (τ = Ts/4), (c) t∗= 1152 (τ = 2Ts/4), (d) t∗=
1163 (τ = 3Ts/4), (e) t∗ = 1173 (τ = 4Ts/4).
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One might think that the above frequency difference of 24.5 Hz for the obstacle
case is too big to be considered an agreement between the computation and
experiment. As found from figure 4(b,c), flow structures do not change qualitatively.
Based on eight and 15 previous samples for u0 = 8 and 10 m s−1, respectively, the
ensemble averages of the most dominant peak frequencies are 124.4 and 161.3 Hz
for u0 = 8 and 10 m s−1, respectively. The interpolated frequency at u0 = 9.5 m s−1,
which is about the lowest value we regard as 10 m s−1 as mentioned previously in
§ 2, is 152.0 Hz. If we subtract 10 Hz, which is moderate uncertainty, from the above
frequency, the final value becomes 142.0 Hz. Therefore, the peak frequency 143 Hz
obtained by the computation makes sense. One might also think the sound levels
are too different between the computation and experiment. However, we consider the
observed differences between them to be quite natural. For the obstacle case, e.g., 70
and 63 dB correspond to 0.0632 and 0.0282 Pa, respectively. The present computation
is based on a fully compressible methodology and handles absolute pressure, which
means that we are discussing the 8th digit from the leading one. In addition to the
experimental uncertainties mentioned in § 2, the direct sound computation is nothing
but an approximation. Therefore, agreement between the computation and experiment
is quite successful.

According to the above discussion, the present computation well reproduces the
change from the original state to the new equilibrium state under passive control.

Secondly, we show that, in the present computation, highly turbulent backflows
are ejected from the inner side of the obstacle, which is a key flow feature when
the baseline hole tone is successfully suppressed, as explained in § 3.4 related to
figure 5(a). Figure 15 shows the behaviour of massless particles seeded from two
regions Ω1 and Ω2 near the hole during t∗= 855–1143. Here, Ω1 and Ω2 are defined
respectively as

Ω1 ≡
{
(r, θ, z); 26.3 mm 6 r 6 30.1 mm,− π

12
6 θ 6

π

12
, z= 49.1 mm

}
, (5.4)

Ω2 ≡
{
(r, θ, z); 26.3 mm 6 r 6 30.1 mm, 11

12π6 θ 6 13
12π, z= 49.1 mm

}
. (5.5)

Some particles radially proceeding along the end plate near the hole are blocked by
the obstacle and proceed upstream as backflows outside of the main jet, as shown
later in detail in figure 16. Eventually they reach the nozzle exit. Some particles are
incorporated in the main jet, and others disperse in the radial direction along the
nozzle exit plane. The highly turbulent backflows disturb the shear layers of the main
jet from the immediate neighborhood of the nozzle exit, and prevent the formation and
growth of clearly organized vortices in the shear layers leading to the disorganization
of a feedback loop of the baseline hole tone as mentioned below in § 5.3. Because the
components of the present system, i.e. the nozzle, hole and obstacle, are axisymmetric,
it might be thought that nearly axisymmetric flow structures develop under passive
control, similar to the case for the baseline hole tone. However, because asymmetry
grows rapidly after the impingement of the vortex rings on the end plate as shown
below in figure 17(a), backflows from the obstacle are turbulent and asymmetric.

Figure 16 shows the time variation of pressure fluctuation 1p and velocity fields
near the obstacle during t∗ = 1135–1173, which is considered to be a typical
period corresponding to the frequency of approximately f0/2. The selected period
is shown in figure 13 and corresponds to 1/Ts ∼ f0/2∼ 176 Hz. The flow fields are
circumferentially averaged, and regions of 1p> 0 are shown by solid lines and those
of 1p < 0 are shown by dashed lines. As seen in figure 16(a,b), stable and large
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FIGURE 17. Comparison of vortical structures between (a) the baseline case (Matsuura &
Nakano 2012) and (b) the obstacle case (type D with h= 5 mm). Vortices are visualized
by the isosurfaces of the second invariant of the velocity gradient tensor Q† = 14.5 (the
baseline case) and 58 (the obstacle case) when u0 = 10 m s−1 and Lim = 50 mm.

recirculation regions, marked ‘A’, exist near the obstacle corner at τ = 0 and Ts/4.
At these times, ur at (r, z)= (25.5 mm, 49.5 mm) is decreasing as seen in figure 13,
owing to the velocity distribution in the shear layer of the main jet. At τ = 2Ts/4
(figure 16c), a low pressure region marked ‘B’ in the shear layer of the main jet
approaches the hole edge. At τ = 3Ts/4 (figure 16d), a pairing of ‘A’ and ‘B’ occurs
and creates a large vortex marked ‘AB’; ur near (r, z) = (25.5 mm, 49.5 mm) then
becomes positive, and much fluid, which is converted to backflows, enters the corner.
At τ = 4Ts/4 (figure 16e), the low pressure region ‘B’ separates from the large
vortex ‘AB’ and enters the hole, which makes the flow field similar to that at τ = 0.
The existence of the corner vortex is consistent with the experimental observation
mentioned in § 3.4. From the results, we may safely state that our computations
correctly reproduce the physics of the present passive control of the hole tone.
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5.3. Continuous disorganization of vortex structures by an obstacle
Figure 17 compares vortical structures of the baseline case and obstacle case D.
The vortices are visualized by the isosurfaces of the second invariant of the velocity
gradient tensor Q† = 14.5 for the baseline case (Matsuura & Nakano 2012) and 58
for the obstacle case. Here, Q† is defined as

Q† = 1
2(−S†

ijS
†
ji +Ω†

ijΩ
†
ij), (5.6)

where S†
ij is the rate of strain tensor and Ω†

ij is the vorticity tensor. Here Q†, S†
ij, Ω

†
ij

are non-dimensionalized by u0 and Lim. In the baseline case, vortex rings are formed
in the jet shear layers with the streamwise period corresponding to f0. However,
axisymmetric uniformity, which is responsible for f0 in the baseline case, is apparently
lost in the obstacle case, large-scale vortices disappear and fully three-dimensional
vortices are generated from the immediate neighbourhood of the nozzle exit. The
highly turbulent flows are maintained by the recirculation that results when the
three-dimensional vortices in the jet shear layers convect downstream, interact with
the obstacle and recursively disturb the jet flow from the nozzle exit by the backflows
shown in figure 15.

Figure 18 shows space–time plots, i.e. the time evolution of the pressure fluctuation
1p distribution at r= 4.7, 20.2, 42.0 and 94.6 mm. Here, r= 4.7 mm corresponds to
the neighbourhood of the centreline, r = 20.2 mm corresponds to the jet shear layer,
and r= 42.0 and 94.6 mm correspond to the outside of the obstacle. First, we focus
on Stage A. The space–time distribution in this stage is explained in detail in § 4.2
of Matsuura & Nakano (2012). At r= 4.7 mm, high and low pressure regions appear
periodically in time, which corresponds to periodic propagation of pressure waves.
The upstream and downstream sides of the end plate hole have opposite sign of the
pressure as explained in the axisymmetric throttling mechanism (Matsuura & Nakano
2012). At r = 20.2 mm, a similar periodic pressure distribution appears close to the
nozzle exit, which means that the region near the nozzle exit at this radial position
corresponds to the inside of the jet, and the growth of the vortices in the shear layer is
negligible. Outside the region, high and low pressure regions extend to the upper right,
which means that shear layer vortices develop and convect downstream. At r = 42.0
and 94.6 mm, time-periodic high and low pressure regions uniform in the z direction
appear upstream and downstream of the end plate. In Stage C, pressure variation is
disorganized at r= 4.7 mm. At r= 20.2 mm high and low pressure regions extending
to the upper right start from the immediate neighbourhood of the nozzle exit, which
means that vortices convect downstream from the immediate neighbourhood of the
nozzle exit, where the influence of regularly passing pressure waves is much more
dominant in the baseline case than the influence of vortices. The vortex convection
matches with the computational observation of incorporation of massless particles in
the main jet mentioned in § 5.2. At r= 42.0 mm, apparent periodicity is lost and the
magnitude of the pressure variation is also reduced.

As mentioned above, turbulent backflows from the inner side of the obstacle affect
the shear layer growth of the main jet, and disorganize the shear layer. To show the
magnitude of disturbances affecting the nozzle exit, the time histories of ur, uz and
1p near the nozzle exit, i.e. (r, z) = (25.5 mm, 0.493 mm), are shown in figure 19.
In the baseline case, the typical differences between the maximum and minimum are
0.015 m s−1, 0.019 m s−1 and 7.28 Pa for ur, uz and 1p, respectively within the time
range shown in figure 17 of Matsuura & Nakano (2012). However, in the obstacle
case, the differences between the maximum and minimum within t∗ = 854.6–1372.3
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FIGURE 18. Space–time plots of pressure fluctuation 1p at: (a) r = 4.7 mm (near the
centreline); (b) r = 20.2 mm (near the shear layer of the main jet); (c) r = 42.0 mm
(outside of the obstacle, close to the centreline); (d) r= 94.6 mm (outside of the obstacle,
far from the centreline). z= 0: nozzle exit.

are 1.18 m s−1, 1.22 m s−1 and 5.43 Pa, which are two orders of magnitude larger
for ur and uz, and the same magnitude for 1p. Therefore, much larger disturbances
affect the nozzle exit in the obstacle case than in the baseline case.

To show that the present strategy of disorganizing the feedback loop by the obstacle
leads to tone suppression, we study the effect of the obstacle on instantaneous acoustic
power using the vortex sound theory developed by Howe (1975, 1980). Pac is defined
as the volume integral of pac, and Pac therefore becomes large only when large pac

ranges widely in the integration volume V as found from (4.3). For the present
purpose, we analyse the period of approximately f0/2 which is selected in § 5.2 for
the obstacle case and compare the results with those of the baseline case. Pac is
evaluated at t = nTf /6 (n = 0, 1, . . . , 6) and t = nTs/6 (n = 0, 1, . . . , 6) for the
baseline and obstacle cases, respectively. Figure 20 shows the spatial contribution
〈pac〉θ to Pac around the hole at t = Tf /6 and 2Tf /6 in the baseline case and at
t= 2Ts/6 and 3Ts/6 in the obstacle case. The selected times correspond to the times
when Pac becomes maximal. Here, 〈pac〉θ is defined as the average of pac in the
θ direction. In the baseline case, two high 〈pac〉θ regions are observed, which was
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FIGURE 19. Time histories of ur, uz and 1p at (r, z)= (25.5 mm, 0.493 mm).

mentioned previously in the introduction. The highest 〈pac〉θ region coincides with
the outer edge of the separation region, and the second highest 〈pac〉θ region is just
on the upstream side of the end plate near the hole edge. On the other hand, in the
obstacle case, high 〈pac〉θ regions are observed only near the upstream edge inside
the hole, which corresponds to the outer edge of a separation region also in this case
as shown by 〈uz〉θ < 0 in figure 13. Compared with the baseline case, the extent of
high 〈pac〉θ regions is much reduced and localized in the obstacle case corresponding
to the appearance of the fine vortical structures mentioned above. Because Pac is an
integrated value it is much reduced in the obstacle case.

When we take into consideration the fact that high 〈pac〉θ regions are observed
near the upstream edge inside the hole both in the baseline and obstacle cases, it is
concluded that Pac integrated around the region mainly contributes to the discrete, i.e.
f0 and/or f0/2 peak, tones. So, the reduction in Pac mentioned above corresponds to
the elimination of the f0 peak in the obstacle case.

5.4. Transition from the state of the baseline hole tone to the suppressed state
So far, we have exclusively focused on the equilibrium state, i.e. Stage C, where the
baseline hole tone phenomena are continuously suppressed by the obstacle. Although
the evidently organized structures observed in the baseline case disappear in the
obstacle case, a weak feedback loop is sustained even in the disorganized state as
inferred from the maximum peak at f0/2 in figure 14. In this subsection, we explain
the initial emergence of the subharmonic frequency in the transient stage, i.e. Stage B.
The origin of the subharmonic frequency is not obvious from the equilibrium state
because memory of the transient process is lost in the state and the flow structures
of the frequency develop as the result of the stability of the jet.

The baseline flow that we use as the initial condition in the present computation
already involves acoustic back-reaction, which means that the acoustic motion
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FIGURE 20. Spatial contribution 〈pac〉θ to Pac around the hole when u0 = 10 mm and
Lim = 50 mm. (a) Baseline case (Matsuura & Nakano 2012): (i) t = Tf /6, (ii) t = 2Tf /6.
(b) Obstacle case (type D with h= 5 mm): (i) t= 2Ts/6, (ii) t= 3Ts/6.

determines the flow features. In principle the flow could develop in a very different
way in the absence of the acoustic back-reaction with the obstacle. So, the transition,
i.e. Stage B, might be thought to be just an artifact of the numerical procedure.
However, acoustic motion is very fast when compared to the characteristic speed of
the backflow generated in the presence of the obstacle. Therefore, this fact justifies
the present computation in which the initial state can develop as in the baseline case
and then be disorganized as the backflow contaminates the initial shear layer.

Figure 21 shows the time variation of pressure fluctuation 1p and velocity fields
at θ = 0 rad for t∗ = 100–180. During t∗ = 100–120 organized vortices periodically
aligned in the jet shear layers impinge on the hole edge. Recirculation near the
interior corner of the obstacle is immature because no regions of very low pressure
are observed. During t∗ = 130–140 a vortex in the jet shear layer enters the corner
region. When the recirculation region near the corner develops and becomes strong, it
begins to interact with the shear layers of the main jet, and the corner vortex begins
to deform the shear layers around the hole edge as seen from the interaction of the
vortices marked ‘A’ and ‘B’ in figure 21(e, f ). Eventually, there is a vortex pairing as
seen from the pairing of vortices A and C in figure 21(g–i). It is well established that
a vortex pairing produces a subharmonic frequency (Ho & Huerre 1984). According
to our past studies (Matsuura & Nakano 2012) and figure 13, the variation in mass
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FIGURE 21. Time variation in pressure fluctuation 1p and velocity fields at θ = 0 rad
during the transition from the state of the baseline hole tone to the suppressed state for
obstacle type D with h= 5 mm when u0 = 10 mm and Lim = 50 mm; the contours lines
are drawn with 32 levels in the range [−30 Pa, 30 Pa]; solid lines: positive region, dashed
lines: negative region. (a) t∗ = 100, (b) t∗ = 110, (c) t∗ = 120, (d) t∗ = 130, (e) t∗ = 140,
( f ) t∗ = 150, (g) t∗ = 161, (h) t∗ = 171, (i) t∗ = 180.

flow rates through the hole and global pressure propagation correspond to vortex
impingement on the hole edge. Therefore, the modulation of the shear layers of the
main jet by the vortex pairing accordingly changes the mass flow rates through the
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hole, velocity fields near the hole and pressure fluctuation as found in figure 13. As
the result of the pairing, a large corner vortex, which is also confirmed from the
empirical eigenfunctions shown later in figure 23, develops and continues to interact
with the main jet thereafter as explained in § 5.2.

5.5. Proper orthogonal decomposition analysis for dominant structures in the
equilibrium state

As mentioned previously, there is weak feedback with peak frequency of f0/2 even
in the disorganized state under equilibrium. Meanwhile, as found in § 5.3, the region
of high contribution to Pac, which is necessary for the feedback, is around the outer
edge of the separated region near the hole edge, and is dominantly affected by the
impinging vortices on the hole edge. In order to clarify the flow structure of the vortex
impingement submerged in the disorganized flows, i.e. the fundamental flow structure
that constitutes the stable states in which sound is continuously suppressed, we extract
dominant unsteady behaviours, which are mutually independent, near the hole edge in
the equilibrium state by a proper orthogonal decomposition (POD) analysis.

The method used in this study is Sirovich’s snapshot POD method (Sirovich
& Rodriguez 1987). By this method, the whole pressure fluctuation field on
Ωall ≡

⋃Nd
k=1 Ωk is orthogonally decomposed according to M instantaneous snapshots

of the whole flow field. Here, Ωk, k= 1, . . . ,Nd corresponds to each zone mentioned
in § 4, and Nd is the total number of zones, i.e. Nd= 7. In the method, the fluctuation
p′(x, t) = p(x, t) − p(x) is expanded by a set of eigenfunctions {φi(x)}Mi=1, which are
also called ‘modes’, and the corresponding coefficients {ai(x)}Mi=1 as

p′(x, t)∼ p′M(x, t)≡
M∑

i=1

ai(t)φi(x), (t, x) ∈ I ×Ωall. (5.7)

Here, p(x) is the time-averaged pressure field; p(x), p′(x, ·), p′M(x, ·) and φi(x) are all
Nall-dimensional vectors of positions with a single coordinate. I is a set of times when
snapshots are sampled. Nall is the total number of grid points in Ωall, i.e.

Nall ≡
Nd∑

k=1

Nk. (5.8)

Here, Nk is the number of grid points in Ωk. Strictly speaking, there is a duplication
of elements in p′(x, ·) because ∃i, j ∈ {1, . . . , Nd} of i 6= j, Ωi ∩ Ωj 6= φ. However,
the measures of Ωi ∩ Ωj for such i, j are very small compared with those of the
zones, and the duplication is therefore considered to be negligible in these analyses.
As discussed later on, the eigenfunctions {φi(x)}Mi=1 and the corresponding coefficients
{ai(x)}Mi=1 are successfully evaluated by this treatment. Two cases are considered where
the snapshots are collected every 60001t in case 1 and 90001t in case 2 to investigate
the effect of the time resolution of data employed for the POD analysis on eigenvalues,
eigenfunctions and POD mode coefficients. M is 240 in both cases.

In this study, we consider the top two modes. As the result of the analysis, the most
dominant, i.e. first mode, occupies nearly 10 % of the total energy and the second
dominant mode occupies 5–7 %. Figure 22 shows the time histories of the coefficients
of the first and second POD modes in both cases, and circumferentially averaged
pressure fluctuation 1p at (r, z) = (25.5 mm, 49.5 mm). Only slight shifts between
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FIGURE 22. Time histories of the coefficients of the first and second POD modes,
and circumferentially averaged pressure fluctuation 1p at (r, z) = (25.5 mm, 49.5 mm).
Snapshots are collected every 60001t for case 1 and every 90001t for case 2. M is 240
for both cases.
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FIGURE 23. First and second empirical eigenfunctions (case 1). The contours lines
are drawn with 17 levels in the range [−0.0004, 0.0004]. The eigenfunctions are
circumferentially averaged. Solid lines: positive region, dashed lines: negative region.
(a) First mode. (b) Second mode.

the cases are observed. Figure 23 shows the first and second empirical eigenfunctions
in case 1. The eigenfunctions are circumferentially averaged. Although not shown here,
we have confirmed that differences in the first and second eigenfunctions between
cases 1 and 2 are negligible. Regarding the first mode, there are positive and negative
regions ‘A’ and ‘B’ upstream of the end plate, and positive region ‘C’ inside the hole
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in both cases. Regarding the second mode, there are negative, positive and negative
regions ‘D’, ‘E’ and ‘F’ upstream of the end plate.

As in figure 17, axisymmetric vortical structures observed in the baseline case
break up into fine eddies in the obstacle case. However, the convection of high
and low pressure regions periodically aligned in the streamwise direction is still a
dominant motion in the obstacle case. In figure 22, the phase of the coefficient of
the first POD mode appears to be delayed by π/2 compared with 1p. The phase
of the coefficient of the second POD mode is almost the opposite to 1p. There is
order in the pressure distribution within each eigenfunction and the emergence of
the eigenfunction when 1p is decomposed, which is common to the baseline hole
tone discussed in § 5 of Matsuura & Nakano (2012). In their paper, the axisymmetric
throttling mechanism linking mass flow rates through the hole, vortex impingement
and global pressure propagation was proposed. The mass flow rate through the
hole varies owing to a change in the direction of velocity vectors at the hole inlet
because of the impingement of jet shear layers accompanying the variation in velocity
vectors in the streamwise direction. At the same time, pressure waves are generated
at the outer edge of the separation region near the upstream edge of the hole and
on the upstream side of the end plate near the hole edge. When we take into account
the eigenfunctions mentioned above, the spatial contribution 〈pac〉θ to Pac around the
hole shown in figure 20 and the variation in the velocity vectors accompanying the
variation in mass flow rates through the hole shown in figure 13, the axisymmetric
throttling mechanism still holds even in the obstacle case.

6. Conclusions

We have investigated the disorganization of the feedback loop of the hole tone
produced when a jet, issued from a circular nozzle or hole in a plate, goes through a
similar hole in a downstream end plate. We proposed a new passive control method for
suppressing the tone with an axisymmetric obstacle on the end plate. We found that
the effect of the obstacle is well described by the combination (W/Lim, h) where W is
the distance from the edge of the end plate hole to the inner wall of the obstacle, Lim

is the impingement length and h is the height of the obstacle. The effective region
has a tongue-like shape with the effective point of minimum h ∼ 2.5 mm around
W/Lim = 0.2. The experiments showed that common features in the cases where the
hole tone is successfully suppressed are turbulent backflows that are ejected from
the inner side of the obstacle and the emergence of a new peak at the subharmonic
frequency of the baseline hole tone. We performed a direct sound computation for
the obstacle with inner diameter of 35.5 mm and h = 5 mm, where axisymmetric
uniformity observed in the baseline case is broken almost completely in the obstacle
case. The destruction of the original large-scale vortices and the disorganization of
the feedback loop are maintained by the process in which three-dimensional vortices
in the jet shear layers convect downstream, interact with the obstacle and recursively
disturb the jet flow from the nozzle exit, which prevents the formation and growth
of clearly organized vortices in the shear layer of the main jet. We studied the
effect of the obstacle on the instantaneous acoustic power using Howe’s vortex sound
theory. While regions near the upstream edge inside the end plate hole, which is the
largest sound source for the peak tone of the baseline, are responsible for producing
sound also in the obstacle case, the acoustic power is much lower than that in the
baseline case owing to the disorganized state. The emergence of the new peak at
the subharmonic frequency was shown to begin as the result of pairing between the
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vortices in the shear layer of the main jet and the corner vortices. By integrating the
results of the snapshot POD, Howe’s vortex sound theory, time histories of mass flow
rates through the end plate and the radial and streamwise velocities at the inlet of
the hole, it was shown that the axisymmetric throttling mechanism still holds even in
the obstacle case.
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