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The interaction of radio-frequency (RF) waves with edge turbulence modifies the incident
wave spectrum, and can significantly affect RF heating and current drive in tokamaks.
Previous lower hybrid (LH) scattering models have either used the weak-turbulence
approximation, or treated more realistic, filamentary turbulence in the ray tracing limit.
In this work, a new model is introduced which retains full-wave effects of RF scattering
in filamentary turbulence. First, a Mie-scattering technique models the interaction of an
incident wave with a single Gaussian filament. Next, an effective differential scattering
width is derived for a statistical ensemble of filaments. Lastly, a Markov chain solves for
the transmitted wave spectrum in slab geometry. This model is applied to LH launching
for current drive. The resulting wave spectrum is asymmetrically broadened in angular
wavenumber space. This asymmetry is not accounted for in previous LH scattering
models. The modified wave spectrum is coupled to a ray tracing/Fokker–Planck solver
(GENRAY/CQL3D) to study its impact on current drive. The resulting current profile is
greatly altered, and there is significant increase in the on-axis current and decrease in
the off-axis peaks. This is attributed to a portion of the modified wave spectrum that is
strongly dampened on-axis during the first pass.

Key words: fusion plasma, plasma simulation, plasma waves

1. Introduction

Before an external radio-frequency (RF) wave can be dampened in the core plasma
of a magnetic confinement device, it must first propagate through the highly turbulent
scrape-off layer (SOL) region. SOL turbulence comprises dense, coherent structures
called blobs/filaments (Zweben et al. 2002; Kirk et al. 2006) that can significantly
modify the incident wave spectrum. Scattering from filaments leads to refraction of the
intended wave path and broadening of the incident wave spectrum, which in turn can
cause lower efficiency in the intended function of the wave. For example, simulations
predict significant power loss through filament-assisted mode conversion for launched
ion cyclotron waves (Tierens, Zhang & Myra 2020b). Electron cyclotron beams can be
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broadened in the presence of SOL turbulence, which leads to ineffective targeting of
neo-classical tearing modes (Tsironis et al. 2009). In the case of driving current using
lower hybrid (LH) waves, SOL scattering is a promising explanation for the spectral gap
problem and current drive density limit.

Measurements on Alcator C-Mod (Mumgaard 2015), EAST (Ding et al. 2018) and Tore
Supra (Peysson et al. 2000) indicate self-similar, on-axis peaked LH current profiles. Ray
tracing/Fokker–Planck simulations predict off-axis peaks (Mumgaard 2015), which are
inconsistent with these measurements. In addition, these simulated profiles are sensitive
to plasma and wave launch parameters, unlike experiment. Lastly, lower hybrid current
drive (LHCD) suffers from an anomalous density limit, beyond which current drive
(CD) efficiency dramatically falls (Wallace et al. 2010). Meanwhile, SOL turbulence
increases with Greenwald density (Cziegler et al. 2010). Raising the Ohmic current,
and therefore decreasing Greenwald density and shrinking the SOL width, is shown to
increase the LHCD efficiency at high densities in C-Mod (Baek et al. 2018). These
considerations suggest there are important spectral broadening effects, i.e. scattering
from SOL turbulence, unaccounted for in the standard ray tracing/Fokker–Planck
model.

It should be noted that alternate spectral broadening mechanisms exist. These include
full-wave effects in the core like interference and focusing, and edge mechanisms such
as parametric decay instabilities (PDIs) (Porkolab 1977). The capability to run full-wave
simulations of LHCD is fairly recent (Wright et al. 2009; Shiraiwa et al. 2010), and it is not
yet clear whether it provides a better match to experiment than ray tracing/Fokker–Planck
models. PDI is a strong candidate for explaining the current drive density limit (Cesario
et al. 2014; Baek et al. 2015). However, there is no clear indication that PDI significantly
modifies the wave spectrum in low-density discharges (Baek et al. 2015). Note that the
parallel wave vector up-shift from PDI and the perpendicular wave vector rotation from
scattering may both be required to bridge the LH spectral gap (Biswas et al. 2020).
(The terms ‘perpendicular/parallel’ are used in relation to the local background magnetic
field.)

Early attempts to model LH wave scattering in the SOL treat the turbulence as
incoherent drift-wave-like density fluctuations (Bellan & Wong 1978; Bonoli & Ott 1982;
Andrews & Perkins 1983). This results in a diffusive process leading to the angular
broadening of the perpendicular wave vector component k⊥. While these models can
significantly broaden the incident wave spectrum, they have been unable to explain
experimental measurements at either low or high densities (Peysson et al. 2011; Bertelli
et al. 2013). A recent study models LH scattering from coherent SOL filaments with
ray tracing (Biswas et al. 2020). This results in an increased angle-broadening effect
compared with previous models, which in turn leads to a relatively better match with
experimental current drive measurement and reduced sensitivity to simulation parameters.
Another recent study using full-wave simulations predict a large parasitic loss of LH
power in the presence of SOL filaments (Lau et al. 2020). This is attributed to significant
partial reflection and side scattering. In ray tracing, partial reflection is neglected and side
scattering is likely underestimated.

These results motivate a closer study of wave scattering from filaments using a full-wave
treatment. Unlike ray tracing, which only accounts for refraction and total reflection, a
full-wave model also retains the physical optics effects of interference, diffraction and
focusing. In addition, full-wave models can account for asymmetric scattering, which
results in the rotation of k⊥ in one preferential direction. Notably, this effect is ignored
in ray tracing and other wave-kinetic models for LH wave scattering. This is discussed
further in § 7.2.
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In this paper, a hybrid method is introduced to efficiently calculate the full-wave effects
of RF scattering through a slab layer composed of filaments. First, the scattered EM wave
is calculated for an incident wave interacting with a single filament, which is modelled
as an infinitely long cylinder. This problem has a semi-analytic solution, and can be
very efficiently computed relative to numeric full-wave solvers. Previous implementations
(Myra & D’Ippolito 2010; Ram & Hizanidis 2016) of this semi-analytic scattering (SAS)
model in a plasma-physics context were restricted to ‘flat-top’ (homogeneous) filaments.
This model is generalized to filaments with radially varying density profiles, which
better mimic experimentally relevant filaments. Next, a scattering width (analogous to
a scattering cross-section) is calculated from the scattered wave solution. Third, this
process is repeated multiple times, for different filament parameters, until a statistically
averaged ‘effective’ scattering width is produced. Lastly, this effective scattering width
is used to calculate the cumulative effect of multiple scattering events for an RF wave
incident on a turbulent slab. This is identical to solving the radiative transfer equation,
for which many techniques exist from the fields of optics and neutronics. The present
study uses the absorbing Markov chain technique (Esposito & House 1978) to compute
the final transmitted and reflected wave spectrum. This workflow is henceforth called the
semi-analytic scattering Markov chain (SAS-MC) model.

The SAS-MC model can be applied to any frequency range to study RF scattering in
the SOL because it is derived using the fully electromagnetic cold dispersion relation.
This paper focuses on applying the model to LH waves. Assuming certain properties
about the SOL geometry and turbulence, a modified wave spectrum is calculated for LH
launching in a low-density Alcator C-Mod discharge. This wave spectrum is coupled to the
ray tracing/Fokker–Planck solver GENRAY (Smirnov & Harvey 2001)/CQL3D (Harvey
& McCoy 1992) to determine its impact on current drive. The result is a significantly
modified CD profile that is peaked on-axis. This increased on-axis damping is attributed
to a fraction of LH rays rotated by scattering such that they dampen on-axis during the
first pass. In addition, a mechanism for asymmetric scatter is identified. The extent of
asymmetric scattering increases with background density and turbulence.

This paper is structured in the following way. Section 2 reviews the SAS model for
calculating the scattered wave. In § 3, the SAS model is generalized to radially varying
filaments. Section 4 discusses the calculation of the scattering width and ‘effective’
scattering width. Section 5 introduces the Markov chain (MC) model necessary to
calculated the final modified wave spectrum following propagation through the SOL. In
§ 6, the SAS-MC model is compared with the higher-fidelity numeric full-wave solver
PETRA-M (Shiraiwa et al. 2017). Limitations on the accuracy of the SAS-MC model are
discussed. Section 7 applies the SAS-MC model to lower hybrid launching in a typical
SOL in C-Mod. There is an in-depth discussion about the asymmetric profile of the
scattering width. Comparisons are made with a ray tracing treatment. In § 8, the modified
wave spectrum is coupled to GENRAY/CQL3D to model LHCD in a C-Mod discharge.
Section 9 summarizes the results of this study.

2. Review of semi-analytic scattering model

The first component of the SAS-MC model is the semi-analytic Mie-scattering
description of an incident RF wave interacting with a single cylindrical filament. To the
best of the authors’ knowledge, this problem was first treated in the magnetized plasma
context by Myra & D’Ippolito (2010) in the lower hybrid limit (Ω2

ci � ω2 � Ω2
ce) for a

homogenous cylinder. Ram & Hizanidis (2016) extended this model to all frequencies.
The single filament scattering model is briefly reviewed in this section, and then extended
to radially inhomogeneous filaments in § 3.
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FIGURE 1. Poloidal and Cartesian coordinate system used to model RF scattering from a
field-aligned filament.

Figure 1 illustrates the SAS model coordinate system. The cylinder axis is aligned with
the background magnetic field B0 in the z-direction. Given a plane wave travelling in the
+x-direction, the objective is to calculate the scattered wave exterior to the cylinder. The
electric field inside and outside the filament must satisfy the vector wave equation. In
the case that the cylinder’s dielectric properties have no longitudinal (z) and poloidal
(θ ) dependence, this problem can be solved via separation of variables in cylindrical
coordinates.

Because the medium is homogeneous inside and outside the cylinder, it is simple to
formulate an ansatz to the wave equation in each region. There are five waves to consider:
the known incident wave E0; the scattered slow, fast wave E1, E2 outside the cylinder;
and the slow, fast wave E3, E4 excited inside the cylinder. At the discontinuous boundary
ρ = ab, the fields inside and outside must satisfy Maxwell’s boundary conditions.

2.1. Ansatz to electric field
Using separation of variables (see Appendix A), the electric field can be written in
cylindrical coordinates as

Ejγ = exp(i(k||z − ωt))
+∞∑

m=−∞
EjmWjγm exp(imθ); γ = ρ, θ, z, (2.1a)

Wjρm = ξjxJ′
m(kj⊥ρ)− iξjy

m
kj⊥ρ

Jm(kj⊥ρ), (2.1b)

Wjθm = iξjx
m

kj⊥ρ
Jm(kj⊥ρ)+ ξjyJ′

m(kj⊥ρ), (2.1c)

Wjzm = iξjzJm(kj⊥ρ), (2.1d)

where j = 0, . . . , 4 is the wave index, ξ j = {ξjx, ξjy, ξjz} is the plane-wave polarization of
wave j, Jm is the Bessel function of the first kind and order m, and J′

m is the first derivative
of Jm with respect to its argument. For the known incident plane wave ( j = 0), it is required
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that

E0m = im−1, (2.2)

as Ejm for j > 0 have yet to be determined.
Note that k|| is the same for all waves, and is fixed by the incident wave. This is a

consequence of Snell’s law applied to a medium that is constant along the z-direction.

2.2. Boundary conditions
In general, the solutions in (2.1) can have both J and Y terms, where Y is the Bessel
function of the second kind. The requirement that E is finite at ρ = 0 leads to Y
terms being zero for the slow and fast branch inside the filament. For ρ → ∞, the
scattered fields must be radiating away from the filament. For the scattered fast wave,
this requires the use of Hankel functions of the first kind, H1, instead of J in (2.1). The
LH slow wave is backward propagating, which means k⊥ and vgr,⊥ are anti-parallel.
This requires the use of Hankel functions of the second kind, H2, for the scattered slow
wave.

It should be noted that a backward-propagating incident wave (i.e. the slow wave) has
kinc,x = −k⊥. This flipped sign can most easily be accounted for by substituting Jm → J−m
(Myra & D’Ippolito 2010).

Lastly, a system of equations must be formulated to determine coefficients Ejm for
j = 1, . . . , 4. This is accomplished by imposing the four independent Maxwell boundary
conditions at ρ = ab (see Appendix B). For each poloidal mode number, there are four
unknown coefficients and four boundary conditions, which results in a solvable system of
equations.

3. Generalizing to radially inhomogeneous filaments

The scattering model reviewed in the previous section is now extended to account
for radially inhomogeneous cylinders. The cylinder remains poloidally symmetric, and
therefore the poloidal mode numbers are still uncoupled. A solution via separation of
variables, similar to that in § 2, is still possible. The following solution scheme for
a radially inhomogeneous filament is similar to Mie-scattering techniques for layered
dielectrics (Kai & d’Alessio 1995) or annular cylinders (Wu 1994). Recently, a similar
scheme has been used to model scattering and mode conversion of the ion cyclotron wave
in the presence of Gaussian filaments (Zhang et al. 2021).

In the previous case of a totally homogeneous ‘flat-top’ cylinder, there was a single
boundary (at ρ = ab) and therefore only one radial ‘bin’ inside the cylinder. The cylinder
is now discretized into multiple bins r = 0, . . . ,R. In other words, the filament is now a
set of radially stratified concentric cylinders. This introduces discontinuities in the media
between bins, and so boundary conditions must be imposed at each separating layer. In
the limit R → ∞, a cylinder with a smoothly varying radial profile can be modelled with
arbitrary precision.

3.1. Modified system of equations
Remember that the ‘flat-top’ (R = 0) system is solvable because there exist four unknowns
E1,E2,E3,E4 and four independent boundary equations for each mode number m.
A similar system of equations must be derived for the general R > 0 case. The simplest
case (R = 1) is illustrated in figure 2. In the intermediate layers (0 < r ≤ R), each wave
branch is generally a function of both H1

m and H2
m terms, and are therefore split into these

two electric field contributions.
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FIGURE 2. The different contributions of E in the SAS model for a filament with two radial
bins (R = 1). There are two regions of interest: background and filament. The filament is further
divided into the central (cntr) and intermediate (mid) regions. Here ‘S’ and ‘F’ denote slow and
fast LH branches. Functions in parentheses denote the type of Bessel function used in (2.1).

With the considerations made above, there are now eight unknown waves for
the R = 1 case. There are also two boundaries, which supply four boundary
conditions each. This results in a solvable system for the total electric field
everywhere.

For the general case (R > 0), there are all together 4(R + 1) equations for each mode
number. For more details, see Appendix C. Solving for the total electric field requires
inverting 4(R + 1)× 4(R + 1)matrices a total of 2M + 1 times, where M is the maximum
mode number chosen to truncate the series. These matrices are sparse and banded, which
results in fast solution times of the order of seconds on a single central processing unit
(CPU).

3.2. Poloidal and radial resolution
The electric field will evolve on three possible length scales: ab, k−1

in⊥ or k−1
out⊥. Subscripts

‘in’, ‘out’ denote inside, outside the cylinder. Define a characteristic poloidal mode
number m̃ ≡ max(kin⊥, kout⊥)ab. If m̃ � 1, terms with |m| > m̃ will rapidly decay in
magnitude. Therefore, for a converged solution, it is necessary that M 	 m̃. If m̃ � 1,
it is necessary that M 	 1.

A rule-of-thumb can also be derived for how many radial bins are required. The
source of error stems from discretizing the cylinder’s smoothly varying radial profile
into homogeneous radial bins. The discontinuity between bins is of the order of L−1

n �r,
where Ln is the characteristic length of the density inhomogeneity. Here, �r is the
radial bin width. Assume the cylinder has a monotonically decreasing radial profile
with characteristic radial width ab. Then the discontinuity is approximately L−1

n �r ∼
(nb/n0ab)(ab/R) = nb/n0R. Here nb/n0 is the ratio of the peak (centre) cylinder density to
the background density, and R is the number of radial bins. To ensure the discontinuities
are small requires R 	 nb/n0.

4. Scattering width for statistical ensemble of filaments

While the model described above solves for the scattered field, it is more convenient
to calculate a differential scattering width, which accounts for the deflection of scattered
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power in θ -space. The differential scattering width is defined as (Myra & D’Ippolito 2010)

σ(θ) ≡ dσ
dθ

= limρ→∞ρSsct,ρ(ρ, θ)

Sinc,x
, (4.1)

where Sinc, Ssct is the incident, scattered Poynting flux. It follows that the scattering width
σ = ∫ +π

−π
σ(θ) dθ . See Appendix D for the derivation and physical meaning of σ . The

scattering width (units of length) is the one-dimensional (1-D) analogy for a scattering
cross-section (units of length squared).

Lastly, define a normalized differential scattering width σ̂ (θ) = σ(θ)/σ , which will be
useful in § 5. Note that σ(θ) ≥ 0 because at a far enough distance, the scattered waves
must be radiating away from the cylinder.

So far, no explicit expressions for Ssct,ρ and Sinc,x in (4.1) have been provided. The
time-averaged Poynting flux for the scattered wave can be written as

Ssct,j = 1
2μ0ω

Im E∗
j × (∇ × Ej), (4.2)

where j = S,F now refer to the scattered slow and fast wave, respectively. Equation (2.1)
is substituted into (4.2) and then substituted into (4.1) to produce

σj(θ) = ∓2
π

|ξj,y|2 + |ξj,z|2 + kz

kj⊥
Re ξj,xξ

∗
j,z

kinc,x(|ξinc,y|2 + |ξinc,z|2)− kzRe ξinc,xξ
∗
inc,z

∣∣∣∣∣
+∞∑

m=−∞
i±mEjmeimθ

∣∣∣∣∣
2

, (4.3)

assuming real valued kj⊥. If kj⊥ is imaginary, then the right-hand side of (4.3) is
zero. Here, σ(S,F)(θ) denotes the differential scattering width for coupling from the
incident slow wave to a scattered slow, fast wave. The asymptotic relation H(1,2)

m (τ ) ≈√
(2/πτ) exp(±i(τ − mπ/2 − π/4)) for large argument τ has been used. In the

denominator, ξ inc is the normalized polarization of the incident slow wave. Equation (4.3)
is a generalization of the σ(θ) calculated by Myra & D’Ippolito (2010), which was done
in the electrostatic limit. Equation (4.3) accounts for a fully electromagnetic dispersion
tensor, and is therefore valid for the low densities in the far-SOL.

The total differential scattering width is

σ(θ) = σS(θ)+ σF(θ). (4.4)

For background densities in which the slow wave is propagating but the fast wave
is evanescent, σF = 0. It only becomes comparable to σS as the background density
approaches the mode-conversion density. For the purposes of studying slow-wave
scattering in the SOL, it is reasonable to neglect σF.

4.1. Effective differential scattering width: σeff(θ)

In the presence of a filament, the resulting scattered field will depend on ab and
nb. Therefore, σ(θ) = σ(θ; nb/n0, ab) for a given n0,B,N|| and ω. A joint probability
distribution function (p.d.f.), p(nb/n0, ab), is introduced. This is the probability that a
filament will have certain parameters ab and nb/n0. Taking a weighted average of σ(θ)
with this joint-p.d.f. returns the statistically averaged σ(θ) for scattering from a randomly
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selected filament. This averaged, or ‘effective’ differential scattering width is defined as

σeff(θ) =
∫ ∞

0
dab

∫ ∞

0
d (nb/n0) σS(θ; nb/n0, ab)p(nb/n0, ab), (4.5)

where p(nb/n0, ab) is normalized such that
∫∞

0 dab
∫∞

0 d(nb/n0)p(nb/n0, ab) = 1. Again,
σF is neglected because the focus is on SOL plasmas.

The choice of joint-p.d.f. for the filament parameters is guided by experimental
measurements. In the SOL of C-Mod, mirror Langmuir probe measurements reveal
positively skewed p.d.f.s of density fluctuations (Graves et al. 2005). SOL fluid codes
predict that the filament width and density are positively correlated (Decristoforo et al.
2020). Therefore, the joint-p.d.f. is reasonably well described by a positively skewed
normal p.d.f. for each parameter (nb/n0 and ab) along with a positive bivariate correlation.
The analytic form for this p.d.f., as a function of a two-dimensional (2-D) column vector
ζ = [nb/n0; ab] is (Azzalini & Capitanio 1999)

p(ζ ) = 2φ2(ζ − Q,Ω)Φ(Γ T · (ζ − Q)), (4.6a)

Ω =
[

s2
nb/n0

ηsnb/n0 sab

ηsnb/n0 sab s2
ab

]
, (4.6b)

Q = 〈ζ 〉 −
√

2
π

δ (4.6c)

δ = 1√
1 + Γ T · Ω · Γ

Ω · Γ , (4.6d)

Γ =
[
Γnb/n0

Γab

]
, (4.6e)

where φ2(ζ ,Ω) is a 2-D normal p.d.f. with zero mean and correlation matrix Ω . Here
Φ(x) is the 1-D normal cumulative distribution function (CDF) for scalar input x, Γ is a
2-D column vector of skewness factors and 〈ζ 〉 ≡ [〈nb/n0〉; 〈ab〉] is the 2-D column vector
of mean nb/n0 and ab. Similarly, s ≡ [snb/n0; sab ] are standard deviations and η is the scalar
correlation coefficient. It is therefore possible to parametrize p(ζ ) as a function of 〈ζ 〉,Γ , s
and η.

Filament mean width 〈ab〉 is well bounded by gas puff imaging (GPI) measurements as
well as theory/simulation (Zweben et al. 2002; Krasheninnikov, D’Ippolito & Myra 2008;
Keramidas Charidakos et al. 2020). Langmuir probe and GPI measurements provide a
rough lower bound on the filament mean relative density 〈nb/n0〉, though this value will
vary significantly at different radial locations in the SOL (Zweben et al. 2002; Terry et al.
2003).

5. The radiative transfer equation in slab geometry

The previous sections deal with a single scattering event arising from one filament.
Section 4.1 introduced an effective scattering width σeff(θ), but this still only gives
information about the average scattered power arising from one filament. Consider a
turbulent medium with filaments of mean width 〈ab〉 with packing fraction fp. An incident
LH wave will, on average, interact with fpLx/π〈ab〉2 filaments per unit length in the
perpendicular plane. Therefore, Σeff ≡ ( fp/π〈ab〉2)σeff is the inverse mean-free-path for
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the incident power to scatter. A radiative transfer equation (RTE) can then be derived as(
∂

∂t
+ vgr · ∇

)
P(r, θ) = −Σeff|vgr⊥|P(r, θ)+Σeff|vgr⊥|

∫ π

−π

σ̂eff(θ − θ ′)P(r, θ ′) dθ ′,

(5.1)

where P(r, θ) is the power density at r directed along angle θ . In (5.1), the first term on
the right-hand side accounts for the power directed along θ that is lost to scattering. The
second term accounts for the power gained at θ owing to scattering from all other θ ′. (Any
losses arising from the anti-Hermitian part of the dielectric tensor are ignored.)

Now, consider a steady-state slab geometry with a filamentary turbulent layer limited
to 0 < x < Lx. The filaments and background B are aligned along the z-direction. An
LH plane wave is incident on the slab from the left (Sinc,x > 0). Because the background
density is homogeneous, |vgr⊥| is constant. Equation (5.1) then simplifies to

cos θ
dP(x, θ)

dx
= −ΣeffP(x, θ)+Σeff

∫ π

−π

σ̂eff(θ − θ ′)P(x, θ ′) dθ ′, (5.2a)

P(Lx, θ) = 0 for |θ | ≥ π/2, (5.2b)

P(0, θ) = δ(θ) for |θ | ≤ π/2, (5.2c)

where δ(θ) is the Dirac delta function. Compare this to (31) in Andrews & Perkins (1983),
where a similar RTE was formulated for drift-wave-like turbulence. Equations (5.2b) and
(5.2c) enforce no scattering back into the turbulent layer at x = Lx and 0, respectively.
Equation (5.2c) also enforces a normalized incident power from the left. Solving this
equation and evaluating P(x, θ) at x = Lx and 0 results in the normalized angle-broadened
transmitted and reflected wave spectra, respectively.

It should be noted that two critical assumptions have been made in formulating the RTE:
(1) σeff(θ) is formulated using the far-field limit; (2) the interaction of a wave with multiple
filaments is modelled by chaining multiple single-filament scattering events. Together,
they constitute the far-field approximation, which is only valid if 〈ab〉 � d and k⊥d 	 1,
where d is the average distance between filaments (Mishchenko 2014). This approximation
breaks down as fp increases (and therefore d decreases) and is further discussed in § 6.2.

5.1. Solution to RTE using a Markov chain
Equation (5.2) is an integro-differential equation, and cannot, in general, be solved
analytically. One numerical method is to discretize the wave spectrum into photons/rays,
and stochastically evolve their trajectories, as per the standard Monte Carlo technique. This
method is rather slow in providing a converged wave spectrum near θ = ±π/2, where tally
counts are usually low. Given how simple the slab geometry is, a more elegant absorbing
Markov chain method can be employed. This Markov chain (MC) method is deterministic,
so it avoids the low tally count problem. It is commonly used to solve for a reflected and
transmitted wave spectrum through a turbid slab (e.g. solar rays interacting with Earth’s
atmosphere). The present study closely follows the formalism by (Esposito & House 1978)
and Xu et al. (2011).

Power is incident on the turbulent slab from the left, directed along the x-direction (θ0 =
0). It is convenient to define a ζ ≡ | cos θ | such that ζ0 = 1. It is simple to calculate the
fraction of transmitted power that does not scatter in the slab. This is the ‘ballistic’ fraction:

Pball = exp
(

−Lx

ζ0
Σeff

)
. (5.3)
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It is also straightforward to calculate the transmitted and reflected fraction that only scatter
once in the slab:

PT,1(θ) = σ̂ (θ − θ0) exp
(

−Lx

ζ
Σeff

)

×

⎧⎪⎪⎨⎪⎪⎩
0 cos θ < 0,
ζ ζ0

ζ − ζ0

[
1 − exp

(
−LxΣeff

(
1
ζ0

− 1
ζ

))]
θ �= θ0,

ΣeffLx θ = θ0,

(5.4)

PR,1(θ) = σ̂ (θ − θ0)×
⎧⎨⎩0 cos θ > 0,

ζ ζ0

ζ + ζ0

[
1 − exp

(
−LxΣeff

(
1
ζ0

+ 1
ζ

))]
otherwise.

(5.5)

The above are the first-order scattering terms. To compute the higher-order terms (fraction
of power undergoing > 1 scattering events), it is necessary to use the MC method. The
slab is discretized into n = 1, . . . ,N segments of width�x = Lx/N. The angular spectrum
is also discretized into m = 1, . . . ,M segments of width �θ = 2π/M. Next, the NM ×
NM ‘transition’ matrix T (xn, θm; xn′θm′) is generated, which accounts for the probability
of a photon in segment n and directed along θm to scatter in segment n′ into θm′ . The
N × M ‘source’ matrix Π(xn, θm) is defined as the probability distribution of photons in
segment n directed along θm right after the first scattering event. Lastly, the NM × M
‘absorption’ matrix RT/R(xn, θm; θm′) is the probability of a photon to escape the slab via
transmission/reflection following its final scattering event in segment n from θm to θm′ . The
form for these matrices are as follows. The ‘transition’ matrix can be broken into four
components:

T (xn, θm; xn′θm′) = pesc(xn, θm) ptrvl(xn, θm, xn′) psct(xn′, θm) σ̂ (θm′ − θm), (5.6)

where

pesc(xn, θm) = ζm

Σeff�x

(
1 − exp

(
−�x
ζm
Σeff

))
, (5.7a)

ptrvl(xn, θm, xn′) =

⎧⎪⎪⎨⎪⎪⎩
exp

(
−xn′ − xn

ζm
Σeff

)
xn′ − xn

cos θm
≥ 0,

0
xn′ − xn

cos θm
< 0,

(5.7b)

psct(xn′, θm) = 1 − exp
(

−�x
ζm
Σeff

)
. (5.7c)

The escape probability, pesc(xn, θm), is the probability for a photon to travel through
segment n without scattering. The travel probability, ptrvl(xn, θm, xn′), is the probability
of travelling between segments n and n′ without scattering. Note that ptrvl is set to zero in
cases where the photon in segment n with θm is oriented such that it is travelling away from
n′. The scatter probability, psct(xn′, θm), is the probability of scattering within segment n′.
Lastly, σ̂ (θm′ − θm) is the probability of the photon rotating from θm to θm′ given that it
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undergoes a scattering event. The ‘source’ matrix is

Π(xn, θm) = σ̂ (θm − θ0)C−1

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζm

ζm − ζ0
exp

(
−
(

xn

ζ0
+ �x
ζm

)
Σeff

)
×
(

1 − exp
(

−Σeff�x
(

1
ζ0

− 1
ζm

)))
cos θm > 0,

ζ0ζm

ζ0 + ζm
exp

(
−xn

ζ0
Σeff

)
×
(

1 − exp
(

−Σeff�x
(

1
ζ0

+ 1
ζm

)))
cos θm < 0,

Σeff�x
ζ0

exp
(

−xn +�x
ζ0

Σeff

)
θm = θ0,

(5.8)

C = ζm

Σeff�x

(
1 − exp

(
−�x
ζm
Σeff

))
, (5.9)

where the coefficient C is required to properly volume-average the source over segment n.
The transmission and reflection ‘absorption’ matrices are

RT(xn, θm; θm′) = σ̂ (θm′ − θm)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 cos θm′ < 0,

ζm′

ζm′ − ζm
exp

(
−Σeff

(
Lx

ζm′
− xn

ζm

))
×
(

exp
(

−Σeffxn

(
1
ζm′

− 1
ζm

))
− exp

(
−ΣeffLx

(
Lx

ζm′
− xn

ζm

)))
cos θm > 0,

ζm′

ζm + ζm′
exp

(
−Σeff

(
Lx

ζm′
+ xn

ζm

))
×
(

exp
(
Σeffxn

(
1
ζm

+ 1
ζm′

))
− exp

(
ΣeffLx

(
1
ζm

− 1
ζm′

)))
cos θm < 0,

Σeff

ζm
exp

(
−Σeff

(
Lx

ζm′
− xn

ζm

))
(Lx − xn) θm = θm′,

(5.10)
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RR(xn, θm; θm′) = σ̂ (θm′ − θm)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 cos θm′ > 0,

ζm′

ζm − ζm′
exp

(
−Σeff

xn

ζm

)
×
(

1 − exp
(

−Σeffxn

(
1
ζm′

− 1
ζm

)))
cos θm < 0,

ζm′

ζm + ζm′
exp

(
Σeff

xn

ζm′

)
×
(

exp
(

−Σeffxn

(
1
ζm

+ 1
ζm′

))
− 1

)
cos θm > 0,

Σeff

ζm
exp

(
−Σeff

ζm′
xn

)
xn θm = θm′ .

(5.11)

Using these matrices, one can calculate the higher-order transmitted/reflected wave
spectrum terms:

PT/R,2(θm) = Π · I · RT/R, (5.12a)

PT/R,l(θm) = Π · T l−2 · RT/R for l ≥ 3, (5.12b)

where l is the order of the scattering term and I is the NM × NM identity matrix. In
summing all scattering terms, the total transmitted and reflected wave spectrum is

PT(θm)− Pball

�θ
δθm,θ0 = PT,1(θm)+

∞∑
l=1

PT,l, (5.13a)

PR(θm) = PR,1(θm)+
∞∑

l=1

PR,l, (5.13b)

and δi,j is the Kronecker delta. Furthermore, (5.13a) can be rewritten as

PT(θm)− Pball

�θ
δθm,θ0 − PT,1(θm) = Π ·

(
I +

∞∑
l=1

T l

)
· RT = Π · (I − T )−1 · RT . (5.14)

A similar form applies to (5.13b). The second relation in (5.14) produces the solution
following a matrix inversion. In practice, it is often faster to evaluate the first relation and
truncate the series at a finite l when the solution is sufficiently converged (Yang et al.
2018).

In deriving pesc and psct, the possibility of multiple scattering events in segment n
is neglected. This is a reasonable assumption as long as �x ≡ Lx/N � ζ/Σeff. The
population of photons with ζ ≈ 0 is the largest source of error for any finite N.
Nevertheless, in practice, PT/R is found to converge as long as Σeff�x � 1. A criterion
for the angular resolution is not as straightforward. It depends on the smoothness of σ̂ (θ).
Naturally, a fine resolution is needed to accurately resolve sharp peaks in σ̂ (θ).

6. Verification of SAS-MC with numeric full-wave solver

The SAS-MC model is compared with the higher-fidelity finite-element full-wave code
PETRA-M (Shiraiwa et al. 2017). First, the SAS model for a single filament is compared
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 3. Gaussian filament: normalized Poynting flux computed using the SAS model (a–c)
and PETRA-M (d–f ), where n0 = 1 × 1019 m−3, B = 4 T, f = 4.6 GHz, N|| = 2, nb/n0 = 4.8,
and ab = 1 cm.

with PETRA-M. Then the same is done for the MC model, which accounts for multiple
filaments in a slab.

6.1. Scattered field for single filament
Consider an incident slow wave with a prescribed frequency f and parallel refractive index
N|| ≡ ck||/ω. Also assume a filament with Gaussian radial profile such that

n(ρ)− n0 = n0

(
nb

n0
− 1

)
exp

(
−
(

2
√

ln(2)ρ
ab

)2
)
, (6.1)

where nb/n0 is the relative density at the filament’s peak (ρ = 0) and ab is re-defined
as the full-width at half-maximum of the filament. A case with n0 = 1 × 1019 m−3,
B = 4 T, f = 4.6 GHz, N|| = 2, nb/n0 = 4.8 and ab = 1 cm is simulated using the
SAS model. Simulation resolution is R = 22 and M = 100. Figure 3(a–c) shows the
(x, y, z) components of the time-averaged Poynting flux S exterior to the filament. The
S is calculated using the relation S = (1/2μ0ω)Im E∗ × (∇ × E). The normalized field
P ≡ S/|Sinc| is introduced, where Sinc is the Poynting flux of the incident wave. Figure 3
reveals a shadowing effect downstream of the filament. The striations in the field indicate
strong back and side scattering of the incident wave. Note that P has been numerically
computed from the interpolated E-field on a grid in the (x, y)-plane. This method of
plotting P is susceptible to large errors inside the filament where the gradients of E are
large. Therefore, P inside the filament is not plotted.

Figure 3(d–f ) shows this case repeated in PETRA-M, and result in an excellent
agreement with the SAS model. This 2-D simulation is done in a circular domain. The
incident wave is excited to the left of the filament using an external current source term. To
approximate an infinite background plasma, a perfectly matched layer (PML) is modelled
at the perimeter of the circular simulation domain.
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FIGURE 4. Example joint-p.d.f. of filament parameters nb/n0 and ab. A bivariate
skewed-normal distribution is assumed (see (4.6)), where 〈nb/n0〉 = 2.6 and 〈ab〉 = 0.48 cm.
Filament density and size skewness Γ = [7, 10]. Filament density and standard deviation s =
[1.35, 0.1 cm]. Correlation coefficient η = 0.9. Dashed black line denotes nb/n0 = 1.

6.2. Reflection coefficient for turbulent slab
Next, the MC step of the SAS-MC model is compared with a turbulent slab modelled
in PETRA-M. This will reveal whether the far-field limit, a critical approximation in the
MC model, is valid for the treatment of LH scattering in the SOL. In theory, the far-field
approximation should break down as filaments are packed closer together (Mishchenko
2014).

For the MC model, σeff(θ) must be calculated, which first requires prescribing a
joint-p.d.f. of filaments. Figure 4 plots an example joint-p.d.f. A bivariate skewed-normal
distribution is assumed for ab and nb/n0 (see (4.6)). In this case, 〈ab〉 = 0.48 cm and
〈nb/n0〉 = 2.6. These values are bounded by experimental SOL measurements (Zweben
et al. 2002; Terry et al. 2003). (Assuming SOL turbulence is predominantly filamentary,
the approximation 〈nb/n0〉 ≈ 1 + (nRMS/n)f −1

p is made, where fp is the packing fraction
and is assumed to be 0.2.) Filament relative density and size skewness are prescribed
via the skewness parameters: Γ = [7, 10]. Filament relative density and size standard
deviation are prescribed as s = [1.35, 0.1 cm]. The bivariate correlation coefficient η =
0.9.

Figure 5 shows the simulation set-up for a slab turbulent geometry in PETRA-M.
A slow wave travelling in the +x-direction interacts with a turbulent layer populated with
Gaussian filaments. The filaments are randomly generated in the slab using a Monte Carlo
approach (Sierchio et al. 2016; Biswas et al. 2020). Each filament is generated with a
randomly picked nb/n0 and ab with a probability that satisfies the prescribed joint-p.d.f.
p(nb/n0, ab). In this way, the turbulent slab used in the SAS-MC model and in PETRA-M
are made statistically equivalent. The incident slow wave is excited with an external
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FIGURE 5. Set-up for PETRA-M simulation with turbulent slab. Here, ‘PML’ denotes
perfectly matched layer and ‘PEC’ denotes perfect electric conductor.

current density source function upstream of the turbulence. Top and bottom boundaries
are periodic. The turbulence is also periodic in the y-direction. To minimize the effect of
the periodic geometry on the wave, the y length of the solution domain is much larger than
〈ab〉 or kinc⊥. To mimic an infinite domain in the ±x-direction, the left and right boundaries
can be modelled as either a perfectly matched layer (PML) or an absorbing boundary
condition (ABC). The PML, while more computationally efficient, does not work when
both the slow and fast wave can propagate in the background plasma.

In PETRA-M, the reflection coefficient Fref = 1 − Px/Px,0 is calculated and directly
compared with the SAS-MC value. Here, Px is the x-component of the Poynting flux and
Px,0 is the ‘nominal’ value when no turbulence is present. In the SAS-MC model, Fref =∫

PR(θ) dθ .
Table 1 compares Fref computed in the PETRA-M and SAS-MC models. Both models

follow the same general trend. Cases 1–4 and 8–11 reveal that Fref increases with fp. Cases
3,5,6,8 reveal that Fref increases with 〈nb/n0〉 and decreases with 〈ab〉. This is consistent
with previous scattering theories (Ott 1979; Andrews & Perkins 1983). Another way to
analyse the trends in Fref between models is by inspectingΣeffLx calculated in the SAS-MC
model. This is the attenuation factor for the ballistic power (see (5.3)). AsΣeffLx increases,
so should Fref. Indeed, this is true for both models.

In general, the SAS-MC model over-predicts Fref, such that the absolute error �Fref ≡
Fref,SAS-MC − Fref,PETRA-M ≥ 0. This error increases with fp. Again, this arises from the
far-field approximation breaking down. While far-field validity is dependent on fp, the
aggregate error depends on Σeff Lx. For example, the SOL width is varied between cases
2 and 7, while the turbulence is kept statistically identical. The Lx = 5 cm case results in
�Fref = 0.00. For the Lx = 15 cm case, �Fref = +0.13.

SOL measurements indicate fp ≈ 0.05–0.25 (Agostini et al. 2007; Carralero et al. 2018;
Zweben et al. 2011). SOL widths are also<5 cm in present-day devices. As a result, cases
2 and 9 are most representative of a C-Mod SOL, depending on whether the background
density is evaluated at the far-SOL or the separatrix, respectively. At low-density (case 2),
the two models agree well (�Fref = 0.00). At high density (case 9), the SAS-MC model
over-predicts Fref, such that�Fref = +0.08. A possible reason for the disagreement at high
density may be because ΣeffLx is greater (compared with similar cases at low density).

6.3. Comments on computational cost
Generally, the semi-analytic scattering method has three key advantages compared with
finite-element Maxwell solvers: (1) the large (in fact infinite) background plasma region
does not need to be meshed; (2) it exactly solves scattering problems, because the infinite
exterior domain does not need to be artificially truncated; (3) analysing the scattered
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Plasma parameters Fref

Case # n0 × 1019 (m−3) 〈nb/n0〉 〈ab〉 (cm) fp Lx (cm) ΣeffLx Petra-M SAS-MC

1 0.55 2.60 0.48 0.02 5.0 0.26 0.01 0.02
2 0.55 2.60 0.48 0.10 5.0 1.29 0.13 0.13
3 0.55 2.60 0.48 0.25 5.0 3.23 0.18 0.31
4 0.55 2.60 0.48 0.50 5.0 6.45 0.29 0.48
5 0.55 2.60 1.10 0.25 5.0 1.33 0.02 0.06
6 0.55 1.80 0.48 0.25 5.0 1.42 0.04 0.13
7 0.55 2.60 0.48 0.10 15.0 3.89 0.22 0.35
8 2.25 2.60 0.48 0.02 5.0 0.40 0.04 0.04
9 2.25 2.60 0.48 0.10 5.0 2.02 0.15 0.23
10 2.25 2.60 0.48 0.25 5.0 5.06 0.34 0.46
11 2.25 2.60 0.48 0.50 5.0 10.1 0.55 0.65

TABLE 1. Comparison between SAS-MC model and PETRA-M. Slow wave launched at
4.6 GHz and N|| = 2 with B = 4 T. Filament joint-p.d.f. parameters are same as in figure 4 unless
otherwise noted. The ΣeffLx is calculated using the SAS-MC model. For each case, results from
multiple iterations (with different turbulence realizations) are averaged until Fref is statistically
converged.

wave spectrum is straight-forward, because the solution is already deconvolved into the
constituent poloidal mode numbers for each branch.

Points 1 and 2 result in the SAS-MC model being considerably less expensive
than slab turbulence simulations in PETRA-M. Using the SAS technique, computing a
single differential scattering width σ(θ; nb/n0, ab) takes ∼10 s on a single CPU, and
considerably less time if parallelized between poloidal mode numbers. Computing σeff(θ)
may require sampling a few hundred combinations of (nb/n0, ab), depending on the
filament joint-p.d.f. Fortunately, each sampled σ(θ; nb/n0, ab) needs to be computed only
once. Any number of σeff(θ) can then be generated from the sampled differential scattering
widths.

The most expensive process in the MC routine is generating the transition matrix T. This
takes ∼20 s on a single CPU, depending on poloidal and radial bin resolution.

Using PETRA-M, each n0 = 2.25 × 1019 m−3, Lx = 5 cm slab case required ∼25
CPU-hours and ∼300 GB of RAM on the MIT Engaging computing cluster. The size
of PETRA-M simulations is primarily limited by available RAM. In comparison, all
computations for the SAS-MC model were conducted on a PC with 8 GB of available
RAM.

6.4. Caveats to the SAS-MC model
The SAS-MC model offers higher physics fidelity than ray tracing, while being
computationally less expensive than numeric full-wave solvers. This is possible owing
to a number of assumptions made in the model that makes it less universally applicable
than numeric full-wave solvers.

The SAS model assumes a homogeneous background plasma with a cylindrical
scattering object (the filament) that is poloidally and azimuthally symmetric. This allows
an efficient solution scheme using separation of variables. In reality, filaments usually
develop a shock front as they convect outward (Krasheninnikov et al. 2008), and
the resulting crescent-like filament shape can lead to significantly modified scattering
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behaviour, at least for ion cyclotron waves (Tierens, Zhang & Manz 2020a). Furthermore,
the filament in the SAS model is assumed to be aligned with the magnetic field, so
that ∇||(n/n0) = 0. This is likely a reasonable assumption because filaments introduce
a ∇||(n/n0) that is much smaller than k|| of the LH wave (Grulke et al. 2014). As a result,
the effect of k|| broadening arising from a typical SOL filament is small (Madi et al. 2015).

The MC model introduces additional assumptions. The SOL is treated as a slab, which
means the effect of toroidal geometry is neglected. This is a reasonable assumption for
the treatment of first-pass scattering in front of the antenna. In addition, the background
plasma and turbulence parameters are constant within the slab, when in reality, they are
sensitive to the radial coordinate in a tokamak. The MC model also assumes the reflected
wave spectrum is lost, when in reality, a fraction of this power may once again reflect at
a cutoff and re-enter the core plasma. Lastly, the MC model assumes the filaments are far
enough apart so that the RTE is valid. This assumption is increasingly poor as fp rises.

To quantify the inaccuracies introduced by the MC model, it may be worthwhile to
model scattering along the full extent of a ray trajectory in a realistic tokamak geometry.
This can be done by employing σ(θ; n0,B,N||, 〈nb/n0〉, 〈ab〉) as a scattering probability in
a Monte Carlo ray tracing simulation, similar to what has been done for the k-scattering
model (Bonoli & Ott 1982; Bertelli et al. 2013). Alternatively, three-dimensional (3-D)
PETRA-M simulations of LH launching in a turbulent SOL, with realistic geometry,
would address all the caveats mentioned. These tests are outside the scope of this
paper.

7. SAS-MC applied to lower hybrid scattering

The SAS-MC model is applied to LH wave scattering in front of the antenna in C-Mod.
Figure 6 plots σeff(θ) for the joint-p.d.f. in figure 4, and N|| = 2, f = 4.6 GHz and B = 4 T.
At low background density (n0 = 5.5 × 1018 m−3), σeff(θ) resembles a wrapped-Cauchy
distribution, though slightly skewed so that it peaks at +0.2 rad. At high background
density (n0 = 4.8 × 1019 m−3), σeff(θ) is sharply peaked near +0.05 rad and is very
asymmetric. A fat tail exists only for θ > 0. This tail also has fine structures that do not
exist in the low density case. The σeff(θ) is more asymmetric at higher densities because
|εxy| is larger, and therefore the effect of asymmetric scattering for any given filament is
stronger (see § 7.2 for more details).

7.1. Parametric scan of SOL density and filament parameters
Figure 7(a,c,e) plots σS as a function of background density n0, relative filament density
nb/n0 and filament width ab. The incident wave is at 4.6 GHz with N|| = 2, typical
for LH launching in C-Mod. In accordance with the low-field-side SOL in C-Mod,
B = 4 T. As expected, σS increases as nb/n0 deviates from unity. Notably, scattering
resonances can be seen, as indicated by bands of higher σS. These arise from standing wave
resonances excited within the filament, which result in stronger coupling to the scattered
waves. Expressions for these resonances can be analytically derived for the ‘flat-top’
filament case (Myra & D’Ippolito 2010; Tierens et al. 2020b), and are related to radial
and poloidal harmonics in cylindrical geometry. To the best of the authors’ knowledge,
these analytic calculations are intractable for Gaussian (and more general) filament
cross-sections.
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FIGURE 6. Effective differential scattering width σeff(θ). Calculated using filament joint-p.d.f.
shown in figure 4. Green and red lines denote low and high background density, respectively.

7.2. Asymmetric scattering
The quantity α is introduced as a metric for asymmetric scattering:

α =
∫ π

0
σ̂S(θ) dθ − 1

2 . (7.1)

Here α = −0.5,+0.5 denote that power is only scattered downwards (−π < θ < 0),
upwards (0 < θ < π). If α = 0, then an equal fraction of power is scattered downwards
and upwards. Figure 7(b,d, f ) reveals that α is not guaranteed to be zero. This means, in
general, σ(θ) is not an even function and the scattered power is not equally distributed
downwards or upwards. This effect is most noticeable at high background densities (n0 �
2 × 1019 m−3). For positive density modifications (nb/n0 > 1), power is predominantly
scattered upwards. The reverse is true for negative density modifications (nb/n0 < 1).
In the typical tokamak SOL, filaments are predominantly denser than the background
plasma (Graves et al. 2005). As a result, the incident wave is preferentially scattered
upwards. The strength of this asymmetry depends on the statistical properties of the
filaments.

Asymmetric scattering is possible in an anisotropic medium. Specifically, the dielectric
dyadic tensor, ε, has off-diagonal components ε12 = −ε21 �= 0, which permit asymmetric
scattering (Wu 1994), so ε12 = −iεxy. In the LH limit, εxy ≈ ω2

pe/ωΩce, where Ωce ≡
eB/me is the electron cyclotron frequency. It is clear that the sign of εxy is dependent on the
sign of B (that is, whether the magnetic field is oriented co-parallel or counter-parallel with
êz). Correspondingly, when the direction of B is flipped, ε → εT and σ(θ) → σ(−θ).

Notably, this asymmetric scattering effect is not accounted for in previous treatments for
LH wave scatter. It is easy to see why this is the case for models that assume drift-wave-like
turbulence. These models assume that density fluctuations are equally likely to be above
or below the background density. Therefore, this asymmetric scatter effect is statistically
cancelled out.

There also exist LH scattering models that assume coherent turbulent structures that
can, on average, be denser than the background (Hizanidis et al. 2010; Biswas et al. 2020).
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 7. Plots of (a) scattering width σS and (b) asymmetric scattering metric α for an
incident slow wave at 4.6 GHz, N|| = 2, B = 4 T and ab = 0.30 cm. (c,d) Plot of σS and α,
respectively, for ab = 0.85 cm. (e, f ) Plot of σS and α, respectively, for ab = 1.30 cm. The white
region in the upper-right corner of each subplot has no data plotted.

These models also do not account for asymmetric scattering, because they make the ray
tracing approximation.

The reason why ray tracing cannot model asymmetric scattering is subtle. It is related
to the breakdown of the ray tracing approximation. Consider the ray tracing equations for
an LH ray initially propagating with N⊥ aligned along the x-direction and background
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B aligned along the z-direction. The ray tracing equations involve partial derivatives of
det(D), where D is now the dielectric tensor and

D · Ẽ =

⎡⎢⎣ε⊥ − N2
|| −iεxy N⊥N||

iεxy ε⊥ − N2 0
N⊥N|| 0 ε|| − N2

⊥

⎤⎥⎦ ·

⎡⎢⎣Ẽx

Ẽy

Ẽz

⎤⎥⎦ = 0, (7.2)

where Ẽ(r) is the slowly varying part of the electric field. Here, det(D) has terms that are
quadratic in εxy, but no linear εxy terms. As a result, information about the sign of B along
êz is lost. Compare this to the full EM wave equation, with no ray tracing approximation,
written in a form similar to that of (7.2).⎡⎢⎢⎢⎢⎢⎢⎣

ε⊥ − c2

ω2
(Fyy + Fzz)

c2

ω2
Fyx − iεxy

c2

ω2
Fzx

c2

ω2
Fxy + iεxy ε⊥ − c2

ω2
(Fzz + Fxx)

c2

ω2
Fzy

c2

ω2
Fxz

c2

ω2
Fyz ε|| − c2

ω2
(Fxx + Fyy)

⎤⎥⎥⎥⎥⎥⎥⎦ ·

⎡⎢⎣Ẽx

Ẽy

Ẽz

⎤⎥⎦ = 0, (7.3)

where

Fj = kj − i
∂

∂j
, (7.4a)

Fjl = Fj(Fl). (7.4b)

Equation (7.3) accounts for ∇k and ∇Ẽ terms, which are usually neglected in ray tracing
because the plasma is assumed to be sufficiently homogeneous, such that k⊥Ln 	 1, where
Ln ≡ |∇n/n0|−1 is the characteristic length of the density inhomogeneity. This heuristic
validity criterion is actually too lax for magnetized plasma. A perturbation analysis of
(7.3) reveals that these higher-order gradient terms can be comparable to the zeroth-order
terms (7.2) even if k⊥Ln 	 1. Following some algebra, it is found that the two leading
higher-order terms are linear in εxy and quadratic in N||, such that the actual validity
criterion for ray tracing is (|εxy| + N2

||)1/k⊥Ln � 1. (More details about this perturbation
analysis can be found in Appendix A of Biswas et al. (2020), although in that derivation,
∇k terms were erroneously neglected, which led to the dropping of the N2

|| term in the
final ray tracing validity criterion.) At initial launching of the LH wave N2

||, |εxy| ∼ 1,
but they can both grow to be much larger as the ray continues to propagate. Specifically,
|εxy| ∝ ne, and so it rapidly increases as the ray propagates into the plasma. The restriction
that εxy places on LH ray tracing has been commented on before (Ott 1979). The following
discussion is the first time it has been linked to asymmetric scattering in the context of LH
waves.

In deriving the new ray tracing criterion for LH waves in a magnetized plasma, it
was revealed that one of the leading higher-order gradient terms neglected in ray tracing
is linear in εxy. This is precisely the term with information about the orientation of
B. In accordance, as |εxy|1/k⊥Ln grows and becomes comparable to unity, asymmetric
scattering also becomes important. This is shown numerically by simulating the scatter of
LH waves from four increasingly dense Gaussian filaments. Figure 8 plots the validity
regime of ray tracing in the presence of a Gaussian filament as a function of nb/n0
and ab. The incident wave is launched at 4.6 GHz with N|| = 2 and B = 4 T. It is
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FIGURE 8. Validity of ray tracing for Gaussian filaments as a function of relative density
(nb/n0) and radial width (ab). Black line denotes validity limit at n0 = 1 × 1019 m−3 (see § 7.2
for more details). Stars denote filaments that are used in scattering studies in figures 9 and 10.
Numbers in colour denote the ratio nb/nb,max.

assumed that L−1
n ≈ (nb/n0 − 1)/ab. The black line denotes the validity limit for n0 =

1 × 1019 m−3. To the right of this line, |εxy|1/k⊥Ln > 1 and to the left |εxy|1/k⊥Ln < 1.
(For simplicity, the N2

|| term is ignored.) The four starred points denote filaments with
ab = 1 cm and nb/n0 = [1.24, 1.6, 2.44, 4.6] (plotted left to right). Alternatively, these
filaments satisfy nb = [0.1, 0.25, 0.6, 1.5] × nb,max, where nb,max satisfies |εxy|1/k⊥Ln =
1. Qualitatively, the green point signifies a filament that is validly treated with ray
tracing because |εxy|1/k⊥Ln ≈ nb/nb,max = 0.1 < 1. The yellow points are marginally
valid, because nb/nb,max < 1 but also O(1). The red point, for which nb/nb,max > 1,
certainly cannot be treated using ray tracing.

Figure 9 plots the ray trajectories of LH rays incident from the left and interacting
with a filament. As nb/n0 increases, rays are more strongly refracted, which results in a
shadowing effect downstream of the filament. Notably, these ray trajectories are always
perfectly symmetric with respect to y = 0.

In contrast, figure 10 plots σ(θ) calculated using the SAS method for the same four
cases simulated in figure 9. The SAS method (like all full-wave treatments) implicitly
accounts for all terms in (7.3). For nb/n0 = 1.24 and 1.6, σ(θ) is symmetric about θ = 0.
The profiles peak at θ = 0, signifying predominantly forward scatter. At nb/n0 = 2.44,
σ(θ) is slightly asymmetric because the side lobe at −40◦ is larger than the one at +40◦. At
nb/n0 = 4.6, σ(θ) is clearly asymmetric. Notably, the largest lobe is centred at +5◦. While
a direct quantitative comparison between figures 9 and 10 is not possible, it is clear that
as |εxy|1/k⊥L grows (filaments get denser), ray tracing becomes less accurate because the
increasingly important asymmetric scattering effect is ignored. It is important to note that
filaments with nb/n0 � 2 are common in the SOL (Zweben et al. 2002), which signifies ray
tracing is inadequate for the treatment of LH wave scattering in realistic SOL turbulence.
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(a) (b)

(c) (d )

FIGURE 9. Ray tracing simulations of LH waves scattering from a filament. Here, f = 4.6 GHz,
N|| = 2, B = 4 T and n0 = 1 × 1019 m−3. Each subplot corresponds to a star on figure 8. Blue
lines denote ray trajectories.

7.3. Modified wave spectrum in front of LH antenna
The incident wave parameters, background plasma parameters and joint-p.d.f. of filament
parameters determine σeff(θ). The MC method is used to compute the modified wave
spectrum after the incident wave interacts with a slab layer of thickness Lx and packing
fraction fp. Figure 11 plots the modified wave spectra resulting from the σeff(θ) shown in
figure 6. Here, Lx = 2.5 cm, which is the typical gap between the LH antenna and the
separatrix in C-Mod. Green, black and red lines denote fp = [0.1, 0.25, 0.5]. Note that
the ballistic power fraction is not plotted (if it were, it would be a Dirac delta plotted at
θ = 0). In the low-density (n0 = 0.55 × 1019 m−3) case, the modified wave spectrum is
smoothly broadened in θ -space, with a peak centred at θ = 0. Increase in fp leads to a
decrease in ballistic power and increase in reflected power. This is expected, because Σeff,
the inverse mean-free-path to scatter, is linearly proportional to fp. In the high-density
(n0 = 4.8 × 1019 m−3) case, the modified wave spectrum is significantly asymmetric, with
net power scattered in the +θ -direction. Naturally, this is the result of σeff(θ) in the
high-density case being very asymmetric. Again, ballistic power decreases and reflected
power increases with fp. In comparing the low- and high-density cases, it is found that
the high-density case results in significantly greater reflected power. This arises from σeff
being larger in the high-density cases, as can be seen from figure 6.
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(a) (b)

(c) (d )

FIGURE 10. Polar plots of differential scattering width σ(θ) calculated using the SAS method.
Simulation parameters are the same as in figure 9.

(a) (b)

FIGURE 11. Modified LH wave spectrum after interacting with turbulent slab. Here, |θ | < π/2
denotes transmitted power and |θ | > π/2 denotes reflected power. Ballistic power is not plotted
and fp = 0.1 (green), 0.25 (black), 0.5 (red). Left and right plots assume low and high background
density, respectively. The Fbal, FT and FR denote fractional ballistic, transmitted and reflected
power, respectively. The σeff(θ) used is shown in figure 6.
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(a) (b) (c)

FIGURE 12. Comparison between the SAS-MC and ray tracing slab models. Blue bars denote
a histogram of ray vgr⊥ angles after leaving slab. Red line denotes a modified wave spectrum
Psct(θ) calculated using the SAS-MC method. Here, Lx = 2.5 cm and fp = 0.25. Filament
joint-p.d.f. parameters are the same as in figure 4 unless otherwise noted in the subplot title.
The Fref denotes fractional power reflected in the ray tracing (blue) and SAS-MC (red) models.
Ballistic power and unscattered rays are not plotted.

7.4. SAS-MC compared with ray tracing
A comparison study between the SAS-MC model and ray tracing model is conducted.
Rays are launched in a slab geometry and are incident normal to a slab composed of
randomly generated filaments (see § 6.2). A ray terminates when it leaves the slab (either
reflected backward or transmitted forward), at which point the angle between the ray’s
perpendicular group velocity (vgr⊥) and êx is tallied. This poloidal angle is the direction
that the ray continues to propagate and radiate power away from the slab. It is therefore
equivalent to θ in the SAS-MC model. Following multiple ray launches, a histogram of
these tallies is constructed. This histogram, once properly normalized, is equivalent to a
modified wave spectrum that can be compared with the wave spectrum computed with the
SAS-MC model.

Figure 12 plots modified wave spectra computed using the SAS-MC model and the ray
tracing model for statistically identical turbulent slabs. Three different cases are run. All
cases assume LH rays incident at 4.6 GHz and N|| = 2. Here, B = 4 T and Lx = 2.5 cm.
In the first case, n0 = 1 × 1019 m−3, and the joint-p.d.f. in figure 4 is assumed. The
SAS-MC model and ray tracing model show good agreement in the wave spectra. Both
predict low reflected power fractions. The wave spectrum computed with the SAS-MC
model is fairly symmetric. This means that asymmetric scatter was weak, and therefore
the ray tracing approximation was valid. Thus, the good agreement between the two
models. In the next case, 〈ab〉 is halved to 0.5 cm. The SAS-MC model results in an
asymmetric wave spectrum, such that the peak is shifted to +0.2 rad. The onset of
significant asymmetric scattering is caused by the decrease in Ln. At the same time, the
ray tracing approximation begins to break down. As a result, the ray tracing results (which
are symmetric) begin to deviate from the SAS-MC results. Notably, the ray tracing model
severely under-predicts the fraction of reflected power compared with the SAS-MC model.
The last case increases the background density to n0 = 4.8 × 1019 m−3. Now, εxy is large
enough that asymmetric scattering is quite strong and the ray tracing approximation is
surely invalid. As a result, the two models result in very different wave spectra. Ray tracing
predicts a scattered wave spectrum with a large central peak at ±0.2 rad. In contrast,
the SAS-MC model predicts a smaller central peak slightly shifted in the +θ -direction.
The tail to the right of this peak is significantly larger than the one on the left. Lastly,
the SAS-MC model results in ∼50 % more power being reflected than the ray tracing
model.
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8. Impact of scattering on LHCD

In typical ray tracing/Fokker–Planck simulations, the initial perpendicular wave vector
k⊥ of the slow wave is assumed co-parallel with the unit vector normal to the flux
surface and pointing outwards (ê∇ψ ). Therefore, the angle between these two vectors,
χ ≡ ∠(ê∇ψ,k⊥), is usually zero. Scattering caused by edge density fluctuations can rotate
k⊥ leading to a broadened wave spectrum in χ -space, as evidenced by the LH electric
field vector measurements in C-Mod (Martin et al. 2019). This rotation can modify the ray
path so that single-pass damping is strengthened or weakened, depending on the sign of χ
(Baek et al. 2020).

The χ angle in the tokamak frame and θ in the slab geometry (as defined in figure 1)
are identical if χ is defined such that b̂ · (ê∇ψ × k⊥) = k⊥ sinχ , where b̂ = B/|B| is the
local magnetic field unit vector.

Thus, the transmitted wave spectrum calculated using the SAS-MC model can be
coupled to GENRAY/CQL3D to study its impact on LHCD. A χ -broadened wave
spectrum can be discretized into rays with initial wave-vector components as follows
(Smirnov & Harvey 2001):

kρ = k⊥ cosχ, (8.1a)

kθ = k||
Bθ
B

− k⊥ sinχ
Bφ
B
, (8.1b)

kφ = k||
Bφ
B

+ k⊥ sinχ
Bθ
B
, (8.1c)

where ρ, θ and φ are now the radial, poloidal and toroidal coordinates in a toroidal
coordinate system. Here, Bρ is neglected so that ê∇ψ ≈ êρ . In the above expression, it
is assumed that k⊥ > 0, while sign(k‖) depends on whether the ray is launched with a
positive or negative component with respect to b̂. Next, consider that to drive co-current
via electron Landau damping, it is required that sign(k‖) = sign(BφBθ ). Notably, this leads
to rays with χ > 0 being rotated away from the core. Conversely, rays with χ < 0 are
rotated towards the core. This is true in all tokamak orientations, regardless of toroidal
magnetic field or current direction.

A well-studied (Mumgaard 2015), low-density, L-mode discharge is modelled. This
upper single-null discharge, with n̄e = 0.52 × 1020 m−3, Ip = 530 kA and B = 5.4 T,
achieves non-inductive current drive using 850 kW of LH power launched at 4.6 GHz with
N|| = −1.6. (n̄e is line-averaged electron density and Ip is plasma current.) It is assumed
that 85 % of power is coupled to the primary lobe. In GENRAY, this primary lobe is
centred at N|| = −1.6, and is discretized into 12 bins in N||-space. Each bin is further
discretized into 23 rays to model wave-spectrum broadening in χ -space. Figure 13 plots
the SAS-MC-calculated transmitted wave spectrum assuming SOL background density
n0 = 1 × 1019 m−3, SOL width Lx = 2.5 cm and packing fraction fp = 0.25. The filament
joint-p.d.f. is the same as in figure 4. The spike at χ = 0 accounts for ballistic power. Note
that the reflected power, which accounts for roughly 30 % of power in the primary lobe,
is assumed lost and therefore not modelled in GENRAY. Lastly, the spatial height of the
launcher is modelled as four poloidal points in the outer mid-plane. In total, 1104 rays are
launched to ensure a converged solution.

The rays are launched from the separatrix, but are allowed to propagate into the SOL
after the first pass. Here, the rays will either reflect at the cutoff density or specularly
reflect from the vessel wall back towards the core. Owing to low temperatures in the SOL,
collisional damping is non-negligible. It is found that the SOL topology and presence of a
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FIGURE 13. Modified wave spectrum launched in GENRAY/CQL3D simulation of LHCD in
Alcator C-Mod. Wave spectrum calculated using the SAS-MC model for slow wave launched at
4.6 GHz and N|| = 1.6. SOL background density n0 = 1 × 1019 m−3, packing fraction fp = 0.25
and SOL width Lx = 2.5 cm are assumed. Filament joint-p.d.f. parameters are the same as in
figure 4. Crosses show discretization of wave spectrum into rays for use in GENRAY. Spike at
χ = 0 arises from ballistic power. Reflected power is ignored.

divertor can significantly affect the calculated core CD profiles. Therefore, the two-point
model is used to accurately generate the SOL (Shiraiwa et al. 2015). Once the proper
SOL geometry is set, parameters like SOL e-folding width and divertor temperature do
not strongly affect the core CD results for cases with the χ -broadened wave spectrum.

Figure 14 plots the calculated core power deposition and CD profile in this C-Mod
discharge. The core density is scaled by ±10 % to assess the sensitivity of these results.
The top figures, for which the launched wave spectrum was not broadened in χ -space,
reveal core profiles that are robustly peaked at ρ ≈ 0.8. A smaller peak exists on-axis,
though it shifts to ρ ≈ 0.25 when the background density is decreased by −10 %. A robust
current valley exists at ρ ≈ 0.5. The bottom plots model a launched wave spectrum that is
χ -broadened. These profiles are remarkably different from the cases without broadening.
There is a 65 % increase in power deposited near-axis (ρ < 0.5), which leads to profiles
that are robustly peaked on-axis. There are also no large off-axis peaks.

Figure 15 plots the cumulative CD profile. The χ -broadened cases result in roughly
linear profiles and greater current driven near-axis. In contrast, the cases without
broadening result in CD preferentially in the off-axis (ρ > 0.7) region. The total LH
current is 10–20 % lower in the broadened cases. This is partly owing to ∼30 % of
incident power being reflected in the SAS-MC model, and therefore not being launched in
GENRAY for the χ -broadened cases.

Figure 16 plots the ray trajectories during the first pass. Ray colour denotes the
logarithmic power in the ray, normalized to initial power in the highest-powered ray.
In the case with no broadening, rays cannot propagate to the hot magnetic axis, and
therefore cannot Landau damp strongly. In contrast, χ -broadening ‘fans’ out the initial ray
trajectories. Notably, rays that are sufficiently rotated inwards (χ < 0) strongly Landau
damp in the hot near-axis plasma. Even though this is a small fraction of the incident
power, it is sufficient to seed a supra-thermal electron tail near-axis. As a result, additional
rays can quasi-linearly damp on this tail on subsequent passes through the core. In the case
without broadening, there is insufficient on-axis power for this seeding effect. As a result,
the on-axis current drive is relatively low.
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(a) (b)

(c) (d )

FIGURE 14. Core LH power deposition and driven current density profiles in C-Mod L-mode
discharge #1101104011 at t = 1.10 s, modelled with GENRAY/CQL3D. Here, ne = 0.52 ×
1020 m−3, Ip = 530 kA and B = 5.4 T. An LH power of 850 kW is launched at 4.6 GHz and
N|| = 1.6. (a,b) Simulations with no wave spectrum broadening. (c,d) Simulations with the
broadened angular wave spectrum shown in figure 13. Green, black and red lines denote the
core background density is scaled x0.9, x1.0 and x1.1 the nominal value, respectively.

FIGURE 15. Cumulative core LH current driven, modelled in GENRAY/CQL3D. Simulation
parameters are the same as in figure 14.

Note that the modified wave spectrum has a net effect of deflecting power away from
the core on first pass. Paradoxically, near-axis CD increases. Again, this is attributed to the
small fraction of power deflected inwards that seeds a near-axis supra-thermal electron tail.
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(a) (b)

FIGURE 16. Poloidal projection of first-pass ray trajectories in C-Mod discharge. Simulation
parameters are the same as in figure 14 for the x1.0 scaled density case. Coloured lines denote ray
trajectories. The colour of lines denotes the log10 power in ray, normalized to the initial power in
highest-power ray. Grey patch denotes core region (ρ < 1). Green patch denotes near-axis region
(ρ < 0.2).

It is possible this phenomenon does not extend to high-density discharges, where stronger
asymmetric scattering will deflect a greater fraction of power outwards.

9. Conclusion

A hybrid semi-analytic scattering Markov chain (SAS-MC) model is formulated to
calculate the modified wave spectrum of an RF wave propagating through a turbulent
SOL. First, a semi-analytic full-wave technique is adopted to calculate the scattered
power from a SOL filament. This technique is generalized to account for filaments with
radially varying densities. Next, an effective differential scattering width is derived for a
statistical ensemble of filaments. Lastly, the SOL is modelled as a slab, and the modified
wave spectrum is found by solving the radiative transfer equation using a Markov chain
technique. This model is applied to the case of lower hybrid launching for driving current
in a tokamak. GENRAY/CQL3D is used to model the impact of the modified wave
spectrum on current drive in Alcator C-Mod.

In calculating the differential scattering width, it is found that the scattered power
can be asymmetrically directed (in the y-direction). This is true even for the effective
scattering width, which averages over the statistical properties of filaments. Previous RF
scattering models have either used the drift-wave approximation and/or the ray tracing
approximation. As a result, they fail to account for this important asymmetric effect.

The SAS-MC model is compared with the ray tracing treatment of LH wave scattering.
By retaining full-wave effects, the SAS-MC model is able to produce a significantly
asymmetric transmitted wave spectrum. As stated previously, ray tracing cannot replicate
this effect.

The SAS-MC model is compared with PETRA-M, which self-consistently models
full-wave interactions in the presence of multiple filaments. Both models predict that Fref
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increases with 〈nb/n0〉, 〈ab〉−1 and Lx, as do previous analytic scattering models. Assuming
a low background density, and realistic SOL packing fraction and width, the two models
agree in the calculated Fref. As the packing fraction rises, the SAS-MC model increasingly
over-predicts Fref, which suggests this is a result of the far-field approximation breaking
down. Nevertheless, the SAS-MC model retains full-wave effects for scattering from a
single filament, and is therefore a significant improvement over previous reduced models
for scattering.

A modified wave spectrum is calculated for LH launching in a low-n̄e Alcator
C-Mod discharge. Roughly 30 % of the launched power is reflected back into the SOL.
The transmitted wave spectrum is coupled to GENRAY/CQL3D, which results in a
significantly altered core CD profile. Notably, the on-axis current is increased and the
off-axis peaks are greatly mitigated. This is attributed to a portion of the modified wave
spectrum that is rotated such that it damps on-axis during the first pass. This seeds
a supra-thermal electron population on which rays preferentially Landau damp during
subsequent passes through the core. The result is a CD profile that better matches
experimental measurements in low-n̄e discharges (Mumgaard 2015), which robustly
feature monotonic profiles that peak on-axis.

The asymmetric scattering effect is stronger at high SOL densities and result in a
significant net deflection of launched LH power away from the core. This may induce
greater parasitic losses in the edge, either through collisional damping or PDI. This
warrants the investigation of asymmetric scattering as a possible explanation to the LHCD
density limit (Wallace et al. 2010).

In this paper, the SAS-MC model has demonstrated that a significantly modified current
profile in C-Mod is possible when assuming the filament p.d.f. shown in figure 8. However,
it is difficult to construct the exact p.d.f. from SOL measurements. For example, techniques
for burst statistics only consider filaments to be those with measured values above a
threshold factor of the background signal (Kube et al. 2016; Zweben et al. 2016). This
may lead to an over-estimation of 〈nb/n0〉 or 〈ab〉. Similar concerns exist for calculating
the packing fraction. Thus, it will be important to test the sensitivity of wave scattering on
different p.d.f.s and packing fractions.

It should be noted that the SAS-MC model is not limited to the LH frequency range.
For example, this model is well suited for the study of wave-spectrum broadening of the
electron cyclotron (EC) wave in the tokamak SOL. The relatively larger k⊥ of the EC wave
means the k⊥d 	 1 criterion for the far-field approximation is more strongly satisfied than
in the case of LH waves. Similar to the LH wave, the EC wave is not expected to undergo
significant mode conversion owing to scattering. Therefore the SAS-MC model, which
neglects mode conversion, is readily applicable. In addition, both EC branches are forward
propagating, so some of the mathematical care taken to properly model the LH slow wave
can be neglected (discussed in § 2.2).
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Appendix A. Electric field in cylindrical coordinates

The incident plane wave is assumed to be have a wave vector k = k⊥êx + k||êz. Given
the background is homogeneous, the incident wave solution is

E0 = (ξ0xêx + ξ0yêy + ξ0zêz) exp(i(k⊥x + k||z − ωt)), (A1)

where ξ 0 = {ξ0x, ξ0y, ξ0z} is the wave polarization. It can be evaluated by finding the null
space of the dispersion tensor for the given frequency and incident wave vector. The
following transformation to cylindrical coordinates is used:

êx = êρ cos θ − êθ sin θ, (A2a)

êy = êρ sin θ + êθ cos θ, (A2b)

êz = êz, (A2c)

to yield

E0 = [
êρ(ξ0x cos θ + ξ0y sin θ)+ êθ (−ξ0x sin θ + ξ0y cos θ)+ êzξ0z

]
exp(i(k⊥x + k||z − ωt)).

(A3)

Next, (A3) and the Jacobi–Anger identity are employed to cast the incident wave as a
series solution in cylindrical coordinates. This results in (2.1) and (2.2). Equation (2.1)
can be generalized to the non-incident waves for the following reason. The plane wave E0,
as formulated in (2.1), is the known solution to this equation if the correct values of k⊥
and ξ̄0 are used. In addition, each poloidal mode number term in the series is a solution
to the wave equation. It therefore follows that (2.1) can describe all other waves ( j �= 0)
given the appropriate coefficients Ejm are found.

Appendix B. ‘Flat top’ filament system of equations

A system of equations must be formulated to find Ejm for j = 1, . . . , 4. Here, j = 0
denotes the incident wave; j = 1, 2 denote the slow, fast waves in the filament; and j = 3, 4
denote the slow, fast scattered waves outside the filament. Assuming no free charge or
current on the cylinder edge, the following boundary conditions are imposed:

êρ · (D0 + D1 + D2)|ρ=ab = êρ · (D3 + D4)|ρ=ab, (B1a)

êρ · (B0 + B1 + B2)|ρ=ab = êρ · (B3 + B4)|ρ=ab, (B1b)

êρ × (E0 + E1 + E2)|ρ=ab = êρ × (E3 + E4)|ρ=ab, (B1c)

êρ × (B0 + B1 + B2)|ρ=ab = êρ × (B3 + B4)|ρ=ab, (B1d)

where Dj is the electric displacement field of wave j. Equation (B1) provide six constraints,
but only four are independent. Myra & D’Ippolito (2010) employ (B1a)–(B1c) and require
Bz to be continuous at the boundary. This paper follows this prescription.

The field solution have the poloidal dependence eimθ . These exponential terms are
orthogonal, and therefore the mth terms must independently satisfy the boundary
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conditions. The following quantities are introduced:

Djm = ε⊥Wjρm − iεxyWjθm, (B2a)

Mjm = ξjy

(
kj⊥J′′

m + 1
ρ

J′
m − m2

kj⊥ρ2
Jm

)
, (B2b)

where ε⊥ and εxy are components of the dielectric tensor in the Stix frame (Stix 1992). The
argument of Jm(kj⊥ρ) has been suppressed. Again, J must be replaced with the appropriate
type of Bessel/Hankel function for the wave. Here, EjDjm is proportional to Djm · êρ and
EjMjm is proportional to Bjm · êz. Equations (B1) and (B2) are used to formulate the
following linear system of equations:⎡⎢⎣W1θm W2θm −W3θm −W4θm

M1m M2m −M3m −M4m
D1m D2m −D3m −D4m
W1zm W2zm −W3zm −W4zm

⎤⎥⎦ ·

⎡⎢⎣E1m
E2m
E3m
E4m

⎤⎥⎦ = −E0m

⎡⎢⎣W0θm
M0m
D0m
W0zm

⎤⎥⎦ , (B3)

which is evaluated at ρ = ab. The only unknown is the column vector on the left-hand
side. It is solved by inverting the 4 × 4 matrix. This process is repeated for each poloidal
mode number.

Appendix C. Radially inhomogeneous filament system of equations

In general, there are 4(R + 1) unknown wave coefficients and 4(R + 1) independent
boundary equations, which make this problem solvable for any R. For convenience, the
wave indices are reordered. Waves j = 0, 1 denote the slow, fast wave (respectively) in
the inner-most (r = 0) bin. Waves j = 4r − 2, . . . , 4r + 1 are the slow H1

m, slow H2
m, fast

H1
m and fast H2

m contributions (respectively) in bin r > 0. Waves j = 4R + 2, 4R + 3 are
the slow, fast scattered waves outside the cylinder. Lastly, wave j = 4R + 4 is the incident
wave. The first four matching relations (with the m subscript suppressed) are

⎡⎢⎣−W0θ −W1θ W2θ W3θ W4θ W5θ
−M0 −M1 M2 M3 M4 M5
−D0 −D1 D2 D3 D4 D5
−W0z −W1z W2z W3z W4z W5z

⎤⎥⎦ ·

⎡⎢⎢⎢⎢⎢⎣
E0
E1
E2
E3
E4
E5

⎤⎥⎥⎥⎥⎥⎦ = 0. (C1)

They are evaluated at ρ = ρ0, where ρ0 is the radius of the inner-most bin r = 0. The
‘intermediate’ relations are⎡⎢⎣−W(4r−2)θ −W(4r−1)θ −W(4r)θ −W(4r+1)θ W(4r+2)θ W(4r+3)θ W(4r+4)θ W(4r+5)θ

−M(4r−2) −M(4r−1) −M(4r) −M(4r+1) M(4r+2) M(4r+3) M(4r+4) M(4r+5)
−D(4r−2) −D(4r−1) −D(4r) −D(4r+1) D(4r+2) D(4r+3) D(4r+4) D(4r+5)
−W(4r−2)z −W(4r−1)z −W(4r)z −W(4r+1)z W(4r+2)z W(4r+3)z W(4r+4)z W(4r+5)z

⎤⎥⎦

·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E(4r−2)
E(4r−1)
E(4r)

E(4r+1)
E(4r+2)
E(4r+3)
E(4r+4)
E(4r+5)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0 (C2)

https://doi.org/10.1017/S0022377821001033 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821001033


32 B. Biswas and others

and are evaluated at ρ = ρr for 0 < r < R. The outer-most relations are⎡⎢⎣−W(4R−2)θ −W(4R−1)θ −W(4R)θ −W(4R+1)θ W(4R+2)θ W(4R+3)θ
−M(4R−2) −M(4R−1) −M(4R) −M(4R+1) M(4R+2) M(4R+3)
−D(4R−2) −D(4R−1) −D(4R) −D(4R+1) D(4R+2) D(4R+3)
−W(4R−2)z −W(4R−1)z −W(4R)z −W(4R+1)z W(4R+2)z W(4R+3)z

⎤⎥⎦

·

⎡⎢⎢⎢⎢⎢⎣
E(4R−2)
E(4R−1)
E(4R)

E(4R+1)
E(4R+2)
E(4R+3)

⎤⎥⎥⎥⎥⎥⎦ = −E(4R+4)

⎡⎢⎣W(4R+4)θ
M(4R+4)
D(4R+4)
W(4R+4)z

⎤⎥⎦ (C3)

evaluated at ρ = ρR = ab.

Appendix D. Derivation of scattering width

First, derive the ratio of the power scattered to the power incident: Psct/Pinc. The power is
P = ∫

da · S, where S is the time-averaged Poynting flux and a is the cross-sectional area
of interest. Consider the incident power through the cross-sectional area of dimensions Lz
and Ly on the yz-plane,

Pinc,x = Sinc,xLyLz. (D1)

The equation above is straight-forward because Sinc,x is assumed constant. The scattered
power radiating away from cylinder is

Psct,ρ(ρ) = ρLz

∫ +π

−π

Ssct,ρ(ρ, θ) dθ. (D2)

Only the far-field radiation is considered (and therefore multi-pole effects near the cylinder
are neglected). In this case,

Psct,ρ|far-field = lim
ρ→∞

ρLz

∫ +π

−π

Ssct,ρ(ρ, θ) dθ. (D3)

In general, the far-field radial scattered power Psct,ρ|far-field converges to a non-zero value
because Ssct,ρ(ρ, θ) ∝ 1/ρ for large ρ. From now on, Psct,ρ is taken to mean Psct,ρ|far-field.
Next, define the scattering width, σ as

σ ≡ PsctLy

Pinc
=

lim
ρ→∞

ρ

∫ +π

−π

Ssct,ρ(ρ, θ) dθ

Sinc,x
, (D4)

which has the physical meaning of power scattered per cylinder per incident power/Ly
(Myra & D’Ippolito 2010). Clearly, as Ly (the incident beam width in the y-direction)
increases, less power is directly incident on the cylinder. So as Ly → ∞, also Psct/Pinc →
0. In reality, the LH beam has a finite width and there are multiple cylinders (SOL
filaments) in its path. This allows the cancellation of the Ly variable. Suppose a beam of
width Ly is travelling through a turbulent layer of width Lx. Within that layer are filaments
of average radius ab. Assuming the cross-sectional packing fraction fp of filaments in this

https://doi.org/10.1017/S0022377821001033 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821001033


A hybrid full-wave Markov chain approach to radio-frequency wave scattering 33

layer is known, the beam encounters fpLxLy/πa2
b filaments on average. This can be used to

roughly estimate the fraction of incident power scattered from multiple filaments:

Psct

Pinc
≈ fpLx

πa2
b
σ. (D5)

This is only valid for a sparse filament layer, because the effects of an already scattered
wave interacting with another filament are ignored. This is properly accounted for in the
RTE introduced in § 5.
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