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SUMMARY

Recent decades have seen substantial expansions in the global air travel network and rapid increases in traffic volumes. The
effects of this are well studied in terms of the spread of directly transmitted infections, but the role of air travel in the
movement of vector-borne diseases is less well understood. Increasingly however, wider reaching surveillance for vector-
borne diseases and our improving abilities to map the distributions of vectors and the diseases they carry, are providing
opportunities to better our understanding of the impact of increasing air travel. Here we examine global trends in the
continued expansion of air transport and its impact upon epidemiology. Novel malaria and chikungunya examples are
presented, detailing how geospatial data in combination with information on air traffic can be used to predict the risks of
vector-borne disease importation and establishment. Finally, we describe the development of an online tool, the Vector-
Borne Disease Airline Importation Risk (VBD-Air) tool, which brings together spatial data on air traffic and vector-borne
disease distributions to quantify the seasonally changing risks for importation to non-endemic regions. Such a framework
provides the first steps towards an ultimate goal of adaptivemanagement based on near real time flight data and vector-borne
disease surveillance.
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INTRODUCTION

Initially, infectious diseases could spread only as
fast and far as people could walk, then as fast and
far as horses could gallop and ships could sail. With
the advent of truly global travel, the last five centuries
have seen more new diseases become potential
pandemics (Karlen, 1995), with the rate of diseases
that are ‘emerging’ increasing (Jones et al. 2008).
The current reach, volume and speed of travel are
unprecedented, with human spatial mobility increas-
ing in high income countries by over 1000-fold since
1800 (Wilson 1995, 2003). Aviation in particular has
expanded rapidly as the World economy has grown,
with worries about its potential for spreading disease
arising with the establishment of commercial aviation
(Massey, 1933).

Air travel has changed the epidemiological land-
scape of theworld over the last half century, providing
routes from one side of the Earth to the other that
can be traversed by an infected person in signifi-
cantly shorter times than the incubation period of
the majority of infectious diseases. This epidemi-
ological impact has prompted a rethinking of global
disease management (World Health Organisation,
2007), with pandemic control relying less and less on
conventional spatial barriers as the global air network

continues to expand.Moreover, the speed of air travel
has meant that prompt surveillance and rapid report-
ing now play a critical role in preventing the spatial
spread of a disease, while mathematical models are
becoming more central in identifying unusual behav-
iour in disease trends. Finally, the high cost of
surveillance makes sampling design and the devel-
opment of cost effective monitoring and testing
approaches vitally important in effective epidemic
early-warning systems (Haggett, 2000). While work
on these factors is becoming sophisticated fordirectly-
transmitted infections, our understanding of the
role of modern air travel in global vector-borne
disease epidemiology remains relatively poor. In this
paper, we review existing knowledge, and highlight
the potential of interdisciplinary geospatial ap-
proaches to fill gaps and provide a basis for adaptive
management tools.

AIR TRAVEL EXPANSION

Today, more than two billion passengers take com-
mercial flights every year (IATA, 2010). Passenger
numbers have grown at nearly 9% per annum since
1960, with air-freight traffic showing similar changes
(Upham et al. 2003). While the recent global
economic downturn resulted in a slow-down of
growth in many parts of the world, the level of air
traffic is still now 4% above the pre-recession peak of
early 2008 (IATA, 2010). Moreover, many regions
are still showing rapid expansion, such as India
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and China, as their economies continue to grow.
Fig. 1 demonstrates such trends for China, showing
the large number of new routes initiated in 2011 as
the country continues to expand its influence abroad.
Though not shown in Fig. 1, this expansion also
includes more frequent and larger capacity flights
operating on existing routes. Globally, the intercon-
nectivity brought about by air travel has had a
profound impact on epidemiological dynamics, and
continued growth will almost certainly result in more
significant changes.

AIR TRAVEL AND DIRECTLY TRANSMITTED

DISEASES

The air transportation system is responsible, in-
directly, for the global propagation of directly-
transmitted diseases such as influenza and severe
acute respiratory syndrome (SARS). It plays a role for
certain diseases that is analogous to that of the web
of human sexual contacts for the propagation of HIV
and other sexually transmitted infections (Guimera
et al. 2005). Previous studies have suggested that data
on air travel can be used to predict the spread of newly
emerged human pathogens and better target public
health measures (Colizza et al. 2006).
Numerous approaches have been developed which

attempt to capture the possible future movements
of newly-emergent communicable diseases through
global and local transport networks (Thomas, 1992;
Haggett, 2000). While the movements of pandemics
are notoriously unpredictable (Thomas, 1992), those
models that can be calibrated using data from
previous epidemic events are perhaps the ones
that stand the best chance of being used to predict

the spread of communicable diseases in the future,
enabling the construction of early warning systems
and forming a basis for the planning of control
strategies (Haggett, 2000). Such an approach was
demonstrated by Rvachev and Longini (1985) who
showed the diffusion of the 1968–9 influenza pan-
demic to be predictable through a model based
on the air travel network of the time. Incidence data
from the pandemic origin, Hong Kong, were used
to estimate model parameters, such as contact level
between susceptible and infectious individuals, time
taken in latent and infectious states and fraction of
people susceptible to the virus. Annual average daily
air passenger numbers between 52 cities were then
used to derive probabilities of travel between the
cities. Finally, the seasonality of influenza was taken
into account by applying a scaling factor to northern
and southern hemisphere city contact level par-
ameters to mimic the hemispheric swing of influenza
epidemics. This model was later updated to provide
the basis for predictive models of the spread of
influenza, smallpox, SARS and other infectious
agents through the global transportation network
(Longini et al. 1986; Dye and Gay, 2003; Grais et al.
2003; Vogel, 2003; Hufnagel et al. 2004).
More recently, the H1N1 pandemic, development

of network modelling approaches and increasing
computing power have prompted both more sophis-
ticated modelling and a better understanding of the
role of global air travel in directly transmitted disease
spread. Studies have examined the interplay between
commuting flows and air travel flows in impacting
pandemic influenza (Balcan et al. 2009), the role of air
network structure on the predictability of global
epidemics (Colizza et al. 2005, 2006), the impacts

Fig. 1. Direct flight connections to and from China in 2010 and 2011. Routes operating in 2010 are shown in blue,
while new routes added in 2011 are overlaid on top in red. For clarity, all routes are shown as straight lines, rather than
actual great circle routes and trans-Pacific routes to/from China are shown as connecting in the opposite direction to
avoid broken lines on the map.
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of vaccination (Kenah et al. 2011) and the effects
of travel restrictions onpandemic spread (Bajardi et al.
2011). Moreover, research has expanded in scope to
include examination of the role of trade and health-
care resources in addition to air traffic (Hosseini et al.
2010), and the development of publicly available
models that draw on awide range of datasets (Van den
Broeck et al.2011).Finally, recentworkdemonstrated
the need for more complete data on air travellers and
the handling of such data in mathematical models of
disease spread (Johansson et al. 2011).

Clearly, the air transport network plays a much
more indirect role in the spread of vector-borne
diseases, due to the requirements for not only
movement of infected passengers or vectors, but
also the availability of competent vectors upon arrival
to facilitate onward spread. Nevertheless, increases in
reported rates of imported vector-borne infections
around the world, the establishment of exotic vectors
and occasional outbreaks of vector-borne disease
sparked by incoming air travellers, are all evidence
of the role that air travel is playing in a changing
global epidemiology. The size and predictability
of this impact remains poorly understood compared
to directly-transmitted diseases however, and in the
remainder of this article, we discuss current under-
standing, modelling approaches and knowledge gaps
still to be filled regarding the role of air travel in the
movement and spread of vector-borne diseases.

MOVEMENTS OF VECTORS VERSUS DISEASE

Substantial evidence exists documenting examples of
both vector-borne diseases and the vectors that carry
them being transported between distant locations via
air travel. The rates of importation of disease vectors
(infected or non-infected) versus infected passengers
appear to be very different however. While imported
vector-borne disease infections in air travellers are
common and number tens of thousands each year
into non-endemic high income countries (Jelinek
et al. 2002; Wichmann and Jelinek, 2004), disease
vectors appear to be relatively rarely imported, and
their establishment in a new location is an even rarer
event (Lounibos, 2002).

Aircraft and ships are believed to be directly
responsible for rapid expansion in the range of many
plants and animals via inadvertent transport (Perrings
et al. 2005), including some of the World’s principal
disease vectors (Lounibos, 2002). The global air
network enables many of the World’s most isolated
and diverse ecosystems to become connected and
aids the movement of organisms, including disease
vectors, to new habitats where they can become
damaging invasive species, economically and health-
wise (Tatem et al. 2006a; Tatem and Hay, 2007).
Aircraft were recognized as a mechanism of trans-
port of undesirable insects, especially mosquitoes,
not long after the implementation of commercial,

transcontinental flights (Massey, 1933; Griffits and
Griffits, 1931). Fumigation, or ‘disinsection’ of air-
craft arriving from the tropics, as well as insect control
at receiving airports, were recommended to prevent
the establishment of undesirable pests and disease
vectors thatmight hitchhike aboard flights (Williams,
1940). Malaria epidemics in northeastern Brazil
vectored by Anopheles gambiae, possibly transported
on aircraft, though more likely a steamship from
Dakar (Killeen, 2003), heightened concerns about the
dangerous consequences of vector arrivals aboard
international flights. Mosquitoes representing five
genera were identified from inspections of aircraft
arriving in northeastern Brazil from Africa in 1941–
1942 (Soper and Wilson, 1943), while more recently,
inspections of aircraft during a three week period in
1994 produced estimations that 2000–5000 anophe-
linemosquitoes were imported into France at a rate of
8–20 mosquitoes per flight (Gratz et al. 2000). Given
such findings and the ever-increasing volume of air
traffic, it is perhaps surprising that very few disease
epidemics have been associated with the arrival of
vectors via aircraft, though the establishment of West
Nile virus in the US has been linked to the possibility
of infected mosquito importation by air (Kilpatrick,
2011). Mosquitoes can survive moderately high
atmospheric pressures aboard aircraft (Laird, 1984)
and can be transported alive between international
destinations, even in wheel bays (Russell, 1987).
However, the reason behind the lack of establishment
or epidemics is likely a case of sheer numbers. Those
disease vectors that make it onto a flight, survive it,
then disembark to a new location are likely comprised
of very small numbers of adults – this contrasts
with examples from cargo shipping of the discoveries
of large numbers of eggs, and the long list of cases
of mosquito invasion success through ship-borne
introductions (Lounibos, 2002).

Air travel likely plays a much more significant
role in moving the vector-borne disease (via infected
passengers) than in moving the vector itself. It pro-
vides rapid and wide-reaching connections between
outbreaks or high levels of endemicity and suscep-
tible vector populations elsewhere in the world. The
numbers of reported imported cases of notifiable
vector-borne infections in non-endemic countries
provide an indication of the rate at which infected
travellers are arriving, but this likely involves
significant under-reporting in terms of actual case
numbers. For malaria, around 10,000 imported cases
imported to high-income countries are reported each
year, but the true figure may be over 25,000 (Franco-
Paredes and Santos-Preciado, 2006). Up to 8% of
travellers to the developing world become ill enough
to seek health-care upon returning home, with a
relatively substantial proportion of these suffering
from vector-borne infections (Freedman et al. 2006).
Imported case rates also vary significantly by traveller
group, with migrant residents of high income

1818A. J. Tatem and others

https://doi.org/10.1017/S0031182012000352 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182012000352


countries who return home to visit friends and
relatives being particularly at risk, especially for
malaria (Franco-Paredes and Santos-Preciado,
2006). The expansion of air travel has fuelled many
of these trends, with case numbers often mirroring
trends in travel to certain high risk locations (see
examplemalaria analysis later in this article),modified
only by efforts to promote awareness of risks, aswell as
prophylaxis, bed-net and insecticide use. With
imported vector-borne infections placing a financial
and operational burden on health systems in non-
endemic countries, as well as the risk of onward
transmission and even establishment, as in the case of
West Nile virus (Kilpatrick, 2011), the development
of tools for assessing the spatiotemporal risks of
importation could bring substantial benefits.

VECTOR-BORNE DISEASE DISTRIBUTIONS

AND CONNECTIVITY

Defining the extent of infectious diseases as a public
health burden and their distribution and dynamics
in time and space are critical to disease monitoring,
control and decision-making. The epidemiology of
many vector-borne diseases makes health system-
based surveillance-based methods for estimating
populations at risk and disease burden problematic
because a large proportion of cases do not seek
treatment, and in many resource-poor areas there
is significant under-reporting anyway (Gething et al.
2006; Health Metrics Network, 2005; Murray et al.
2004). Meanwhile susceptibility and transmissibility
of diseases can vary across differing population den-
sities, and demographic and socioeconomic groups
due to differences in immunity, mobility, contact
patterns and health status (Riley, 2007; Kubiak et al.
2010).Cartographic and spatialmodelling approaches
have proven to be effective in tackling these factors,
through using community surveys to assess preva-
lence rates, and geostatistical approaches combined
with covariates to predict prevalences at unsampled
locations (Brooker et al. 2002; Ferguson et al. 2005;
Hay et al. 2010). Such approaches can help charac-
terize large-scale patterns of disease spread to evaluate
intervention impact (Riley, 2007) and produce glob-
ally consistent measures of morbidity of known
fidelity, often the only plausible method in many
African countries where surveillance data are incom-
plete, unreliable and inconsistent (Gething et al.2006;
Cibulskis et al. 2007; World Health Organization
2008).
The spatial modelling of vector and vector-borne

disease distributions is reliant upon the collation of
georeferenced samples informing on either the pres-
ence of a disease or vector, or its prevalence. Examples
of such datasets are those from global surveillance
(Brownstein et al. 2008), or collected from field
surveys on vector presence (Moffett et al. 2009), or
disease prevalence (Guerra et al. 2007). Relationships

between the presence/prevalence of a disease or vector
and environmental, climatic and physical covariates
(Hay et al. 2006; Scharlemann et al. 2008;Tatem et al.
2008) can then be exploited to build statistical
predictive distribution models (Rogers, 2006; Elith
et al. 2006). Moreover, by setting these in a Bayesian
framework, full predictive posterior distributions can
be obtained, facilitating explicit measures of mapping
uncertainty (Patil et al. 2011). Examples of global
distribution maps include P. falciparum malaria
(Hay et al. 2009; Gething et al. 2011), dengue and
yellow fever (Rogers et al. 2006) and Anopheles
species (Sinka et al. 2010a,b, 2011). Such predicted
global distribution maps, when combined with
data on human movements, can then form the basis
for models of infection movement risk (Tatem et al.
2009; Tatem and Smith, 2010; Le Menach et al.
2011).
The linkage of disease and vector distribution

maps with air travel network data offers great
potential for infection importation risk assessment
and the modelling of vector-borne disease spread,
and this is explored in the remainder of this article.
Such distribution maps, however, represent static
pictures of relatively long term (>1 year) disease
prevalence and vector presence. Ideally, the sub-
stantial climate-driven seasonal fluctuations in dis-
ease risk and vector densities should be accounted
for. Exploiting the richness of spatial climate data
now available offers solutions here. The current
architecture of the global air network provides links
between regions of high climatic similarity, but that
are spatially distant (Tatem and Hay, 2007). These
linkages change seasonally, showing greatest overall
climatic similarity in June, July and August, when
long-haul routes link climatically similar regions
around the globe (Tatem and Hay, 2007). If a vector
or an infected individual arrives in a new location via
air travel, the risk of the vector establishing or the
infection being passed on to local vector populations
is often dependent upon the time of year of arrival.
The arrival of an individual infected in a chikungu-
nya outbreak occurring in February in Reunion (the
time of year climatically suitable for Aedes albopictus
activity there) inMilan will present no risk of onward
transmission, due to the cold February climate in
Italy being not conducive for albopictus activity.
However, a similar arrival from India (where climatic
conditions are suitable for year-round transmission)
in July presents a much greater risk (Charrel et al.
2008). By utilizing gridded climate data to measure
climatic similarity between origin and destination
locations with known presence of a suitable vector,
and adjusting for flight passenger numbers as an
additional measure of risk, these factors can be
accounted for (Tatem et al. 2006a,b). The potential
for undertaking such analyses, making use of the
range of datasets now available and described briefly
above, is explored in the following sections.
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SPATIAL APPROACHES TO UNDERSTANDING

AND PREDICTING RISK

Given the vast range of complicating factors, no
model can be expected to predict the spread of an
infectious disease pandemic with complete accuracy.
Modelling can, however, improve our understanding
of the driving factors behind epidemiological pro-
cesses, offer quantitative assessments of risk for
improved targeting of surveillance and identify
possible interventions for a range of scenarios,
spanning the range of uncertainties of key par-
ameters. A recent illustration of the potential for
combining mathematical modelling with air travel
data to assess the risks of spread of a vector-borne
disease is provided in Johansson et al. (2012). This,
and the previous section here have outlined how new
approaches and datasets are providing us with a more
complete understanding of the global distributions
of vectors and the diseases they carry, and how
combining these maps with air traffic and climate
data can enable us to better parameterize the risks
of vector-borne disease and vector importation and
spread risk. In the following sections, we outline two
novel examples where the simple combination of data
on air travel passengers with spatial data on vector-
borne disease risk offers potential for improved risk
assessment.

Example 1: The use of global malaria maps for imported
malaria origin and case number prediction

Despite over fifty countries having achieved malaria
elimination over the past century, the disease remains
a problem to many countries that are certified as
‘malaria free’ through cases imported from endemic
regions each year. Cases remain expensive to treat and
can occasionally spark secondary local transmission
(e.g. Zucker, 1996;MacArthur et al. 2001).While the
numbers and origins of cases seen in a non-endemic
country are a result of a complex interplay of factors,
broad patterns are evident, relating to the number
and origin of incoming travellers and level of risk at
these locations. The recent construction of a global
evidence-based map of P. falciparum malaria trans-
mission intensity (Hay et al. 2009) provides valuable
data on the spatial variation in risk of acquiring a
P. falciparum infection. Here we examine the poten-
tial of combining these maps with data on numbers of
people arriving in theUSto explore the relationship to
numbers and origins of reported imported malaria
cases.

Data on the number and country of origin of
reported imported P. falciparum malaria cases from
2000–07 were obtained from the CDC’s Morbidity
and Mortality Weekly Reports (e.g. Solomon et al.
2009). It should be noted that these numbers may not
completely capture the true number of imported
cases since there is the potential for long delays to

onset and diagnosis, and more importantly, these
only represent reported cases, thus a large proportion
may be missed. The case numbers were averaged
across years to obtain a mean number of imported
P. falciparum cases from each country of origin. Next,
estimates of P. falciparum malaria prevalence in each
endemic country were obtained from the World
malaria map recently published by the Malaria Atlas
Project (Hay et al. 2009, www.map.ox.ac.uk). To
produce a single measure of malaria risk for each
country, enabling comparison with the imported
malaria statistics, a gridded population dataset (Balk
et al. 2006)was used to calculate population-weighted
mean prevalence for each country. This was under-
taken because taking a single mean prevalence value
across the country often incorporates large unpopu-
lated areas, so weighting by population density
produces a more relevant value of the average level
of prevalence that each person is residing under.
Ideally, a range of measures should be calculated to
exploit the richness of data in themalaria map, but for
this simple illustrative analysis, just the population-
weighted mean was used. Moreover, the potential
exists to use recently developed mathematical trans-
missionmodels (Smith et al. 2010) to convert themap
to represent force of infection, a more relevant risk
measure for the case of non-immune US residents
visiting endemic areas. Finally, the numbers of
foreign national travellers by country of national
origin to theUnited States from2000–07, i.e. non-US
citizens entering theUS for any reason,were obtained
from the USOffice of Travel and Tourism Industries
(http://tinet.ita.doc.gov/outreachpages/inbound.
general_information.inbound_overview.html), and
an average per year was calculated.

We next explored the simple assumption
that numbers of imported P. falciparum cases by
origin country to the US were a function of numbers
of incoming travellers and the P. falciparum preva-
lence at their origins. A log-linear model was
constructed to investigate this relationship:

ln(γi) = β0 + β1 ∗ ln(Λi) + β2 ∗ ln(Pi) + εi

Where i denotes the country of origin, γi is the
imported malaria cases from country i, Λi is the
number of international arrivals from country i, and
Pi is the population-weighted mean P. falciparum
prevalence in country i. Linear regression was not
appropriate here as the approach suffers from the
fact that the numbers of imported cases tend to
be positively skewed and subject to outliers. Thus, a
natural logarithm transformation was applied to both
response and predictor variables to alleviate hetero-
scedasticity. The mean number of imported cases
for each origin was adjusted by adding one before
logarithmic transform to eradicate zero values and
make full use of the imported case dataset.

A total of 84 countries was included in the
modelling. The results of the log-linear model
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estimation (Table 1) showed that the model was
statistically significant, with an adjusted R-squared
of 0·497, indicating that approximately 50% of
the variance of the response variable (imported case
numbers) was accounted for by the explanatory
variables (arrivals and P. falciparum prevalence
at origin). The estimated coefficients of both expla-
natory variables were significant (P<0·001) with
values of 0·3842 and 0·2745, respectively. Thus, we
may expect around a 3·7% increase in the number
of imported malaria cases to the US when the
P. falciparum Parasite Rate increases by 10% at the
origin, or a 2·7% increase in the number of imported
P. falciparum malaria cases when the number of
incoming arrivals increases by 10% (holding the other
predictor constant).
Results show that the simple scaling of spatial data

on malaria transmission by incoming traveller num-
bers can broadly replicate the patterns of imported
P. falciparum case numbers and origins. Such
findings offer promise for the construction of a
tool for forecasting trends in imported malaria case
numbers and origins, as incoming traveller numbers
continue to be monitored and global malaria risk
maps continue to be updated and refined (www.map.
ox.ac.uk). Finally, this example outlines an extremely
simple model, and great potential exists to im-
prove and add more sophistication in incorporating
known determinants of imported malaria, and in turn
explain a greater proportion of the variance in case
numbers seen. Information on traveller activities,
prophylaxis use and resident/immigrant/visitor sta-
tus are important factors to include. Moreover,
expanding the approach to longer time series,
different diseases, other countries and more sophis-
ticated modelling will likely improve reliability and
utility further.

Example 2: Predicting the movement of a vector-borne
disease: Chikungunya in Italy

In 2006, India and several Indian Ocean states
experienced outbreaks of chikungunya virus infec-
tion, where the vector was Aedes albopictus in at least
some areas (Schuffenecker et al. 2006; Bodenmann
and Genton, 2006). At the end of August 2007, Italy

notified its EU partners of an outbreak of chikungu-
nya in the Emilio-Romagna region of north-eastern
Italy (Rezza et al. 2007). The index case of the
epidemic was a resident of the region, who travelled
to the state of Kerala, India, in June, and presented
with two episodes of fever on 15 June and 23 June.
Eventually, over 200 cases were recorded during the
summer of 2007, mostly in two villages in the
Province of Ravenna. The outbreak of chikungunya
in northern Italy was the first recorded in a temperate
country. The drivers behind its occurrence were
many and varied, but were principally related to a
confluence of five factors: (1) The global spread from
east Asia of Aedes albopictus (the ‘Asian tiger
mosquito’) during the past 30 years through the
global trade in used tires (Tatem et al. 2006a),
including widespread establishment of populations
in Italy (Rezza et al. 2007). (2) The chikungunya
virus strains introduced in Italy contained a mutation
in the E1 glycoprotein which was responsible for a
single amino acid substitution (A226 V) able to
increase the infectivity of the virus for Aedes
albopictus (Tsetsarkin et al. 2007). (3) The spread of
chikungunya outbreaks from Indian Ocean states in
the southern hemisphere, where outbreaks were
occurring in the warmer months of December to
March (asynchronous to the principal vector activity
months of June–September in Italy), to India in the
northern hemisphere, where vector activity occurred
year-round, providing synchrony with northern
hemisphere albopictus activity (Charrel et al. 2007).
(4) An unusually prolonged hot spell in the Northern
Italy summer that apparently promoted intense
Aedes albopictus activity. (5) A traveller taking
advantage of recently established air travel connec-
tions between India and Italy.
Though the second factor remains difficult to

predict, data on the remaining factors were here
assembled in a simple framework, following similar
previous retrospective analyses (Tatem et al.
2006a,b), to assess whether the relative risk of an
outbreak occurring in northern Italy over other
locations could have been predicted at the time
using readily available datasets. Table 2 documents
these datasets and their sources.
Firstly, field data on the presence of Aedes

albopictus were gathered from a range of sources
(Table 2), and used with satellite-derived environ-
mental and climatological covariates (Scharlemann
et al. 2008) within a boosted regression tree species
distribution mapping algorithm (Elith et al. 2008),
following similar approaches adopted for Anopheles
distribution mapping in Sinka et al (Sinka et al.
2010a,b, 2011). The resulting distribution map,
showing predicted suitability for albopictus presence,
is shown in Fig. 2. Areas that were predicted as
suitable for albopictus, but known to be free of the
mosquito (e.g. Australia, NewZealand), weremasked
from the map for the remainder of the analyses.

Table 1. Results of a log-linear model for the
estimation of imported P. falciparum malaria case
numbers to the US by origin country (PR=Parasite
Rate)

Variables Coefficient
Std.
Error

Z
value P value

Intercept 0·1004 0·2848 0·352 0·725
P. falciparum
PR

0·3842 0·0429 8·948 <0·001

Arrivals 0·2745 0·0397 6·911 <0·001
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Following this, reports of outbreaks occurring in the
first half of 2007 were collected and mapped, and
passenger capacity information for all flight routes
originating in outbreak regions were extracted.

Climatic Euclidean Distances (CEDs) (Tatem and
Hay, 2007) between the nearest international airport
to each outbreak region within the predicted distri-
bution of Aedes albopictus (defined by >90% pre-
dicted probability of presence), and every other
airport within the predicted distribution of Aedes
albopictus that was connected by direct flights,
were then calculated for each month using the
2007 gridded climate data. CEDs are a measure of
similarity in climatic regime between one location
and another, and in this case were calculated through
obtaining measures of rainfall (r), temperature (t)
and humidity (h) for each airport location. The
CED between airport i and j is then calculated by√((ri − rj)2 + (ti − tj)2 + (hi − hj)2) (Tatem and Hay,
2007). The CEDs for each flight route were scaled by
the passenger capacities on those routes, following
previous approaches (Tatem et al. 2006b; Tatem and
Hay, 2007; Tatem, 2009). Thus for each flight route,
this gave a relative measure of the probability of
imported chikungunya-infected travellers entering

regions with no chikungunya activity, but Aedes
albopictus presence and similar climatic conditions to
the origin region, where the climate was suitable for
sufficient albopictus activity to spark an epidemic.
For each month, the routes were ranked by these
traffic-scaled CEDs to give a relative assessment
of regions most at risk for importation and onward
transmission of chikungunya, based on the factors
considered (Table 2). The top ten risk routes for June
(out of a total of 57 routes), when the Italian outbreak
was seeded by a traveller from India, are shown
in Table 3. While the highest ranked routes are
unsurprisingly the shorter distance, regional flights
to Sri Lanka and Bangladesh, the highest ranked
longer distance route was Mumbai to Milan. Milan
was the nearest international airport to Ravenna
Province that had connections to chikungunya out-
break regions, suggesting that at the time, the
elevated risk of chikungunya importation and estab-
lishment through this route, relative to other routes,
was actually predictable using readily available spatial
datasets.

The results show that a multi-disciplinary ap-
proach, which draws on a variety of spatial data on
factors known to influence the spread of vectors and
the diseases they carry, offers potential for assessing
the risk of disease importation. How to interpret and
act upon the kind of relative risks identified is a
challenge yet to be overcome. However, the approach
presented here is a simple, proof of concept analysis,
and clearly would benefit from improvements
to datasets and methods, many of which are covered
in the future directions section below. Here we have
examined only direct flights, and their capacities,
rather than actual passenger numbers or stopovers.
Moreover, in the distribution modelling we have
treated Aedes albopictus as a single homogenous
type of mosquito, yet competition, competence,
adaptation and preferences can vary widely across
its global distribution (Gratz, 2004). Finally, accurate
data on outbreak locations and sizes, as with
many diseases, are difficult to obtain to be sure of
comprehensive assessments of risk, however, im-
provements in global surveillance and the rapid
availability of data are improving (e.g. Brownstein
et al. 2008). Despite these issues, the results of this
first-iteration spatial framework show promise in
terms of being able to conduct rapid risk assessments
and prioritise surveillance for a range of vector-borne
diseases in the future. The next section documents
the first steps in the construction of an online tool to
do this.

THE VECTOR-BORNE DISEASE AIRLINE

IMPORTATION RISK (VBD-AIR) TOOL

The two examples in the previous section, as well
as previous studies (Tatem et al. 2006a,b, c) have
demonstrated the potential that exists in combining

Table 2. Principal factors that determined the
occurrence of the 2007 chikungunya outbreak in
Italy, the datasets used to represent them in the
modeling exercise and the source of the datasets

Factor Dataset Source

Presence of
Aedes albopictus

Predicted Aedes
albopictus
distribution

Multiple
georeferenced
datasets on
confirmed
albopictus field
presence (e.g.
Benedict et al.
2007; Moffett
et al. 2009;
European Centers
for Disease
Control, 2009).

Chikungunya
virus mutation

N/A N/A

Large outbreaks
elsewhere

Mapped
surveillance
report data

Promed-mail
(www.
promedmail.org),
Healthmap (www.
healthmap.org)

Climatic
conditions

Climatic
similarity
between
outbreak
regions and
those connected
by flights

NCEP reanalysis
gridded data:
temperature,
rainfall, humidity
(Kanamitsu et al.
2002)

Incoming
travellers from
outbreak
regions

Global flight
schedules and
monthly route
capacities

2007 database on
flight schedules
(www.oag.com)
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spatial data on disease distributions and climatic
seasonality with routinely collected data on flight
traffic within a simple modelling framework. To
improve access to such datasets and the benefits of
combining them for initial assessments of risk of
vector-borne pathogen importation and onward
spread, or vector importation and establishment,
the Vector-Borne Disease Airline Importation Risk
(VBD-Air) tool has been developed by the authors.
The VBD-Air tool aims to help better define the

roles of airports and airlines in the transmission and
spread of vector‐borne human diseases. It represents
a flexible tool that combines multiple geospatial
datasets to estimate the relative risks between differ-
ing airports, flight routes, times of year, diseases and
their vectors, in promoting the movement of passen-
gers infected by vector-borne diseases and the vectors
that spread these diseases. These datasets include
global disease risk maps, vector presence maps, 2010
and 2011 air travel network and capacity information,
and global climatic datasets. Airports are considered
as nodes in the air travel network, with attributes
extracted from these datasets based on the locations of
the airports. For disease risk, themaximum risk value
within a two hour travel time mask around each
airport (defined using methods outlined here: http://
bioval.jrc.ec.europa.eu/products/gam/index.htm) is
used to reflect local accessibilities for infected passen-
gers. The calculations and outputs of the tool rely on
the assumptions that the levels of imported vector and
vector-borne disease risk via air travel are related to (1)
the presence of flight routes connecting to endemic
regions (promoting the movement of people, patho-
gens and vectors), (2) the level of traffic between origin
and destination (increasing the probability of infected
passenger and vector carriage), and (3) the monthly
climatic similarity between origin and destination

(since vector activity is required at both locations
to firstly provide infected passengers, and secondly
prompt onward transmission or vector establishment
at the selected destination). These all represent first-
step risk assessments based on available global data,
andmany additional factors for which data are sparse,
or which are locally-specific are not included in the
tool. At present, VBD-Air focuses on four vector-
borne diseases that are the cause of high burden and
imported case numbers globally, or that have been
readily spread by air travel previously: malaria,
dengue, yellow fever and chikungunya. However,
extension to other vector-borne diseases is antici-
pated.
The VBD-Air tool takes the form of an interactive

online interface (Fig. 3), and is targeted to users with
interests in specific airports or regions, and the risks
to those locations of vector-borne disease importation
and onward spread, or exotic vector importation
and establishment. Users initially select an airport of
interest, then make further selections regarding the
disease, month and whether only direct flights should
be examined. The selections prompt database queries
to return a map of the selected disease distribution
with direct (or one-stop) flight routes from endemic
regions of the selected disease to the airport in
question overlaid. The flight routes are coloured by
passenger capacity for the selected month, and each
route and airport can be selected to examine various
statistics on its predicted disease prevalence, climate
and traffic in the selected month. The top ten routes
ranked by incoming traffic in the selected month
from disease endemic regions are also listed to
provide an initial assessment of risk, and users can
click on any listed airport to view its location on the
map. Following this, options for further calculations
are available, categorized by (1) imported disease risk,

Fig. 2. The predicted distribution of climatic and environmental suitability for Aedes albopictus presence based on field
survey data combined with satellite-derived environmental covariates within a boosted regression tree species
distribution prediction model. The colour scale shows predicted unsuitable to suitable conditions as a continuous scale
from yellow to dark blue.
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(2) onward transmission risk and (3) imported vector
risk. Each section provides more detailed metrics
and the option to produce a report in PDF format
that summarises differing riskmetrics throughout the
year for the airport in question.

The imported disease section enables users to
explore further statistical summarizations for their

airport of interest, including air traffic levels from
endemic regions, and traffic levels rescaled by disease
prevalence or risk at the origin. This section follows
similar assumptions to the imported malaria example
above – that rates and origins of imported cases are
likely a function of numbers incoming and disease
risk at the origin. The onward transmission section

Table 3. The top ten predicted risk routes for chikungunya importation and onward transmission in June
2007. Origin airports are chosen from international airports within or near to ongoing chikungunya
outbreaks and predicted as suitable for Aedes albopictus presence (Fig. 2). Destination airports are those
with direct flights to the origin airports and predicted to have Aedes albopictus present in their vicinity. The
routes are ranked by traffic-scaled climatic Euclidean distance (CED) (Tatem and Hay, 2007) from largest to
smallest

Ranking Origin airport Destination airport Traffic-scaled CED

1 Chennai, India Colombo, Sri Lanka 10,516
2 Thiruvananthapurum, India Colombo, Sri Lanka 9,885
3 Mumbai, India Colombo, Sri Lanka 8,777
4 Mumbai, India Dhaka, Bangladesh 8,561
5 Chennai, India Dhaka, Bangladesh 8,148
6 Kozhikode, India Colombo, Sri Lanka 7,477
7 Mumbai, India Milan, Italy 6,919
8 Mumbai, India Newark New York, USA 6,145
9 Mumbai, India Atlanta, USA 4,472

10 Chennai, India Singapore 4,218

Fig. 3. Example output screen from the VBD-Air tool. Here the user has chosen to examine direct flight routes into
Miami airport originating in regions that have previously seen dengue transmission or are predicted to be suitable for
transmission. The routes are coloured by high/low 2011 passenger capacities, and the top ten routes by traffic from
endemic areas are listed in the top-right window.
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enables similar calculations to be undertaken, but
extends analyses to include vector distributions and
climatic similarity between origin and destination
regions, in a similar fashion to that undertaken
for the chikungunya example above. Finally, the
imported vector section makes use of the predicted
vector distribution maps and climatic similarity
indices to undertake calculations on flight routes and
climatic similarity between origins and destinations at
different times through the year, following metrics
outlined and applied in previous studies (Tatem et al.
2006a; Tatem and Hay, 2007; Tatem 2009).
The tool is currently in its final stages of develop-

ment at the time of writing, and anyone wishing
to test it or obtain further details should contact
Dr Tatem (Andy.Tatem@gmail.com).

MITIGATION

The data and approaches presented so far highlight
how far we have come in understanding the role of
air travel in the spread of vector-borne diseases, and
how spatial information on a variety of factors can be
combined to assess the risks of disease and vector
importation and spread. Such approaches are valu-
able for allocating sparse surveillance resources or
for strategic planning, but once these risks have
been characterized, the question remains on how to
mitigate them. A range of options exist, and each have
been applied in a variety of settings and to varying
degrees of intensity and expense. Here we highlight
briefly some of the more widely used air travel-
specific approaches:

Disinsection

Disinsection (in-cabin spraying with insecticide
at take‐off or landing (Gratz et al. 2000)) used to be
widely recommended and practised (World Health
Organisation, 1998; Aitio, 2002). Studies have
suggested that, where used, routine disinsection can
prove effective in reducing ‘airport malaria’ (Tatem
et al. 2006b) risk (Hutchinson et al. 2005), although
the number of countries implementing such pro-
cedures is in decline (Russell and Paton, 1989;
Woodyard, 2001). The practice is likely to make
more economic and logistical sense on certain routes
and at certain times of the year in terms of reducing
risk from the import of disease-carrying insects.
Alternative approaches that avoid the application
of insecticides have been developed, such as the use
of air curtain barriers (Carlson et al. 2006). These
approaches are likely to be of little impact in terms of
reducing numbers of imported cases in infected
travellers though.

Vector control

Vector control through larviciding and larval habitat
management around airports (Guillet et al. 1998) at

specific times of year likely represents a relatively
cheap option, should a particular gateway airport be
considered a risk for the establishment of invasive,
non-native insect vectors. The technique is again
likely to be of little use in reducing numbers of
imported cases in infected travellers, and only of use
in limiting onward transmission in the vicinity of the
airport.

Screening and treatment

If a particular route is identified as a likely source of
imported insect-borne disease cases, then the
implementation of targeted, random or full screening
(followed by treatment if infections are found) of
arriving passengers represents a costly and often
inconvenient option, but potentially an effective one.
Such an approach has been implemented by the
malaria control programme in Mauritius as a tool for
maintaining the island’s malaria-free status, whereby
blood samples were taken and tested for parasites
from incoming air travellers, though questions about
its cost effectiveness remain (Tatarsky et al. 2011).
A less intrusive approach uses infrared thermometers
(Maurice, 2009) to screen for passengers with fever,
and has been implemented at some airports during
the SARS and influenza epidemics and occasionally
for vector-borne diseases, such as dengue (Shu et al.
2005) and chikungunya (Shu et al. 2008). Such an
approach may only be cost-effective for specific
routes and at times when a known large outbreak is
occurring at origin regions. Moreover, passengers
who are infected, but at latent stages of infection, or
are asymptomatic, will not be captured by such
approaches.

Awareness and education

Potentially the most cost-effective approaches to
reducing numbers of imported vector-borne dis-
ease cases and mitigating the potential impacts are
targeted education and awareness campaigns. These
can involve focusing on a range of groups: (1)
Informing airport staff, cabin crew and particularly
medical staff about specific routes and times of year
where the risks of passengers harbouring vector-
borne infections may be relatively high. By making
them aware of symptoms and treatments, and raising
vigilance, the possibility for identifying and rapidly
treating sick passengers is higher. (2) Similarly,
informing local physicians and clinical practices in
terms of vigilance for specific illnesses in those with
certain travel histories can enable rapid diagnosis
and reduce the risk of local secondary transmission.
(3) Informing passengers returning from specific
destinations at certain times of year of the potential
elevated risks of contracting vector-borne diseases.
This can improve treatment seeking behaviour and
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facilitate rapid diagnosis, should travellers become
sick upon return home. (4) Informing outgoing
passengers to specific destinations of elevated risk
for vector-borne disease. This can include advance
warning when tickets are purchased to prompt
prophylaxis acquisition, and onboard the flight to
increase awareness of bednet usage and insecticide
application, for example.

FUTURE DIRECTIONS

Compared to our understanding of the role of air
travel in the spread of directly transmitted infections
such as influenza, much is still to be discovered,
explored and analysed in terms of vector-borne
diseases. A set of possible future research directions
exist as clear extensions to the work outlined in this
paper, and these are discussed below.

Real time risk assessment

Ultimately, being able to map rapidly vector-borne
disease risks as they change, then link these con-
temporary risks to actual air travel ticket purchase
records and occupancy rates will take the types of
analyses presented here a step further towards near
real-time assessments of disease importation risk.
Projects such as Bio.diapsora (www.biodiaspora.
com) and GLEAM (www.gleamviz.org) aim to
provide frameworks for integrating air travel data
with disease surveillance data and mathematical
modelling, respectively, to better quantify risks for
directly-transmitted infections. The increasing avail-
ability of rapidly reported and georeferenced data
on disease outbreaks through projects such as
Healthmap (Brownstein et al. 2008) and the devel-
opment of statistical disease and vector distribution
mapping techniques make the possibility of near real-
time vector-borne disease risk mapping within
reach, however. Through combining these with
information on human movement, for (1) air travel
through actual ticket sales, passenger logs or mod-
elled data (see below) and (2) land-based and travel
through a variety of datasources and models (e.g.
www.thummp.org), and linking thesemovement data
to disease-specific stochastic models (see below), the
goal of real-time adaptive management and surveil-
lance for vector-borne disease importation and spread
could become a reality.

Flight passenger modelling

The analyses here and prior studies (Tatem et al.
2006a,b, c) have focused solely on scheduled direct
flights and relied on flight capacities as a surrogate
for actual passenger traffic. In reality, stopovers are
common, flights rarely operate at full capacity and
chartered flights still carry large numbers of people.

Aside from obtaining full records of all passenger
itineraries, which generally remain confidential
and expensive to obtain, a number of steps can be
explored to rectify this, firstly focused on deriving
models based on widely available and reliable US
data. These likely include the processing of DB1B
data and T-100 data (http://www.transtats.bts.gov)
to compare purchased tickets (which include full
routes including stopovers) and flight occupancy
on routes against flight capacity. Moreover, analysis
of T-100 data and its cross-referencing against
enhanced traffic management system operator codes
can enable the inclusion of chartered flights. Finally,
approaches to model the potential area of dispersal of
any VBD brought in by an infected human could be
developed through spatial quantification of airport
accessibility by overland travel in combination with
vector-borne disease and vector distribution datasets.
Previously developed approaches for quantifying
spatially the ease of access of differing locations
globally have shown application in describing the
movement of directly transmitted infections (Gray
et al. 2009; Talbi et al. 2010), and could be extended
to provide estimates of airport catchment areas and
potential routes of onward transmission.

Vector-borne disease and vector-specific parameters

The risks of long-distance spread for differing vector-
borne diseases are partially dependent upon their
respective epidemiological features. For instance, the
differing incubation times and prevalence of asymp-
tomatic carriers means that some vector-borne dis-
eases have greater opportunities to be carried beyond
their region of entry to a country than others, before
symptoms appear, treatment is sought and the disease
presence is alerted to control authorities. Moreover,
the length of parasite lifecycle stages (Guerra et al.
2008), vector development times (Sinka et al.
2010a,b, 2011) and diapause (Hawley et al. 1987)
all impact upon the timings of risk, while larval site
preferences and human population densities (Tatem
et al. 2008) affect locations of risk. Incorporation of
these factors into existing air network model frame-
works, including VBD-Air, should be a priority.

Stochastic models

The simple model frameworks presented in this
paper and previously (Tatem et al.2006a,b, c) use
single mean estimates of monthly traffic per route,
environmental suitability, disease endemicity/pres-
ence and vector presence to estimate long-distance
vector-borne disease spread risk. In reality, this
spread is a stochastic process, and each of these
variables can (1) exhibit substantial variations from
the mean and (2) include uncertainty in the way
they are measured. These encompass, for example,
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interannual climatic variability, monthly variations
in traffic on flight routes, the uncertainties inherent
in mapping vector-borne disease transmission (Patil
et al. 2011) and vector suitability from species
distribution models (Sinka et al. 2010a ,b, 2011),
and past histories of outbreaks. Future work should
focus on deriving probability distributions for each
model parameter. By simulating risks of importation
from these probability distributions, improved and
more informative model outputs can be produced
that will provide a better understanding of the
uncertainties inherent in forecasts and more realistic
scenarios for guiding management decisions.

Validation

The testing and validation of any models designed to
assess vector-borne disease importation and estab-
lishment risk against detailed and reliable data on
previous vector-borne disease-spread events should
represent an important component of future research.
The imported malaria and chikungunya outbreak
examples presented here, as well as previous work
on airport malaria (Tatem et al. 2006b) and Aedes
albopictus (Tatem et al. 2006a) represent first steps
towards achieving this, but more detailed and
rigorous assessments will increase confidence in the
forecasting abilities of such models.

Phylogeography

The analysis of phylogenetic data is increasingly
uncovering patterns and information on the timing
and global spread routes of pathogens (Lemey et al.
2009). While such analyses offer valuable insights
into global epidemiological dynamics, the driving
factors behind them remain unquantified. Recent
work, however, is focused on building in candidate
driving factors (including air traffic data) into
Bayesian phylodynamic frameworks to quantify the
possible role of each one in describing spread patterns
seen (Lemey et al. 2009; Talbi et al. 2010; Gray et al.
2011). This multidisciplinary approach offers a
potentially powerful framework for understanding,
modelling and forecasting the dynamics of pathogens
spread through air travel.

CONCLUSIONS

Increases in global travel are happening simul-
taneously with many other processes that favour the
emergence ofdisease (Wilson1995, 2003).Air travel is
a potent force in disease emergence and spread, and
the speed and complexity of modern aviation makes
both geographical space and the traditional ‘draw-
bridge’ strategy of disease control and quarantine
increasingly irrelevant (Haggett, 2000). With no
apparent end in sight to the continued growth in

global air travel, we must expect the continued
appearance of communicable disease pandemics,
disease vector invasions and vector-borne disease
movement. Approaches that can model, predict and
explain such events can be used to focus surveillance
and control efforts more efficiently. This paper has
shown that the risk of movement of vector-borne
diseases through the global air network can be
predicted to a certain degree to provide such
information. Future challenges include incorporating
information on temporal variations in passenger
numbers, stopover risks, intra-species competition,
human populations at risk, breeding site availability,
climate change, disinsection and onward land trans-
port, as well as quantifying the relative importance of
all types of transport for vector anddiseasemovement.
The development and application of statistical and
mathematical models based on spatially explicit data,
with a particular focus on air transport connectivity
have the potential to aid in reaching anultimate goal of
real-time adaptive management and surveillance.
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