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SUMMARY
In this paper, the optimum design of parallel kinematic
toolheads is implemented using genetic algorithms with the
consideration of the global stiffness and workspace volume
of the toolheads. First, a complete kinetostatic model is
developed which includes three types of compliance,
namely, actuator compliance, leg bending compliance and
leg axial compliance. Second, based on this model, two
kinetostatic performance indices are introduced to provide a
new means of measuring compliance over the workspace.
These two kinetostatic performance indices are the mean
value and the standard deviation of the trace of the
generalized compliance matrix. The mean value represents
the average compliance of the Parallel Kinematic Machines
over the workspace, while the standard deviation indicates
the compliance fluctuation relative to the mean value. Third,
design optimization is implemented for global stiffness and
working volume based on kinetostatic performance indices.
Additionally, some compliance comparisons between Tri-
pod toolhead and other two principal Tripod-based Parallel
Kinematic Machines are conducted.

1. INTRODUCTION
Since most machining operations only require a maximum
of 5 axes, new configurations with less than six parallel axes
would be more appropriate. Development work on new
configurations is currently focused mainly on tripods.
Examples include Triaglide,1 Tetrahedral Tripod,2 and
Tricept of Neos Robotics.3 Tripods can be combined with 2
axis systems, such as x-y stages, to form five axis
machines.

To scale down the size of tripods, they can be developed
as toolheads. As shown, reference [4], tripod-based tool-
heads can be attached to existing systems such as CNC
machines, robots and CMM, to expand their motion range

and dexterity. In this paper, a method for design and
optimisation of parallel kinematic toolheads is presented.
The method includes kinetostatic modelling, and genetic
algorithms.

Kinetostatic analysis is essential for parallel kinematic
toolheads. A great deal of work has been done on
kinetostatic analysis that has direct application to Parallel
Kinematic Machines (hereafter PKMs).5–12 The work done
so far on kinetostatic analysis of PKMs, however, has not
addressed the issue of how to improve the global stiffness
and workspace simultaneously over the workspace. In this
paper, two global compliance indices (kinetostatic perform-
ance indices) are introduced, namely, the mean value and
the standard deviation of the trace of the generalized
compliance matrix. The mean value represents the average
compliance of the PKM over the workspace, while the
standard deviation indicates the compliance fluctuation
relative to the mean value. With the two indices, the
optimization objective function for both global stiffness and
workspace is proposed.

Meanwhile, the analysis of the positioning and orienta-
tion error of the platform in the presence of leg flexibility
has not received much attention. However, this error cannot
be neglected in practice, since it has been shown that if the
mechanism flexibility is considered, the performances may
become very poor and the main feature of the mechanism is
lost. It is shown that it is necessary to take link flexibility
into account.12 The relationship between mechanism global
stiffness and link flexibilities is derived in the paper.

Genetic algorithms (hereafter GAs) were introduced in
the 1970s13 as part of the large class of evolutionary
algorithms,14 evolution strategies15 and genetic program-
ming.16 GAs are powerful and broadly applicable stochastic
search and optimization techniques based on the evolution-
ary principle of natural chromosomes.17 Specifically, the
evolution of chromosomes due to the operation of crossover
and mutation and natural selection of chromosomes based
on Darwin’s survival-of-the-fittest principles are all artifi-
cially simulated to constitute a robust search and
optimization procedure. GAs are the computer simulation of
such evolution where the user provides the environment
(function) in which the population must evolve.

In what follows, firstly the generalized compliance matrix
is modelled; secondly the global compliance is defined;
thirdly genetic algorithms are introduced to implement the
optimization. The proposed method is implemented to
perform design optimization of the Tripod toolhead proto-
type built at the Integrated Manufacturing Technologies
Institute of the National Research Council of Canada.
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2. PROBLEM FORMULATION

2.1. System description
Figure 1 shows the CAD model of the tripod that was
developed as a toolhead. The tripod is based on the fixed-
length legs. A tool can be mounted on the moving platform
of the toolhead. The movement of the moving platform is
controlled by sliding the fixed-length legs along the
guideways. The toolhead can be mounted on an industrial
robot as shown in Figure 2(a), on a horizontal CNC machine

as shown in Figure 2(b), on a gantry system as shown in
Figure 2(c), and on a CMM laser scanning system as shown
in Figure 2(d).4

2.2. Objective function
In this paper, consideration for optimization is to minimize
the global compliance and to increase the workspace
volume to a certain value. Therefore, it is a multi-objective
optimization problem. While implementing the optimisa-
tion, we set the workspace volume to a certain increased
value, and simply to maximize the global stiffness. The
objective function is given as

val=max(1/�+1/�) (1)

where � represents the mean value of the trace of the global
compliance matrix of the tripod, � is its standard deviation.

The methods for determination of the workspace can be
found in the literature and the method used is the inverse
kinematics-based method.18 The global compliance is a new
idea that will be introduced in the following section.

3. GENERALIZED STIFFNESS AND COMPLIANCE
MATRIX
The generalized stiffness matrix of a PKM relates a wrench
including the forces and moments acting on the moving
platform to its deformation. It represents how stiff the PKM
is in order to withstand the applied forces and moments. By
definition, the following relationship holds

w=K �x (2)

where w is the vector representing the wrench acting on the
moving platform, �x is the vector of the linear and angular
deformation of the moving platform, and K is the
generalized stiffness matrix. Vectors w and �x are expressed
in the Cartesian coordinates O-xyz.

Since PKMs are parallel structures, the moving platform
stiffness is a combination resulting from all serial chains
including actuators. Figure 3 shows a schematic of the
Tripod with fixed-length legs. In this type of PKM, the
moving platform is driven by sliding the fixed-length legs
along the guideways. Three types of compliance contribute
to deformation of the moving platform, namely, actuator
flexibility, leg bending and axial deformation.

A simple way of deriving the generalized stiffness matrix
is to use the force relation and the infinitesimal motion
relation as given below in duality form19

w=JTf (3)

and

�q=J �x (4)

where J is the Jacobian matrix that relates the infinitesimal
motion between the sub-serial chains and the moving
platform, f is the vector representing forces in the sub-serial
chains; �q is the vector representing infinitesimal motion of
the sub-serial chains. The infinitesimal motion of the sub-
serial chains is referred to as the component deformation in
the sub-serial chains. The component deformation would
induce the forces, which are called the branch forces in the
sub-serial chains.

Fig. 1. The CAD model of the tripod toolhead.

Fig. 2. Various application of Tripod Toolhead.

Genetic algorithms78

https://doi.org/10.1017/S0263574703005228 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574703005228


Considering the local stiffness in the sub-serial chains,
denoted by K̄, the branch forces induced by the branch
deformation can be written as

f=K̄ �q (5)

Substitution of Equations (4) and (5) into Equation (3)
yields

w=K �x (6)

where the generalized stiffness matrix K is given as

K=JTK̄J (7)

Equation (6) can be re-written in terms of compliance as

�x=Cw (8)

where C is the generalized compliance matrix, and C=K�1.
The generalized compliance matrix represents how much
the moving platform would deform under the applied
wrench w.

When Equation (8) is applied to consider the afore-
mentioned three types of compliance, the following three
types of the moving platform deformation would be
induced

�xt =Ctw; �xb =Cbw; �xa =Caw (9)

where subscripts t, b and a indicate the deformation due to
the torsion in the actuators, bending and axial deformation
of the legs, respectively. Since these three deformations
occur in a serial fashion, the total deformation can be
considered as follows20

�x=�xt +�xb +�xa (10)

This leads to the following compliance model

�x=CGw (11)

where the total generalized compliance matrix CG is given
as

CG =Ct +Cb +Ca (12a)

In Equation (12a), Ct =K�1
t , Cb =K�1

b , and Ca =K�1
a , and

Equation (12a) can be re-written as

CG =K�1
t +K�1

b +K�1
a (12b)

where

Kt =JT
t K̄tJt (13a)

Kb =JT
bK̄bJb (13b)

Ka =JT
a K̄aJa (13c)

The total generalized stiffness matrix considering the three
types of compliance can be written as

KG =C�1
G (14)

From Equations (13a)–(13c), it can be seen that CG is
defined by three different Jacobians and local stiffness
corresponding to three types of compliance, which will be
derived in the following section. Though three stiffness
matrices Kt, Kb, and Ka are derived here for the prototype
3-DOF mechanism under study, the method presented is
generic and can be readily expanded to PKMs with more
than 3 DOF.

However, the total generalized compliance matrix as
defined in Equation (12a) does not have the appropriate

Fig. 3. Schematic of a Tripod Toolhead.
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units due to multiplication of the Jacobian. For this reason,
a weighting matrix is applied to CG that becomes

CW =WCGW (15)

where the weighting matrix is defined as

W=diag(1, 1, 1, L, L, L) (16)

In Equation (16), L is a parameter with length unit. Cw is a
6� 6 matrix with the appropriate compliance units. The
upper left 3� 3 sub-matrix of Cw represents the linear
compliance with unit of m/N, while the lower right 3� 3
sub-matrix represents the angular compliance with unit of
rad/Nm. The rest is the coupling between the linear and
angular compliance.

As shown in Equation (12b), the compliance matrix is
determined by the inverse of the stiffness matrix. Consider-
ing Equation (13) and Equation (15), the total generalized
compliance matrix can be expressed as

CW =W[(JT
t K̄tJt)

�1 +(JT
bK̄bJb)

�1 +(JT
a K̄aJa)

�1]W (17a)

For the prototype under study it is an over-constrained
kinematic system, and three Jacobians Jt, Jb and Ja are 3� 6
matricides. For this reason, the generalized inverse is
applied and Equation (17a) is rewritten as

CW =CWt +CWb +CWa (17b)

where

CWt =WJ+
t K̄�1

t (J+
t )TW; CWb =WJ+

b K̄�1
b (J+

b )TW;

CWa =WJ+
a K̄�1

a (J+
a )TW

(18)

In Equation (18), superscript + indicates the matrix
generalized inverse.

4. STIFFNESS MODELLING AND DERIVATION OF
JACOBIANS

4.1. Actuators
Figure 4 shows a schematic of the actuator-leg system in
which an actuator drives a fixed-length leg through a lead
screw. This design was adopted for our prototype because of
cost effectiveness. There exists friction in the lead screw
that induces torsional deformation in the actuator shaft and
the lead screw itself. The torque, denoted by �i, induced by
the angular deformation, denoted by ��i, may be written as

�i =k�i ��i (19)

where k�i is the torsional stiffness, i is the branch index, and
i=1, 2, 3 for the prototype under study.

The torque and the rotation of the lead screw can be
converted to the force acting on the nut denoted by fti, and
the linear movement of the nut, denoted by �ti, approx-
imately as21

fti =2�i/( fc dm); �ti =p ��i (20)

where fc is the friction coefficient, dm is the pitch diameter of
the screw and p is the pitch of the screw. Using Equations
(19) and (20), the following relationship can be obtained as

fti =kti �ti (21)

where kti represents the stiffness relating �ti to fti, and it is
given as

kti =2k�i/( fc dm p) (22)

Considering all the serial chains, the local stiffness matrix
can be expressed as

K̄t =diag(kti) (23)

To obtain the generalized stiffness matrix Kt pertaining to
the actuator stiffness, Jacobian Jt is required. To do so, let us
consider the loop equation of the ith branch shown in
Figure 3

h+Rp̄i � li � ti �bi =0 (24)

where h and R are the position vector and the rotation
matrix of the moving platform, respectively, p̄i is the
position vector of joint i on the moving platform in the local
coordinates O	�x	y	z	, li is the vector representing the ith
sliding leg, ti is the vector representing the nut displacement
along the ith guideway, and bi is the position vector of the
lower end of the ith guideway. Differentiation of Equation
(24) yields4

�t=Jt �xt (25)

where �t is the vector of the infinitesimal motion of the nut
along the guideway, for the prototype under study,
�t=[�t1, �t2, �t3]

T, and Jacobian Jt can be obtained as

Jt =B�1A (26)

In Equation (26), A and B are the inverse and forward
Jacobian of the PKM and for the prototype under study, they
are given as

A=

(ul
1)

T

(ul
2)

T

(ul
3)

T

(Rp̄1� ul
1)

T

(Rp̄2� ul
2)

T

(Rp̄3� ul
3)

T

; B=diag((uT
1)Tul

1, (ut
2)

Tul
2, (ut

3)
Tul

3)

(27)

where ut
i and ul

i are the unit vectors representing the
directions of the ith guideway and the ith leg, respectively.
Substituting Equation (23) and (26) into Equation (13a)
leads to Kt.

4.2. Fixed-length legs
If the fixed-length leg is connected to the nut by a revolute
joint as shown in Figure 4, it would be subject to bending in
the direction parallel to the axis of the revolute joint.Fig. 4. Actuator and fixed-length leg system.
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Furthermore, since the leg is connected to the moving
platform by a spherical joint and assuming there is no
friction, the leg can be modelled as clamped (at the revolute
joint) – free (at the spherical joint). Under this boundary
condition, the following holds

fbi =kbi �bi (28)

where fbi is the force due to the bending deformation �bi at
the free end, and kbi is the bending stiffness given as
kbi =3EI/l3 in which E is the Young’s modulus, I is the area
moment of leg’s cross section, and l is the leg length. If
considering all the sub-serial chains, the local stiffness
matrix can be obtained as

K̄b =diag(kbi) (29)

To derive the Jacobian Jb, we can consider w due to
fb =[fb1 fb2 fb3]

T. For the Tripod under study, it can be given
as

w=� ub
1

Rp̄1� ub
1

ub
2

Rp̄2� ub
2

ub
3

Rp̄3� ub
3
�fb (30)

where ub
i is the unit vector indicating the bending direction.

In the light of the relationship given in Equation (3), Jb can
be obtained from Equation (30) as

Jb =
(ub

1)
T

(ub
2)

T

(ub
3)

T

(Rp̄1� ub
1)

T

(Rp̄2� ub
2)

T

(Rp̄3� ub
3)

T

(31)

Substituting Equations (29) and (31) into Equation (13b)
gives Kb

In addition to the leg bending, there exists axial
deformation along the leg. The force fai due to the axial
deformation �ai can be given

fai =kai �ai (32)

Hence

K̄a =diag(kai) (33)

Using a similar approach for the bending, and consider w
due to fa =[fa1 fa2 fa3]

T; it can be readily shown4

w=ATfa (34)

Apparently,

Ja =A (35)

Substituting Equations (33) and (35) into Equation (13c)
yields Ka.

5. GLOBAL COMPLIANCE INDICES
Indicated by the detailed derivations in Section 4, the
generalized compliance matrix CW varies over the PKM
workspace. Conventional kinetostatic analysis methods,
such as stifffiess mapping, would require a large number of
graphs in order to provide an overview of the stifffiess
variation. An alternative, however, could be based on
statistics analysis. This method was proposed to evaluate the
generalized mass matrix of PKMs over the workspace.22

Based on this concept, the mean value and the standard
deviation of a selected parameter can be used to evaluate the
variation over the workspace. Since the trace of the
generalized compliance matrix is invariant, it is selected as
a parameter for global kinetostatic analysis. The mean value
and the standard deviation are defined as

�=E(tr(CW)) (36)

and

�=SD(tr(CW)) (37)

where E( · ) and SD( · ) are the mean value and the standard
deviation, and tr represents trace operation. The mean value
represents the average compliance of the PKM over the
workspace, while the standard deviation indicates the
compliance fluctuation relative to the mean value. In
general, the lower the mean value the less the deformation,
and the lower the standard deviation the more uniform the
compliance distribution over the workspace.

6. DESIGN OPTIMIZATION

6.1. Rationale of using genetic algorithms
Genetic algorithms have the advantages of robustness and
good convergence properties, i.e.

• They require no knowledge or gradient information about
the optimization problems. They can solve any kind of
objective functions and any kind of constraints (i.e., linear
or nonlinear) defined on discrete, continuous, or mixed
search spaces.

• Discontinuities present on the optimization problems have
little effect on the overall optimization performance.

• They are effective at performing global search (in
probability) instead of local optima.

• They perform very well for large-scale optimization
problems.

• They can be employed for a wide variety of optimization
problems.

Genetic algorithms have been shown to solve linear and
nonlinear problems by exploring all regions of state space
and exponentially exploiting promising areas through
mutation, crossover, and selection operations applied to
individuals in the population.23

In the present work, there are many optimization
parameters and complex matrix computations. Hence, it is
very difficult to write out the analytical expressions for each
stifffiess element and workspace volume. Moreover, with
traditional optimization methods, only a few geometric
parameters could be handled due to the lack of convergence
of the optimization algorithm when used with more
complex problems.24 This arises from the fact that tradi-
tional optimization methods use a local search by a
convergent stepwise procedure (e.g. gradient, Hessians,
linearity, and continuity), which compares the values of the
next points and moves to the relative optimal points. Global
optima can be found only if the problem possesses certain
convexity properties that essentially guarantee that any local
optima is a global optimum. In other words, Conventional
methods are based on point-to-point rule, it has the danger
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of falling in local optima while the genetic algorithms are
based on population-to-population rule, it can escape from
local optima. Therefore, genetic algorithms are the best
candidate for the optimization problems studied here.

The flowchart of the genetic algorithms is illustrated in
Figure 5.

6.2. Determination of parameter settings for Genetic
Algorithms
In order to use genetic algorithms properly, several
parameter settings have to be determined, they are:
chromosome representation, selection function, genetic
operators, the creation of the population size, mutation rate,
crossover rate, and the evaluation function. They are
described in more detail as follows:

• Chromosome representation: This is a basic issue for the
GA representation, it is used to describe each individual
in the population of interest. For the problem studied here,
the chromosomes consist of the architecture parameters
(coordinates of the attachment points, coordinates of the
moving platform, vertex distributions at base and moving
platform, platform height, etc.) and behavior parameters
(actuator stifffiess, actuated link stifffiess, etc.) of the
mechanisms.

• Selection function: This step is a key procedure to
produce the successive generations. It determines which
of the individuals will survive and continue on to the next
generation. In the paper, the roulette wheel approach is
applied.

• Genetic operators: The operators are used to create new
children based on the current generation in the population.
Basically, there are two types of operators: crossover and
mutation. Crossover takes two individuals and produces

two new individuals while mutation alters one individual
to produce a single new solution.

• Population size: The population size represents the
number of individuals or chromosomes in the population.

• Mutation rate: The mutation rate is defined as the
percentage of the total number of genes in the population,
it determines the probability that a mutation will occur.
The best mutation rate is application dependent but for
most applications is between 0.001 and 0.1.23 In the case
studied, mutation rate is 0.1.

• Crossover rate: The best crossover rate is application
dependent but for most applications is between 0.80 and
0.95.23 For the case studied, crossover rate is 0.85.

• Evaluation functions: Evaluation functions are subject to
the minimal requirement that the function can map the
population into a partially ordered set.

7. SIMULATION

7.1. Initialization
Simulations are carried out on the Tripod prototype built at
the Integrated Manufacturing Technologies Institute of the
National Research Council of Canada as shown in Figure 1.
The base platform is a triangular plate with a side length of
245.5 mm and the moving platform is another triangular
plate with a side length of 139.7 mm. The guideway length
is 95.25 mm and the sliding leg length is 215.9 mm. The
guideway angle relative to the vertical direction is 20°. The
three stiffness values of the prototype are kt =1.26� 1010 N/
m, kb =3.13� 1010 N/m, ka =1.95� 107 N/m, and they are the
same for the three sub-serial chains.

For the problem studied here, the chromosomes consist of
the architecture parameters including coordinates of the
attachment points, coordinates of the moving platform, link
length, vertex distributions at base and moving platform,
platform height etc. Hence, The parameters selected for
optimization are: Rp, Rm, hm, 
, where Rp is the radius of the
moving platform; Rm is the radius of the middle plate; hm is
the height of the middle plate with respect to the base plate;

 is the rotation angle of the middle plate with respect to
Cartesian Z-axis. And their bounds are

Rp�[60.96, 182.9] mm, Rm�[182.9, 304.8] mm,

hm�[243.84, 365.76] mm, 
�[–�/3, 0] rad.

Some other parameters are set as

P=40,

Gmax =100.

where P is the population, Gmax the maximum number of
generations.

One can rewrite the objective function Equation (1) as

Val(i)=1/�+1/� (38)

with i=1, 2, 3 . . . 40.

7.2. Implementation
The objective functions are established and maximized in
order to find the suitable geometric parameters (coordinates
of the attachment points, coordinates of the moving

Fig. 5. Genetic algorithms flow chart.
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platform, link length, vertex distributions at base and
moving platform, platform height, etc.) and behaviour
parameters (actuator stiffness, actuated link stiffness, and
kinetostatic model stiffness, etc.) of the mechanisms. Since
the objective function is closely related to the topology and
geometry of the structure, and we set the workspace volume
to a certain value and to minimize the mean value and
standard deviation of the global compliance matrix.

Once the objective function is written, a search domain
for each optimization variable (lengths, angles, etc.) should
be specified to create an initial population. The limits of the
search domain are set by a specified maximum number of
generations, since the GAs will force much of the entire
population to converge to a single solution.

7.3. Optimization of existing structure
As it is very difficult to optimize global stiffness and
workspace to their maximum values simultaneously, as
larger workspace always leads smaller stiffness, and vice
versa.25 However, one can solve the problem by determining
which item between workspace and stiffness is the domi-
nant one for design and application, and maximize the
dominant one while set the other one as a constant (but set
as larger than the original). In this research, we set the
workspace to a certain value, i.e. the radius of workspace is
304.8 mm, then maximize the global stiffness. The algo-
rithm converged at the 95th generation as shown in Figure
6. The optimized structure parameters are: [Rp, Rm, hm, 
]=
[151, 259.8, 280.5, –0.1762], the sum compliance ofthe
structure is 0.1568 mm/N.

Table I shows the comparison before and after optimiza-
tion, and the global stiffness is apparently improved.

7.3. Comparison of the representative PKM stuctures
Table II is a compliance comparison between the Tripod
machine tool and the other two principal PKMs, namely, the
Tricept machine tool26 and Georg V.27 From the table, one
can observe that the optimised Tripod configuration gives a
better stiffness among the three parallel kinematic machines

Table I. Optimization results.

Variable Parameters Constant
Parameters (mm) Sum

Compliance
Rp (mm) Rm (mm) 
 (rad) Rb D1 (mm/N)

Initial 60.69 182.88 –�/3 426.72 20 0.2213
Optimized 151 259.8 –0.1762 462.72 20 0.1568

Table II. Compliance comparison
(mm/N)

TRIPOD TRICEPT 805 GEORG V

Height Mean Standard Mean Standard Mean Standard
(mm) value deviation max min value deviation max min value deviation max min

210 5.38E-03 0.00E+00 5.38E-03 5.38E-06 7.31E-03 2.85E-06 7.31E-03 7.31E-03 3.06E-03 3.41E-06 3.06E-03 3.06E-03
220 5.44E-03 8.75E-05 5.63E-03 5.34E-03 8.75E-03 8.61E-04 1.07E-02 8.03E-03 3.54E-03 5.02E-05 3.72E-03 3.49E-03
230 5.70E-03 3.09E-04 6.47E-03 5.29E-03 9.60E-03 6.55E-04 1.12E-02 8.81E-03 4.23E-03 2.46E-04 4.95E-03 3.97E-03
240 5.90E-03 5.75E-04 7.67E-03 5.24E-03 1.06E-02 5.79E-04 1.20E-02 9.64E-03 4.85E-03 2.35E-04 5.46E-03 4.51E-03
250 5.78E-03 4.34E-04 6.84E-03 5.20E-03 1.15E-02 6.57E-04 1.34E-02 1.05E-02 5.55E-03 2.75E-04 6.1 8E-03 5.11E-03
260 5.63E-03 3.14E-04 6.30E-03 5.16E-03 1.22E-02 5.12E-04 1.38E-02 1.15E-02 6.20E-03 2.83E-04 7.02E-03 5.79E-03
270 5.48E-03 2.41E-04 6.03E-03 5.12E-03 1.30E-02 3.61E-04 1.41E-02 1.25E-02 6.86E-03 2.15E-04 7.53E-03 6.56E-03
280 5.36E-03 2.17E-04 5.88E-03 5.08E-03 1.39E-02 2.26E-04 1.46E-02 1.35E-02 7.63E-03 1.40E-04 8.07E-03 7.43E-03
290 5.14E-03 8.69E-05 5.35E-03 5.05E-03 1.48E-02 9.97E-05 1.51E-02 1.47E-02 8.53E-03 6.69E-05 8.71E-03 8.44E-03
300 5.02E-03 0.00E+00 5.02E-03 5.02E-03 1.59E-02 1.09E-05 1.59E-02 1.59E-02 9.62E-03 1.12E-05 9.64E-03 9.61E-03

Average 5.48E-03 2.27E-04 1.18E-02 3.97E-04 6.01E-03 1.53E-04

Fig. 6. The evoluation of the performance of the Tripod Tool-
head.
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under the condition of the same geometrical dimensions and
actuator stiffness.

8. CONCLUSIONS
It is shown in this paper that the mean value and the
standard deviation of the trace of the generalized com-
pliance matrix can not only be used to characterize the
kinetostatic behaviour of PKMs globally, but can be used
for design optimization. The generalized compliance matrix
can be modelled by including three types of compliance,
namely, actuator compliance, leg bending and leg axial
deformation. The effectiveness of the method has been
shown through analyzing the prototype under study. It has
been shown that the machine tool workspace and global
stiffness can be improved by properly adjusting the
geometric configuration.
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